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Abstract—We investigate a spectrum oligopoly where primary modifications [[1], [11], [[18]. However, all the above papers
users allow secondary access in lieu of financial remunerath. jgnore the uncertainty of competition which distinguishes
Transmission qualities of the licensed bands fluctuate ranaimly. spectrum markets from standard oligopolies: a primary kow

Each primary needs to select the price of its channel with the . .
knowledge of its own channel state but not that of its competidrs. the state of its channel but does not know those of its

Secondaries choose among the channels available on sale dshs competitprs pefore d_eciding the price for its channel.iRgin
on their states and prices. We formulate the price selection communication services have been explored to a great gktent

as a non-cooperative game and prove that a symmetric Nash [2] prsenets a brief overview). References [5].|[12]. [13E],
eqﬁwi”B;i:Thi(stli)raStgateg)r/oﬁlré)fgi de)gfngsl "igg}feg’ha’vﬁuﬁ:‘giﬁ}y [17], [22] have analyzed price competition among spectrum
ESaIEate its efficiencgy)./ Opur structural regfjlts grovide cetain ke))// providers. References [16]. [17] modeled price competitio
insights about the unique symmetric NE. among multiple players. But all the above papers suffer from
drawbacks: first, they did not assay uncertainty of states of
channels of competitors ; second, most of them did not explic
. INTRODUCTION itly determine a Nash Equilibrium (NE) (exceptions arel[13]
Recent investigations augur that demand for mobile brogd6]). On the other hand, the papers that consider uncéytain
band — driven by the large scale proliferation of wirelessf competition, namely [6]=[10], assume that the commodity
industry — will surpass the availability of wireless speatr on sale can be in one of two states: available or otherwiss. Th
in imminent future. Yet, as recent measurements suggest, #ssumption does not capture different transmission dgmlit
licensed bands remain largely under-utilized. A reasanaldffered by the available channels. The consideration of the
conjecture therefore is that unlicensed access of idle (Ratter significantly complicates the analysis of the game. A
licensed) spectrum bands, commonly referred to as secpndaimary may now need to employ different pricing strategies
spectrum access, would avert the impending crisis. Rggentbr different states, while in the former case a single pdci
FCC has legalized the access of TV white space spectrustrategy will suffice as a price need not be quoted for an
and the advent of cognitive radios together with the design gnavailable commodity. Our investigation seeks to conteb
a plethora of sophisticated algorithms have enabled igégit in this space.
selection of bands. Large-scale secondary spectrum acaess We have modeled the price selection as a game with
not however be realized only through the availability of thprimaries as the players (Sectibh 1) and seek an NE pricing
enabling technology and the regulatory progress: secgndstrategy. We consider that the preference of the secomsdzaie
access must also be rendered profitable for the licensensoldee captured by a penalty function which associates a penalty
Accordingly, we investigate a spectrum oligopaly [14] wéervalue to each channel that is available for sale depending on
license holders (hitherto referred to as primaries) allaw uits state and price quoted. Given the state of a channek ther
licensed users (hitherto referred to as secondaries),ein lis a one-to-one correspondence between the price quoted and
of financial remuneration, access to the channels (licens@@ penalty perceived by a secondary. Thus, the strategy for
bands) that are not in use. Different channels offer differeselection of a price for a channel in a given state may be equiv
transmission rates to the secondaries depending on theésstalently represented as a strategy for selection of penla#t t
which evolve randomly and reflect the usage levels of theRe channel offers to a secondary. Since prices and therefor
primaries as also transmission quality fluctuations owing the penalties take real values, the strategy set of the siaye
fading. Each primary quotes a price for the channel thatgbntinuous; also the payoff functions for the primaries tout
offers and secondaries select among the available channelde discontinuous. Thus, classical results do not gueeant
depending on the states and the prices quoted. Thus, itha existence, let alone the uniqueness, of an NE. In addlitio
primary quotes a high price, it will earn a large profit if itexisting literature does not provide algorithms for conpit
sells its channel, but may not be able to sell at all; on thegh NE unlike when the strategy set is finite][15]. Startingrfro
other hand a low price will enhance the probability of a sal general set of strategy profiles for the primaries whiotwel
but also fetch lower profits in the event of a sale. for selecting penalties using arbitrary probability disttions,
Price selection in oligopolies may be modeled as a nowe show that for a large class of penalty functions, therstexi
cooperative game and has naturally been extensively inveat uniqgue symmetric NE strategy profile, which we explicitly
gated in economics, implementiBgrtrand Gamgl14] and its compute (SectiofIll). Our analysis reveals several irstimg
The authors are with the Department of Electrical and Systengineering insights apou'[ the strycture of the Symmetrlc NE. FI_I‘St‘, we
University Of Pennsylvania, Philadelphia, PA, USA.Theimail ids are learn that if a channel in staieprovides a higher transm_lssmn
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strategy profile selects the penalties fof respectively from  If primary ¢ quotes a pricep for its channel then its
ranges|L;, U;], [L;,U;] whereU; < L,. Thus, a secondary profit(payoff) is

