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Abstract—As in portfolio theory, we can think of the value
of side-information in a control system as the change in the
“growth rate” due to side-information. A scalar counterexample
(motivated by carry-free deterministic models) shows the value
of side-information for control does not exactly parallel the value
of side-information for portfolios. Mutual-information does not
seem to be a bound here.

The concept is further explored through a spinning vector
control system that is re-oriented at each time so that the control
or observation direction is partially unknown. The value of side-
information can be calculated in this setup and it behaves quite
differently in a control vs. estimation context. A second example
considers the problem of vector control over a (scalar) erasure
channel, the dual problem to the estimation problem of intermit-
tent Kalman Filtering. The value of information here is measured
through the change in the critical packet-drop probability for the
system. While non-causal side-information regarding the packet
arrivals does not affect the critical probability for the estimation
problem, we find that it can generically be very valuable for the
control problem — it seems to change the scaling behavior for
the control counterpart to what would be considered the “high
SNR limit” in communication problems.

I. INTRODUCTION

Parameter uncertainty has a long history in control theory
— the very idea of robust control is about dealing with it.
Recently, the advent of networked control systems has made
stochastic uncertainty models more relevant. There is now
a real need to have a theory capable of dealing with side-
information in control. As just one example, control theorists
are interested in knowing how networked control systems
behave with or without acknowledgements of dropped packets
since this is relevant for choosing among practical protocols
like TCP vs. UDP [1]. Acknowledgements are a kind of side-
information about control channel state, but as of now, there is
no theoretical guidance for how to think about it in a principled
way.

Fortunately, such things have long been studied in infor-
mation theory in the context of unknown fading channels
[2]. Medard in [3] examines the effect of imperfect channel
knowledge on capacity, and Lapidoth and Shamai quantify the
degradation in performance due to channel-state estimation
errors by the receiver [4]. Pradhan et al. show that the duality
between source and channel coding in fact extends to the
case with side-information under certain conditions [5]: this is
particularly interesting given the well-known parallel between
source coding and portfolio theory, which we will connect to
here. Further, Kotagiri and Laneman [6] study the impact of
non-causal knowledge of the state in a multiple-access setting.
There are many more interesting results as well, but space
precludes any serious discussion here.

Moving beyond communication, the MMSE dimension
looks at the value of side-information in an estimation setting.
In a system with only additive noise, Wu and Verdu show
that a finite number of bits of side-information regarding the
additive noise cannot generically change the high-SNR scaling
behavior of the MMSE [7]. Portfolio theory also gives us an
understanding of side-information. The key is the doubling rate
of the system, i.e. the rate at which a gambler who chooses
an optimal portfolio doubles his principal. Kelly studied this
through bets placed on horse races in [8]. If each race outcome
is distributed according a random variable X, then the mutual
information between X and Y, I(X;Y’), measures the gain
in the doubling rate that the side-information Y provides the
gambler.

Cover showed the existence of universal portfolios [9] as
well the impact of side information for these [10]. This leads to
a natural question: if there exists a portfolio that can perform
optimally while agnostic to the parameters of the systems,
under what circumstances can we design control strategies that
work universally? What is the parallel in control?

Control systems, like portfolios, have an underpinning of
exponential growth. Just as the investor can choose to buy
and sell at each time step to maximize growth, the controller
has the choice of control strategy to minimize growth (or
maximize decay). Further, causality and time are important
considerations in both portfolios and control. Directed mutual
information captures exactly the causal information that is
shared between two random variables. This connection has
been made explicit for portfolio theory in [11], [12] by
showing that the directed mutual information I(X" — Y™)
is the gain in the doubling rate for a gambler due to causal
side information Y. Of course, directed mutual information
is central to control and information theory as the measure of
the capacity of a channel with feedback [13].

Here, we explore the value of both causal and non-causal
side information for control systems though models that in-
volve multiplicative parameter uncertainty, where these param-
eters have an i.i.d. character to them. Multiplicative models
exhibit fundamentally different behavior than additive noise
models do. In models with additive noise, the linearity of the
system and the linearity of expectation means that estimation
and control problems reduce to each other — the optimal
control is a deterministic function of the optimal estimate.
Multiplicative noise breaks this duality and the philosophical
differences in estimation and control become evident opera-
tionally as well.

