
ar
X

iv
:1

30
1.

75
03

v1
 [

cs
.IT

]
31

 J
an

 2
01

3

Finite Length Analysis on Listing Failure
Probability of Invertible Bloom Lookup Tables

Daichi Yugawa∗ and Tadashi Wadayama∗

∗Department of Computer Science and Engineering,
Nagoya Institute of Technology Nagoya, Japan

Email: yugawa@cs.it.nitech.ac.jp, wadayama@nitech.ac.jp

Abstract—The Invertible Bloom Lookup Tables (IBLT) is a
data structure which supports insertion, deletion, retrieval and
listing operations of the key-value pair. The IBLT can be used to
realize efficient set reconciliation for database synchronization.
The most notable feature of the IBLT is the complete listing
operation of the key-value pairs based on the algorithm similar to
the peeling algorithm for low-density generator-matrix (LDGM)
codes. In this paper, we will present a stopping set (SS) analysis
for the IBLT which reveals finite length behaviors of the listing
failure probability. The key of the analysis is enumeration of
the number of stopping matrices of given size. We derived
a novel recursive formula useful for computationally efficient
enumeration. An upper bound on the listing failure probability
based on the union bound accurately captures the error floor
behaviors. It will be shown that, in the error floor region, the
dominant SS have size 2. We propose a simple modification on
hash functions, which are called SS avoiding hash functions, for
preventing occurrences of the SS of size 2.

I. I NTRODUCTION

The Invertible Bloom Lookup Tables (IBLT) is a recently
developed data structure which supports insertion, deletion,
retrieval and listing operations of the key-value pairs [7]–
[10]. The IBLT can be seen as a natural extension of the
Bloom filter [1]–[6] which can handle set membership queries.
The most notable feature of the IBLT is the complete listing
operation of the key-value pairs based on the algorithm similar
to the peeling algorithm [12] for low-density generator-matrix
(LDGM) codes.

The listing operation enable us to use the IBLT for a
basis of an efficient set reconciliation algorithm with small
amount of communications. Set reconciliation is a process to
synchronize contents of two sets at two distinct locations and
it can be used for realizing database synchronization, memory
synchronization, and an implementation of the Biff codes [10].
The implementation of the IBLT is fairly simple and it is
naturally scalable to multiple servers, which is a desirable
feature for data sets of extremely large size.

The paper by Goodrich and Mitzenmacher [7] provides
the detailed analysis on the IBLT such as the optimization
of the number of hash functions to minimize the retrieval
failure probability. They also presented asymptotic thresholds
for accurate recovery by using the known results on 2-cores
of random hypergraphs. Furthermore, some fault tolerance
features of the IBLT are extensively studied.

For designing practical applications, it is beneficial to know
not only the asymptotic behavior of listing processes but also

finite length performances. Especially, predicting the error
floor of the listing failure probability is required to guarantee
the accuracy of a listing process. It is knownstopping sets
[11] dominate the finite length performance of LDGM codes
for erasure channels. In the case of the IBLT, the stopping sets
have crucial importance as well as the case of LDGM codes.
In this paper, we will present a stopping set analysis for the
IBLT which unveils the finite length behaviors of the listing
failure probability.

The outline of this manuscript is organized as follows.
Section II introduces notation and definitions required forthis
paper. A brief review of the IBLT is also given. Section III
provides an upper bound on the listing failure probability.
An enumeration method for the number of stopping matrices
based on a recursive formula is the heart of the efficient
evaluation of the upper bound. Section IV presents some
results of computer experiments. It will be shown that, in
the error floor region, the stopping sets with size 2 become
dominant. In Section V, a class of hash functions, SS avoiding
hash functions, is proposed to resolve the stopping sets with
size 2 for lowering the error floor.