will always prefer a channel in stateto a channel in state

j considering both the prices and the states. This negates p —c if the primary sells its channel

the intuition that prices ought to be selected for the states 0 otherwise

so as to render them equally preferable to a secondary -

symmetric NE strategy profiles in fact price the channels $¥pte that if Y is the number of channels offered for sale
as to retain the preference order provided by the states. TAE Which the penalties are upper bounded dythen those
analysis also reveals that the unique symmetric NE strateffifh min(Y,m) lowest penalties are sold since secondaries
profile consists “nice” probability distributions in thatey are Select channels in increasing order of penalties. The tremng
continuous and strictly increasing; the former rules outepuchannels with identical penalties are broken randomly and
strategy symmetric NEs and the latter ensures that the supgymmetrically among the primaries. Also, note that uéhti
sets are contiguous. Finally, utilizing the explicit cortation of primaries are not continuous functions of their actions.
algorithm for the symmetric NE strategies, we analytically Each primary selects the penalty for its channel with the
and numerically investigate the reduction in expected profinowledge of the state of the channel, but without knowing
suffered under the unique symmetric NE pricing strategiéde states of the other channels; a primary however knows

as compared to the maximum possible value allowing fér.n, 41, .., q,. Note that the choice of the penalty uniquely
collusion among primaries (SectiénlIV). determines the price since there is a one-to-one correspon-
All the proofs are deferred to the Appendix dence between the two given the state of a channel. Priinary

chooses its penalty using an arbitrary probability distidn
function (d.f.)y; ;(.) when its channel is in statg > 1. If
j = 0 (i.e., the channel is unavailable),chooses a penalty
We consider a spectrum market with primaries and of v+ 1: this is equivalent to considering that such a channel
m secondaries. We will initially consider the case that this not offered for sale as no secondary buys a channel whose
primaries knowm, later generalize our results for randompenalty exceeds. For j > 1, each primary selects its price
apriori unknownm. Each primary has access to a channsb as to maximize its expected profit. Thus,nf > [,
which can be in state8, 1,...,n, where state provides a primaries select the highest penalty for each state ., n,
lower transmission rate to a secondary than sfaiei < ; since all available channels will be sold. So, we consider
and state) arises when the channel is not available for sale < I. S; = (¢ 1, ...., %) denotes the strategy of primary
and provide$) transmission rate. Different channels constitutg and (S, ..., S;) denotes the strategy profile of all primaries
disjoint frequency bands leased by the primaries. A chanrplayers).
is in statei > 1 w.p. ¢; and in state0 w.p. 1 — ¢ where
q = Y., ¢, independent of the states of other channels.
a primary quotes a price for a channel in state, then the
channel offers a penalty;(p) to a secondary. Eacl;(-) is
continuous, strictly increasing in its argument, and tfore
invertible. We denotg;(-) as the inverse of;(-); clearly f;(-) Definition 2. A Nash equilibrium(Sy,...,S,) is a strategy
is continuous and strictly increasing in its argument ad.weprofile such that no primary can improve its expected profit
No secondary buys a channel whose penalty is highertharby unilaterally deviating from its strategy [14]. So, wiff) =
and as the name suggests a secondary prefers a channel Wwith, ...., ¢ »), (S1,...,S5), is a Nash equilibrium (NE) if
a lower penalty (a secondary’s preference depends entirfdy each primary: and channel statg
on the penalty). Thus, we must havg(p) > g¢,(p) and - -
fi(z) < f;(z) for eachz,p andi < j. Each prir]nary also Efui (Wi, S-i)} = Blui (i, S-i)} ¥ iy (2)
incurs a transition cost > 0 for an available channel, andp, NE(S),...,S,) is asymmetric NEif S; = 5, for all 4, j.
therefore never selects a price lower thaiWe assume that

Il. SYSTEM MODEL

l'[%efinition 1. S_; denotes the strategy profile of primaries
other thani. E{u; ;(v;;, S—;)} denotes the expected profit
when primaryi’s channel is in statej and it uses strategy
1;,;(-) and other primaries use stratedy.;.

The above game is a symmetric one since primaries have
fily) —c _ filz) —c forallz >y > g;(c),j < k (1) the same action sets, payoff functions and their channels ar
fe(y) —c = fu(z) —c statistically identical. We therefore consider only syntmce
NE4. Clearly, for any symmetric NE, we can represent the

A large class of penalty functiong;(-) satisfy the above

property reqUIred of the correspondlng INVETSES, @lﬁﬁp,) = 1Here probability distribution refers cumulative distritan function. Recall

¢ (p - h(l)) 791'(?) =( (p/h(z)) Whe'_’e C() is c_ontinuqus, the definition of cumulative distribution function (d.f) af random variable
strictly increasing function andi(-) is strictly increasing, X is the functionG(z) = P(X <) 2z € R [3]
) ) 2 ; ) - .

