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Abstract—There are two variants of superposition coding
schemes. Cover'’s original superposition coding scheme hasde
clouds of the identical shape, while Bergmans’s superpogin
coding scheme has code clouds of independently generated
shapes. These two schemes yield identical achievable ra&gions
in several scenarios, such as the capacity region for degrad
broadcast channels. This paper shows that under the optimal
maximum likelihood decoding, these two superposition codig
schemes can result in different rate regions. In particulay it
is shown that for the two-receiver broadcast channel, Covés
superposition coding scheme can achieve rates strictly lger than
Bergmans’s scheme.

(a) Homogeneous coding (b) Heterogeneous coding

I. INTRODUCTION

. . . . ,. Figure 1.  Superposition codebooks for which (a) the structure
Superposition coding is one of the fundamental buildingjihin each cloud is identical and (b) the structure is nentital

blocks of coding schemes in network information theory.sThbetween clouds. Codewords (dots) are annotatedrby, #n2", where
idea was first introduced by Cover in 1970 at the IEER is the coarse layer message and is the fine layer message.
International Symposium on Information Theory, Noordwijk
the Netherlands, in a talk titled “Simultaneous Communi-
cation,” and appeared in his 1972 papél. [Subsequently, Figurel(a). Since all clouds are images of the same random
Bergmans 2] adapted Cover's superposition coding schem@debook (around different cloud centers), we refer to this
to the general degraded broadcast channel (this schemeagant ashomogeneous superposition coding. Note that in
actually applicable to any nondegraded broadcast chann#i)s variant, both messages enter on an equal footing and
which establishes the capacity region along with the ca®veithe corresponding auxiliary sequences play the same role.
proof by Gallager 11]. Since then, superposition codingThus, there is no natural distinction between “coarse” and
has been applied in numerous problems, including multipléne” layers and there are two ways to group the resulting
access channel4], interference channel§], [5], [13], relay superposition codebook into clouds.
channels 7], channels with feedbacl8], [15], and wiretap =~ The second variant was introduced in Bergmans's 1973
channels 4], [9]. paper P]. Here, the coarse message is encoded in a random

In a nutshell, the objective of superposition coding is toodebook of auxiliary sequences. For each auxiliary secpien
communicate two message simultaneously by encoding themmandom satellite codebook is generated conditionallg-ind
into a single signal in two layers. A “better” receiver of thgendently to represent the fine layer message. This naturall
signal can then recover the messages on both layers whileesults in clouds of codewords given each such satellite
“worse” receiver can recover the message on the coarse lagedebook. Since all clouds are generated independently, we
of the signal and ignore the one on the fine layer. refer to this variant aeterogeneous superposition coding.

On a closer look, there are two variants of the supefhis is illustrated in Figurel(b).
position coding idea in the literature, which differ in how A natural question is whether these two variants are funda-
the codebooks are generated. The first variant is describedntally different, and if so, which of the two is preferable
in Cover’s original 1972 paper6]. Both messages are firstBoth variants achieve the capacity region of the degraded
encoded independently via separate random codebooksbadadcast channel2]. For the two-user-pair interference
auxiliary sequences. To send a message pair, the auxiliahannel, the two variants again achieve the identical Han—
sequences associated with each message are then mapebdyashi inner bound (se&3] for homogeneous superposi-
through a symbol-by-symbol superposition function (sush &ion coding and %] for heterogeneous superposition coding).
addition) to generate the actual codeword. One can vigualiRince heterogeneous superposition coding usually yields a
the image of one of the codebooks centered around a fix@chpler characterization of the achievable rate regiorh wit
codeword from the other as a “cloud” (see the illustration ifewer auxiliary random variables, it is tempting to prefiist
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variant. the codebook ensemble at hand. In particular, upon recgivin
In contrast, we show in this paper that homogeneoy$, receiver 1 declareg:; is sent if it is the unique message
superposition coding always achieves a rate region at &sastuch that
large as that of heterogeneous superposition coding for two (un(ml),vn(mﬂ’y?) c 7;(71)
user broadcast channels, provided that the optimal maximum
likelihood decoding rule is used. Furthermore, this domaga for somems. If there is no uniquern, it declares an error.
can be sometimes strict. Intuitively speaking, homogeseo&imilarly, upon receiving;y, receiver 2 declareg:, is sent if
superposition coding results in more structured interfege it is the unique message such that
from the undesired layer, the effect of which becomes tdagib N e N )
under optimal decoding. (u"(ma), 0" (M2), y5) € T
The rest of the paper is as follows. In Sectlbnwe formally for some m.
define the two variants of superposition coding schemes a&q
present their respective rate regions. In Sectlbphwe com-

If there is no uniquerng, it declares an
or. Standard typicality arguments show that receiveilll w

: S . succeed if
pare these rate regions. Additional remarks are provided in
i Ry + Ry < I(X; Y5
SectionlV. R <I(U:v) o 1+ Re < I(X; Y1) )
Throughout the paper, we closely follow the notation Ry < I(X;Y1|V),

in [10]. In particular, for X ~ p(z) ande € (0,1), we , )
define the set of-typical n-sequences™ (or the typical set in ©T» €quivalently, if
short) 14 as 7™ (X) = {a" : |#{i : i = 2}/n — p(z)| <

R <I(X;V1|V
ep(x) for all z € X'}. 1 ( 1V)

Ry 4+ min{Ry, I(X;Y1|U)} < I(X; Y1).

