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Abstract— We derive an upper bound on the capacity of non-
binary deletion channels. Although binary deletion channels have
received significant attention over the years, and many upper and
lower bounds on their capacity have been derived, such studies
for the non-binary case are largely missing. The state of theart
is the following: as a trivial upper bound, capacity of an erasure
channel with the same input alphabet as the deletion channel
can be used, and as a lower bound the results by Diggavi and
Grossglauser in [1] are available. In this paper, we derive the first
non-trivial non-binary deletion channel capacity upper bound
and reduce the gap with the existing achievable rates. To derive
the results we first prove an inequality between the capacityof a
2K-ary deletion channel with deletion probability d, denoted by
C2K(d), and the capacity of the binary deletion channel with the
same deletion probability,C2(d), that is, C2K(d) ≤ C2(d)+ (1−
d) log(K). Then by employing some existing upper bounds on the
capacity of the binary deletion channel, we obtain upper bounds
on the capacity of the2K-ary deletion channel. We illustrate via
examples the use of the new bounds and discuss their asymptotic
behavior asd → 0.

I. I NTRODUCTION

Non-binary deletion channels can be used to model infor-
mation transmission over a finite buffer channel [1], where
a packet (non-binary symbol) loss occurs whenever a packet
arrives at a full buffer. When the channel drop-outs are
independent and identically distributed (i.i.d.), the channel is
referred as a non-binary i.i.d. deletion channel. Dobrushin [2]
proved the existence of Shannon’s theorem for discrete mem-
oryless channels with synchronization errors. As a result,
Shannon’s theorem holds in non-binary deletion channels and
information and transmission capacities are equal.

In this paper, we focus on a2K-ary deletion channel in
which every transmitted symbol is either lost through the
transmission with probability ofd or received correctly with
probability of1−d. There is no information about the position
of the lost symbols at either the transmitter or the receiver.
Clearly the capacity of a2K-ary erasure channel with erasure
probability d is an upper bound on the capacity of the2K-
ary deletion channel since by revealing information about the
position of the lost symbols to the receiver, the corresponding
genie-aided deletion channel is nothing but an erasure channel.
Therefore, for the capacity of the2K-ary input deletion
channelC2K(d), the relationC2K(d) ≤ (1−d) log(2K) holds.
Besides this trivial upper bound, to the best of our knowledge,
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there are no other (tighter) upper bounds on the capacity of
non-binary deletion channels.

Our main result is to relate the capacity of a2K-ary deletion
channel with deletion probabilityd to the capacity of the
binary deletion channel with deletion probabilityd by the
inequalityC2K ≤ C2(d) + (1 − d) log(K). As a result, any
upper bound on the binary deletion channel capacity can be
used to derive an upper bound on the2K-ary deletion channel
capacity. For example, by using the result from [3], we obtain
C2K(d) ≤ (log(K) + 0.4143)(1− d) for d ≥ 0.65.

The paper is organized as follows. In Section II, we briefly
review the existing work on the capacity of binary and non-
binary deletion channels. In Section III, we first give the
general2K-ary deletion channel model and then we observe
that it can be considered as a parallel concatenation ofK inde-
pendent deletion channels (where each input is binary). Also
in the same section, we discuss the possible generalization
of the existing Blahut-Arimoto algorithm (BAA) based upper
bounding approaches (useful for the binary deletion channels)
to the case of2K-ary deletion channels. In Section IV, we
prove the main result of the paper providing an upper bound on
C2K(d) in terms ofC2(d). In Section V, several implications
of the result are given where we compare the resulting capacity
upper bounds with the existing capacity upper and lower
bounds, and we provide a discussion of the channel capacity
behavior as the deletion probability approaches zero. Finally,
we conclude the paper in Section VI.