) — o' — hii ) — ohii . = ex _ For a symmetric game, an asymmetric NE is rarely realized ekample.
}g;(p) Zi ] ( ),g}];(p)f ph( ),é]z(p) ictly i p(p) . for two players, if(S1, S2) is an NE,(S2,.S1) is also an NE. The realization

(1), 9i(p) = .og(p) — h(i) forr >0 and a strictly InCreasing of sych an NE is possible only when each player knows whetigsother uses
h(-). In addition, ¢g;(-) such that the inverses are of the forns; or S,. This complication is somewhat alleviated for a symmetrie &

() = hi(x h(s (x) = hyi(x)h(i), where hq(-) is all players play the same strategy; this complication isielated only when
fil ) 1( )d+ ( )I’ fl( ) . 1( ) ( ) ity i 1( ) there is a unique symmetric NE. Note that, there are plethbexamples of
continuous ana strictly mcreasmg(-) IS sirictly increasing, symmetric games [14], which have multiple NEs. We prove that there is

satisfy the above assumption. a unique symmetric NE for the game we consider.



strategy of any primary as$ = (¢¥1(.),¥2(.),cory ¥ (L)) We finally rule out any “gaps” inside the support sets and

where we drop the index corresponding to the primary.  between the support sets for differept(-), i = 1,..,n. This
Let ¢,(x) denote the expected profit of a primary whoselso establishes that;(-) is strictly increasing inL;, U;].

channel is in statg _and who selects a penalty and r(z) Theorem 3. The support set of(.),i = 1,...n is [Li, U]

denote the probability that a channel quoted at penaltyg andUs = L, 1 fori—2,..n, Uy =

sold. Note that the dependence®f(z), 7(z) on the strategy L e '

profile of the primaries is not explicitly indicated to ensur Remark The structure of the symmetric NE identified in

notational simplicity. Also, note that(z) does not depend on Theorems 1 to 3 provide several interesting insights:

the state of the channel since secondaries select the deanne Theoreni 2 implies that the primaries select the highest

based only on the penalties. Next, penalties for the worst states. The primaries therefore do
not strive to render all states equally preferable to the
(@) = (fj(z) — )r(). (3) secondaries through price selection.
(recall that the inverse of the penalty functign(-), f;(-), « Theorems1l an] 3“reveal that th? symmetric NE strategy
provides the price that corresponds to penaitgnd channel profile consists of “well-behaved” distribution functions
statey).

B. Computation and Uniqueness of a Symmetric NE

We now show that the structural properties of a symmetric
NE identified in TheoremEl 1] Z] 3 are satisfied by a unique
i (x) = supp; (). strategy profile, which we explicitly compute. This provks t

yeR uniqueness of a symmetric NE subject to existence. We start

Definition 3. A best responspenalty for a channel in state
j>1isxif and only if

Let uj maz = ¢;(z) for a best response for statej, j > 1 with the following definitions.

i.e., Ujmae IS the maximum expected profit that a primary =l ; i
earns under NE strategy profile, when its channel is in state x) = Z i ) (1—x) (4)
ja ,7 Z 1 . =m

w; = w(z gj) fori=1,...,n andv,41 =0 (5)
Il. A SYMMETRIC NE: EXISTENCE, UNIQUENESS AND j=i

COMPUTATION Clearly, forz € [0,1], w(z) is the probability of at least m

First, we identify key structural properties of a symmetrisuccesses out of |-1 independent Bernoulli trials, eachhichw
NE (should it exist). Next we show that the above propeeccurs with probabilityz. Note thatw(-) is continuous and
ties leads to a unique strategy profile which we explicitlgtrictly increasing in[0, 1] [21], so its inverse exists. Note
compute - thus the symmetric NE is unique should it exighat w; > w; if i < j,i,j € {1,...,n} asw; is the success
We finally prove that the strategy profile resulting from thgrobability of at least m successes out of (I-1) independent
structural properties above is indeed a symmetric NE thyereBernoulli Events, where each of which occurs with probapili

n

establishing existence. 2i—i U5

Lemma 1. For1 < <mn,
A. Structure of a symmetric NE

Uimaxr = Pi—C
We start with by providing some important properties that where,p; = c+ (fi(Li—1) — ¢)(1 — w;) (6)
any symmetric NEv1(+), ..., %, (-)) must satisfy. Di—c
. . . andL; = gi(-————+¢),Lo=v (7)
Theorem 1. ¢;(.),i € {1,..,n} is a continuous probability 1 —wip
distribution. Using [6) and[(7); mas, Li Can be computed recursively

starting fromi = 1. Note that as —w; > 0,Vi € {1,...,n}

The above theorem rules out any pure strategy symmetric v v

NE y P 9y sy t{hus,pi — ¢ > 0. Hence, from the definition of.; (7), it is
) evident that

Definition 4. We denote the lower and upper endpoints of the

- - (L 8
support sét of ¢;(.) as L; and U; respectively i.e. Ti(Lx) > (8)
) Expressions of_; andp; are used in the following lemma to
L; = inf{z : ¢;(z) > 0} determine the unique;(-), if it exists
U, = inf{x : ¢;(z) = 1} Lemma 2. A symmetric NE strategy profil@-(-), ..., ¥n(:))
o comprises of:
We next show that the support sets are ordered in increasing )
order of the state indices. Yi(z) =0,if z < L;
Theorem 2. U; < L;, if j < i(wfl(M) _ Z ) if Liy > 2> L;
qi fi(z) —¢ i)
3The support set of a probability distribution is the smaltdesed set such .
that the probability of its complement @& Lif x> Liy )



whereL;,7 = 1,..,n are as defined in{7) and, = v.

