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Abstract—The capacity (or maximum flow) of an unicast
network is known to be equal to the minimum s-t cut capacity
due to the max-flow min-cut theorem. If the topology of a network
(or link capacities) is dynamically changing or unknown, it is not
so trivial to predict statistical properties on the maximum flow
of the network. In this paper, we present a probabilistic analysis
for evaluating the accumulate distribution of the minimum s-t
cut capacity on random graphs. The graph ensemble treated in
this paper consists of weighted graphs with arbitrary specified
degree distribution. The main contribution of our work is a
lower bound for the accumulate distribution of the minimum s-t
cut capacity. From some computer experiments, it is observed
that the lower bound derived here reflects the actual statistical
behavior of the minimum s-t cut capacity of random graphs with
specified degrees.

I. INTRODUCTION

Rapid growth of information flow over a network such as
a backbone network for mobile terminals requires efficient
utilization of full potential of the network. In a multicast
communication scenario, it is well known that appropriate
network coding achieves its multicast capacity. Emergence of
the network coding have broaden network design strategies for
efficient use of wired and wireless networks [1].

The multicast capacity of a directed graph is closely related
to the s-t maximum flow, which is equal to the minimum s-t
cut capacity due to the max-flow min-cut theorem [2]. Fur-
thermore, on a unicast network, the minimum s-t cut capacity
of the network determines the unicast capacity between the
terminals s and t. Therefore, it is meaningful to study the
minimum s-t cut capacity for designing an efficient network.

If the topology of a network is static, the corresponding
s-t maximum flow of the network can be efficiently evaluated
in polynomial time by using Ford-Fulkerson algorithm [2].
However, if the topology of a network and its link capacities
are dynamically changing or have stochastic nature, it is not
so trivial to predict statistical properties on the maximum flow.
For example, in a case of wireless network, the link capacities
may fluctuate because of the effect of time-varying fading.
Another example is an ad-hoc network whose link connections
are stochastically determined.

In order to obtain an insight for statistical properties of the
minimum s-t cut capacity for such random networks, it is
natural to investigate statistical properties of minimum s-t cut
capacity over a random graph ensemble. Such a result may
unveil typical behaviors of the minimum s-t cut capacity (or

maximum flow) for given parameters of a network such as
the number of vertices, edges, probabilistic properties of edge
weight and degree distributions.

Several theoretical works on the maximum flow of random
graphs (i.e., graph ensembles) have been made. In a context
of randomized algorithms, Karger showed a sharp concentra-
tion result for maximum flow in the asymptotic regime [3].
Ramamoorthy et al. presented another concentration result.
The network coding capacities of weighted random graphs
and weighted random geometric graphs concentrate around the
expected number of nearest neighbors of the source and the
sinks [4]. These concentration results indicate an asymptotic
properties of the maximum flow of random networks. Wang
et al. shows statistical properties of the maximum flow in an
asymptotic setting as well. They discussed the random graphs
with Bernoulli distributed weights [5].

In this paper, we will present a lower bound for the
accumulate distribution of the minimum s-t cut capacity of
weighted random graphs with specified degree distribution.
The approach presented here is totally different from those
used in the conventional works [3][4][5]. The basis of the
analysis is the correspondence between the cut space of an
undirected graph and a binary LDGM (low-density generator-
matrix) code [6]. Based on this correspondence, Yano and
Wadayama [7] presented an ensemble analysis for the net-
work reliability problem. Fujii and Wadayama [8] proposed
a probabilistic analysis for the global minimum cut capacity
over the weighted Erdős-Rényi random graphs. The probabil-
ity distribution of vertex degrees over Erdős-Rényi random
graphs follows the Poisson distribution. However, most of
degree distributions of real networks are different from the
Poisson distribution [9]. This paper extends the idea in [7]
and [8] to weighted random graphs with arbitrary specified
degree distribution, which may be applicable to more realistic
networks. Moreover, this paper deals with s-t cut capacity
which is more informative on network capacities instead of
the global cut capacity [8].

II. PRELIMINARIES

In this section, we first introduce several basic definitions
and notation used throughout the paper. Then, an ensemble of
weighted undirected graphs treated in this paper is defined.
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A. Notation and definitions

A graph G
4
= (V,E) is a pair of a vertex set V

4
=

{v1, v2, . . . , vn} and an edge set E
4
= {e1, e2, . . . , em} where

ej = (u, v), u, v ∈ V is an edge. If ej = (u, v) is not an
ordered pair, i.e., (u, v) = (v, u), the graph G is called an
undirected graph.