II. PRELIMINARIES

A. Bloom Filter

Before going into details of the IBLT, we here explain the
structure of the original Bloom filter (BF) which is the basis
of the IBLT. Assume that we have a binary arrayT and
k-hash functionsh1, . . . , hk. The binary arrayT is initially
set to all zero. When an itemx comes to insert, we set
T [hi(x)] = 1 for i ∈ [1, k]. The notation [α, β] means
the set of consecutive integers fromα to β. The process is
called theInsert(x) operation. The set membership query on
y is the query for checking whethery is in the BF or not.
The LookUp(y) operation returns YES ifT [hi(y)] = 1 for
i ∈ [1, k]; otherwise it returns NO. The operationsInsert(x)
andLookUp(y) can be carried out inO(k)-time. Note that the
LookUp(y) operation may yield false positive; i.e., it returns
YES wheny is not in the BF. The minimization of this false
positive probability in terms of the number of hash functions is
an important topic of studies of the BF [1][6]. An appropriately
designed BF provides a highly space efficient set membership
query system with reasonably small false positive probability.

http://arxiv.org/abs/1301.7503v1

B. IBLT and its Operations

As in the case of the BF,k-hash functionsh1, . . . , hk are
used in the IBLT. Instead of binary array, the IBLT utilizes
an array ofcells T [1], . . . , T [m]. A cell T [i] consists of three
fields which are calledCount, KeySum, andValueSum, which
are denoted byT [i].Count, T [i].KeySum, T [i].V alueSum.
An input to the IBLT is a key-value pair(Key, V alue). The
count field represents the number of inserted entries. The
KeySum (resp. ValueSum) field stores exclusive OR of key
(resp. value) of inserted entries. The contents of all the cells
are initialized to zero at the beginning.

The IBLT allows 4-operations:Insert(x, y), Delete(x, y),
Get(x) and ListEntries(). The operationInsert(x, y) stores
a key-value pair(x, y) into the IBLT. In an insertion pro-
cess, the keyx (resp. valuey) is added (overF2) to the
KeySum (resp. ValueSum) filed ofT [hi(x)] for i ∈ [1, k];
namely, T [hi(x)].KeySum = T [hi(x)].KeySum ⊕ x and
T [hi(x)].V alueSum = T [hi(x)].V alueSum⊕ y. The count
field of T [hi(x)] is also incremented asT [hi(x)].count =
T [hi(x)].count + 1 at the same time. The operation
Delete(x, y) removes the key-value pair(x, y) from the IBLT.
The process is the same as that ofInsert(x, y) except for
decrementing the counter. The operationGet(x) retrieves the
value corresponding to the keyx. This operation is realized as
follows. If there existsi ∈ [1, k] satisfyingT [hi(x)].Count =
1, then Get(x) returns T [hi(x)].V alueSum. Otherwise,
Get(x) declares the failure of the operation.

The last operationListEntries() outputs all the key-value
pairs in the IBLT by sequentially removing the entries with
the counter value equal to one from the table. The de-
tails of the process is as follows. We first look fori ∈
[1,m] satisfying T [i].Count = 1. If there existsi∗ satis-
fying the conditionT [i∗].Count = 1, the key-value pair
(T [i∗].KeySum, T [i∗].V alueSum) is registered into the out-
put list and thenDelete(T [i∗].KeySum, T [i∗].V alueSum) is
executed. This process is iterated until no cell with the counter
value equal to one can be found. It should be remarked that,
in some cases,ListEntries() fails to list all the entry in the
IBLT. This is because a non-empty IBLT can have counter
values larger than one fori ∈ [1,m]. This failure event is
called a listing failure. It is desirable that an IBLT is designed
to decrease the frequency of the listing failure events as small
as possible.

C. Probabilistic Model

It is clear that the probability of the listing failure event,
which is called thelisting failure probability, depends on
the definition of the probabilistic model for keys and hash
functions. In this paper (except for Section V), we assume
the following model for keys and hash functions. The hash
functions h1, . . . , hk have domain{0, 1}b and the key of
the entries to be stored are independent random variables
uniformly distributed over{0, 1}b. The number of entries
are assumed to ben. The hash functions are assumed to be
uniform such thathi(x) distributes uniformly in the range of

hi whenx ∈ {0, 1}b obeys the uniform distribution. Them-
cells are split intok-subtables each of sizem/k and each hash
function uniformly selects a cell in a subtable. In other words,
the range ofhi is [(i − 1) ∗ (m/k) + 1, i ∗ (m/k)].

