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Abstract-We prove coding theorems for two scenarios of coop­
erating encoders for the multiple access channel with two classical 
inputs and one quantum output. In the first scenario (ceq-MAC 
with common message), the two senders each have their private 
messages, but would also like to transmit common messages. In 
the second scenario (ceq-MAC with conferencing encoders), each 
sender has its own set of messages, but they are allowed to use 
a limited amount of noiseless classical communication amongst 
each other prior to encoding their messages. This conferencing 
protocol may depend on each individual message they intend to 
send. The two scenarios are related to each other not only in 
spirit - the existence of a capacity-achieving construction scheme 
for codes for the ceq-MAC with common messages is used for 
proving the existence of another such scheme for the ceq-MAC 
with conferencing encoders. 

I. INTRODUCTION 

The classical multiple access channel (MAC) was intro­
duced by Shannon [11], who also started to analyze it. Later, 
Ahlswede [1] and Liao [8] proved full coding theorems. 
In 1983 Willems published the work [18], introducing the 
model of a MAC with conferencing encoders and providing a 
complete coding theorem with a weak converse. 
In this model, each of the encoders wants to transmit a set of 
messages. In contrast to the usual MAC model, they can both 
gain at least partial knowledge of the other sender's message 
through conferencing: An iterative and noiseless exchange of 
messages under some given rate constraint. The question then 
is, how the capacity region of the MAC with conferencing 
encoders depends on the allowed rates of the conference. 
Willems [18] reduced the direct part to an application of the 
coding theorem for the MAC with a COlmnon messages that 
had been solved in [13]. 
The model fits into a broader range of problems in which 
partial cooperation between different parties of some commu­
nication scenario is allowed and that has attracted a lot of 
attention recently: see for example [5], [16], [6], [9], [14], 
[15], [12]. 
In the present paper we extend the results of Willems to 
quantum channels. More precisely, we consider two senders, 
both of which are connected to the receiver by a ccq-MAC, 
a generalization of the classical setting in which the outputs 
of the channel are quantum states. Both senders transmit their 
classical messages to one receiver, who tries to decode them. A 
full solution of the coding problem for the ccq-MAC without 
conferencing has been achieved by Winter [20] in 200l. In 
2012 Fawzi, Hayden, Savov, Sen and Wilde [7] provided a 

different proof of the direct part of the coding theorem for 
the ccq-MAC, enabling the receiver to decode both messages 
simultaneously . 

We use this rather recent result together with a coding theorem 
for cq-channels that was developed by Winter in [19] and has 
the property that at least partial control on the codewords is 
given: They all have approximately the same type. Nonethe­
less, the codes whose existence are guaranteed by the theorem 
are still randomly chosen. Together, these results enable us to 
prove the direct part of a coding theorem for the ccq-MAC 
with conferencing encoders. Like in the classical case, we 
allow the two senders to exchange messages amongst each 
other prior to encoding the messages that ought to be sent to 
the receiver. A very brief formulation of our main result then 
reads as follows: 

Conferencing can enlarge the capacity region of a ccq-MAC. 

Of course, much more is proven hereafter. And in the classical 
setting, much more is also known already: Conferencing can 
for example stabilize the conununication between two senders 
and one receiver when the communication line between the 
legal users is being actively manipulated by an evil party in 
order to prevent the communication. Good codes in such a 
setting are robust against a large class of clearly specified 
attacks, making them a good choice for applications in security 
applications. The impact of conferencing on such systems is 
strong: a tiny amount of conferencing can already boost the 
capacity from zero up to the maximally attainable value [15]. 
The existence of a similar result for the quantum case seem 
to be a reasonable assumption, and the present paper is a first 
step into that direction. 

II. NOTATION 

All Hilbert spaces are assumed to have finite dimension and 
are over the field <C. The set of linear operators from H to H 
is denoted !3(H) . The adjoint of b E !3(H) is marked by a 
star and written b*. 
S(H) is the set of states, i.e. positive semi-definite operators 
with trace (the trace function on JB(H) is written tr) 1 acting on 
the Hilbert space H. Pure states are given by projections onto 
one-dimensional subspaces. A vector x E H of unit length 
spanning such a subspace will therefore be referred to as a 
state vector, the corresponding state will be written Ix)(xl. 
For a finite set X the notation s:j3(X) is reserved for the set of 
probability distributions on X, and IXI denotes its cardinality. 
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For any I E fil, we define Xl 
:= {(Xl, . . .  , XI) : Xi E X 'Vi E 