Il. RATE REGIONS FOR THETWO-RECEIVERBC Similarly, receiver 2 will succeed if
Consider a twp-re_ceiver discrete me_moryless broad<_:ast Ry + Ry < I(X;Y5)
channel depicted in Figura The sender wishes to communi- Ry < I(V;Y3) or (2)

cate messag@/; to receiver 1 and messagé, to receiver 2. Ry < I(X:Y2|U),

We define a2"", 22, n) code by an encoder™(m1,m2)  or, equivalently, if

and two receiversn, (y}) andq(yy). We assume the mes-

sage pail( My, M>) is uniform over[1 : 27%1] x [1 : 2"2] and Ry < I(X;Y2|U)

independent o(f )each other. The average probability of error Ry +min{Ry, I(X; Yy |V)} < I(X;Y5).

is defined asP:™ = P{(My, M) # (M, M2)}. A rate pair

(R1, Ry) is said to be achievable if there exists a sequence Bite regions for both receivers are depicted in Tdbleetting

(2nB1 9nRe p) code such thalim,, .. P\™ = 0. Zuv (p) denote the set of raté®,, R,) satisfying () and @),
it follows that the rate region

o Dec 1 My
» Decl —»
My, Mo xn Loy = CO( U «@Uv(p))
—2 = » Enc > p(y1, y2|x) - N
2 Mo pEPuUV
» Dec2 —»

is achievable. Here, ¢9 denotes convex hull, aril;y is the

Figure 2. Two-receiver broadcast channel. set of distributions of the form = p(u) p(v) p(z|u,v) where
p(z|u,v) represents a deterministic function.

We now describe the two superposition coding techniques
for this channel and compare their achievable rate regioﬁs
under optimal decoding. Codebook generation: Fix a pmf p(u,2). Randomly and
independently generat&" sequences:”(m1), m; € [1 :
2nf1] each according td ]}, pu(u;). For each message

Codebook generation: Fix a pmf p(u)p(v) and a func- s, e [1: 27/, randomly and conditionally independently
tion z(u,v). Randomly and independently generate™ generate2"?: sequences”(mi,ms), ms € [1:2"F2], each
sequences:(m1), m; € [1 : 2"f1], each according to according tOH?:lpxw(fCiWi(ml))-

[T, pu(ui), and2"f2 sequences™(ms), mo € [1: 27%2],
each according t§["_, pv (v;).

Encoding: To send the message pdimy,m2), transmit
xi(u;i(m),vi(me)) at timei € [1:n].

Heterogeneous Superposition Coding (UX Scheme)

A. Homogeneous Superposition Coding (UV Scheme)

Encoding: To send(m, ms2), transmitxz™(ms, ms).

Decoding: Both receivers use simultaneous nonunique de-
coding, which is rate-optimal as we show below. In partigula

] _ ) ) upon receivingyy, receiver 1 declares:; is sent if it is the
Decoding: Both receivers use simultaneous nonunique dgpique message such that

coding, which is rate-optimal in the sense that it achiehes t
same rate region as maximum likelihood decoditgUnder (u™(rhy), z" (1, m2), y}) € 7™



Receiver 1 Receiver 2

Zuv (p) Ry < I(X;Y1|V) Ry < I(X;Y2|U)
p = p(u) p(v) p(x|u,v) Ry +min{Ry, I(X; Y1 |U)} < I(X; Y1) Ry +min{ Ry, [(X;Y2|V)} < I(X;Y3)

R2 R2

R1 Rl
Zux(p) Ry +min{Ry, I(X;Y1|U)} < I(X; Y1) Ry < I(X;Y2|U)
p = p(u, ) Ri+ Ry < I(X;Ys)
R2 RZ
R1 Rl

Table 1. Rate regions for homogeneous and heterogeneous supenpasiting.

for somems. If there is no uniquen, it declares an error. is achievable. Heré?y x is the set of distributions of the form
Similarly, upon receiving/y, receiver 2 declaregis is sentif p = p(u, z).

it is the uniqgue message such that If the roles ofm; andms in code generation are reversed,
" " . " ) one can also achieve the regiody x = co(U,Zvx(p))
(" (ma), 2" (ma,1m2), y3) € 7. obtained by swapping’; with Y2 and R, with R, in the

definition of Zy x (p).
It is worth reiterating that the two schemes above differ
only in the dependence/independence between clouds around
Ry < I(U; Y1) or Ri+ Ry < I(X;Y1), (3) differentu™ sequences, and notin the underlying distributions
) ) from which the clouds are generated. Indeed, it is well known
or, equivalently, if that the classes of distributiorg; x and Py are equivalent
Ry +min{Ry, (XY |U)} < I(X; V7). in the sense that for every(u,z) € Pyx, there exists a
q(u) g(v) g(x]u, v) € Puy such thab_, g(u) q(v) g(z]u, v) =
Following an analogous argument to the one i, it can p(u,z) (see for examplelD, p. 626]).
be shown that this region cannot be improved by applying
maximum likelihood decoding. . MAIN RESULT
Receiver 2 will succeed if

for somem,;. If there is no uniquen., it declares an error.
Standard arguments show that receiver 1 will succeed if