III. U PPERBOUND ON L ISTING FAILURE PROBABILITY

In this section, we will derive an upper bound on the
listing failure probability. The listing failure event occurs when
a stopping set [11], which is a combinatorial substructure
of a matrix, appears. In order to evaluate the listing failure
probability, we need to enumerate the number ofstopping
matrices of given size. A stopping matrix is a matrix with
no row of weight one corresponding to the case where no
cells with counter value equal to one exists.

A. Enumeration of Stopping Matrix

The state matrixB of an IBLT can be represented by an
m× n binary matrix wherem = ℓk. A row of the matrixB
corresponds to a cell and a column corresponds to an entry.
The matrixB can be divided into disjointk-blocks with size
ℓ× n. If the (s, t)-element of theu-th block ofB is one, this
means that thet-th entry is hashed to thes-th cell by using the
u-th hash function. Suppose that a sub-matrixM ′ consisting
of several columns ofM have no rows of weight one. In such
a case,ListEntries() fails to list all the entry in this table
becauseM ′ cannot be resolved in the peeling process. If a
binary matrixM ′ does not have a row with weight one,M ′

is said to be a stopping matrix. The existence of a stopping
matrix in B is the necessary and sufficient condition for the
failure of a peeling process [11][12].

In our case, the state matrixB is divided intok-subblocks
corresponding to subtables. It might be reasonable to consider
a stopping matrix in a subblock before discussing the proba-
bility of the event thatB includes a stopping matrix.

Let S(ℓ,n) be the set ofℓ× n binary matrices with column
weight one; i.e.,

S(ℓ,n) △={(m1, . . . ,mn)∈{0, 1}ℓ×n |wt(mi) = 1, i ∈ [1, n]},

wherewt(·) represents the Hamming weight function. From
this definition, it is evident that the cardinality ofS(ℓ,n) is ℓn.
The number of the stopping matrices inS(ℓ,n) is denoted by
z(ℓ, n), which can be written as

z(ℓ, n)
△
= #{M ∈ S(ℓ,n) | M is a stopping matrix}. (1)

For convention,z(0, 0) is defined to be 1.
The next recursive formula plays a key role to enumerate

z(ℓ, n) which is required for evaluating an upper bound for
the listing failure probability.

Theorem 1 (Recursive formula on z(ℓ, n)): The following
recursive relation

z(ℓ, n) = ℓn −

min(ℓ,n)
∑

c=1

c!

(

ℓ

c

)(

n

c

)

z(l− c, n− c) (2)

holds forℓ ≥ 1 andn ≥ 1.

(Proof) Leta(ℓ, n) be the cardinality of non-stopping matrices

a(ℓ, n)
△
= ℓn−z(ℓ, n). In the following, we enumeratea(ℓ, n)

by using a recursive relation. For givenM ∈ S(ℓ,n), a pair
(i, j) ∈ [1, ℓ]× [1, n] is said to be apivot of M if Mi,j = 1
and the Hamming weight of thei-th row of M is 1. The set
of pivots ofM is denoted by

piv(M)
△
= {(i, j) ∈ [1, ℓ]× [1, n] | (i, j) is a pivot ofM}.

Note thatM is a stopping matrix if and only ifpiv(M) is
empty. The cardinality of non-stopping matricesa(ℓ, n) can
be represented by

a(ℓ, n) =

min(ℓ,n)
∑

i=1

#T
(ℓ,n)
i (3)

where

T
(ℓ,n)
i

△
= {M ∈ S(ℓ,n) | #piv(M) = i}, i ∈ [0,min(ℓ, n)].

(4)
This is because the set of non-stopping matrices can be
partitioned into disjoint setsT (ℓ,n)

i for i ∈ [1,min(ℓ, n)]. In
the following, we will try to prove the equality

#T
(ℓ,n)
i = c!

(

ℓ

c

)(

n

c

)

z(l− c, n− c) (5)

for i ∈ [1,min(ℓ, n)]. Assume thatM ∈ T
(ℓ,n)
c is given

(c ∈ [1,min(ℓ, n)]). By getting rid of all the column and rows
corresponding topiv(M) from M , we obtain an(ℓ − c) ×
(n − c) matrix M ′. Namely we delete thei-th row and the
j-th column fromM if (i, j) ∈ piv(M). From the assumption
M ∈ T

(ℓ,n)
c , the resulting matrixM ′ must be a stopping matrix

in T
(ℓ−c,n−c)
0 . Note that the size ofT (ℓ−c,n−c)

0 is given by
z(ℓ−c, n−c). Therefore, the size ofT (ℓ,n)

i is the product of the
number of possible ways to choosepiv(M) andz(ℓ−c, n−c).
Based on a simple combinatorial argument, we can see that the
number of possible ways to choosepiv(M) can be enumerated
asc!