II. PREVIOUS WORKS

Capacity of binary deletion channels has received signif-
icant attention in the existing literature, e.g., see [4] and
references therein. There are several results on capacity lower
bounds [5]–[7]. Gallager [5] provided the first lower bound
on the transmission capacity of the channels with random
insertion, deletion and substitution errors which provides a
lower bound on the binary deletion channel capacity as well.
The tightest lower bound on the binary deletion channel
capacity is provided in [7] where the information capacity
of the binary deletion channel is directly lower bounded by
considering input sequences as alternating blocks of zerosand
ones (runs) and the length of the runsL as i.i.d. random vari-
ables following a particular distribution over positive integers
with a finite expectation and finite entropy.
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There are also several upper bounds on the binary deletion
channel capacity, e.g., [3], [8], [9]. In [8] a genie-aided
channel is considered in which the receiver is provided by
side information about the completely deleted runs, e.g., in
transmitting“110001” over the original channel by deleting
the entire run of zeros, the sequence“111” is received while
in the considered genie-aided channel“11 − 1” represents
the received sequence. Then an upper bound on the capacity
per unit cost of the genie-aided channel is computed by
running the BAA algorithm. Fertonani and Duman [9], by
considering several different genie-aided channels, are able to
derive tighter upper bounds on the binary deletion channel
capacity compared to the results in [8] ford > 0.05. In [3],
authors improve upon the upper bounds provided in [9] for
d > 0.65 where they first derive an inequality relation among
the capacity of three different binary deletion channels and as
a special case they obtainC2(λd + 1 − λ) ≤ λC2(d) which
shows thatC2(d) ≤ 0.4143(1− d) for d ≥ 0.65.

To the best of our knowledge, the only non-trivial lower
bounds on the capacity of the non-binary deletion channels are
provided in [1] where two different bounds are derived. More
precisely, the achievable rates of the2K-ary input deletion
channel are computed for i.i.d. and Markovian codebooks by
considering a simple decoder which decides in favor of a
sequence if the received sequence is a subsequence of only
one transmitted sequence. The derived achievable rates are
given by

C2K ≥ log

(

2K

2K − 1

)

+ (1− d) log(2K − 1)−Hb(d), (1)

by considering i.i.d. codebooks, whereHb(d) = −d log(d) −
(1 − d) log(1− d), and

C2K≥ sup
γ>0, 0<p<1

[−(1−d) log ((1−q)A+qB)−γ log(e)] (2)

by considering Markovian codebooks, withq =
1

2K

(

1+ (1−d)(2K−1)(2Kp−1)
2K−1−d(2Kp−1)

)

, A = e−γ(1−p)

(2K−1)(1−e−γ(1− 1−p
2K−1

))

and B = e−γ ((1 − p)A+p). Non-binary input alphabet
channels with synchronization errors are also considered
in [10] where the capacity of memoryless synchronization
error channels in the presence of noise and the capacity
of channels with weak synchronization errors (i.e., the
transmitter and receiver are partly synchronized) have been
studied. The main focus of the work in [10] is on the
asymptotic behavior of the channel capacity for large values
of K.

III. PRELIMINARIES

A. Channel Model

An i.i.d. 2K-ary input deletion channel with input alphabet
X = {1, . . . , 2K} is considered in which every transmitted
symbol is either randomly deleted with probabilityd or
received correctly with probability1 − d while there is no
information about the values or the position of the lost symbols
at the transmitter and the receiver. In transmission ofN

symbols through the channel, the input sequence is denoted by
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Fig. 1. 2K-ary deletion channel as a parallel concatenation ofK independent
binary input deletion channels.

X = (x1, . . . , xN ) in which xn ∈ X andX ∈ XN , and the
output sequence is denoted byY = (y1, . . . , yM ) in whichM

is a binomial random variable with parametersN andd (due
to the characteristics of the i.i.d. deletion channel).

A Different Look at the 2K-ary Deletion Channel: Any
2K-ary input deletion channel with deletion probabilityd can
be considered as a parallel concatenation ofK independent
binary deletion channelsCk (k ∈ {1, . . . ,K}) all with the
same deletion probabilityd, as shown in Fig. 1, in which
the input symbols2k − 1 and 2k travel throughCk and the
surviving output symbols of the subchannels are combined
based on the order in which they go through the subchannels.
Xk andY k denote the input and output sequences of thek-
th channel, respectively, andNk andMk denote the length of
Xk andY k, respectively.

