
ar
X

iv
:1

30
2.

12
58

v1
  [

cs
.IT

]  
6 

F
eb

 2
01

3

A Comparison of Superposition Coding Schemes
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Abstract—There are two variants of superposition coding
schemes. Cover’s original superposition coding scheme hascode
clouds of the identical shape, while Bergmans’s superposition
coding scheme has code clouds of independently generated
shapes. These two schemes yield identical achievable rate regions
in several scenarios, such as the capacity region for degraded
broadcast channels. This paper shows that under the optimal
maximum likelihood decoding, these two superposition coding
schemes can result in different rate regions. In particular, it
is shown that for the two-receiver broadcast channel, Cover’s
superposition coding scheme can achieve rates strictly larger than
Bergmans’s scheme.

I. I NTRODUCTION

Superposition coding is one of the fundamental building
blocks of coding schemes in network information theory. This
idea was first introduced by Cover in 1970 at the IEEE
International Symposium on Information Theory, Noordwijk,
the Netherlands, in a talk titled “Simultaneous Communi-
cation,” and appeared in his 1972 paper [6]. Subsequently,
Bergmans [2] adapted Cover’s superposition coding scheme
to the general degraded broadcast channel (this scheme is
actually applicable to any nondegraded broadcast channel),
which establishes the capacity region along with the converse
proof by Gallager [11]. Since then, superposition coding
has been applied in numerous problems, including multiple
access channels [12], interference channels [3], [5], [13], relay
channels [7], channels with feedback [8], [15], and wiretap
channels [4], [9].

In a nutshell, the objective of superposition coding is to
communicate two message simultaneously by encoding them
into a single signal in two layers. A “better” receiver of the
signal can then recover the messages on both layers while a
“worse” receiver can recover the message on the coarse layer
of the signal and ignore the one on the fine layer.

On a closer look, there are two variants of the super-
position coding idea in the literature, which differ in how
the codebooks are generated. The first variant is described
in Cover’s original 1972 paper [6]. Both messages are first
encoded independently via separate random codebooks of
auxiliary sequences. To send a message pair, the auxiliary
sequences associated with each message are then mapped
through a symbol-by-symbol superposition function (such as
addition) to generate the actual codeword. One can visualize
the image of one of the codebooks centered around a fixed
codeword from the other as a “cloud” (see the illustration in

1,1

1,3

1,2

1,4

2,1

2,3

2,2

2,4

3,1

3,3

3,2

3,4

(a) Homogeneous coding

1,1

1,3

1,2

1,4

2,1

2,2

2,3
2,3

3,1

3,23,4

3,3

(b) Heterogeneous coding

Figure 1. Superposition codebooks for which (a) the structure
within each cloud is identical and (b) the structure is nonidentical
between clouds. Codewords (dots) are annotated by “m1,m2”, where
m1 is the coarse layer message andm2 is the fine layer message.

Figure1(a)). Since all clouds are images of the same random
codebook (around different cloud centers), we refer to this
variant ashomogeneous superposition coding. Note that in
this variant, both messages enter on an equal footing and
the corresponding auxiliary sequences play the same role.
Thus, there is no natural distinction between “coarse” and
“fine” layers and there are two ways to group the resulting
superposition codebook into clouds.

The second variant was introduced in Bergmans’s 1973
paper [2]. Here, the coarse message is encoded in a random
codebook of auxiliary sequences. For each auxiliary sequence,
a random satellite codebook is generated conditionally inde-
pendently to represent the fine layer message. This naturally
results in clouds of codewords given each such satellite
codebook. Since all clouds are generated independently, we
refer to this variant asheterogeneous superposition coding.
This is illustrated in Figure1(b).

A natural question is whether these two variants are funda-
mentally different, and if so, which of the two is preferable.
Both variants achieve the capacity region of the degraded
broadcast channel [2]. For the two-user-pair interference
channel, the two variants again achieve the identical Han–
Kobayashi inner bound (see [13] for homogeneous superposi-
tion coding and [5] for heterogeneous superposition coding).
Since heterogeneous superposition coding usually yields a
simpler characterization of the achievable rate region with
fewer auxiliary random variables, it is tempting to prefer this
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variant.
In contrast, we show in this paper that homogeneous

superposition coding always achieves a rate region at leastas
large as that of heterogeneous superposition coding for two-
user broadcast channels, provided that the optimal maximum
likelihood decoding rule is used. Furthermore, this dominance
can be sometimes strict. Intuitively speaking, homogeneous
superposition coding results in more structured interference
from the undesired layer, the effect of which becomes tangible
under optimal decoding.