Next lemma will ensure thap;(-) as defined in lemmi 2 is
indeed a d.f.

Lemma 3. v;(-) as defined in Lemnid 2 is a strictly increasing
and continuous distribution function.

Efficiency n

G & L L L I
0 5 10 15 20
m

C. Existence of a symmetric NE . - .
y Fig. 1: Efficiency versus m for three different sets of values

In this section, We prove that symmetric strategy profilgs probabilities forl = 20 andn = 3, 1 = ¢» = g3 = r
identified in previous section is indeed a NE strategy profile, _ 199 . — 1 gi(z) = 210 — 7

— 1.
Theorem 4. (¢1(:),...,%a())j = 1,.,n as defined in
lemma2 is a symmetric NE.

x)

i . The lemma does not characterize the asymptotic limitg for
a) Remark:Note that all our results readily generalize tq,, ,,, (-1 (1 — 1)g,]. However, our numerical

. . . =1 q]’
allow for random number of secondaries (M) with probabilityompytation reveals thatincreases frond to 1 with increase

mass functions (p.m.fPr(M = m) = 7. A primary does s ., (figure [) - the variation is largely monotonic barring
not have the exact realization of number of secondaries bufor a few discrepancies owing o, m being finite. Intuitively,

knows the p.m.f. . We only have to redefingz) as- demand increases with increaserin thus primaries set their

max(M) (-1 11 penalties close to the highest possible value for all states
Z Vi Z ( _ )xi(1 — )it (10) which leads to higher efficiency. On the other hand, when
k=0 imk \ ¢ decrease, competition becomes intense and primaries €hoos
prices close toc and expected profits under the symmetric
NE decreasesiy g is very small as lemmd] 4 reveals. But,

if primaries collude, primaries can judiciously offer ortlye
channels of highest possible states to the secondariedrio ga
a large profit. Hence, the decreaseRp pr with decrease in
Definition 5. Let Ry g denote the total eXpeCted pr0f|t at NaShn is slower, which leads to lower efficiency for low.

andwnH =7 -

IV. PERFORMANCE EVALUATION OF THE SYMMETRICNE

equilibrium. Then, Similarly, wheng;s increases, competition becomes intense
n and primaries chooses price closerctdenceR y g decrease.
Rye =1 Z(qi.(pi —0)) (11) But, when primaries collude, they still sell at highest joles
i=1 penalty for a channel and hengelecrease. On the other hand,

Lemma 4. Letc; = gi(c),j =1,..,n. when,¢;s decrease, primaries set their prices closer to highest
D Ifm > (- 1)(X", g + e for somee > 0, then possible values for all states and thysincrease.
sl j:1 7 ]

Ryg — 1.3 q;.(fj(v) —¢) asl — oc.

2 (-1, g —€¢) =m > (- 1)(2};— 4 + V. DISCUSSIONAND FUTURE WORK
€),i € {2,..,n}, for somee > 0, then Ryp — For analytical tractability, we have assumed symmetric
l. Z;?:i q;-(fj(ciz1) — ¢) asl — oo. setting. An important problem for future research is to ehar
3) If m < (I —1)(g,, —¢) for somee > 0, thenRyr — 0 acterize NE under asymmetric setting. We have assumed sec-
asl! — oo. ondaries have the same penalty function. Another intergsti

extension would be the characterization of NE strategy lerofi

Note that, for j by Cj ; (as g; i(c)), D
jo> e < ¢ @ g(e) < gile)) when the assumption is relaxed.

thus, asymptoticallyRyr decreases as decreases. This is
expected as competition increases with decrease,irand
thus prices are chosen progressively closer to the lowet, lim REFERENCES
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VI. APPENDIX
. . . . ) result follows. |
First, we introduce some terminologies and observatioh tha Now, we will show the following lemma and observation,
we will use throughout this section. which will facilitate our later analysis.