We start with a simple scalar example and then define



value of side-information for control in a way that parallels
information-theoretic portfolio theory. Then, we discuss two
interesting vector examples, the latter of which demands a
different (coarser) way of understanding the value of side-
information.

II. A SCALAR EXAMPLE AND SEMI-DETERMINISTIC STORY

This section draws heavily upon our earlier Allerton paper
[14] but helps make the ideas above more concrete. Consider
a simple scalar control system with perfect state-observation

X[n+1] = a(X[n] + B[n]U[n]),
Y[n] = X|[n]. (1)

Suppose B|n]| are a series of i.i.d. random variables with mean
wp and variance 0%, and X[0] ~ AN(0,1). The system is
scaled by a scalar constant factor a at each time step. The
aim is to choose U[n], a function of Y'[n|, so as to stabilize
the system. We can show that the system (1) is mean-square
stabilizable using linear strategies if lim,,_, . E[X[n]?] < oo
it 0? < (15575 ).

The growtﬁ rate of the system we are considering above
is related to the flow of information through the system:
the randomness in the control parameter B[n] impedes the
controller’s ability to stabilize the system. Recent works have
shown that a deterministic bit-level perspective (a la [15], [16],
[17]) on control systems can help elucidate the information
flows in the system [18], [19].
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Fig. 1. This system has the highest deterministic link at level bge; = 1
and the highest unknown link at b,.q,,q = 0. Bits b_1[n],b_2[n], - - are all
random Bernoulli—(%). As a result the controller can only influence the top
bits of the control going in, and can only cancel one bit of the state.

In Figure 1, we consider a simple bit-level carry-free
model that illustrates this. Say the control gain B[n] has one
deterministic bit, so that bg.; = 1, but all lower bits are random
Bernoulli-% bits. Then the controller can only reliably cancel
1—0 = 1 bit of the state each time. The difference between the
level of the deterministic bits and the level of the random bits
is what determines the number of controllable bits. Clearly,
if the value of by was also known, then we could tolerate a
growth from « of two bits at a time. We can think of this as
the value of the side-information by for this problem.

It is interesting to also consider the following ‘dual’ esti-
mation problem

X[n+1] = aX[n],
Y

[n] = Cln]X[n. )

where C[n] are i.i.d. with a continuous density, and X[0] ~
N(0,1). We know from [14] that a finite number of bits of
side-information regarding the system parameter C'[n] do not
help us estimate the system or decrease the growth rate of the
error by more than a subexponential factor. Side-information
is useless in this estimation problem.

III. THE VALUE OF INFORMATION

Consider a real-valued control system S, with state X|[n],
control U[n] and observation Y[n] at time n as below

X[n+1] = a- f(X[n],Uln], TIn),
Y{n] = g(X[n], Tln]). 3)

Let 7[n] be the set of random variables associated with
the system at time n. Let Frp, be the set of distributions
associated with them, and we assume these are known to the
controller. f and g are fixed, known, deterministic functions.
« is a scalar, known constant. The initial state X [0] is random.
The control strategy is a function U[n] : Yg* — R.

For instance, for the system (1), 7'[n] = {B[n]} and Fr,
is effectively {Fp} at each n since B[n] are i.i.d..

Parallel to the doubling rate defined in portfolio theory, we
define the one-step logarithmic decay rate of a system for state
X [n], control strategy U[n] and system randomness F’7p,,] at
time n as:

X[l

X[+ 1]
The expectation is over the randomness F7r,. A system
is logarithmically stabilizable if there exists a strategy US*
such that Y- E [Gs(X[i], U[i], Fry;)] — oo. With this, we
define the average decay rate of the system as
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The expectation inside the sum in eq. (5) is over the random
state X [i]. If G5 > 0 then the system is clearly logarithmically
stabilizable.

The optimal control strategy determines the maximal aver-
age decay rate, G(Free), with the expectation over X|[0].

G5(Fre-) & max E [Gs(X[0, U5, Fr=)] . (7)

Let a® be the maximum « such that the system is still
stabilizable. Then Ina* can be thought of as the ‘tolerable
growth factor’. In general, if we set & = 1 in eq. (3), then the
decay rate G5(Frp) is equal to Ina*.