The rest of the paper is as follows. In SectionII , we formally
define the two variants of superposition coding schemes and
present their respective rate regions. In SectionIII , we com-
pare these rate regions. Additional remarks are provided in
SectionIV.

Throughout the paper, we closely follow the notation
in [10]. In particular, for X ∼ p(x) and ǫ ∈ (0, 1), we
define the set ofǫ-typicaln-sequencesxn (or the typical set in
short) [14] as T

(n)
ǫ (X) = {xn : |#{i : xi = x}/n− p(x)| ≤

ǫp(x) for all x ∈ X}.

II. RATE REGIONS FOR THETWO-RECEIVER BC

Consider a two-receiver discrete memoryless broadcast
channel depicted in Figure2. The sender wishes to communi-
cate messageM1 to receiver 1 and messageM2 to receiver 2.
We define a(2nR1 , 2nR2 , n) code by an encoderxn(m1,m2)
and two receiverŝm1(y

n
1 ) andm̂2(y

n
2 ). We assume the mes-

sage pair(M1,M2) is uniform over[1 : 2nR1 ]× [1 : 2nR2 ] and
independent of each other. The average probability of error
is defined asP (n)

e = P{(M1,M2) 6= (M̂1, M̂2)}. A rate pair
(R1, R2) is said to be achievable if there exists a sequence of
(2nR1 , 2nR2 , n) code such thatlimn→∞ P

(n)
e = 0.

M1,M2 Xn

p(y1, y2|x)

Y n

1

Y n
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Figure 2. Two-receiver broadcast channel.

We now describe the two superposition coding techniques
for this channel and compare their achievable rate regions
under optimal decoding.

A. Homogeneous Superposition Coding (UV Scheme)

Codebook generation: Fix a pmf p(u) p(v) and a func-
tion x(u, v). Randomly and independently generate2nR1

sequencesun(m1), m1 ∈ [1 : 2nR1 ], each according to
∏n

i=1 pU (ui), and2nR2 sequencesvn(m2), m2 ∈ [1 : 2nR2 ],
each according to

∏n

i=1 pV (vi).

Encoding: To send the message pair(m1,m2), transmit
xi(ui(m1), vi(m2)) at time i ∈ [1 : n].

Decoding: Both receivers use simultaneous nonunique de-
coding, which is rate-optimal in the sense that it achieves the
same rate region as maximum likelihood decoding [1] under

the codebook ensemble at hand. In particular, upon receiving
yn1 , receiver 1 declareŝm1 is sent if it is the unique message
such that

(

un(m̂1), v
n(m2), y

n
1

)

∈ T (n)
ǫ

for somem2. If there is no uniquem̂1, it declares an error.
Similarly, upon receivingyn2 , receiver 2 declareŝm2 is sent if
it is the unique message such that

(

un(m1), v
n(m̂2), y

n
2

)

∈ T (n)
ǫ

for some m1. If there is no uniquem̂2, it declares an
error. Standard typicality arguments show that receiver 1 will
succeed if

R1 < I(U ;Y1) or
R1 +R2 < I(X ;Y1)

R1 < I(X ;Y1 |V ),
(1)

or, equivalently, if

R1 < I(X ;Y1 |V )

R1 +min{R2, I(X ;Y1 |U)} < I(X ;Y1).

Similarly, receiver 2 will succeed if

R2 < I(V ;Y2) or
R1 +R2 < I(X ;Y2)

R2 < I(X ;Y2 |U),
(2)

or, equivalently, if

R2 < I(X ;Y2 |U)

R2 +min{R1, I(X ;Y2 |V )} < I(X ;Y2).

The regions for both receivers are depicted in Table1. Letting
RUV (p) denote the set of rates(R1, R2) satisfying (1) and (2),
it follows that the rate region

RUV = co

(

⋃

p∈PUV

RUV (p)

)

is achievable. Here, co(·) denotes convex hull, andPUV is the
set of distributions of the formp = p(u) p(v) p(x|u, v) where
p(x|u, v) represents a deterministic function.

B. Heterogeneous Superposition Coding (UX Scheme)

Codebook generation: Fix a pmf p(u, x). Randomly and
independently generate2nR1 sequencesun(m1), m1 ∈ [1 :
2nR1 ], each according to

∏n

i=1 pU (ui). For each message
m1 ∈ [1 : 2nR1 ], randomly and conditionally independently
generate2nR2 sequencesxn(m1,m2), m2 ∈ [1 : 2nR2 ], each
according to

∏n

i=1 pX|U (xi|ui(m1)).

