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Abstract—This work analyzes the gains of cooperative relaying this modified metric is more suitable for interference-til
in interference-limited networks, in which outages can be de networks since the spatial resource—which is considered th
to interference and fading. A stochastic model based on poin - jtica| resource—is taken into account. Also, contrajlithe
process theory is used to capture the spatial randomness prent density of active transmissions has been u’nderstood as an
in contemporary wireless networks. Using a modification of he | ty " - .
diversity order metric, the reliability gain of selection decode- important and effective means to increase network capacity
and-forward is studied for several cases. The main resultsra and is therefore the underlying mechanism of practical MAC
as follows: the achievablespatial-contention diversity order (SC-  protocols such as Aloha (spatial reuse with medium access
DO) is equal to one irrespective of the type of channel which ,opapility) and CSMA (spatial inhibition of active nodes)

is due to the ineffectiveness of the relay in the MAC-phase . h th studving the di itv behavi f f
(transmit diversity). In the BC-phase (receive diversity) the SC- IS hence worth studying the diversity behavior ot coopeeat|

DO depends on the amount of fading and spatial interference relaying as a function of the density of active nodes.
correlation. In the absence of fading, there is a hard trangion Using point process theory, we derive a stochastic model to
between SC-DO of either one or two, depending on the system stydy the diversity of cooperative relaying in the preseofe
parameters. : o . random interference. We aim at answering the following gues
Index Terms—Cooperative relaying, interference, point process .. . . . . .
theory, selection decode-and-forward t_|or_15. How much diversity can we expect in the mterfe_rence-
limited case? How does spatial interference correlatioth an
|. INTRODUCTION fading affect the achievable diversity gains?
In spite of steadily increasing data rate demands, coopera-
tive diversity—and most saliently, cooperative relayinigas Il. SYSTEM MODEL AND ASSUMPTIONS
emerged to a widely-recognized concept to increase rétiabi To address the key questions of this work, we break the
and/or throughput through exploration of spatial divgrsitanalysis down into a single snapshot of the network, in which
Cooperative relaying has gained practical relevance & lea given transmission is interfered by randomly located sode
since its adoption in the 3GPP Rel-10 for 4G netwoiKs [1fransmitting in the same time-frequency resource.
Taking 4G as an example, the trend for networks goes toward
interference-limitedness as they must cope with heteregef Channel model
ity/coexistence, densification of devices and sometim@sain  The power path loss between two locationg; € R? is
dictable deployments$[2]. A better understanding of coapergiven by the non-singular path loss functidfiz — y|) :=
tive relaying in the presence of random interference is @eng + |z —y|*) !, wherea > 2 denotes the path loss exponent.
mandatory. Among the vast body of literature concernirgoth the correlation and the statistics of the SIR strongly
relaying, most prominently [3][]4], there exist only a lieil depend on the type of channel fading, and particularly on its
number of works that take into account the effect of randodistribution. Since the family of practical fading distifions
interference, see e.gL,/[5L/[6]. is large, we focus on two extreme cases: frequency-flat block
In the high reliability regime, the diversity order [4] mietr Rayleigh fading and path loss only, the former being usually
can be used to measure the increase in robustness agaiossidered as severe fading while the latter can be seeras th
random fluctuations in the channel. In the interference-fréimiting case of weak scatterings.
scenario, this regime is obtained by letting SNR oo.
Practically, this involves scaling the transmit power sincB- Relay protocol
the receiver noise cannot be lowered to an arbitrary extentWe consider a three-node configuration which consists of a
This observation, however, does not apply to interferencgsurce located ats, a destination located aty and a half-
limited multi-user networks since jointly increasing tsamt duplex relay located at;. The locationszs, x4 and x, are
power does not increase the individual SIRs. This gives rigebitrary but fixed. Hence, we place the destination into the
to the question of how to measure the diversity order ofigin (x4 = o). The block is divided into two consecutive
cooperative relaying in interference-limited networkprp time slots over which the transmission takes place.
priately. We propose a modified diversity order metric, ngme Selection decode-and-forward (SDE) [4] is used as the relay
spatial-contentiordiversity order, which is based on scalingprotocol. In SDF, the source broadcasts a packet in the first
the density of active nodes in the network. We argue thtéine slot, while the destination buffers what it receives an
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the relay tries to decode the packet. Depending on whetker fRemark 2. When referring to the entire group of fading
relay was able to correctly decode the packet, either ttagy relariables, i.e.{us, usd, urd}, {g:}52, and{h;}22,, we will use

or the source then re-transmits the packet to the destmattbe short-hand notation, g andh, respectively.