To be able to relate the mutual information between the
input and output sequences of the2K-ary deletion chan-
nel, I(X;Y ), with the mutual information between the in-
put and output sequences of the considered binary deletion
channels,I(Xk;Y k), we define two new random vectors
F x = (fx[1], . . . , fx[N ]) andF y = (fy[1], . . . , fy[M ]) where
fx[n] ∈ {1, . . . ,K} and fy[m] ∈ {1, . . . ,K} denote the
label of the subchannel then-th input symbol andm-th
output symbol belong to, respectively. Clearly, by knowing
X, one can determine (X1, . . . ,XK ,F x) and by knowing
(X1, . . . ,XK ,F x) can determineX. The same situation
holds forY and (Y 1, . . . ,Y K ,F y). Therefore, we have

I(X;Y ) = I(X1, . . . ,XK ,F x;Y 1, . . . ,Y K ,F y)

=
K
∑

k=1

Ik + IF , (3)

whereIk = I(X1, . . . ,XK ,F x;Y k|Y 1, . . . ,Y k−1) and

IF = I(X1, . . . ,XK ,F x;F y|Y 1, . . . ,Y K). (4)

In Section IV, we will derive upper bounds onIk andIF which
will enable us to relate the non-binary and binary deletion
channels capacities, and will lead to the main result of the
paper.

B. Discussion on BAA Based Upper Bounds

One approach to derive upper bounds on the2K-ary dele-
tion channel capacity is to modify the numerical approaches
in [8], [9] in which the decoder (and possibly the encoder) of
the deletion channel is provided with some side information
about the deletion process and the capacity (or an upper



bound on the capacity) of the resulting genie-aided channel
is computed by the Blahut-Arimoto algorithm. Although this
approach is useful for binary input channels (even when
other impairments such as insertions and substitutions are
considered [11]), for the non-binary case, running the BAA
for large values ofK is not computationally feasible. E.g.,
one of the upper bounds in [9] is obtained by computing the
capacity of the binary deletion channel with finite length of
transmissionL = 17. Obviously, by increasing the alphabet
size, 2K, the maximum possible value ofL in running the
BAA algorithm decreases. Therefore, to achieve meaningful
upper bounds,L needs to be increased which makes the
numerical computations infeasible.

The main contribution of the present paper is that we are
able to relate the capacity of the2K-ary deletion channel
to the binary deletion channel capacity through an inequality
which enables us to upper bound the2K-ary deletion channel
capacity avoiding computationally formidable BAA directly
for the 2K-ary deletion channel.

IV. A N OVEL UPPERBOUND ON C2K(d)

As introduced in Section III-A, a2K-ary deletion channel
can be considered as a parallel concatenation ofK inde-
pendent binary deletion channels. This new look at a2K-
ary deletion channel enables us to relate the2K-ary deletion
channel capacity to the binary deletion channel capacity with
the same deletion error probability as given in the following
theorem.

Theorem 1. Let C2K(d) denote the capacity of a 2K-ary i.i.d.
deletion channel with deletion probability d, then

C2K(d) ≤ C2(d) + (1− d) log(K). (5)

As given in (3), the mutual informationI(X;Y ) can be
expanded in terms of several other mutual information terms,
Ik for k ∈ {1, . . .,K} and IF . To prove the theorem, we
first derive upper bounds onIk and IF in the following two
lemmas.

Lemma 1. For any input distribution P (X1, . . . ,XK ,F x),
the mutual information Ik given in (3) can be upper bounded
by

Ik ≤ E{Nk}C2(d) + 2 log(N + 1),

where E{.} denotes the expected value.