Definition 7. Let X,,, be themth smallest offered penalty| emma 6. F(:) is continuous in [cpim,v] and if

offered by primariess = 2,...,l, and let F(-) denote the S i(y) > S0, wi(x), thenF(y) > F(x)
distribution function ofX,,,. = T

) ) ) where,cinin = min g;(c)
For a symmetric strategy profilg;'(-) would remain the _ ie{l,..,n} )
same if we had considered ary- 1 primaries rather than Proof: Suppose: € [¢in, v]. At any time slot, the event
2 L that primary 1 selects penalty less than or equal &md state

_ _ of a channel is > 1, occurs with probability; -4;(a). Hence,
Observation 1. Any pointy < g;(c) can not be a best the event that primary 1 offers penalty less than or equal to

response (definition] 3) for channel state occurs with probability>™""_, ¢; - ¥:(a). Thus,
The observation is evident as the prefjt(-) of a primary is n
non-positive if the selected penaltyisg;(c). But, ¢;(z) > 0 F(a) = P(Xm < a) =w()_1i(a)) (Recald))
=1

for gj(c) <z <vas0O<>! ¢ <L
Continuity of F(-) follows from the fact thaty;(-),i =
A. Proof of Section[III=A 1,...,n are continuous (Theorem 1).

Proof of Theoren{}l Suppose,i;(-) has a jumf at =, BOW L < m, fnd i @i < 1, thus F_(-)i(;u;rease.ts. i
then all primaries select as their penalties with positive Zi:éwi(')’z.e {1,..,n} increases (ag;(.) is d.f. so it is
probability whenever their channel states grAs, no primary non-decreasing). .

selects a penalty other than a best response with positivé‘emmd:q5 implies thaP(X.,, = z) = 0 for eachz and thus
r(z) =1— F(z). Hence,

o | G G
Where Gl ) ey Gy O S TEW ZELT = 03(2) = (f;(2) — (1 = F(x)) (17)



Observation 2. Every element in the support set ©f(-) is interval (x,y) with positive probability. So, we must have
a best response; thus, so afg, U;. such that

Proof: Suppose there exists a pointin the support set a=inf{b < x:1,(b) =;(x),Vj}
of ¢;(-), which is not a best response. Therefore, primary 1

plays atz with probability 0 when channel state is . o : ~
Now, one of the following two cases must arise. i- But, as primaries do not offer penalty in the_rgdgey), S0
' from (@), ¢:(z) > ¢;(a) for eachz € (a,y). This is because

Case t 3 a neighborhood[[20] of radius > 0 aroundz, AP e 4 .
such that no point in this neighborhood is a best responé%(.y) = F(a) and fi(a) < fi(2). Thus,a can not be a best

Neighborhood of radiug > 0 of z is an open set (theoremresloonse for state i. N
2.19 of [20]). Hence, we can eliminate that neighborhood and .

can attain a smaller closed set, such that its complement BasProofs of Sectiorl_TI-B

probability zero under;(+), which is against the definition of  proof of LemmallWe first prove [(6) using induction](7)

By definition of a, a is a best response for at least one state

support set. follows from (8).
Case It For everye > 0, 3y € (2 — ¢,z +¢€), such thaty is a From theoreni13z);(-)’s support set igL;, L;_1] for i =
best response. Then, we must have a sequgnée=1,2,... 2,..,n and[Lq,v] for ¢ = 1. Thus,v is a best response for
such that eachy, is a best response, arllcd lim = z [20]. channel state 1 (by corollafy 2), hence
But profit to primary 1 for channel stateat each ofzy is n
(fi(z) — ¢)(1 — F(z1)). Now, from continuity of f;(-) and Wmar = (1(0) =) =w(} @) =pi—c  (23)
F(-) (lemma [6)- i=1
. Thus, [6) holds fori = 1 with Ly = v. Let, (@) be true for
lemoo¢i(Zk) = (filzr) = ) (1 = F(zx)) i =t < n. We have to show thal](6) is satisfied fioe= ¢ + 1

= (fi(2) — &)1 — F(2)) = ¢i(2) (18) assuming thatitis true far= ¢. Thus,by induction hypothesis,

As each ofz,, k = 1,2,... is a best responsey; o = Utmaz = Pt — ¢ = (fi(Li—1) = ¢)(1 — wy) (24)

¢i(zk), k = 1,2,.... Hence, from[(I8);,max = ¢i(2) andz  Now, L, is a best response for stateand thus,

is a best response. We can conclude the result by noting that

U, L; (Definition[d) are in the support set of;(-). [ dt(Le) = (fe(Le) —c)(1 —wi1) =pr —c  (25)
Proof of Theorenil2From Observatiof]2 it is sufficient to Now, asL, is also a best response for state1 by theorenil

show that for anyz,y such thate,,i, < z <y < v, if * gnd[3, thus

is a best response when the state of the channgltiseny

can not be a best response when the state of the channel is ?t+1(Lt) = (fiy1(Le) = ¢)(1 = wig1) = Uit 1,man

for i > j. If not considery > z such thatz,y are the best T, Ut1mae = Pes1 — ¢ and it satisfies[{6). Thus[J(6)
responses when channel states are respectivelow, from  f4j10ws from mathematical induction.