Theorem 1. The rate region achieved by homogeneous super-

Ry < I(X;Y2|U) 4 position coding includes the rate region achieved by hetero
Ri+ Ry < I(X;Y5). ) geneous superposition coding, i.e.,
In the Appendix, we show that this region cannot be improved co(Zux UZRvx) C Ruv.

by applying maximum likelihood decoding. The regions foI(/Ioreo er, there are channels for which the inclusion ictri
both receivers are depicted in TaldleLet Z x (p) denote the ver ot neision t !

set of all (R;, R,) pairs satisfying both3) and @). Clearly, Proof: Due to the convexity ofZyy and the symme-
the rate region try betweenUX and VX coding, it suffices to show that
Zux(p) € Zyy for all p € Pyx. Fix anyp € Pyx. Let
Rux = co( U %Ux(p)) ¢ € Pyv be such that/ = X, V = 0, and the marginal
PEPU X on X is preserved; (z) = p(z). Let ¢ € Pyy be such



R2 R2

I(X;5Y2) I(X;Y2)
1(X; 2 |U) - I(X:%5|U)
I(X;1a|U) I(X;Y1|U)
Zux(p) Zuv(q)
T Rl ! R1
I(X; Y1) I(X;1a|V)
(a) Rate region in ). (b) Rate region inT).

Figure 3. Rate regions for the proof of Theorein

thatV = X, U = 0, and the marginal onX is preserved Comparing 6) with (7) (Figure 3(b)), one sees that

q"(z) = p(z). An inspection of {)—(4) and Tablel reveals Zux(p) € co(Zuv(q) U Zuv(q')). This proves the
that Zyv (¢') is the set of rates satisfying first claim of the theorem.
Ry =0 Now consider the vector broadcast channel with binary mput

(X1, X2) and outputgY;,Y2) = (X1, X5). For allp € Pyx,

Ry < I(X3 Y1), we have from 4) that R; + Ry < I(X;X5;Ys) < 1, and
andZyv (¢") is the set of rates satisfying similarly for all p € Py x. Thus, (%Zux U %y x) is included
R, =0 in the rate regior?; + R> < 1. Note, however, that the rate pair
Ry < I(X:Y3) (1,1) is achievable using th&'V scheme by setting/ = X;
2= 142 andV = X,. This proves the second claim. m
It then follows that c¢Zyv (¢')UZuv (¢")) includes the rate

region IV. DISCUSSION

Ry + Ry < min {I(X;Y1), [(X;Y2)}. (5)  In addition to the basic superposition coding schemes pre-
We will consider three cases and show the claim for each.Sented in Sectiofi, one can consider coded time shariag][

o If I(X;Yy) > I(X;Y>) thenZy x (p) reduces to the rate which could potentially enlarge the achievable rate region
region B In the present setting, however, it can be easily checked

that coded time sharing does not enlargle x. Thus, the

Ry < I(X; Y2 |U) conclusion of Theoren continues to hold and homogeneous

Ry + Ry < I(X;Y2), superposition coding with coded time sharing outperforms
which is included in the rate region iB) and therefore heterogeneous superposition coding with coded time giparin
in Ruv.

o If I(X:Y1) < I(X:;Ys)andI(X;Y1|U) > I(X;Y2|U), APPENDIX
then %y x (p) reduces to the rate region OPTIMALITY OF THE RATE REGION IN (4)
Ry < I(X;Y,|U) We show that no decoding rule for receiver 2 can achieve

a larger rate region than the one i) @@iven the codebook

Ri+ Ry < I(X; Y1), e - ,
ensemble of heterogeneous superposition coding. To this en
which is also included in the rate region i®)(and denote the random codebook by

therefore inZy .
o If I(X;V1) < I(X;Ys) andI(X; Y1 |U) < I(X; Y, |U), C=(U"Q1),0"2),...,X"(1,1), X"(1,2),...).
thenZu x (p) reduces to the rate region (see FigB(@) gy the averaged version of Fano’s inequality i, [
Ry < (X573 |U)
Ry +min{ Ry, I(X; V1 |U)} < I(X;Y7).
Find aqg € Pyy with g(u,z) = p(u,x), and note that

(6) H(M>|Y5',C) < ney, (8)

wheree,, — 0 asn — oo. Thus,

Zuv(q) is described by the bounds nRy = H(Ms)
Ry < I(X;Y2|U) < I(Ma2;Y5" | C) + nep
R <I(X5va V) (7) @ 1(My: Y3 C, My) + nen

Ry —i—min{Rg,I(X;Yl | U)} < I(X;Yl). = H(YJ |C,]\/fl) — HY |C,M1,M2) + ne,,
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