Encoding: To send(m1,m2), transmitxn(m1,m2).

Decoding: Both receivers use simultaneous nonunique de-
coding, which is rate-optimal as we show below. In particular,
upon receivingyn1 , receiver 1 declareŝm1 is sent if it is the
unique message such that

(

un(m̂1), x
n(m̂1,m2), y

n
1

)

∈ T (n)
ǫ



Receiver 1 Receiver 2

RUV (p) R1 < I(X ;Y1 |V ) R2 < I(X ;Y2 |U)
p = p(u) p(v) p(x|u, v) R1 +min{R2, I(X ;Y1 |U)} < I(X ;Y1) R2 +min{R1, I(X ;Y2 |V )} < I(X ;Y2)

R1

R2

R1

R2

RUX(p) R1 +min{R2, I(X ;Y1 |U)} < I(X ;Y1) R2 < I(X ;Y2 |U)
p = p(u, x) R1 +R2 < I(X ;Y2)

R1

R2

R1

R2

Table 1. Rate regions for homogeneous and heterogeneous superposition coding.

for somem2. If there is no uniquem̂1, it declares an error.
Similarly, upon receivingyn2 , receiver 2 declareŝm2 is sent if
it is the unique message such that

(

un(m1), x
n(m1, m̂2), y

n
2

)

∈ T (n)
ǫ

for somem1. If there is no uniquem̂2, it declares an error.
Standard arguments show that receiver 1 will succeed if

R1 < I(U ;Y1) or R1 +R2 < I(X ;Y1), (3)

or, equivalently, if

R1 +min{R2, I(X ;Y1 |U)} < I(X ;Y1).

Following an analogous argument to the one in [1], it can
be shown that this region cannot be improved by applying
maximum likelihood decoding.

Receiver 2 will succeed if

R2 ≤ I(X ;Y2 |U)

R1 +R2 ≤ I(X ;Y2).
(4)

In the Appendix, we show that this region cannot be improved
by applying maximum likelihood decoding. The regions for
both receivers are depicted in Table1. Let RUX(p) denote the
set of all (R1, R2) pairs satisfying both (3) and (4). Clearly,
the rate region

RUX = co

(

⋃

p∈PUX

RUX(p)

)

is achievable. Here,PUX is the set of distributions of the form
p = p(u, x).

If the roles ofm1 andm2 in code generation are reversed,
one can also achieve the regionRVX = co(∪pRVX(p))
obtained by swappingY1 with Y2 and R1 with R2 in the
definition of RUX(p).

It is worth reiterating that the two schemes above differ
only in the dependence/independence between clouds around
differentun sequences, and not in the underlying distributions
from which the clouds are generated. Indeed, it is well known
that the classes of distributionsPUX andPUV are equivalent
in the sense that for everyp(u, x) ∈ PUX , there exists a
q(u) q(v) q(x|u, v) ∈ PUV such that

∑

v q(u) q(v) q(x|u, v) =
p(u, x) (see for example [10, p. 626]).

III. M AIN RESULT

Theorem 1. The rate region achieved by homogeneous super-
position coding includes the rate region achieved by hetero-
geneous superposition coding, i.e.,

co
(

RUX ∪ RVX

)

⊆ RUV .

Moreover, there are channels for which the inclusion is strict.

Proof: Due to the convexity ofRUV and the symme-
try betweenUX and V X coding, it suffices to show that
RUX(p) ⊆ RUV for all p ∈ PUX . Fix any p ∈ PUX . Let
q′ ∈ PUV be such thatU = X , V = ∅, and the marginal
on X is preservedq′(x) = p(x). Let q′′ ∈ PUV be such
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Figure 3. Rate regions for the proof of Theorem1.

that V = X,U = ∅, and the marginal onX is preserved
q′′(x) = p(x). An inspection of (1)–(4) and Table1 reveals
that RUV (q

′) is the set of rates satisfying

R2 = 0

R1 ≤ I(X ;Y1),

andRUV (q
′′) is the set of rates satisfying

R1 = 0

R2 ≤ I(X ;Y2).

It then follows that co
(

RUV (q
′)∪RUV (q

′′)
)

includes the rate
region

R1 +R2 ≤ min
{

I(X ;Y1), I(X ;Y2)
}

. (5)

We will consider three cases and show the claim for each.
• If I(X ;Y1) ≥ I(X ;Y2) thenRUX(p) reduces to the rate

region

R2 ≤ I(X ;Y2 |U)

R1 +R2 ≤ I(X ;Y2),

which is included in the rate region in (5), and therefore
in RUV .