Observationi 1ifi(y) > ¢, fj(x) > c. Also, (@) follows since(fi(L;) — ¢)(1 —wit1) = p; —c andg;(+)
= (F() -1 —F 19) Is the inverse offi(-). O
bt (fily) = o) ) (19) proof of Lemmal2L;, L;_; are the end-points of the support
oi(y) = (fily) —c)1—F(y)) set of ¥;(-) from definition[3, and their values have been
- u -fj(y) —¢ (from(T9)) computed in lemm@l1. We should have fox L;, 1;(z) =0
S fily) — ¢ and forz > L;_1,0;(z) = 1. From theoreni]3, every point
» _ fily)—c¢ (20) x € [L;, L;—1] is a best response for stateand hence,
7,max = 1, Max -
fily) —c n
Next, (fl(‘r) - C)(l - ’LU( Z q; + szz(w))) = Uj,max = Pi — C.
j=i+1
Ujmaz = ([i(z) —c)(1 = F(z)) Thus, the expression fa;(-) follows. We conclude the proof
oi(x) = (filz) —c)(1 — F(x)) by noting that the domain and range @f.) is [0,1], and
_ filz) —c¢ PiTC 1 forax e [L; L] sow'(.) is defined at
- uj.,maac-fj (l’) S (21) fz(x) _ g [ 1] ( )
__bhizc n
Using [20) and[{21), we obtain- fi(z) — ¢ '
proof of lemmaBNote that
(bl(x) Z Wi maz- (f] (y) - C)(fl(x) - C) (22) 1 pi—c n
(ily) —)fs(w) = <) wi(Li):;(w”O*W)* > 1)
But, then, sincey > z, i > j, {@) implies thatp; () > i max ’ s j=it1
which contradicts the definitions ef; ., and¢;(x). O 1, 4 -
Proof Of Theorem 3Suppose the statement is not true. = a(w (wis1) = _Zﬂqj) from(@)
Jj=t

But, it follows from Theoreni2 that there exists an interval

(z,y) C [Ln,v], such that no primary offers penalty in the =0 (by(??)) (26)



From [9) and[{), we obtain First, suppose: € [L;, L;_1]. From [31) and[{9), we obtain

NI IR W | et SR < 6i(2) = (f;(@) — )1 — (3 at(a
Yi(Li—1) Qi( (1 fi(Lifl)*C) j;lqj) (z) = ( Zq
I TR e = (fi@) )1 —w( Y g+ q¢;(@)))
n _ (x) — e o -1 o pj—¢C
Lot a3 0) e = (h@ =91~ (1= =)
Ql j=i :pj—c (32)

w(.) is continuous, strictly increasing on compact sedincev;(L,) =0 Vi, we have
(0,751 451, sow™~! is also continuous (theorem 4.17 in [20]).
¢j(Ln) = (f3(Ln) — ¢)(1 = w(0)) = fj(Ln) —c  (33)

pi — ¢
Also, ————
Jilz) —c P . ; rom [33) expected payoff to a primary at statat L,, is

;(.) is continuous as it is a composition of two continuou§ p pay p y glat Ly,
functions. Again,w~'(.) is strictly increasing (asw(-) is fi(Ln) — c. Atany y < L, expected payoff to a primary at
trictly i o) 1 i C e strictly . statej will be strictly less thanf;(L,,) — c¢. Hence, it suffices
strictly increasing),1 — @) —c is strictly increasing (as ; show that forz € (L, Lur] k £ j.k € {1,..,n}, profit
fi(+) is strictly increasing), say;(.) is strictly increasing on to primary 1 is at mosp; — ¢, when the channel state js
[Li,L;—1] (as it is a composition of two strictly increasing Now, letx € [L, Ly_1]. From [31) expected payoff at
functions (theorem 4.7 in_[20])) .

is continuous forx > L; as f;(x) > ¢, so

0i(@) = ;@ zm

C. Proof of Section II-C
= (fi(z) — ) (1 — w( Z ¢ + qrr(T)))

First we state and prove a result (observafibn 3). Subse- i1

quently we prove Theorefd 4. k—C

_ Dk
= (fi(x) =) (1 —w(w (1 - m)))
Observation 3. For t > s,t,s € {1,...,n} k
(o~ (@) —¢)
_ f1+1 fk (1‘) -
pr—c= H (28) Hence,
_ e =) (f(x) = ¢)
Proof: Since f;"'(-) = g, thus from [7) we obtain for ¢j(x) = (pj —¢) = Fulz) —c -0 (34
1—1
We will show thatg; (z) — (p; —c) is hon-positive. Ask # j,
pict —c= (fic1(Li1) — )(1 — w;) (29) so only the following two cases are possible.
! o ’ Caseik < j
Hence, from[(B),[(8), and (29) From (1), [8) and fori < j, we have-
filLi-1) —c _ fi(Lim1) —c
(Li1) — > asL; < L;_ (35)
bi —Cc= (pilc)% (30) fi(Li)_C fj(Li)_c ( 1)
i—1 i—1) —
From observatiofl3 we obtain-
We obtain the result using recursion. ]
proof of Theoreni4Fix a statej € {1,...,n}. First, we pj—c= (P — ) (fi(Lj-1) — ) H filli-1) —¢ 1 —c
show that if a primary follows its strategy profile then it vidu e (Lk —c St i(Li) —c
attain a payoff op; — c at channel statg. Next, we will show (36)

that if a primary unilaterally deviates from its strategypfie,

then it would obtain a payoff of at most of — c (Case i and Using [35) the above expression becomes
Case ii) when the channel statejis