Proof: For Ik, since P (Y k|Y 1, . . . ,Y k−1,Xk) =
P (Y k|Xk) andP (Y k|X1, . . . ,XK ,F x,Y 1, . . . ,Y k−1) =
P (Y k|Xk), we can write

Ik = I(Xk;Y k|Y 1, . . . ,Y k−1)

+I(X1, ...,Xk−1,Xk+1, ...,XK ,Fx;Y k|Y 1, ...,Y k−1,Xk)

= I(Xk;Y k|Y 1, . . . ,Y k−1)

= H(Y k|Y 1, . . . ,Y k−1)−H(Y k|Y 1, . . . ,Y k−1,Xk)

= H(Y k)− I(Y 1, . . . ,Y k−1;Y k)−H(Y k|Xk)

≤ I(Xk;Y k). (6)

Furthermore,I(Xk;Y k) can be written as

I(Xk;Y k) =I(Xk;Y k, Nk)− I(Xk;Nk|Y k)

=I(Xk;Y k|Nk)+ I(Xk;Nk)− I(Xk;Nk|Y k).

SinceH(Nk|Xk) = 0 andI(Xk;Nk|Y k) ≥ 0, we arrive at

I(Xk;Y k) ≤I(Xk;Y k|Nk) +H(Nk)

≤I(Xk;Y k|Nk) + log(N + 1)

=

N
∑

nk=0

P (Nk=nk)I(Xk;Y k|nk)+log(N + 1), (7)

where the second inequality results since there areN + 1
possibilities forNk and as a resultH(Nk) ≤ log(N + 1).
Furthermore, as shown in [9], for a finite length transmission
over the deletion channel, the mutual information rate between
the transmitted and received sequences can be upper bounded
in terms of the capacity of the channel after adding some
appropriate term, which can be spelled out as [9, Eqn. (39)]

I(Xk;Y k|Nk = nk) ≤ nkC2(d) +H(Dk|Nk = nk), (8)

whereDk denotes the number of deletions through the trans-
mission ofNk bits over thek-th channel. We have

H(Dk|Nk = nk) = −

nk
∑

n=0

P (nk, n, d) log (P (nk, n, d))

≤ log (nk + 1) ≤ log (N + 1), (9)

with P (nk, n, d) =

(

nk

n

)

dn(1−d)nk−n. Substituting (9) and

(8) into (7), we obtain

I(Xk;Y k) ≤

N
∑

nk=0

P (Nk = nk) (nkC2(d)) + 2 log(N + 1)

=E{Nk}C2(d) + 2 log (N + 1).

Finally, by substituting the above inequality into (6), theproof
follows.

Lemma 2. For any input distribution, the mutual information
IF given in (4) can be upper bounded by

IF ≤ N(1− d) log(K).

Proof: Using the definition of the mutual information, we
can write

IF =H(Fy|Y1, . . . ,YK)−H(Fy|Y1, . . . ,YK ,X1, . . . ,XK ,Fx)

≤H(Fy|Y1, . . . ,YK)

≤H(Fy|M1, . . . ,MK), (10)

where the last inequality follows since(M1, . . . ,MK) is a func-
tion of (Y 1, . . . ,YK), i.e.,H(M1, . . . ,MK |Y 1, . . . ,YK) = 0.

For fixedmk with
K∑

k=1

mk=m, there are
(

m
m1,...,mK

)

possibili-

ties forF y leading toH(Fy|m1, . . . ,mK)≤ log
(

m
m1,...,mK

)

.
It follows from the inequality (see Appendix A)

log

(

m

m1, . . . ,mK

)

≤ m log(m)−

K
∑

k=1

mk log(mk), (11)



thatH(Fy|m1, . . . ,mK)≤m log(m)−

K
∑

k=1

mk log(mk). Since

g([m1, . . . ,mk])=

(

K
∑

k=1

mk

)

log

(

K
∑

k=1

mk

)

−

K
∑

k=1

mk log(mk)

is a concave function of[m1, . . . ,mK ] (see Appendix B),
employing the Jensen’s inequality yields

IF≤

(

K
∑

k=1

E{Mk}

)

log

(

K
∑

k=1

E{Mk}

)

−

K
∑

k=1

E{Mk}log(E{Mk}).