If a function c : E → Z≥0 is defined for an undirected graph
G
4
= (V,E), the triple (V,E, c) is considered as a weighted

graph. The function c can be seen as weight for edges. The
set Z≥0 represents the set of non-negative integers. In our
context, the weight function c represents the link capacity for
each edge.

Assume that a weighted undirected graph G
4
= (V,E, c)

is given. A non-overlapping bi-partition V = X ∪ (V \X) is
called a cut where X is a non-empty proper subset of V (X 6=
V ). The set of edges bridging X and V \X is referred to as the
cut-set corresponding to the cut (X,V \X), which is denoted
by ∂(X) (or equivalently ∂(V \X)). The cut weight (i.e., cut
capacity) of X is defined as ω(X)

4
=
∑
e∈∂(X) c(e). If a cut

(X,V \X) separates two vertices s, t ∈ V (s 6= t), the cut
(X,V \X) is called an s-t cut and the corresponding cut-set
is called an s-t cut-set. The minimum s-t cut is an s-t cut
whose cut weight is the smallest among all the s-t cut-sets.

B. Random graphs with specified degree distribution

In the following, we will define an ensemble of weighted
undirected graphs. The random graph ensemble is a weighted
version of random graphs with arbitrary specified degree
distribution treated in [10]. Let n (n ≥ 1) be the number of
vertices and di be the fraction of vertices having degree i such
that ndi is an non-negative integer and

∑∞
i=1 indi is even. We

define d(x)
4
=
∑∞
i=1 dix

i to be the generating function of di.
Due to these assumptions, the number of edges m is given by
1/2

∑∞
i=1 indi.

It is assumed that each edge has own integer weight; namely,
a weight wi ∈ [1, q] (i ∈ [1,m]) is assigned to the ith edge.
The notation [a, b] denotes the set of consecutive integers from
a to b. The set Rqn,d denotes the set of all the undirected
weighted graphs satisfying the above assumption.

We here assign the probability

P (G)
4
=

1

|Rqn,d|
∏
e∈E

µ(c(e)) (1)

for G ∈ Rqn,d where µ is a discrete probability measure defined
over [1, q]; namely, it satisfies

∑
w∈[1,q] µ(w) = 1 and ∀w ∈

[1, q], µ(w) ≥ 0. The pair (Rqn,d, P ) defines an ensemble of
random graphs treated in this paper.

III. CUT WEIGHT DISTRIBUTION

A. Constraint graph

In this paper, we use a bipartite graph, which is called a
constraint graph1, corresponding to a given undirected graph.

1A constraint graph can be considered as a factor graph.

Fig. 1. An undirected graph (left) and corresponding constraint graph (right)

The constraint graph clarifies the close relationship between
the incidence vectors of cut and cut-sets. In the following,
we will explain the definition of the constraint graph G′

4
=

(V1, V2, E
′) corresponding to an undirected graph G

4
= (V,E).

Suppose that an undetected graph G is given. In order to
construct the constraint graph from G, for each edge e =
(x, y) ∈ E, we insert a new vertex ve between x and y. The
new vertex ve is, thus, adjacent to x and y. Formally, the triple
(V1, V2, E

′) for the constraint graph G′ is defined by

V1
4
= V, V2

4
= {vei | ei ∈ E} ,

E′
4
= {(x, vei), (y, vei) | ei = (x, y) ∈ E} . (2)

From this definition, it is clear that the degree of all vertices
in V2 is 2. Figure 1 illustrates the correspondence between the
original graph (left) and the constraint graph (right).

B. Relationship between cut-set vector and cut vector

For a given undirected graph G
4
= (V,E), the cut vector

cut(X)
4
= (a1, . . . , an) of a cut (X,V \X) is defined by

ai
4
= I [vi ∈ X] for i ∈ [1, n]. The function I [·] is the

indicator function that takes value 1 if the condition is true;
otherwise it takes value 0. Namely, the cut vector cut(X) is
the incidence vector of the cut (X,V \X). In a similar manner,
we will define the cut-set vector as follows. The cut-set vector
cutset(X)

4
= (b1, . . . , bm) corresponding to a cut (X,V \X)

is defined by bi
4
= I [ei ∈ ∂(X)] for i ∈ [1,m].

