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Abstract— We derive an upper bound on the capacity of non- there are no other (tighter) upper bounds on the capacity of
binary deletion channels. Although binary deletion channés have  non-binary deletion channels.

received significant attention over the years, and many uppeand : : : ) :
lower bounds on their capacity have been derived, such stues Our main result is to relate the capacity dli(-ary deletion

for the non-binary case are largely missing. The state of thert ~channel with deletion probabilityl to the capacity of the

is the following: as a trivial upper bound, capacity of an erssure  binary deletion channel with deletion probability by the
channel with the same input alphabet as the deletion channel inequality Cox < Ca(d) + (1 — d)log(K). As a result, any
can be used, and as a lower bound the results by Diggavi and upper bound on the binary deletion channel capacity can be

Grossglauser in[1] are available. In this paper, we derivelte first . ~ :
non-trivial non-binary deletion channel capacity upper baund used to derive an upper bound on 2¥€-ary deletion channel

and reduce the gap with the existing achievable rates. To dare  Capacity. For example, by using the result fram [3], we abtai
the results we first prove an inequality between the capacitpf a Carx (d) < (log(K) + 0.4143)(1 — d) for d > 0.65.
2K-ary deletion channel with deletion probability d, denoted by The paper is organized as follows. In Sectidn II, we briefly
C2x (d), and the capacity of the binary deletion channel with the  reyjjew the existing work on the capacity of binary and non-
same deletion probability, C2(d), that is, Cox (d) < C2(d)+ (1 — bi deleti h ls. In Sectignl Il first qive th
d) log(K). Then by employing some existing upper bounds on the inary deletion ¢ anne S. In >ecl » we Tirst give the
capacity of the binary deletion channel, we obtain upper bonds gengraIQK-ary del.etlon channel model and then. we observe
on the capacity of the2K -ary deletion channel. We illustrate via that it can be considered as a parallel concatenatidti nfde-
examples the use of the new bounds and discuss their asymptot pendent deletion channels (where each input is binary)p Als
behavior asd — 0. in the same section, we discuss the possible generalization
. INTRODUCTION of the existing Blahut-Arimoto algorithm (BAA) based upper
Non-binary deletion channels can be used to model infotgpundmg approaches (useful for the binary deletlpn chishne
. L - 10 the case oRK-ary deletion channels. In Sectign]lV, we
mation transmission over a finite buffer chanrigl [1], where : -
a packet (non-binary symbol) loss occurs whenever a pac rove the main result of the paper providing an upper bound on
k (d) in terms of Cy(d). In Sectior Y, several implications
0

arrives at a full buffer. When the channel drop-outs af che result are given where we compare the resulting cgpaci
independent and identically distributed (i.i.d.), the whel is g . pare g cap
upper bounds with the existing capacity upper and lower

referred as a non-binary i.i.d. deletion channel. Dobm§2j . . : .
. ; : bounds, and we provide a discussion of the channel capacity
proved the existence of Shannon’s theorem for discrete mem-~_ " . . )
. o lﬁehawor as the deletion probability approaches zero.llgina
oryless channels with synchronization errors. As a resuW,e conclude the paper in Sectibn] VI
Shannon’s theorem holds in non-binary deletion channelds an pap '
information and transmission capacities are equal.

In this paper, we focus on aK-ary deletion channel in Il. PREVIOUS WORKS

which every trgnsmitted .s.ymbol I either lost through the Capacity of binary deletion channels has received signif-
transmission with probability ofl or received correctly with icant attention in the existing literature, e.g., séé [4H an

probability of1 —d. There is no information about the positior}eferences therein. There are several results on capauity |
of the lost symbols at either the transmitter or the receiv%rounds [5H[7]. Gallager([5] provided the first lower bound
Clearly_t_he cz_apacity of aK-ary erasure channgl with €rasii®n the transmission capacity of the channels with random
probabll|§yd IS an upper bound on Fhe capacity of - insertion, deletion and substitution errors which proside
ary _Qeletlon channel since by re"ea"”g information at?bat Ylower bound on the binary deletion channel capacity as well.
pos[tlon_ of the Io;t symbols to_ the recewer, the correspund The tightest lower bound on the binary deletion channel
_glj_(ra]nle-faldedfdele:]lon chanr_1e| Ianoggg(g but an erasdur?mancapacity is provided in[]7] where the information capacity
erefore, for the capacity of t -ary input deletion ¢ o binary deletion channel is directly lower bounded by

channeb‘ﬂ_((d)_, Fhe relationCx (d) < (1-d)log(2K) holds. considering input sequences as alternating blocks of zerds
Besides this trivial upper bound, to the best of our knowdzedgOnes (runs) and the length of the rubsas i.i.d. random vari-