{I, . . .  , I}} , we also write xl for the elements of Xl. Asso­
ciated to every such element is a function NClxl) : X -+ fil 

defined by N(xlxl) := I{i: Xi = x}l. 
The set of classical-quantum channels (abbreviated here using 
the term 'cq-channels') with finite input alphabet Z and output 
system K is denoted CQ(Z, K). 
For any natural number N, we define [N] to be the shortcut 
for the set {I, ... , N}. 
Using the usual operator ordering symbols :s; and � on B(1-l) 
and suppressing the dependence on 1-l, the set of positive 
operator valued measurements (POVMs) with N E fil different 
outcomes is written 

N 

MN := {D = (Dd:=l : L Di :s; :n.1{, Di � 0 'Vi E [N]}. 
i=l 

To every D E MN(1-l) there corresponds a unique operator 
defined by Do := :n.1{ - L!l Di. Throughout the paper, 
we will assume that Do = 0 holds. This is possible in our 
scenario, since adding the element Do to any of the other 
Dl, . . .  , DN does not decrease the performance of a given 
code. 
The von Neumann entropy of a state p E S(1-l) is given by 

S(p) := -tr(p logp), 

where log(·) denotes the base two logarithm which is used 
throughout the paper. 
The Holevo information is for a given channel W E 
CQ(Z,1-l) and input probability distribution p E �(X) 
defined by 

x(p, W) := S(W) - LP(z)S(W(z)), 
zEZ 

where W is defined by W := LZEZP(Z)W(z). We shall 
employ a slightly different notation that is closer to the one 
used in the classical scenario. To the distribution P we can 
always associate a random variable Z with values in Z that 
is distributed according to p. If we label the physical system 
that is modelled on the Hilbert space K by Q, we can define 

J(Z; Q) := X(p, W). 

It is clear that this is a quantum mutual information - given 
a bipartite random variable (X, Y), its mutual information 
J(X, Y) is given by J(X, Y) := H(X) + H(Y) - H(X, Y). 
If our channel has a bipartite input (Z = X x Y), and (X, Y) 
is a random variable on X x Y that is distributed according 
to J1D((X, Y) = (x, y)) = p(y)q(xly) it even makes sense to 
define the quantity 

J(X; QIY) := L p(y)x(q(-Iy), W(- x y)). 
yEY 

Whenever necessary, the elements X of some finite set X will 
be identified with a set {lx)(xlhEX c B(CIXI) of matrix 
units that are pairwise orthogonal (with respect to the Hilbert 
Schmidt inner product). 

III. DEFINITIONS 

In the remainder, W E C(X x Y, K) will denote a classical, 
classical - quantum multiple access channel (ccq-MAC). The 
quantum part of the system will also be referred to by the 
symbol Q and, given a probability distribution on the input 
system of the channel, the corresponding random variable will 
be written (X, Y). Further random variables may arise. 

Definition 1 (Codes for the ccq-MAC with conferencing 
encoders). For given l E fil, an (MI, NI, C, D) code �/) for 

the ccq-MAC with encoders conferencing at rates C � 0 and 

D � 0 consists of 

1) Two natural numbers MI and NI that form the message 

sets [Mzl and [Nzl· 
2) Positive numbers C, D that give upper bounds on the 

overall rate of a conference. This conference consists 

of a natural number K E fil, finite message sets 

Vi,l, . . .  , Vi,K and WI,l, . . .  , WI,K (Vi,o = WI,O = 0 in 

order to have more compact notation) and conferencing 

functions 

II,i: [Mzl x (xj�tWl,j) x (xj�tVi,j) f-7 Vi,i, i E [K], 

s. t. L�=l log IVi,kl :s; C and L�=l log IWI,kl :s; D. 
The outcomes of the conference are stored in the set 

UI := n�l Wi x n�l Vi· If the codewords (n, m) 
were sent, they are given by arrays that will be written 

C/(m, n) = 

(m, gl (n), g2(n, JI (m)), g3(n, JI (m), h(m, gl (n))), . . .  ) 
VI(m,n) = 

(n, JI(m), h(m,gl(n)), h(m, gl(n), g2(n, JI(m))), . . .  ). 

3) Two functions II and gl such that II takes as inputs the 

outcomes CI (m, n) and gl the outcomes VI (m, n) of the 

conference and fz outputs a corresponding codeword in 

Xl , while gl gives one in y/. 
4) A POVM DI 

= {D;"n}��;;�\ E MM,.N, on K®I. 
5) We can write the average success probability Ps(<t/) of 

the code <tl as 

1 
M"N, 

MINI L tr{D;"nW®I(fI(C/(m, n)),gl(VI(m, n)))}. 
m,n=l 

Definition 2 (Achievability for the ccq-MAC with conferenc­
ing encoders). A pair (RM' RN) of nonnegative real numbers 

is said to be achievable for the ccq-MAC with encoders 

conferencing at rates C � 0 and D � 0 if there is a sequence 

(�z)/EN of codes as in Definition 1 with conferencing rates C 
and D such that 

1 1 
lim inf -

I 
log MI � RM, lim inf -

l 
log NI � RN 

1--+00 1--+00 
and lim inf Ps ( �/) = 1. 