in the second time slot. Finally, the destination apprdplya  |n many cases the random fluctuations of the SIR cannot
combines the two copies prior to decoding the packet.  pe tracked by the transmitter due to practical constraans,

C. Interference model particularly because the interference from many nodesatann
be knowna priori. This may lead to an outage, for which the
erfrobability of occurrence is a useful performance metric.

Definition 1. The outage probability (OP) is defined as

As the three-node configuration is part of a multi-us
environment, it will suffer from interference from otheairs-
mitters (interferers). We assume that these interferees
distributed accordinﬁ to a stationary Poisson point preces q:=P(SIR < ) (7)
PPP) with densit The PPP assumption is well-accepte . . . o
gor ca)pturing the s)s\atial randomness inpcontemporary aﬁ'sgal 9or a pre-defined coding/modulation-specific threshald
networks of several typesi[2].1[7]. Formally, we define We propose an alternative formulation of the diversity orde

metric that applies to a multi-user environment and which is
©:= {(xigihi) i €R®, g €Ry, hi €R ), (1) pasedon controlling the density of simultaneous transoriss

wherex; denotes the random location of thigh interferer, Definition 2. The spatial-contention diversity order (SC-DO)
while the marksg; andh; define the channel fading gain fromis defined as

thei-th interferer to the relay and the destination, respelgtive A= lim log g (®)
All marks are mutually i.i.d. and do not depend on the " a—0log A’

interferer locations. The intensity measuredois given by Examplel. In the absence of the relay, the OP for Rayleigh
AAXT % T) ::/\/ /dP(g Sg)/ 4B (h < ) da fading is known to be[[8]
AJT T

l1—exp{— /\772%|173|2[3§ csc(2m)}. 9
=MAP(geD)P(heY), ACR:TCR,, TCR,. (2 o o
The SC-DO in this case is given by = 1 as expected.

Remarkl. For the path loss only modeg{= h; = 1Vi), the
intensity measure reduces A|.

Thus, the interference at the relay and at the destinaffbn b%

IIl. OUTAGE ANALYSIS — RAYLEIGH FADING

In most works, cooperative relaying is examined for the case
exponentially distributed fading gains with channeltesta
I, = Zgimxi —z]) and Iq:= Z hil(|x;]).- (3) information (CSI) available only at the receivers. We stant

i€d i€d analysis by considering this scenario.

Note thatl, and Iy are correlated because of the common From [4], the OP for SDF can be expressed as

source of randomness given by the interferer locatlon$>,. ¢ = P(SIRsy< 3, SIRs < ) + P(SIRsia < 3, SIRsr > ), (10)

D. Performance metrics i=qgc =qmac

With the above setting, the SIR at the relay is given by Wheregsc and guac denote the OP in the Broadcast phase
(BC-phase) and the MAC phase (MAC-phase), respectively.
) (4) Treating these two expressions separately will be advantsg
I in the subsequent analysis. Applying stochastic geometry
whereus; denotes the channel fading gain on the source-relaols, [10) can be calculated in semi-closed form.
link. Given that .the.relay was aple to decode_sugcessflhity, tPropositionl. Define
SIR at the destination after optimum combining is

SIR— usrl(|xs — xr])

* (7,) o 1+ |I3|a * (7,) ,: 1+ |Ir|a
usdl(|zs|) l—i— urd£(|arr|)7 (5) sl =775 bl =
‘ llr,6) = 1+ |25 — il
whereusq andurg are the channel fading gains on the source- s @)= T (r2 + 22 — 2ra;cos ¢) %
destmapon and relay-destination links, res.pectlvelyl.eWthe and assumeérs| # |a. For exponentially distributed, g and
relay fails to decode correctly, the transmitter re-traitsine h, the OPsgac and guac are given by
packet and the SIR at the destination becomes ’