(

ℓ
c

)(

n
c

)

. As a result, we have the equality (5). Combining
(3) and (5), the claim of the theorem is obtained.

For some special combinations ofℓ and n, z(ℓ, n) has a
simple expression as follows.

z(ℓ, 1) = 0, ℓ ≥ 1 (6)

z(ℓ, 2) = ℓ, ℓ ≥ 1 (7)

z(ℓ, 3) = ℓ, ℓ ≥ 1 (8)

z(1, n) = 1, n ≥ 1. (9)

These expressions can be easily proved based on the definition
of the stopping matrix and ofS(ℓ,n). The recursive formula
(2) enable us to evaluate the value ofz(ℓ, n) efficiently. These
simple expressions can be used as boundary conditions for a
recursive evaluation process.

Table I presents the values ofz(ℓ, n) for (ℓ, n) ∈ [1, 10]2.
These values are computed based on the recursive formula (2).
Note thatS(ℓ,n) contains1010-matrices whenℓ = n = 10.
A naive enumeration scheme generating all the matrices in
S(ℓ,n) may have computational difficulty even for such small
parameters.

TABLE I
VALUES OFz(ℓ, n): NUMBER OF STOPPINGMATRICES INS(ℓ,n)

ℓ \n 1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 1 1 1 1 1 1
2 0 2 2 8 22 52 114 240 494 1004
3 0 3 3 21 63 243 969 3657 12987 43959
4 0 4 4 40 124 664 3196 15712 79228 396616
5 0 5 5 65 205 1405 7425 44385 271205 1666925
6 0 6 6 96 306 2556 14286 100176 691146 4916436
7 0 7 7 133 427 4207 24409 196105 1471519 11773699
8 0 8 8 176 568 6448 38424 347712 2775032 24547664
9 0 9 9 225 729 9369 56961 573057 4794633 46341081
10 0 10 10 280 910 13060 80650 892720 7753510 81163900

B. Listing Failure Probability and its Bound

The set of all the state matrix is defined as

B(ℓ,n,k) △
= {(M1, . . . ,Mk)

T | Mi ∈ S(ℓ,n), i ∈ [1, k]}. (10)

The cardinality ofB(ℓ,n,k) is ℓnk. According to the scenario
we have discussed in the previous section, we here define a
probability space by assigning the equal probability1/ℓnk to
each element inB(ℓ,n,k).

Suppose thatPf (ℓ, n, k) represents the listing failure prob-
ability, which is the probability thatListEntries() operation
fails to list all the entries in the IBLT. The next theorem
provides an upper bound onPf (ℓ, n, k).

Theorem 2 (Upper bound on listing failure probability): For
given ℓ ≥ 1, n ≥ 1, k ≥ 1, the listing failure probability
Pf (ℓ, n, k) can be upper bounded by

Pf (ℓ, n, k) ≤

n
∑

i=2

(

n

i

)(

z(ℓ, i)

ℓi

)k

. (11)

(Proof) The peeling process of theListEntries() fails to
recover all the entries in the IBLT if and only ifB ∈ B(ℓ,n,k)

contains a stopping matrix as its sub-matrix. Thus,Pf (ℓ, n, k)
can be characterized as

Pf (ℓ, n, k) = Pr[B includes a stopping matrix]. (12)

For an index setI ∈ 2[1,n], let BI be the sub-matrix
of B consisting of columns ofB with indices in I. If
BI is a stopping matrix, then the index setI is said to be a
stopping set. The probabilityPf (ℓ, n, k) can be upper bounded
as follows:

Pf (ℓ, n, k) = Pr[B includes a stopping matrix]

= Pr

⋃

I∈2[1,n]\∅

BI is a stopping matrix

≤
∑

I∈2[1,n]\∅

Pr [I is a stopping set] . (13)

The last inequality is due to the union bound. From the
definition of the probability space defined onB(ℓ,n,k), the
probability thatI is a stopping set is given by

Pr [I is a stopping set] =

(

z(ℓ,#I)

ℓ#I

)k

. (14)

By using this equality, we have the following upper bound:

Pf (ℓ, n, k) ≤
∑

I∈2[1,n]\∅

Pr [I is a stopping set]

=

n
∑

i=1

∑

I∈2[1,n]\∅

Pr [I is a stopping set|#I = i]

=

n
∑

i=2

(

n

i

)(

z(ℓ, i)

ℓi

)k

. (15)

In the last equality, we used the factz(ℓ, 1) = 0.