1--+00 

Definition 3 (Capacity region of the ccq-MAC with confer­
encing encoders). The capacity region C(W, C, D) of the ccq­

MAC with encoders conferencing at rates C � 0 and D � 0 
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is defined to be the closure of the set of all rates that are 

achievable (for the ccq-MAC, with conferencing at rates C 
and D). 

Definition 4 (Codes for the ccq-MAC with conunon mes­
sages). For l EN, a code ([l for the ccq-MAC with com­

mon messages consists of a triple (Kl, Tt, ML) of natural 

numbers, two encoding functions Il : [Kd x lM� --7 Xl, 
gl : [Tt] x [Md --7 yl, and a POVM (Ak,t,m)k,l:�'=!v['. The 

success probability of the code is given by 

K"T"M, 

L tr{Ak,t,l W0l(fl(k, m) , 9l(t, m) )} . 

k,t,l=l 
Definition 5 (Achievability for the ccq-MAC with common 
messages). A triple (S x, Sy, Se) of nonnegative real numbers 

is said to be achievable for the ccq-MAC with a common 

message if there exists a sequence of (([l)lEN of codes as in 

Definition 4 such that 

1 1 
lim inf -logKl � Sx, lim inf -logTt � Sy, l--+oo I l--+oo I 

1 
lim inf -

l 
log Ml � Se and lim inf Ps (([L) = l. l--+oo l--+oo 

Definition 6 (Capacity region of the ccq-MAC with common 
messages). The capacity region of the ccq-MAC W with 

common message is given by the closure of the set of all rate 

triples that are achievable (for W, with common message). 

IV. MAIN RESULTS 

Our main results are two complete coding theorems: One 
for the ccq-MAC with conferencing encoders, the other for the 
ccq-MAC with a common message. This joint presentation is 
not just by chance: The direct part of the coding theorem for 
the model with a joint message serves as a building block for 
the model with conferencing senders. 
We now state our theorems, in the same order as their proofs 
are given later. The first one is an outer bound on the capacity 
region of a ccq-MAC with conferencing encoders: 

Theorem 1 (Converse of the coding theorem for ccq-MAC 
with conferencing encoders). For the ccq-MAC with confer­

encing encoders, a rate pair (Rx, Ry) is achievable only if 

it is contained in the set 

91conf(W, C, D) := cl(Up91p,conf(W, C, D)) (1) 

defined by the sets 91p,conf(W, C, D) of all pairs of real 

nonnegative numbers (RN' RM) satisfying 

RM :s; J(X; QIY, U) + C (2) 

RN :s; J(Y; QIX, U) + D (3) 

RM + RN :s; J(X, Y; QIU) + C + D (4) 

RM + RN :s; J(X, Y; Q) (5) 

where the states used to evaluate the entropic quantities on 

the right hand sides are defined by 

L p(u, x, y)lu)(uI0Ix)(xI0Iy)(yI0 W(x, y) (6) 
U,X,Y 

and the distribution p E If3(V x X x Y) can be decomposed 

such that p( u, x, y) = q( u )r(xlu )s(ylu) for suitable distribu­

tions q E If3(V), where s(-Iu) E If3(X) and r(-Iu) E If3(Y) 
for every u E U. Finally, the cardinality of the alphabet V 
can be restricted by the cardinality bound IVI :s; IXI·IYI + 3. 

Second, we prove the existence of codes that transmit com­
mon messages as well as individual messages of two senders 
over a ccq-MAC with asymptotically vanishing average error 
probability, at certain rates. This means that we can give an 
inner bound on the capacity region of that model. The result 
is used afterwards to obtain a direct coding theorem for the 
ccq-MAC with conferencing encoders as well. 

Theorem 2 (Direct part of coding theorem for the ccq-MAC 
with a common message). Every rate triple (Re, Rx, Ry) 
satisfying (Re, Rx, Ry) E 91comm (W) is achievable. The 

convex set 91comm (W) is given by 

where the sets 91q,comm(W) are given by all triples 

(Se, S x, Sy) satisfying below inequalities for a distribu­

tion q E V x X x Y having the structure q(x, y, u) = 

p(u)r(xlu)s(ylu) Ic/(u, x, y) E VxXxY and with the overall 

cq state being Lu,x,y q(u, x, y)lu)(ul 0 Ix)(xl 0 Iy)(yl 0 
W(x, y). 