Slerd:

- soc =1~ exp{-AU(0, §0240)} - exp~X¥(315(r ). 0)
SIRsg= —— — (6) +exp{— AU (BL3(r, ), 5054(r))} (11)
!Since the PPP assumption excludes any form of correlatichemodes’ and
e vse he shorthand. notaton ¢ o instead of (. gm) € & wic = exp { — XU(35(r,0),0)}
e = vt 3 e o, Wi s o g e e = NV(3100) 240
remain constant over the two considered time slots. +uzexp { — AU (BL5(r, ¢), Blig(r)) }, (12)



o
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) _ =) _
whereu = =il #2 = wa e ANAE9) =
Jo~ I5 2r (U = arrmayaraey ) dodr

Proof: We follow the approach used inl[8]: we first EEJ 065K\ ]
condition [10) on® and evaluate the probabilities w.ut.Note ==
that for £(|zs|) # £(|z¢|), the sumz = usgl(|xs|) + ural(|zr|) g
has distribution B 060 N

O
—z€(Jxi]) —2£(|zs|)
Pz o = e  f(jz)e  aa)
(las|) = €lax])  £(ls]) — €(J]) 055 : .

We then de-condition o® and exploit the linearity property o

of the expectation. We apply the definition of the Laplace

transform for Poisson shot-noise processes with indepgnde _ B _ o

marks [9] and insert the intensity measure fréin (2). Usirey t'ﬂg'ctildn O?‘t’;'g'sgtf'@éspgigfﬁe;flaﬁ'i‘r’fe fﬁ%&fg&gﬁiﬁ%ﬁame asa
fact thatg andh are exponentially distributed, and switching '

to polar coordinates yields the result.

Remark3. The OPgq for the casdxs| = |z(| can be computed
straightforward using a similar approach, see €.g., [6f B
space limitations we do not present this result here.

Glancing at Fig[1l, we make a surprising observation: it
is better to put the relay closer to the destination (receive
diversity) rather than to the source (transmit diversitygreby
showing an adverse behavior compared to the interferaeee-f
1) Diversity order analysis:We begin our analysis by case. The intuition behind this observation is that theitgbil

noting the following Lemma&. to boost the received power through the relay-destination
Lemmal. Let w(t) = Y, ar (1 — e ***), wheret > 0 and link outweighs the reliability loss of the source-relaykin
ak, zx € R. Then,w(t) 129 ¢ if and only if Y, a2k # 0. Motivated by this result, we next focus on the achievable SC-
Proof: By the power series~* = 3"2° —(*fj)k, we can DO in the BC-phase only.
rewrite w(t) as
) V. DIVERSITY ANALYSIS IN BC-PHASE
)=ty —t—z 24 (14)
w(t) = - RUSLI - k2 T In Sectior{T1l it was concluded that the SC-DO is negatively

) ) o ) affected mainly due to the invariability of the interferenat
showing that the first order coefficient in_{14) must be noRfpe destination in the MAC-phase—the relay cannot provide
zero to obtain the desired scaling. _ L diversity w.rt. the interference. This invariability nemver

We are now in the position to derive the first results.  joes not change when a different fading distribution is as-
Theoreml. The achievable SC-DO of SDF for exponentiallsumed. In contrast, the SC-DO of only the BC-phase can
distributedu, g andh is A = 1. theoretically be higher because the interference dedatese

A proof is given in AppendiXA. Theorefd 1 states that therever space. In the proof of Theoréin 1, however, it was shown
is no SC-DO gain by relaying the source’s packet—which t§at for Rayleigh fadingjsc »<° A unless|zg — 2| — oo.

a negative result since it is known that SDF achieves digersSince this result relies on the interplay between the dpatia
order of two in the interference-free cadé [4]. This pitfainterference correlation and exponentially distributedifg
results from the fact that by simply forwarding the source®ains, we next study the achievable SC-DO in the BC-phase
packet, the relay cannot change the interference leveleat far different assumptions about the fading.

destination in the second time slajjac *2° \).