The constraint graph naturally connects a cut vector cut(X)
and the corresponding cut-set vector cutset(X) for any X ⊂
V (X 6= ∅) in the following way. Suppose that an undirected
graph G

4
= (V,E) and the corresponding constraint graph

G′
4
= (V1, V2, E

′) are given. The vertices in V1 are called
variable nodes which are depicted by circles in Fig.1. We
assume that a binary value (0 or 1) can be assigned to a
variable node. The vertices in V2 are called function nodes
which are represented by squares in Fig.1. The function node
also have a binary value which is determined by the bitwise
exclusive-OR (sum over F2) of values in adjacent variable
nodes. Let us assume that x

4
= (x1, . . . , xn) ∈ {0, 1}n is

assigned to the variable nodes (i.e., xi is the assigned value
for vi) and that y

4
= (y1, . . . , ym) ∈ {0, 1}m is the resulting

values (i.e., yi is the exclusive-OR value at vei ). The linear
relation between x and y is denoted by y = FG(x). The next
lemma presents the linear relation between a cut vector and
the corresponding cut-set vector.



Lemma 1: Assume that an undirected graph G
4
= (V,E) is

given. For any X ⊂ V (X 6= ∅), the following linear relation

cutset(X) = FG(cut(X)) (3)

holds.
Proof: Let (y1, . . . , ym)

4
= FG(cut(X)) be a vector at

the function nodes and G′
4
= (V1, V2, E

′) be the constraint
graph corresponding to G. Two variable nodes adjacent to vei
are denoted by a, b ∈ V1. If a ∈ X, b ∈ V \X , then yi = 1.
Otherwise, yi = 0. From the definition of the constraint graph,
yi = 1 is equivalent to ei ∈ ∂(X). This proves the relation
cutset(X) = FG(cut(X)).

It should be remarked that the linear relation in Lemma 1
has been long known in the field of graph theory; e.g., [6].
Namely, a linear row space spanned by the incidence matrix
of G coincides with the set of incidence vectors of cut-sets.

C. s-t cut weight distribution

Assume that a weight undirected graph G
4
= (V,E, c) and

two vertices s, t ∈ V (s 6= t) are given. The s-t cut weight
distribution is defined by

B
(s,t)
G (w)

4
=
∑
E′⊆E

I

[
E′ is an s-t cut-set,

∑
e∈E′

c(e) = w

]
(4)

for non-negative integer w. The s-t cut weight distribution
B

(s,t)
G (w) represents the number of cut-sets with cut weight

w. The following lemma plays an important role for evaluating
the ensemble average of the cut weight distribution B(s,t)

G (w).

Lemma 2: The s-t cut weight distribution B(s,t)
G (w) can be

upper bounded by

B
(s,t)
G (w) ≤ 1

2

n−1∑
u=1

m∑
v=0

A
(s,t)
G (u, v, w), (5)

for w ∈ Z≥0. The quantity A(s,t)
G (u, v, w) is defined by

A
(s,t)
G (u, v, w)

4
=

∑
a∈Y (s,t)∩Z(n,u)

∑
b∈Z(m,v)

I

[
FG(a) = b,

m∑
i=1

bic(ei) = w

]
,

(6)

for u ∈ [1, n − 1], v ∈ [0,m] and w ∈ Z≥0. The set
of the constant weight binary vectors Z(x,y) is defined as
Z(x,y) 4

= {(z1, . . . , zx) ∈ {0, 1}x |
∑x
i=1 zi = y}. The set

Y (s,t) denotes the set of all s-t cut vectors.
Proof: For any undirected graph G

4
= (V,E), B(s,t)

G (w)
can be upper bounded by

B
(s,t)
G (w) ≤ 1

2

∑
X⊂V,X 6=∅

I [X is an s-t cut, ω(X) = w] . (7)

The factor 1/2 is required for compensating the double count-
ing for X and V \X . The equality is attained if and only if G

is connected. Due to Lemma 1, the right-hand side of (7) can
be rewritten as

1

2

∑
X⊂V,X 6=∅

I [X is an s-t cut, ω(X) = w]

=
1

2

n−1∑
u=1

m∑
v=0

A
(s,t)
G (u, v, w). (8)

Substituting (8) into (7), we obtain the claim.

IV. ENSEMBLE AVERAGE OF s-t CUT WEIGHT
DISTRIBUTION

In this section, we will discuss the ensemble average of
B

(s,t)
G (w) over the ensemble (Rqn,d, P ).

A. Upper bound on average cut weight distribution

Due to the linearity of the expectation over the ensemble
and Lemma 2, we have

E
[
B

(s,t)
G (w)

]
≤ 1

2

n−1∑
u=1

m∑
v=0

E
[
A

(s,t)
G (u, v, w)

]
. (9)

In the following, we will analyze E[A
(s,t)
G (u, v, w)]. The anal-

ysis presented below is similar to the derivation of the average
input-output weight distribution of irregular LDGM codes due
to Hsu and Anastasopoulos [11]. The next lemma provides the
expectation of A(s,t)

G (u, v, w) by using the generating function
method.