• If I(X ;Y1) < I(X ;Y2) andI(X ;Y1 |U) ≥ I(X ;Y2 |U),
thenRUX(p) reduces to the rate region

R2 ≤ I(X ;Y2 |U)

R1 +R2 ≤ I(X ;Y1),

which is also included in the rate region in (5), and
therefore inRUV .

• If I(X ;Y1) < I(X ;Y2) andI(X ;Y1 |U) < I(X ;Y2 |U),
thenRUX(p) reduces to the rate region (see Figure3(a))

R2 ≤ I(X ;Y2 |U)

R1 +min{R2, I(X ;Y1 |U)} ≤ I(X ;Y1).
(6)

Find a q ∈ PUV with q(u, x) = p(u, x), and note that
RUV (q) is described by the bounds

R2 ≤ I(X ;Y2 |U)

R1 ≤ I(X ;Y1 |V )

R1 +min{R2, I(X ;Y1 |U)} ≤ I(X ;Y1).

(7)

Comparing (6) with (7) (Figure 3(b)), one sees that
RUX(p) ⊆ co

(

RUV (q) ∪ RUV (q
′)
)

. This proves the
first claim of the theorem.

Now consider the vector broadcast channel with binary inputs
(X1, X2) and outputs(Y1, Y2) = (X1, X2). For all p ∈ PUX ,
we have from (4) that R1 + R2 ≤ I(X1X2;Y2) ≤ 1, and
similarly for all p ∈ PVX . Thus,

(

RUX ∪ RVX

)

is included
in the rate regionR1+R2 ≤ 1. Note, however, that the rate pair
(1, 1) is achievable using theUV scheme by settingU = X1

andV = X2. This proves the second claim.

IV. D ISCUSSION

In addition to the basic superposition coding schemes pre-
sented in SectionII , one can consider coded time sharing [10],
which could potentially enlarge the achievable rate regions.
In the present setting, however, it can be easily checked
that coded time sharing does not enlargeRUX . Thus, the
conclusion of Theorem1 continues to hold and homogeneous
superposition coding with coded time sharing outperforms
heterogeneous superposition coding with coded time sharing.

APPENDIX

OPTIMALITY OF THE RATE REGION IN (4)

We show that no decoding rule for receiver 2 can achieve
a larger rate region than the one in (4) given the codebook
ensemble of heterogeneous superposition coding. To this end,
denote the random codebook by

C = (Un(1), Un(2), . . . , Xn(1, 1), Xn(1, 2), . . . ).

By the averaged version of Fano’s inequality in [1],

H(M2 |Y
n
2 , C) ≤ nǫn, (8)

whereǫn → 0 asn → ∞. Thus,

nR2 = H(M2)

≤ I(M2;Y
n
2 | C) + nǫn

(a)
= I(M2;Y

n
2 | C,M1) + nǫn

= H(Y n
2 | C,M1)−H(Y n

2 | C,M1,M2) + nǫn



(b)
≤ nH(Y2 |U)−H(Y2 |X) + nǫn

= I(X ;Y2 |U) + nǫn,

where (a) follows by providingM1 to receiver 2 as side
information from a genie and (b) follows from the codebook
ensemble and the memoryless property.

To see the second inequality, first assume that

R1 < I(X ;Y2). (9)

After receiver 2 has recoveredm2, the codebook given this
message reduces to

C′ = (Xn(1,m2), X
n(2,m2), X

n(3,m2), . . . ).

These codewords are pairwise independent since they do not
share commonUn sequences, and thusC′ is a nonlayered
random codebook. Since (9) holds, receiver 2 can reliably
recoverM1 by using, for example, a typicality decoder. Thus,
by (8),

H(M1,M2 |Y
n
2 , C) = H(M2 |Y

n
2 , C) +H(M1 |Y

n
2 , C,M2)

≤ 2nǫn.

Hence

n(R1 +R2) = H(M1,M2)

≤ I(M1,M2;Y
n
2 | C) + 2nǫn

≤ nI(X ;Y2) + 2nǫn. (10)

To conclude the argument, assume there exists a decoding rule
that achieves a rate point(R1, R2) with R1 ≥ I(X ;Y2). Then,
this decoding rule must also achieve(R′

1, R
′
2) = (I(X ;Y2)−

R2/2, R2), a rate point that is dominated by(R1, R2). Since
R′

1 < I(X ;Y2), by our previous argument,(R′
1, R

′
2) must

satisfy (10). It does not, which yields a contradiction.
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