On the other hand, spatial correlation of the interferenc&, Non-fading links + fading interference
compounded with channel fading, renders the BC phase not a
effective as in the interference-free caggc(X2° )). Increas-
ing the relay-destination separation can lower this umebk
effect and provide a stronger scalinggt at intermediate\,
but it cannot steepen the asymptotic slopeygf.

fn many scenarios CSl is available at the transmitter, typi-
cally indicating the instantaneous channel gains of théelds
links (u) to which g can then be adapted. The instantaneous
channel gains of the interfering linkg,() however usually
For these reasons, there is no reliability gain w.r.t. tH&Main unknown to the transmitter due to practical corvstsai

interference. Yet the relay can provide a power gain contpar Whaﬁ fOILOWS' we T}Od'fy our model by (zjondmo_nmglO)
to direct transmission. on u, thereby noting that outages are now due to interference

2) Optimal relay position: Theorem[1L and the ensuingonly' Thedominant interferephenomenon (cf[]7]) will play

discussion give rise to the question about the optimal reld}} important role for the derivation of the subsequent tesul

position. Using Proposition]1, we are able to numericallpefinition3. An interferer is called dominant if its individual
minimize ¢ over x; given xs. interference contribution is already sufficiently high ieate

3 (2)°294(2) (2)/a(2) outage. The set of dominant interferers at the relay (destin
Some notationf(z) 229 g(z) meandim,_,o f(2)/g(z) = ¢,0 < c < 0. : f . T T
We useb(z, r) to denote a two-dimensionaT ball of radiuscentered at. tion) is defined asb; C @ (®q C ).



Proposition2. The OPggc for SDF in the case of non-fading 10°
links (u = 1) and fading interference is lower bounded by EEEERE N

qgczl—exp{—%\ A rP(h>£;“d(r)71%) 10"1-;;;;:;;:::..”
+

X/O P(g > (3(r.0) "' ) doar}). (15) g 107 N KRN .

A proof is given in AppendikB. We are now able to analyz — NG R S
the achievable SC-DO for this case. 3 — — ~Norelay g AR N
: _ 10 H| O |&l/las| = A0\ R Ng 110
Theorem2. The achievable SC-DO of SDF in the BC-phas e /|zms] = 53] T \al ¢ XU Ng N
for the case of non-fading links and fading interference —— |z|/|zs| = 66[ TN\ IR N N
A=1. 10’4 ) :
0 =2 —4 -6
Proof: Note that the expressions under the integral sig| 10 10 10 10
in (I5) are always positive. By Lemnia 1 and since] (15) is _. A

lower bound, we thus ha A0,
\sC A Fig. 2. OPggc vs. A. System parameters ares = (15,0), a =4, 8 = .1.

B. Path loss only model Marks represent simulation results.
In case of weak scatterings between all nodes, the channel ]
can be characterized by the path loss only model, for whidftéorems3. Define A; := b(zr,r1), Ag := b(z4,72) and

an asymptotically tight lower bound on the interferencé tai‘llf’d = Afj Ad,l\;\;hererl = (B(Js — ¢r|)71 —1)!/* and
probability exists for the path loss law . The next Lemma (z5¢(|2s[)~" —1)7/*. Then,gac for SDF in the path loss only
extends this statement to the non-singular path losdlaw. €ase€ ¢ =g =h = 1) is given by

Lemma2. The interference tail probability lower bound based
on the dominant interferer phenomenon is tight\as: 0 also roo [ AlAdl, Ard # 0 17)
for the non-singular path loss law defined in Secfidn II. C "~ N2 Al | Adl, Arg =0, (18)

Proof: We first note that the interference tail probabilitng the achievable SC-DO in the BC-phase is
lower bound based on the maximum interferer principle fer th
path loss lawr—< is tight [7]. This is due to the singularity A — {
at r = 0 which renders the interference sub-exponential—
by allowing the maximum of the individual interference con-
Fr|but|ons o _dommate th_e sum mterference._ In contrds?, Lo first re-define the dominant interferer sets for our puEpps
interference in our case is not sub-exponential becauseeof feading to the regionsl;, A, and their intersectiond ¢. By
boundedness of our path loss function. However, itis iiveit " =y havré ' ne
that the interference is nevertheless able to “make a siné‘le '
relatively big jump” whenever the close neighborhood of the gg A0 P((I)(-Ar,d) # 0)
receiver carries no (statistical) weight; which is the case
small . Indeed, denoting by,, the n-th nearest interferer, FR(2(AN Ag) £ D) P(2(Aa\ A) #0), (1)