If state of channel of primary 1 i5> 1 and it select penalty s (e — ) (f5(Lj—1) —¢) H fi(Liz1) —c 1
x, then its expected profit is- J - fie(Li) — el (Li) — ¢
(o — (E () _ (e — C)(fj(Ljfl) —c (fJ(Lk) - C)
d’l(x)*(fl( ) ) (x) fk(Lk)_C .fj(Lj—l)_C
= (fi(x) — )1 — w( qu me: (31) _ (e =) (f5(Lk) — )
Ji(Li) —c



Hence, from[(34), we obtain-

¢j(z) — (pj

) (37)

Sincex € [Ly, Lx—1], j > k and fk(Lk) > ¢ (by (8); hence,
from (37) and assumption 1, we have-

¢j(x) <pj—c (38)

Caseii j <k
If f;(x) < c then a primary gets a non-positive payoff a
channel statej, which is strictly belowp; — ¢. Hence we
consider the case wheji(z) > c. Sincex < Lj_; thus
fi(Lk-1) > c.

Now, if i > j and f;(L;) > ¢, we have from[({l) and18)-

filLi—1) — fi(Li) —
fi(Li—1) —c¢ — fi(Li) —c @sLi < Lim) (39)
Since f;(Lx—1) > ¢, thus
fi(Li) >c¢ (forj<i<k,asL; > Ly_1) (40)

Now, from observatiof]3 we obtain-

k—1
= fz 1(L1‘)70
pk*C—(pJ*C)gﬁ
= (pj — o). fi(L;) —c ij+1 Fi(Lo) —
: fk Lk 1 —-¢ fj i— 1
S N £i(L 1]11 ( )_c
(from ([39]),&([@]))
= (p; — ) follk—) —c_fi(L;) —¢
’ - fi(Lj) —c fi(Lgk—1)—c
— (p; — o) SeLe1) —
= (pg )-fj(kal)f
Thus, from [[3#), we obtain-
¢j(z) = (pj — ¢
e —ce fi@) e
< (p) )(fj(Lk_l)—c'fk(x)—c 1)

<0(asz < Li_1,j <k and from Assumption 1 (41)

Hence, from[(41),[(38), and (B2), everyc [L;,L;_1] is a
best response to primary 1 when channel statg iSince j
is arbitrary, it is true for any; € {1,...,n} and thus[(D)
constitute a Nash Equilibrium strategy profile. O

D. Proofs of Sectior_IV

We will first establish part 1 and 3 of lemrb& 4 . Part 2 of
lemmal4 is cumbersome and we defer its proof until the end
of the section. Lemmal 5 will readily follow from part 1 and
part 3 of lemm&Kproof of part 1 of LemmBLt¥Ve first present

the essence of the proof.

Since a primary can attain at most a payoff fofv) — A at
channel staté. Thus, we have an upper bound®f . Since
1—w; — 1,4 = 1,...,n a primary also attains at least a
payoff of f;(v) — ¢ at channel state in the asymptotic limit.
Detailed argument follows:

Note that a primary can achieve profit of at mggt) —
when channel state is> 1. Hence,

Ryp <) ai- (filv) =) (42)
=1

When primary 1 selects penaltyat channel staté > 1, then

its expected profit ig; (v) = (fi(v) — ¢)(1 — w1 ). Now, from

theorenT# under the NE strategy profile,

pi —c > ¢i(v) = (fi(v) — ) (1 —w1) (43)
Hence,
RyE > l(z qi-(fi(v) = ¢))(1 —w1) (44)

Let Z;,¢ = 1,..,1 — 1 be Bernoulli trials with success
probabilities Y, ¢; and Z = Y171 Zi; s0 P(Z > m) is
equal tow; by @) and [b). Sincen > -1 a+e)
andE(Z) = (1—-1)> ", ¢, by weak law of large numbers
[19], w1 — 0 asl — oo. Hence the result follows froni (#2)
and [44). .

proof of part 3 of LemmAlt4We first provide an outline of
the proof.

Whenm < (I—1)(g, —¢) for somee > 0, an application of
Hoeffding’s inequality shows that—w,, approache8 as! —
oo. Sincel —w, > 1 —w; for j < n, thusl —w; approaches
0 asl— > co. We subsequently obtain upper boundsibf
in terms ofl —w;,j = 1,2...,n which in turn proves the
desired result. Detailed argument follows:

Suppose thatn < (I — 1)(g, — €), for somee > 0.