T. M. Duman is currently with Bilkent University in Turkeynd on leave at_)les fqllpwmg a parfucular dls_tr_lbutlon over positiveegers
from Arizona State University, Tempe, AZ. with a finite expectation and finite entropy.
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X, € {12} Deletion | Yy €{1,2}"

There are also several upper bounds on the binary dele
Channel C;

channel capacity, e.g.[1[3]J[8]][9]. INC][8] a genie-aide
channel is considered in which the receiver is provided
side information about the completely deleted runs, erg.,
transmitting “110001” over the original channel by deleting
the entire run of zeros, the sequertdd1” is received while
in the considered genie-aided chanriéll — 1”7 represents
the received sequence. Then an upper bound on the capaciy _ o
. . . . Fig- 1. 2K-ary deletion channel as a parallel concatenatiok ahdependent
per unit cost of the genie-aided channel is computed lg;ﬁ
running the BAA algorithm. Fertonani and Dumdn [9], by
considering several different genie-aided channels, bieta  x — (z,,... zy) in whichz, € X and X € XV, and the
derive tighter upper bounds on the binary deletion channghtput sequence is denoted By= (y1, ... ,yas) in which M
capacity compared to the results id [8] fér> 0.05. In [3], s a binomial random variable with parameté¥sandd (due
authors improve upon the upper bounds provided_in [9] f@§ the characteristics of the i.i.d. deletion channel).
d > 0.65 where they first derive an inequality relation among A Different Look at the 2K -ary Deletion Channel: Any
the capacity of three different binary deletion channel$ @8 9 _ary input deletion channel with deletion probabilitycan
a special case they obtaith(Ad + 1 — A) < AC3(d) which  pe considered as a parallel concatenationkofndependent
shows thaiC's(d) < 0.4143(1 — d) for d > 0.65. binary deletion channel§;, (k € {1,...,K}) all with the
To the best of our knowledge, the only non-trivial lowegame deletion probabilityl, as shown in Fig[1, in which
bounds on the capacity of the non-binary deletion chanmels ghe input symbol2k — 1 and 2% travel throughCy, and the
provided in [1] where two different bounds are derived. Morgrviving output symbols of the subchannels are combined
precisely, the achievable rates of thé&’-ary input deletion phased on the order in which they go through the subchannels.
channel are computed for i.i.d. and Markovian codebooks By, andY, denote the input and output sequences ofithe
considering a simple decoder which decides in favor of t§ channel, respectively, andi, and M, denote the length of
sequence if the received sequence is a subsequence of ogly angy,, respectively.
one transmitted sequence. The derived achievable rates argy pe aple to relate the mutual information between the
given by input and output sequences of tixd(-ary deletion chan-
2K nel, I(X;Y), with the mutual information between the in-
Cox > log (2[( _ 1> + (1= d)log(2K — 1) = Hy(d), (1) put and output sequences of the considered binary deletion

S channels,I(X ;Y ), we define two new random vectors
by considering i.i.d. codebooks, wheff,(d) = —dlog(d) — Fo=(f.[1],.... f[N]) andF, = (f,[1],. .., f,[M]) where

X, € {34}V Y, € (34}

Deletion
Channel C,

Xe{12,-,

Xy € {2K — 1,2K}"x

— Mg,
Deletion | X € (2K - 1,2K}

Channel Cg

ary input deletion channels.