1, |xr — xg| <71+ 7o (19)
2, otherwise. (20)

Proof: The proof is similar to the one of Propositibh 2:

T'(n, /\M,%) o whgre we make use of the independ.ence property of the PPP.
SRS =50, (16) Using the factl — exp(—\z) 220 Az yields the result. [

The regions4; and A; as well as their intersection play a
where I'(a,z) = [ "t""'e~'dt is the upper incomplete crucial role for the resulting diversity behavior: whenetreere
Gamma function. Thus[(16) states that the individual cois no overlapping of the individual dominant-interferegicns,
tributions of then-nearest interferers become equal for ththe interference at the relay and at the destination can be
two path loss laws as — 0. From this equivalence it follows assumed independent As— 0, yielding A = 2. The fact that
that, in the small density regime, the dominance of the rstarehe transition fromA = 1 to A = 2 is not continuous might
interferer is preserved with our path loss law. This, in turseem counter-intuitive first; as long as there is a non-zero
renders the dominant-interferer based lower bound tigherw probability for the occurrence of a jointly-dominant irfener
the nearest interferer is not a member of the dominant gty # (), the linear term will be dominant a8 — 0.

(@ = 0) it is likely that no outage occurs since adding the suBimulations confirm this result as can be seen in [Fig. 2.

interference from the remaining interferers to the maximu@amark 4. Theorem[L and Theorefl 2 also hold for the

interference will most likely not deteriorate the SIR much. .oce where the interferers perform SDF as well. Assuming
Using the fact that the dominant-interferer bound is asymgy, chronous transmissions, this can be checked by regardin

totically tight, we are now able to study the SC-DO. the interference power of the interfering relays as beiegted

4To the best of the authors’ knowledge, the statement in Le@mvas not by the-(.:orrespondllng _'nte_rfe”ng source nodes and Und‘ﬂl’gm
found explicitly in the literature. a modifiedfading distribution.

P(rp“(1+ry)>1+¢) =1-



V. CONCLUSION for the guac-part. Both [2B) and(24) are readily shown to be
Using point process theory and a modification of the divepirictly positive, implying that the linear term afis strictly

sity order metric suitable for interference-limited netkm our Positive as well. This proves the result. O
analysis reveals that the qchievaﬂlmtial-contentiord!versity APPENDIX B
order (SC-DO) of selection decode-and-forward is equal to PROOF OFPROPOSITIOND]

one. This is because conventional decode-and-forwarg-rela

) : . . We start by formalizing the definition of dominant sets:
ing, in general, cannot reduce the interference at therdesti y 9

tion. As a consequence, the relay should be placed closeeto t &, = { cP - gil(lxi — ) > l} (25)
destination (receive diversity) to provide considerabbever Ulzs—ae|) ~ B

boosts. The analysis shows that such a receive-diversity co = Chil(xi]) 2

figuration is better in terms of achievable SC-DO: depending ®q {Xi €e (|zs]) E} (26)

on the interference correlation between relay and destimat

an SC-DO of two is achievable when fading is negI|g|bIe

and the relay-destination link is reliable. The insightsaitied &, 4 := {xl € gill}xi — =) > 1 A hil(jxil) > 2} (27)
may be of interest for designing cooperative receive-giwgr Uzs—al) = B U(lzsl) ~ B
techniques for contemporary wireless networks. A possibigte that sincefI)r,d = &, N &g, the occurrence of the event
extension could be to further study the achievable diwersi{ci)r’d # 0} is a sufficient condition fop{ci)r £ 0 N By £ 0}.

order for the case of non-Poisson interference, e.g., when fTherefore, we hav@(i)r,d £0) < P((i)r £ 0N @d £ q))_ Thus,
interferers perform cooperative relaying as well.