Sx :s; J(X; QIY, U) (8) 

Sy :s; J(Y; QIX, U) (9) 

Sx + Sy :s; J(X, Y; QIU) (10) 

Se + Sx + Sy :s; J(X, Y; Q) (11) 

As was the case in the classical paper [18] by Willems, the 
existence of a coding result for the ccq-MAC with private and 
common messages enables one to prove the direct part of the 
coding theorem for the ccq-MAC with conferencing encoders, 
leading to the following result: 

Theorem 3 (Direct part of coding theorem for cc­
q-MAC with conferencing encoders). Every rate pair 

(Rx, Ry) E 91conf(W) is achievable, thus C(W, C, D) = 

91conf(W, C, D). 

� An optimal choice of encoding and decoding is already 
achieved by one-shot conferencing - Given the message 
pair (m, n) , Alice sends one message to Bob and vice 
versa, no iterative exchange of messages is necessary! 

� This is albeit the fact that, combinatorically, the set of 
general iterative conferencing strategies is much larger 
than the set of one-shot conferencing strategies. 

At last, and in order to have a coherent and self-contained 
presentation, we also prove the converse theorem for the ccq­
MAC with common and private messages. This part, as well as 
the direct part for the ccq-MAC with conferencing encoders, 
shows that the two models are in fact closely related from an 
information theoretic point of view. 
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Theorem 4 (Converse for the ccq-MAC with common mes­
sage). For the ceq-MAC with common message, no rate triple 

(Rc, Rx, Ry) outside of 9'tcomm (W) is achievable. 

Remark 1. Above results, put together, establish the region 

9'tconf(W, C, D) as the rate region of the ceq-MAC Wwith 

senders conferencing at rates C, D and the region 9'tcomm (W) 
as the rate region for the same model but with a common 

message instead of conferencing senders. 

V. SKETCH OF PROOF 

We now give informal sketches of the proofs of above 
results. Exact details can be found in the extended version [4] 
of this paper on the arXiv. Converse for conferencing encoders. 

Let, for lEN, a code ([I for conferencing encoders be given 
and let Ps(([z) = 1 - C/. With some risk of ambiguity in 
notation, we introduce the following random variables: U/, 
whose values are the outcomes of the conference, the values 
of MI and MI are the messages sent by Alice and Bob, and 
M{, N{ are those received by Charlie. The quantum system 
he operates on is denoted Q/. 
Obviously, the conference together with the encoding func­
tions and their outputs, the MAC and the POVM chosen by 
Charlie for decoding of the messages can all together be 
described by a quantum state PM1N1U1XlylQ1M;N;, which shall 
be abbreviated as P in the sequel. 
The Holevo bound in combination with strong subadditivity 
then yields 

(12) 

for some suitably chosen sequence 01 satisfying 01 \, O. Since 
the information in the classical parts of P can be copied, after 
a few steps one derives 

10gMI ::; J(M/; U/IN/) + J(M/; Q/IN/, Uz) + 01 (13) 

log NI ::; J(M/; U/IM/) + J(M/; Q/IM/; U/) + 01 (14) 

log NIMI ::; J(M/' M/; U/) + J(M/, M/; Q/IUZ) + 01. (15) 

Above estimates are essentially the same as in [18], and at 
this point the problem clearly splits up into a purely classical 
part and one that contains the quantum system Q/. For the 
classical conditional mutual information terms, the inequalities 
(11,12,13) in [18] apply. For the other terms, one uses the 
independence of MI and MI given UI which carries over to 
an independence of the input variables Xi and Yi given U/. 
With some additional care for the quantum part of the system, 
and using the converse for the MAC that was proven in [20] 

for the fourth inequality, this is sufficient to prove 

I 
10g(MI) ::; J(M/; Q/IM/, U/) ::; L J(Xi; QilYi, Uz) + 01 

i=l 
I 

10g(NI) ::; J(M/; Q/IM/, U/) ::; L J(Yi; QilXi, Uz) + 01 
i=l 
I 

10gNIMI::; J(M/,M/;Q/IU/)::; LJ(Xi,Yi;QiIUI) + 01 
i=l 

I 
log NIMI ::; J(M/, M/; Qz) ::; L J(Xi' Yi; Qi) + Oz. 

i=l 
By regularizing above inequalities using a factor t one can, 
with some extra care, prove that this implies that every 
achievable rate pair (RA' RB) is contained in 9'tconf(W). 