On the other hand, due to the fact thatCk are i.i.d. binary input
deletion channels, we haveE{Mk} = N(1−d)αk whereαk ’s
depend on the input distributionP (X) and

∑K

k=1 αk = 1.
Hence, we obtain

IF ≤N(1− d)

(

log (N(1− d))−
K
∑

k=1

αk log (N(1− d)αk)

)

=−N(1− d)

K
∑

k=1

αk logαk = N(1− d)H(α1, . . . , αK)

≤ N(1− d) log(K), (12)

which concludes the proof.

A. Proof of Theorem 1

Substituting the results of Lemmas 1 and 2 into (3), we
obtain

I(X;Y ) ≤ EN1,...,NK

{

K
∑

k=1

Nk

}

C2(d) + 2K log(N + 1)

+N(1− d) log(K)

= NC2(d) + 2K log(N + 1) +N(1− d) log(K),

where we have used the fact that
∑K

k=1 Nk = N independent
of the input distributionP (X). Since the above inequality
holds for any input distributionP (X) and any value ofN ,
we can write

C2K(d) = lim
N→∞

max
P (X)

1

N
I(X;Y )

≤ C2(d) + (1− d) log(K),

which concludes the proof of Theorem 1. �

V. SOME IMPLICATIONS

As stated earlier, a trivial upper bound on the capacity of
the 2K-ary deletion channel is given by(1 − d) log(2K)
which is the capacity of the2K-ary erasure channel. We
have shown in the previous section that by substituting any
upper bound on the capacity of the binary deletion channel
into (5), an upper bound on the2K-ary deletion channel
capacity results. Obviously, by employingC2(d) ≤ 1 − d,
which is the trivial upper bound on the binary deletion channel
capacity, the erasure channel upper bound on the2K-ary
deletion channel capacity is obtained. Therefore, any upper
bound tighter than1−d on the binary deletion channel capacity
gives an upper bound tighter thanlog(2K)(1−d) on the2K-
ary deletion channel capacity. The amount of improvement is

1− d−CUB
2 (d), whereCUB

2 denotes the upper bound on the
binary deletion channel capacity.

As it is shown in [10],(1 − d) log(2K) − 1 ≤ C2K(d) ≤
(1− d) log(2K), where the lower bound is implied from (1),
therefore the existing trivial upper and lower bounds are tight
enough for asymptotically large values ofK, and i.i.d. dis-
tributed input sequences are sufficient to achieve the capacity.
However, the importance of the result in Theorem 1 is for
moderate values ofK, where the amount of improvement in
closing the gap between the existing upper and lower bounds
is significant.

To demonstrate the improvement over the trivial era-
sure channel upper bound, we compare the upper bound
C2K(d) ≤ CUB

2 (d) + (1− d) log(K) with the erasure chan-
nel upper boundlog(2K)(1−d) and the tightest existing lower
bound (2) (from [1]) in Fig. 2 for4-ary and8-ary deletion
channels. Here we utilize the binary deletion channel capacity
upper boundsCUB

2 (d) in [3], [9], where ford ≤ 0.65 we use
the results in [9, Table III] and ford ≥ 0.65 we use the upper
boundC2(d) ≤ 0.4143(1− d) given in [3].

Another implication of the result in Theorem 1 is in study-
ing the asymptotic behavior of the2K-ary deletion channel
capacity ford → 0. It is shown in [12] that

C2(d) = 1 + d log(d)−A1d+A2d
2 +O(d3−ǫ), (13)

for small d and any ǫ > 0 with A1 ≈ 1.15416377,
A2 ≈ 1.78628364 and O(.) denoting the standard Landau
(big-O) notation. Employing this result in (5), leads to an upper
bound expansion for small values ofd as

C2K(d) ≤ 1 + d log(d) − (A1 + log(K))d+A2d
2 + log(K)

+O(d3−ǫ). (14)

In Fig. 3, we compare the above upper bound (by ignoring the
O(d3−ǫ) term) which serves as an estimate, with the lower
bound (2) ford ≤ 0.1. We observe that by employing the
capacity expansion (13) in (5), a good characterization forthe
asymptotic behavior of the2K-ary deletion channel capacity
is obtained asd → 0.