(1 —d)log(1 —d), and foln] € {1,...,K} and f,[m] € {1,...,K} denote the

Cox> sup [—(1—d)log((1—q)A+gB)—vlog(e)] (2) 'abel of the subchannel the-th input symbol andm-th
>0, 0<p<1 output symbol belong to, respectively. Clearly, by knowing

by considering Markovian codebooks, withy = X, one can determineX,..., X, F';) and by knowing

1 (1+(1—d)(2K—1)(2Kp—1)) A — e~ (1—p) (X4,...,Xk,F;) can determineX. The same situation

2K 2K—1-d(2Kp=1) ) (2K-1)(1—e~7(1=3%7))  holds forY and (Y1,...,Y k, F,). Therefore, we have

and B = e 7 ((1—-p)A+p). Non-binary input alphabet

channels with synchronization errors are also considered I(X5Y) =X, X, Fos Y, Y, Fy)

in [10] where the capacity of memoryless synchronization K

error channels in the presence of noise and the capacity => Li+1p, (3)

of channels with weak synchronization errors (i.e., the k=1

transmitter and receiver are partly synchronized) havenbegherel, = I(X,,..., Xk, F.;Y|Y1,..., Y1) and

studied. The main focus of the work ifn_[10] is on the
asymptotic behavior of the channel capacity for large \&lue

of K. In Sectior 1V, we will derive upper bounds dp andlr which
will enable us to relate the non-binary and binary deletion

channels capacities, and will lead to the main result of the
A. Channel Model Saper P

An i.i.d. 2K -ary input deletion channel with input alphabet ]
X = {1,...,2K} is considered in which every transmittedB- Discussion on BAA Based Upper Bounds
symbol is either randomly deleted with probability or One approach to derive upper bounds on 2fié&-ary dele-
received correctly with probabilityy — d while there is no tion channel capacity is to modify the numerical approaches
information about the values or the position of the lost syhab in [8], [Q] in which the decoder (and possibly the encoder) of
at the transmitter and the receiver. In transmissionN\of the deletion channel is provided with some side information
symbols through the channel, the input sequence is dengtedabout the deletion process and the capacity (or an upper

IF:I(Xl,...,XK,Fw;Fy|Y1,...,YK). (4)

I1l. PRELIMINARIES



bound on the capacity) of the resulting genie-aided chanr@irthermore/(X ;Y ) can be written as
is computed by the Blahut-Arimoto algorithm. Although thi

s o it (X Y1) =I(X 43 Y Ni) = 1(X 0 Nu[Y )
approach is useful for binary input channels (even whe
other impairments such as insertions and substitutions are =I(Xk; Yi|Ni) + I(Xg; Nip) = I(X; Ni V).
considered[[11]), for the non-binary case, running the BA&ince i (N,,| X ;) = 0 and (X ; Nx|Y'1,) > 0, we arrive at
for large values ofK is not computationally feasible. E.g.,
one of the upper bounds ][9] is obtained by computing tHEX k3 Y1) <I(Xk; Yi|Ny) + H(Ng)

capacity of the binary deletion channel with finite length of <I(Xp; Yi|Ni) +1log(N +1)

transmission. = 17. Obviously, by increasing the alphabet N

size, 2K, the maximum possible value df in running the :ZP(Nk:nk)I(Xk;Yk|nk)+log(N+ 1), (7)
BAA algorithm decreases. Therefore, to achieve meaningful nE=0

upper bounds, needs to be increased which makes thghere the second inequality results since there Jre- 1
numerical computations infeasible. possibilities for N}, and as a resulH (N;) < log(N + 1).

The main contribution of the present paper is that we amirthermore, as shown ial[9], for a finite length transmissio
able to relate the capacity of thi(-ary deletion channel over the deletion channel, the mutual information rate betw
to the binary deletion channel capacity through an inegualithe transmitted and received sequences can be upper bounded
which enables us to upper bound th&-ary deletion channel in terms of the capacity of the channel after adding some
capacity avoiding computationally formidable BAA dirgctl appropriate term, which can be spelled out[@s [9, Eqn. (39)]

for the 2K -ary deletion channel.
I(Xk; Yi|Nk = ni) < npCs(d) + H(Dg|Ny = ni), (8)

IV. ANOVEL UPPERBOUND ON Cak (d) where D;, denotes the number of deletions through the trans-
As introduced in Sectiof IIEA, &K -ary deletion channel mission of Ny bits over thek-th channel. We have
can be considered as a parallel concatenationkoinde- "k
pendent binary deletion channels. This new look - H(Dg|Ny=n,) = - ZP(nk,n,d) log (P(ng,n,d))
ary deletion channel enables us to relate 2h&-ary deletion n=0
channel capacity to the binary deletion channel capaciti wi < log(ng +1) <log(N+1),  (9)
the same deletion error probability as given in the follayvin Nk

with P(ng,n,d) =

d™(1—d)™~". Substituting[(P) and
n
(8) into (7), we obtain

theorem.