Direct part for MAC with conferencing encoders. The proof of 
the direct part is carried out by resorting back to Theorem 3: 
Consider the two senders with conferencing capacities C, D 
attempting to send messages at rates RM, RN. Define the 
numbers c := min{RM, C} and d := min{RN, D}, and make 
a disjoint partitioning of the message set [l2nRM J 1 = Ui'=l Mi 
into subsets all having the same size, and the same for the 
other sender: [l2nRN J 1 = U�=l Ni. The senders now send as 
a conferencing message the index of the partition that their 
message is chosen from, and the conferencing only uses this 
one step. 
The pairs (i, j) of indices numbering the partitions can then 
be considered a common message of the two senders, and 
the code for the ccq-MAC with a common message from 
Theorem 2 is used. The requirement that all the sets Ni, Mi 
are of the same size ensures that (i, j) is evenly distributed, 
and this is true with a small and asymptotically vanishing error. 

Direct part for MAC with common message. Take any 
finite set U. At the heart of this proof is Theorem 10 
in [20], which guarantees the existence of a sequence of 
codes for stationary memory less classical-quantum channels 
T E CQ(U, K), with asymptotic rate approximately X(q; T) 
for every q E �(U) and all codewords approximately 
q-typical. 
We then take an arbitrary q E �(U) and conditional 
probability distributions {r(-lu)}uEU C �(X) and 
{ s (-I u)} uEU C � (Y) which define a new channel 
V E CQ(U, K) by 

V(u) := L L r(xlu)s(ylu)W(x, y). (16) 
xEXyEY 

Then Theorem 10 in [20] delivers a good code for message 
transmission over V, and we use it for transmission of the 
common message. For the transmission of the private mes­
sages, we make heavy use of the fact that all codewords for 
transmission of the common message have basically the same 
type. 
Consider a fixed l and one codeword ul, and assume for sake 
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of a short enough argument for the moment, that U = {O, I} 
and u = (0, ... ,0,1, ... ,1) contains approximately l . q(O) 
zeros. On the first block of length l . q(O) we use the recent 
results of [7] to obtain a code for W with codewords sampled 
i.i.d. according to rCIO)sCIO), and on the second block we do 
the same but sample according to rCI1)sCI1) . 
This can be done for each of the codewords u at the same 
time, due to the random structure of the argument. After 
some amount of careful algebra, this enables one to show 
the existence of natural numbers K, T, M and a POV M 
{llk,t,m}�{;"M on K®l, and encoding functions im,gm : 
[KJ, [ L]-+ Xl, yl (m E [M]) such that for the corresponding 
code ([l it holds 

Ps(([t) � 1- min L v(l�) - 6Vl-1/4 (17) mE[Mt] uEU 
holds, for large enough lEN and some function v : N -+ IR 
satisfying limn-too v ( n) = 0 that stems from the results of [7]. 

Proof of the converse for the MAC with common message. 

The proof of this result rests on a generalization of Lemma 1 
in [13]: 

Lemma 1. Let M, K, L be independent random variables with 

values in the finite sets M, K, L, each distributed evenly on the 

respective set. Let V E CQ(X, y, K) and encoding functions 

a : M x K -+ X, b : M x K -+ Y be given, as well 

as a POVM D E MIMXKXLI on K. Define the distribution 

P E �(M x K x L x M x K x L) and the quantitiy Pe through 

( k l - k 
l) '= 

tr{V(a(m, k), b(m, l))Dkmrl P m, , , m" . 
IMI . IKI . ILl ' 

Pe:= 1- L p(m, k, l, m, k, l). 
k,l,m 

Then for Pe :s: 1/2, 
H(KI(M', K', L'), M, L) :s: Pe log IKI + 1, 
H(LI(M', K', L'), M, K) :s: Pe log ILl + 1, 

H(K,LI(M',K',L'),M):S: Pe loglKI'ILI + 1, 
H(M, K, LIM', K', L') :s: Pe log IKI ·ILI· IMI + 1. 

In a a manner similar to the proof of Theorem 1, this Lemma 
ultimately enables one to prove the inequalities 

l 
10g(Kl) :s: L J(Xi; QilYi, Ml) + Ol (18) 

i=l 
l 

10g(Ll) :s: L J(Yi; QilXi, Ml) + Ol (19) 
i=l 
l 

10g(Kl . Ll) :s: L J(Xi' Yi; QilMl) + Ol (20) 
i=l 
l 

10g(Kl . Ll . Ml) :s: L J(Xi' Yi; Qi) + Ol, (21) 
i=l 

from which it follows that every achievable rate triple is an 
element of 9'tcomm(W). 
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