VI. CONCLUSIONS

We have derived the first non-trivial upper bound on the2K-
ary deletion channel capacity. We first considered the2K-ary
deletion channel as a parallel concatenation ofK independent
binary deletion channels, all with the same deletion probabil-
ity. We then related the capacity of the original channel to that
of the binary deletion channel. By doing so we obtained an
upper bound on the capacity of the2K-ary deletion channel
in terms of the capacity of the binary deletion channel and
as a result any upper bound on the capacity of the binary
deletion channel. The provided upper bound results in tighter
upper bounds on theK-ary deletion channel capacity than the
trivial erasure channel upper bound for the entire range of
deletion probabilities.

APPENDIX A
PROOF OFINEQUALITY (11)

It follows from the inequalitylog
(

m
m1

)

≤ mHb(
m1

m
) =

m log (m) − m1 log (m1) − (m−m1) log (m−m1) given



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

d

C
a
p
a
c
it
y
B
o
u
n
d
s

 

 
Trivial Upper Bound

New Upper Bound

Lower Bound from [1]

4−ary Deletion Channel

8−ary Deletion Channel

Fig. 2. Comparison among the new upper bound (5), the lower bound (2)
and the trivial erasure channel upper bound for the4-ary and8-ary deletion
channels.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

d

C
a
p
a
c
it
y
B
o
u
n
d
s

 

 
Upper Bound Estimate (14)

Lower Bound from [1]

4−ary Deletion Channel

8−ary Deletion Channel

Fig. 3. Comparison between the upper bound (14) (ignoring the O(d3−ǫ)
term) and the lower bound (2).

in [13, p. 353] that

log

(

m

m1, . . . ,mK

)

=

K−1
∑

j=1

log

(

m−
∑j−1

k=1 mk

mj

)

≤

K−1
∑

j=1

(

m−

j−1
∑

k=1

mk

)

log

(

m−

j−1
∑

k=1

mk

)

−mj logmj

−

K−1
∑

j=1

(

m−

j
∑

k=1

mk

)

log

(

m−

j
∑

k=1

mk

)

= m log(m)−

K
∑

k=1

mk log(mk).

APPENDIX B
CONCAVITY OF g([m1, . . . ,mk])

For the Hessian ofg([m1, . . . ,mk]), we have

∇2g([m1, . . . ,mk]) =
1

∑K

k=1 mk

11
T−diag

{

1

m1
, . . . ,

1

mK

}

,

where1 is an all one vector of lengthK, i.e.,1 = [1, . . . , 1]T ,

anddiag
{

1
m1

, . . . , 1
mK

}

denotes a diagonal matrix whosek-

th diagonal element is 1
mk

. Furthermore, by defininga =
[a1, . . . , aK ], we can write

a∇2gaT =
(
∑K

k=1 ak)
2

∑K

k=1 mk

−

K
∑

k=1

a2k
mk

=
1

∑K

k=1 mk

( K
∑

k=1

a2k + 2

K−1
∑

k=1

K
∑

j=k+1

akaj

−

K
∑

k=1

a2k −

K
∑

k=1

∑

j 6=k mj

mk

a2k

)

=
1

∑K

k=1 mk

K−1
∑

k=1

K
∑

j=k+1

(

2akaj −
mj

mk

a2k −
mk

mj

a2j

)

=
−1

∑K

k=1 mk

K−1
∑

k=1

K
∑

j=k+1

mj

mk

(ak −
mk

mj

aj)
2,

which is negative for all mk, mj > 0. Therefore,
∇2g([m1, . . . ,mk]) is a negative semi-definite matrix and as a
resultg([m1, . . . ,mk]) is a concave function of[m1, . . . ,mk].
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