Theorem 1. Let Cyx (d) denote the capacity of a 2K -ary i.i.d.

deletion channel with deletion probability d, then al
I(Xi;Yk) <Y P(Ng =) (niCa(d)) + 2log(N + 1)
Corc(d) < Ca(d) + (1 — d) log (k). (5) =0

As given in [3), the mutual informatiod(X;Y) can be o _ o
expanded in terms of several other mutual information ternfainally, by substituting the above inequality infd (6), t@of

I, for k € {1,...,K} and Ir. To prove the theorem, we follows. u
first derive upper bounds of), and 7r in the following two | emma 2. For any input distribution, the mutual information
lemmas. I given in @) can be upper bounded by

Lemma 1. For any input distribution P(X+,..., Xk, F), Ir < N(1—d)log(K).

the mutual information I;, given in (@) can be upper bounded ) o . .

by Proof: Using the definition of the mutual information, we

can write
IF:H(Fy|Y17-- 7YK)*H(Fy|Y17 'aYK;XIa' "7XK7FI)
SH(Fy|Y1, .. .,YK)

where E{.} denotes the expected value.

Proof: For I, since P(Y|Y1,....,Y 1,Xr) = <H(F,|Mj, ..., Mg), (10)
P(Yk|Xk) andP(Yk|X1,...,XK,FI,Yl,...,Yk,l): . . . .
P(Y x| X ), we can write where the last inequality follows sin¢&f,, . .., M) is a func-

tion Of(Yl,...,YK), i.e.,H(Ml,...,MK|Y1,...,YK):0.

I = (X Yi|Y1,...,Y ) _ L&

k (X Yl ¥ k1) For fixedmy, with > ~m,=m, there are(,, ™ ) possibili-
+I(X1,...,kal,Xk+1,...,XK,FI;Yk|Y1,...,kal,Xk) =1 LK

= I( X YelY1, ..., Y1) ties for F', leading toH (F|ma, ..., mg) <log (m1,.7.7.1,m1<)'

— H(Y WY, Vi) = HY4[Y1,..., Ye1, X1) It follows from the inequality (see Appendix] A)

=H(YR)—I(Y1,....Ye; Vi) — HY | X ) ( m ) <
< I(X 1Y) 6) 8 1y, g ) S 0e(m) ;mkl@g(mk% (11)



1—d—CY5(d), whereCY® denotes the upper bound on the
binary deletion channel capacity.

K As it is shown in [10],(1 — d)log(2K) — 1 < Cax(d) <
g([my,...,mg))= (Z mk) log (Z me ka log(my) (1 —d)log(2K), where the lower bound is implied frorhl (1),

that H(Fy|ma, ..., mg) <mlog(m Z my, log(my). Since
k=1

—1 1 therefore the existing trivial upper and lower bounds agétti
is a concave function ofms, ..., mk] (see AppendnEB) enough for asymptotically large values &f, and i.i.d. dis-
employing the Jensen’s inequality yields tributed input sequences are sulfficient to achieve the dgpac

K K K However, the importance of the result in TheorEm 1 is for
Ip< <ZE{Mk}) log (ZE{Mk}>_ZE{Mk}IOg(E{Mk})- moderate values of’, where the amount of improvement in

—1 —1 closing the gap between the existing upper and lower bounds
is significant.

To demonstrate the improvement over the trivial era-
sure channel upper bound, we compare the upper bound
Cox (d) < CYB(d) + (1 — d) log(K) with the erasure chan-
nel upper bounibg(2K)(1—d) and the tightest existing lower
~d)a )) bound [2) (from[[1]) in Fig[R for4-ary and8-ary deletion

On the other hand, due to the fact ti@atare i.i.d. binary input
deletion channels, we have{ M} = N(1—d)ay whereay’s
depend on the input distributio®(X) and Zszl ap = 1.
Hence, we obtain

channels. Here we utilize the binary deletion channel dapac
upper bound€'¥ B (d) in [3], [9], where ford < 0.65 we use
_ the results in[[B, Table 11I] and fod > 0.65 we use the upper
=-N(1- Zak logay = N(1 —d)H(as, ..., o) boundCs(d) < 0.4143(1 — d) given in [3].