Lemma 3: For any pair of s and t (s 6= t), the expectation
of A(s,t)

G (u, v, w) over (Rqn,d, P ) is given by

E
[
A

(s,t)
G (u, v, w)

]
=
2v+1u(n− u)

(
m
v

)
coef (f(x)v, xw)

n(n− 1)

×
2m∑
h=0

(m−v
h−v
2

)
coef

(∏∞
i=1(1 + xiy)ndi , xhyu

)(
2m
h

) , (10)

where u ∈ [1, n − 1], v ∈ [0,m], w ∈ Z≥0. The generator
function f(x) is defined by f(x)

4
=
∑q
i=1 µ(i)x

i. The notation
coef(f(x, y), xayb) represents the coefficient of xayb in the
polynomial f(x, y).

Proof: The expectation of A(s,t)
G (u, v, w) can be simpli-

fied as follows:

E
[
A

(s,t)
G (u, v, w)

]
=

∑
a∈Y (s,t)∩Z(n,u)

∑
b∈Z(m,v)

E

[
I

[
FG(a) = b,

m∑
i=1

bic(ei) = w

]]

=2

(
n− 2

u− 1

)(
m

v

)
E

[
I

[
FG(a

∗) = b∗,

m∑
i=1

b∗i c(ei) = w

]]
,

(11)



where binary vectors a∗ ∈ Y (s,t) ∩ Z(n,u) and b∗ ∈ Z(m,v).
The last equality is due to the symmetry of the ensemble. The
expectation in (11) can be rewritten as follows:

E

[
I

[
FG(a

∗) = b∗,

m∑
i=1

b∗i c(ei) = w

]]

=
∑

G∈Rq
n,d

P (G) I

[
FG(a

∗) = b∗,

m∑
i=1

b∗i c(ei) = w

]
=Pr (B = b∗,W = w | A = a∗)

=Pr (B = b∗ | A = a∗) Pr (W = w | B = b∗, A = a∗) ,
(12)

where A, B and W are random variables representing a cut
vector, a cut-set vector and cut weight, respectively.

Edges connecting to variable nodes having value 1 are
referred to as active edges. Let H be the random variable
of the total number of active edges. Since the number of all
edges between variable nodes and function nodes is 2m, we
have

Pr (B = b∗ | A = a∗)

=

2m∑
h=0

Pr (B = b∗, H = h | A = a∗)

=

2m∑
h=0

Pr (B = b∗ | H = h,A = a∗) Pr (H = h | A = a∗) .

(13)

Since the number of ways that the cut vector is a∗ and h edges
connect to u variable nodes having active value, out of a total
of
(
n
u

)
possibilities, is equal to coef(

∏∞
i=1(1+x

iy)ndi , xhyu),
we have

Pr (H = h | A = a∗) =
coef

(∏∞
i=1(1 + xiy)ndi , xhyu

)(
n
u

) .

(14)
A function node with the value 1 is connected to only one
active edge because the value of a function node is given by
exclusive-OR of values of the adjacent variable nodes. Since
the weight of the cut-set vector b∗ is v, the number of such
function nodes with the value 1 is v and remaining m − v
function nodes have the value 0. Note that a function node
with the value 0 is connected to two active edges or to no
active edges. When the number of all active edges is h, the
number of ways satisfying the above condition, out of a total
of
(
2m
h

)
, is 2v

(
m−v

(h−v)/2
)
. Therefore, we have

Pr (B = b∗ | H = h,A = a∗) =
2v
(m−v

h−v
2

)(
2m
h

) . (15)

Note that this probability is independent of the cut vector a∗.

Since the probability which the cut weight is w depends
only on the cardinality of the cut-set, we have

Pr (W = w | B = b∗, A = a∗)

=
∑

p1+p2+···+pq=v
p1+2p2+···+qpq=w

(
v

p1, p2, . . . , pq

) ∏
i∈[1,q]

µ(i)pi

=coef (f(x)v, xw) . (16)

The last equality is due to the multinomial theorem. Combin-
ing (11), (12), (13), (14),(15) and (16), we obtain the lemma.

As a special case of Lemma 3, if d(x) = xc (i.e., G is a
c-regular graph), we have

E
[
A

(s,t)
G (u, v, w)

]
=

2v+1
(
n−2
u−1
)(
m
v

)(m−v
cu−v

2

)
coef (f(x)v, xw)(

cn
cu

) .

(17)
In order to investigate statistical properties of the minimum

s-t cut weight, it is natural to study the tail of the average
s-t cut weight distribution. The following theorem provides
an upper bound on average cut weight distribution that is the
basis of our analysis.