IV. COMPUTEREXPERIMENTS

In this section, we will present several results on computer
experiments and on numerical evaluation of the upper bound
presented in the previous section.

In order to examine the tightness of the bound, Figure 1
presents curves of the listing failure probability obtained by
computer experiments (dashed line) and of the upper bound
(solid line). These curves are plotted as functions of the
number of cellsm. The number of entries isn = 210 and the
symbol size of the key isb = 32. In computer experiments, the
number of trials is106. As a hash function, SHA-1[13] was
used. The number of the hash functions assumed to bek = 3.
We used pseudorandom32-bit numbers for pseudorandom
key-value pairs. It can be observed that the upper bound gives
fairly tight estimation, as the number of cellsm increases.
As in the case of LDPC codes, the error curve in Figure 1
exhibit both water fall and error floor phenomenon. This result
indicates that the upper bound precisely captures the errorfloor
behavior of the listing failure probability.

From the upper bound, it is possible to see a tradeoff
between the water fall and error floor. Figure 2 presents the
upper bounds fork ∈ [3, 6]. The number of entries isn = 100.
A curve of the upper bound is plotted as a function of the
number of cellsm. We can observe that the listing failure
probabilities in the error floor region can be decreased as the
number of hash functionsk increases. On the other hand,
increments ofk pushes the water falls to the right.

From the upper bound and some experimental results, we
see that stopping sets of size 2 dominates the error floor
behavior. Figure 3 presents the upper bound, the asymptote
P2(ℓ, n, k) defined by

P2(ℓ, n, k)
△
=

(

n

2

)(

z(ℓ, 2)

ℓ2

)k

=

(

n

2

)

1

ℓk
(16)

and the experimental value of the list error probability. The
result suggest that the probability of occurrence of stopping
set of size 2 determines the depth of an error floor.

V. SS AVOIDING HASH FUNCTION

We have seen that stopping sets of size 2 dominate the
behavior of the list failure probability in the error floor region.
The stopping sets of size 2 occur whenk-hash values for 2-
distinct keys collide; i.e.,

(h1(a), h2(a), . . . , hk(a)) = (h1(b), h2(b), . . . , hk(b)) (17)

Fig. 1. Comparison of the listing failure probability: experimental values and
upper bound (n = 210, k = 3, b = 32).

Fig. 2. Comparison of the upper bound on listing failure probability: 3 hashes,
4 hashes, 5 hashes and 6 hashes (n = 100).

Fig. 3. Comparison of the listing failure probability: experimental values,
upper bound and asymptoteP2(ℓ, n, k) (n = 210, k = 3, b = 32).

for a 6= b. If this type of collision can be prevented, it is
expected that the error floor performance can be improved.

The SS avoiding hash function defined here are designed
so that the collisions (17) are avoided. In the following
discussion, we will further assume the uniqueness of keys
registered in the IBLT. Namely, an insertion of district entries
with the same keys and a multiple insertion of the same key-
value pairs are not allowed. This assumption may be natural
for most of applications such as set reconciliation.

Let a hash functionh be an bijective map from{0, 1}b

to {0, 1}sk where b = sk. The SS avoiding hash functions
(h1, . . . , hk) are simply defined by partitioning the outputsk-
tuple fromh into k binary s-tuples; i.e.,hi(x) is given by

hi(x) = qi + (i− 1)2s + 1, i ∈ [1, k], (18)

where(q1, . . . , qk) = h(x)(qi ∈ {0, 1}s). Note thatm/k = 2s

holds; i.e., each subtable contains2s-cells. Due to the as-
sumption on the uniqueness of the keys in the IBLT, it is
evident that a collision (17) does not occur. This means that
occurrences of the stopping sets of size 2 can be completely
prevented. Note that the use of the SS avoiding hash function
introduces a restriction on several system parameters; i.e.,
b = sk. This inflexibility can be considered as a price to be
paid for lowering the error floor.