Let, Z;,i = 1,...,1 — 1 be the Bernoulli trials with success
probabilitiesg, and Z — S\ Zi, B(Z) = (I—1)g,. Hence,
l—w, < P(Z<m)

< P(Z < (1~ 1)(gn — <))

< P(|Z = (= 1)gn| = (I —1)¢)
_1)2,.2

< 2exp(- 25

(from Hoeffding's Inequality [4]

= 2exp(—2(1 — 1)e?) (45)

Note thatl —w; < 1—w; (if § > 4), fx(Lk—1) > fu—1(Lr—1)-
Hence, it can be readily seen frdfh(6) that

pi — ¢ < (fi(Li—1) —c)(1 — wp) (46)

Thus,

n

Rypl. < (1—wn)()

Jj=1

qj-(fj(Lj—1) —¢))  (47)

5it is attained when primary selects penatiyand its channel is bought
with probability 1



As fi(c) < L; < Li—1 < v, hence, the result follows from those two values.

@3) 0.
Note that the bound oRy g (from (@8) and[(4lr)) formn <

(I —1)(qn —€), € >0,
Ryp <1y-exp(—262.(1 —1)) (48)

wherey = 2(1 —w,) (37, ¢;-(fi(Lj-1) — ¢)). We will use
this bound in proving the part 2 of lemrha 5.
From, the definition ofy, it should be clear that

n<l1 (49)

Now, we show lemmal5
proof of part 1 of lemmal5First suppose thatn > (I —
1)(>", ¢i + €). From, definition ofRo pr, it is obvious that

Ropr <1- (Z(QZ(fz(v) -

=1

c))) (50)

Hence the result follows from part 1 of lemrha Z.](50) and

@9). O
proof of part 2 of LemmE@lSSuppose thatr < (I—1)(g, —

€), for somee > 0. We prove the result by showing th&ty
decreases at fast rate @ocompared toRo pr Whenl — oo.

Suppose thall —1)(327_;_, ¢j—€) = m = (I-1)(3Z5_; 4+
€),i € {2,...,n} for somee > 0. Sincew; is the probability
of at leastm successes out df— 1 independent Bernoulli
trials, each of which occurs with probabil@?:i g5 (by (?9)).
Hence from the weak law of large numbersi[19]

w; — 0 asl — oo

l—w; —»1 asl— o (53)

Sincew; < w;, for j > i (from (??)), we have from[(&3) for
Jj=>i

l1—w; -1 asl— oo (54)

Again, asm < (I — 1)(3°7_;_,q; — ¢), so, from weak
law of large numbers [19], for every > 0, 3L, such that
1 —w;_1 < ¢, whenever > L. Hence,

Let, Z be the number of primaries, whose channel is in Staﬁ]us from [[7), [(54), and:(56)

n. Hence,

Ropr > E(min(Z, m))(fn(v) — ¢)
Ropr .
(AOET > E(min(Z, m))

Note thatE(Z) =1 - qn, Var(Z) =1 ¢.(1 — ¢qn).
We introduce a new random variakié as follows-

m, fZ>m
0,

otherwise
E(min(Z,m)) > E(Y)
=m.P(Z >m)
m.(1 — P(Z < m)
m.(1-P(Z < (- 1><qn - 0))
m.(1 = P(|Z = l.gn| > (I = 1))
L-gn-(1 —qn)
m-(1 - (1—1)2.¢ )
(From Chebyshev’s Inequality

Hence, from[(4B),[(H1) and_(52), we obtain-

(51)

So,

(52)

ly.exp(=2(l — 1)€?)
n= —
mt - HU ) (1) -

Thus, n tends to zero form < (I — 1)(g, — €),as! tends to
infinity (asm # 0). 0.
proof of part 3 of LemmAal4
We show the result by evaluating the expressionspfor
c,j=1,...,
first evaluate the expressions for and L; in the asymptotic
limit. We obtain the expression fgr; — ¢ when we combine

1—w;_1 —> 0
l1—w; — 0 (forj<i) (55)
l—o0
Thus, it is evident from[{6) and (b5) that
pi—c, —> 0 (forj <) (56)
Li,1 — Cij—1 (57)
l—o00
We obtain forj > i from (@)
pj —c=(fi(Lj-1) = o)(1 — wy)
pj = fi(Lj-1) (from (5d)) (58)
Again, using [[¥), we obtain fof > ¢
pj—c=(fi(L;) — c)(1 —wj41)
pi 7 fi(L;) (from () (59)

f;j(+) is strictly increasing, thus fron] (68) anf {59), —
L;_; (for j > i). Hence, forj > i,

Lj — L; 4
l—o0
Lj l*> Ci—1 (frOfn(m) (60)
—00
Thus, from [6D), and(39), we obtain fgr> i
pj—c = (fileimi) —¢) (61)
Thus, from [56) and(81), we have-
Rnp 2 Z-Z%‘ (filcizi) —¢)
Jj=1
which is equal to the required expression. O

n in the asymptotic limit. Towards this end, we
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