Theorem 1: For any pair of s and t (s 6= t), the expectation
of B(s,t)

G (w) over (Rqn,d, P ) can be upper bounded by

E
[
B

(s,t)
G (w)

]
≤
n−1∑
u=1

m∑
v=0

2vu(n− u)
(
m
v

)
coef (f(x)v, xw)

n(n− 1)

×
2m∑
h=0

(m−v
h−v
2

)
coef

(∏∞
i=1(1 + xiy)ndi , xhyu

)(
2m
h

) .

(18)

Proof: Applying Lemma 3 to the inequality (9), we obtain
the claim of this theorem.

B. Minimum s-t cut weight

Let λ(s,t)G be the minimum s-t cut weight of the graph G

and C
(s,t)
G (δ)

4
=
∑δ−1
w=0B

(s,t)
G (w) be the accumulate s-t cut

weight of G where δ is a positive integer. From this definition,
it is clear that the graph G does not contain an s-t cut with
weight smaller than δ if C(s,t)

G (δ) is zero. This implies that
C

(s,t)
G (δ) = 0 is equivalent to λ(s,t)G ≥ δ and that

Pr(λ
(s,t)
G ≥ δ) = Pr(C

(s,t)
G (δ) = 0) = 1− Pr(C

(s,t)
G (δ) ≥ 1).

The second equality is due to the non-negativity of C(s,t)
G (δ).

The following theorem is the main contribution of this work.

Theorem 2: The probability Pr(λ
(s,t)
G ≥ δ) can be lower

bounded by

Pr(λ
(s,t)
G ≥ δ)

≥1−
δ−1∑
w=0

n−1∑
u=1

m∑
v=0

2vu(n− u)
(
m
v

)
coef (f(x)v, xw)

n(n− 1)

×
2m∑
h=0

(m−v
h−v
2

)
coef

(∏∞
i=1(1 + xiy)ndi , xhyu

)(
2m
h

) (19)



for δ ∈ N over the ensemble (Rqn,d, P ). The set N represents
the set of positive integers.

Proof: The Markov inequality provides an lower bound
on Pr(λ

(s,t)
G ≥ δ) as follows:

Pr(λ
(s,t)
G ≥ δ) =1− Pr(C

(s,t)
G (δ) ≥ 1)

≥1− E[C
(s,t)
G (δ)] = 1−

δ−1∑
w=0

E[B
(s,t)
G (w)].

(20)

Applying the lower bound (18) in Theorem 1 to the inequality
(20), we obtain the claim of this theorem.

V. NUMERICAL RESULT

In order to evaluate the tightness of the lower bound shown
in Theorem 2, we made the following computer experiments.
In an experiment, we generated 104-instances of undirected
graphs from the random graph ensemble defined in the Section
II-B. We assumed that the edge weight is 1; namely, q = 1,
µ(1) = 1. The minimum s-t cut weight for each instance was
computed by using the Ford-Fulkerson algorithm [2].

Figure 2 presents the accumulate distribution of minimum
s-t cut weight Pr(λ

(s,t)
G ≥ δ) of sparse and dense graph

ensembles. In the sparse case, the number of vertices and
edges are n = 120 and m = 248. We assumed the degree
distribution d(x) = (1/3)x3+(1/3)x4+(1/5)x5+(2/15)x6.
In the dense case, the parameters n = 120,m = 488, d(x) =
(1/3)x7+(1/3)x8+(1/5)x9+(2/15)x10 were assumed. The
dashed lines represent values of the lower bound presented
in Theorem 2 and the solid lines present approximate values
Pr(λ

(s,t)
G ≥ δ) obtained from computer experiments. From

these experimental results, we can observe that the proposed
lower bound captures the behaviors of the accumulate distribu-
tion Pr(λ

(s,t)
G ≥ δ) fairly well. Figure 3 shows a comparison

between the minimum s-t cut and the global minimum cut
weight. The lower bound for the global minimum cut weight
is obtained according to the argument in [8]. In this case,
the parameters n = 120, m = 600 and d(x) = (1/24)x6 +
(1/24)x7 + (1/12)x8 + (1/6)x9 + (1/3)x10 + (1/6)x11 +
(1/12)x12 + (1/24)x13 + (1/24)x14 were exploited.

VI. CONCLUSION

In this paper, a lower bound on the accumulate distribution
of the minimum s-t cut weight for a random graph ensemble is
presented. From computer experiments, it is observed that the
lower bound reflects actual statistical behavior of the minimum
s-t cut weight. The proof technique used in this paper has close
relationship to the analysis for average weight distribution of
LDGM codes and it may be applicable to related problems
on graphs such as the evaluation of the size of the minimum
vertex cover over a random graph ensemble.
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