It should be remarked that the probabilistic model assumed
in Section II cannot be directly applied to the system pre-
sented in this section This is because the assumption on the
uniqueness of the keys introduces weak correlations between
the stored entries. Although we have to take care of these dis-
tinctions, the analysis presented in the previous sectionsmay
be still useful for predicting the performance ofListEntries()
with the SS avoiding hash functions ifb is large enough.

Figure 4 presents the results of a computer experiment on
the SS avoiding hash functions. As an bijective map, the
identity map was exploited. The two curves of listing failure
probabilities are plotted; the first one corresponds to the case of
a conventional hash function and the second one corresponds
to the case of the SS avoiding hash function where the symbol
size of the key isb = 3s. In both cases, the number of entries
is n = 210 and the number of hash functions is assumed to
be k = 3. We can observe that the SS avoiding hash function
reduces the listing failure probabilities in the error floorregion.
Furthermore, the upper bound almost captures the error floor
behavior of the listing failure probability in this settings.

VI. CONCLUSION

In this paper, we presented a finite length performance
analysis on the listing failure probability which may be useful
for designing a system or an algorithm including the IBLT
as a building component. The recursive formula presented
in Section III will become an useful tool for finite length
analysis. In Section IV, we have seen that the error floor
performance can be improved by increasing the number of
the hash functions but it degrades the waterfall performance.
From the results shown in Section V, we can expect that ap-
propriately designed SS avoiding hash functions can improve

the error floor performance without sacrificing the waterfall
performance.

REFERENCES

[1] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“Beyond Bloom filters: From approximate membership checks to ap-
proximate state machines,”ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4, pp. 326, 2006

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting Bloom filters,”In Proceedings
of the European Symposium on Algorithms (ESA), vol. 4168 ofLNCS,
pp. 684-695, 2006.

[4] A. Broder and M. Mitzenmacher, “Network applications ofBloom
filters: A survey,”Internet Mathematics, vol. 1, no. 4, pp. 485-509, 2004.

[5] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables,”In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 30-39, 2004.

[6] M. Mitzenmacher, “Compressed Bloom filters,”IEEE/ACM Transactions
on Networking, vol. 10, no. 5, pp. 613-620, 2002.

[7] M. Goodrich and M. Mitzenmacher, “Invertible bloom lookup tables,”
In Proceedings of the 49th Allerton Conference, pp. 792-799, 2011.

[8] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, andspace-efficient
Bloom filters,” ACM Journal of Experimental Algorithms, vol. 14, pp.
4.4-4.18, 2009.

[9] D. Eppstein and M. T. Goodrich, “ Straggler identification in round-trip
data streams via Newton’s identities and invertible Bloom filters,” IEEE
Transactions on Knowledge and Data Engineering, vol. 23, no. 2, pp.
297-306, 2011.

[10] M. Mitzenmacher, G. Varghese, “Biff (Bloom filter) codes: fast error
correction for large data sets,”Information Theory Proceedings (ISIT),
IEEE International Symposium on, pp. 483-487, 2012.

[11] C. Di , D. Proietti , I.E.Teletar, T. Richardson and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,”IEEE Transactions on Information Theory, vol. 48, no. 6, pp.
1570-1579, 2002.

[12] T. Richardson and R. Urbanke,Modern Coding Theory, Cambridge
University Press, 2008.

[13] National Institute of Standards and Technologies,Secure Hash Standard,
Federal Information Processing Standards Publication, FIPS-180, 1993.

Fig. 4. Comparison of the listing failure probability: conventional hash
function and SS avoiding hash function (n = 210, k = 3).

	I Introduction
	II Preliminaries
	II-A Bloom Filter
	II-B IBLT and its Operations
	II-C Probabilistic Model

	III Upper Bound on Listing Failure Probability
	III-A Enumeration of Stopping Matrix
	III-B Listing Failure Probability and its Bound

	IV Computer Experiments
	V SS Avoiding Hash Function
	VI Conclusion
	References