X; — & hi (|x;
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APPENDIXA .
PROOF OF THEOREMII] =F (q)r 7& 0, @a# 0)
Taking the limitA — 0 in (@) and [I2), we obtain >P (‘i)r,d # @) =1-exp(—9¢), (28)
q 220\ [— (Bl (r, ¢), gé;d(r)) where the last equality follows from the number of elements
5 in @4 being Poisson distributed with mean which can be
+0 (0, 5024(r)) + U (Bls(r, ¢), O)} computed straightforward usingl (2) as
N[ = W (B, 0),0) + m¥ (5(r, 6). B6) [ B (g N M) P <h > %('IS')) de. (29)
. y R2 BL(|lz — ) Be(|z)
—n2 W (Bl (r; 9), Béfd(r))} +RA), 22 This concludes the proof. O

where R()\) contains all non-linear terms. By Lemria 1, the

i ; b <hing for the Th REFERENCES
Inear term ofg must be non-vanishing for .t eT eor?m tT%.] C. Hoymann, W. Chen, J. Montojo, A. Golitschek, C. Kontanis, and
hold. Thus, we only need to prove that the linear term is NON- x_ shen, “Relaying operation in 3gpp Ite: challenges andtamis,” IEEE

zero, for which strictly positiveness of the expressiorsda Commun. Magazinevol. 50, no. 2, pp. 156 —162, Feb. 2012.

[2] J. G. Andrews, “Seven ways that hetnets are a cellulaagigm shift,”
the two brackets is a sufficient condition. In what follows w [EEE Commun. Magazinddar. 2013,

will prove that the strictly-positiveness condlthn is ﬁu'éd. [3] T.Cover and A. Gamal, “Capacity theorems for the relagrotel,” IEEE
for each of them. For each of the two expressions, we insert Trans. on Inf. Theoryvol. 25, no. 5, pp. 572 — 584, Sep. 1979.

L ; ; i J. Laneman, D. Tse, and G. Wornell, “Cooperative ditgrgi wireless
\Ij( ’ ) and rewrite the sum of Imegrals by a Smgle one, there networks: Efficient protocols and outage behavidEEE Trans. on Inf.

exploiting the linearity property of integrals. A sufficien Theory vol. 50, no. 12, pp. 3062 — 3080, Dec. 2004.
condition for strictly-positiveness of the two integratswhen [5] R. K. Ganti and M. Haenggi, “Spatial analysis of oppoistic downlink
ie ; it relaying in a two-hop cellular systemEEE Trans. on Commuywol. 60,
their mtegran(_js are _strlctI)_/ positive almost everywhdier  bp. 14431450, May 2012,
some algebraic manipulations, we therefore have to checkfj A~ attieri, L. R. Vega, P. Piantanida, and C. G. GalarzZhe overall
1 balance between cooperation and interference for a classirefess
,8 networks,” CoRR vol. abs/1203.3287, 2012.
(14 5€34(r) (1 + Bl (r, ) [7]1 S. Weber, J. Andrews, and N. Jindal, “An overview of thansmission
1 1 capacity of wireless networkslEEE Trans. on Commuyvol. 58, no. 12,
— — >0 (23) pp. 3593 —3604, Dec. 2010.
14+ gf;d(r) 1+ ﬂgér(T, fb) [8] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “Amlzé protocol for
multihop mobile wireless networks|EEE Trans. on Inf. Theoryol. 52,
for the gsc-part and no. 2, pp. 421-436, 2006.
* * [9] F. Baccelli and B. BtaszczyszynStochastic Geometry and Wireless
/‘2(1 + Bt ( )) 1“1(1 + Bt (T)) Networks, Volume I+|l ser. Foundations and Trends in Networking.

_|_(1 + Bg:ﬂd(r))(l + Bg;d(r)) >0 (24) NoW Publishers, 2009, vol. 3.




	I Introduction
	II System Model and Assumptions
	II-A Channel model
	II-B Relay protocol
	II-C Interference model
	II-D Performance metrics

	III Outage Analysis — Rayleigh Fading
	III-1 Diversity order analysis
	III-2 Optimal relay position


	IV Diversity Analysis in BC-Phase
	IV-A Non-fading links + fading interference
	IV-B Path loss only model

	V Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Proposition 2
	References