Another implication of the result in Theorednh 1 is in study-

Ip <N(1-—4d) <1og Zak log (N

<NA-d) IOg( ), (12) ing the asymptotic behavior of theK -ary deletion channel
which concludes the proof. m capacity ford — 0. It is shown in [12] that
A. Proof of Theorem[I Co(d) =1+ dlog(d) — Ard + Axd® + O(d*~°),  (13)
Substituting the results of Lemmas$ 1 dnd 2 irftd (3), Wer small d and anye > 0 with A; ~ 1.15416377,
obtain X As ~ 1.78628364 and O(.) denoting the standard Landau
(big-0O) notation. Employing this result ibl(5), leads to qopar
X;Y)< FE N p Co(d) + 2K log(N + 1 ’ ’
K )< B, Z b Cald) + og(N +1) bound expansion for small values @fas
+ N(1 —d)log(K) Cox (d) < 1+ dlog(d) — (A1 + log(K))d + Azd? + log(K)
= NCs(d) + 2K log(N + 1) + N(1 — d) log(K), +O(d*™°). (14)

where we have used the fact tha},_, N, = N independent In F|g [3, we compare the above upper bound (by ignoring the
of the input distributionP(X). Since the above inequality O(d°~) term) which serves as an estimate, with the lower
holds for any input distributio?(X) and any value ofy, bound [2) ford < 0.1. We observe that by employing the

we can write capacity expansio_(1.3) ifd(5), a good characterizatioritfer
asymptotic behavior of the K-ary deletion channel capacity
Cox(d) = A}gn m%é{ NI(X Y) is obtained asl — 0.
P(A) VI. CONCLUSIONS
< Ca(d) + (1 —d)log(K), We have derived the first non-trivial upper bound on2fi&
which concludes the proof of Theordth 1. ] ary deletion channel capacity. We first considered2heary

deletion channel as a parallel concatenatiodoihdependent
binary deletion channels, all with the same deletion prdbab

As stated earlier, a trivial upper bound on the capacity itf. We then related the capacity of the original channehtt t
the 2K -ary deletion channel is given byl — d)log(2K) of the binary deletion channel. By doing so we obtained an
which is the capacity of the@K-ary erasure channel. Weupper bound on the capacity of tRd(-ary deletion channel
have shown in the previous section that by substituting airy terms of the capacity of the binary deletion channel and
upper bound on the capacity of the binary deletion chanrsd a result any upper bound on the capacity of the binary
into (8), an upper bound on th2K-ary deletion channel deletion channel. The provided upper bound results in ¢ight
capacity results. Obviously, by employinth(d) < 1 —d, upper bounds on th& -ary deletion channel capacity than the
which is the trivial upper bound on the binary deletion chenntrivial erasure channel upper bound for the entire range of
capacity, the erasure channel upper bound on 2keary deletion probabilities.

V. SOME IMPLICATIONS

deletion channel capacity is obtained. Therefore, any uppe APPENDIX A
bound tighter thart—d on the binary deletion channel capacity PROOF OFINEQUALITY (1)
gives an upper bound tighter thay(2K)(1 — d) on the2K- It follows from the inequalitylog (7:’1“‘1) < mHy(5L) =

ary deletion channel capacity. The amount of improvementislog (m) — mqlog(m1) — (m —mq)log (m —m4) given
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wherel is an all one vector of length, i.e., 1 =[1,...,1]%,
anddiag {i T } denotes a diagonal matrix whoke

th dlagonal element |s— Furthermore, by definingt =
[a1,...,ax], we can write

K
T (Zk 1ak) _ a_%

Zkﬂ my g Mk

se(ErE E o

aViga

k=1 j=k+1
K K
2 Z#k My o
- g — — O
my
k=1 k=1

m; my
E E 2apa; — — ai — —a?
mp m;

Zk 1mkk 13 k+1

Fig. 2. Comparison among the new upper boudd (5), the lowendd2)

and the trivial erasure channel upper bound for 4k&ry and8-ary deletion m; my 9
channels. Z Z —(ak — —aj) ,
Z my my m;
3 . k=1 k=1 j=k+1
Upper Bound Estimate (14) .

28 —— Lower Bound from (1] Wh|Ch |S negat've fOI’ a”mk, m; > 0. Therefore,

' V2g([my,...,my]) is a negative semi-definite matrix and as a

26] 1 resultg([m1,...,m]) is a concave function ding, ..., my].
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