Now are set to define the average value of side-information
as the change in the optimal decay rate with side-information
Z[n] (provided to the controller at time n) as

E [G§(Free z50) — Gs(Fr)] . ®)

The expectation is taken over the random side-information
vector Z§°.
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Fig. 2. Consider the following gain for the controller in (a): bi[n] =
1,b_1[n] = 1 are deterministically known, but all other links are Bernoulli-
(.5). Only a gain of log @ = 1 can be tolerated in this case. Now, say side-
information regarding the value of bg[n] is received as in (b). This suddenly
buys the controller not just one, but two bits of growth.

Note that in the carry-free model in Fig. 1, one extra bit
of information about by increases the tolerable growth of the
system by exactly one bit. What is the potential value of R-
bits of side-information? This is the answer to the optimization
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Finally, we also define a corresponding decay rate for esti-
mation. For the system S:

X[n+1] = a- f(X[n], TIn]),

Y[n] = g(X[n], TIn), (10)
we define the one-step logarithmic error decay rate as
- Xn] - X
GS(X[n]vFT[n]) YE|In [Xn] A[n]” (11)

[| X[n+1] — X[n+1]||

The average logarithmic decay rate can then be defined as in
the control case.

A. A control counterexample

In the portfolio theory literature, it is known that the
maximum increase in doubling rate due to side-information
Z for a set of stocks distributed as 7' is upper bounded by
I(T; Z). With our observation about deterministic models it
is tempting to conjecture that “a bit buys a bit” and a similar
bound holds for the value of information in control systems.
However, we see that the following counterexample rejects
this conjecture. Consider the carry-free model in Fig. 2. In
Fig. 2(a) the uncertainty in by[n] does not allow the controller
to utilize the knowledge that b_;[n] = 1. However, one bit
of information bg[n] in Fig. 2(b), lets the controller buy two
bits of gain in the tolerable growth rate as explained in the
caption. In the case of portfolio theory, it is possible to hedge
across uncertainty in the system and get “partial-credit” for
uncertain quantities. This is not possible in communication!

It seems that the ‘commitment’ challenge that is faced by control can
also be seen in communication systems, where it is also not possible to
hedge across realizations. Consider a “compound” channel made of two R-
bit channels A and B but with distinct inputs, so only one can be used at a
time. The message sent across one of the channels is randomly erased with
probability 0.5. In this case, one bit of side-information about which channel
is to be erased can buy us more than a bit: we get % bits of message on
average.
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Fig. 3. A spinning control setup: the target can be moved only along the
randomly chosen control direction. In version (a), the controller has perfect
access to the control direction, while in version (b) only a quantized version
is available.

and control systems since it is not possible to hedge a control
signal in the same way one can hedge a bet.

IV. A SPINNING SYSTEM

The first example here highlights the difference in the im-
pact of side-information for control and estimation problems.

A. A spinning controller: the control case

Consider the noiseless 2D control system S in (12)

bl o ([ oo o))

Yin] = [Xl [”q .

Xl 2

The controller has perfect access to the system state, but
is subject to the following limitation: at each time n, the
control direction is determined by a random spin, i.e. the
controller may only act along the direction [cos 0,, sin QH]T,
where 0,, is drawn uniformly from [0, 27]. Information about
the control direction, 6,,, is revealed to the controller before
it chooses Ul[n]. The initial state [X; [O]XQ[OHT is drawn
randomly according to some distribution, and the goal is to
drive the state to the origin. After the control acts, the system
is spun again so that only the distance of the target from the
origin is preserved, and the scale « is applied. This is depicted
in Fig. 3(a).

Consider the case where no information about the control
direction 6,, is revealed to the controller before acting, i.e.
the controller has 0 bits of information about the system
randomness. Clearly, in this case the optimal control action
Uln] = 0, and no growth « can be tolerated. The system is
only stable if o < 1. For the other extreme case, where the
controller knows the present control direction perfectly, the
following theorem characterizes the optimal strategy.

Theorem 4.1: The optimal control for the system (12) is
given by the greedy strategy, i.e. U*[n] = —X;[n]cos6, —
Xs[n]sin 6, for all n.

The proof follows using dynamic programming.

Corollary 4.2: The logarithmic decay rate for system (12)
with perfect information at each time n about 6, is In 2, and
the tolerable growth rate is thus a® = 2.



Proof: The logarithmic decay rate of the system for the
optimal control is given by

}/”} L X0+ [ X (0]
T Jo 2 |X1][0]cosf — X5[0]sin 6|2

This integral evaluates to In 2, and hence a® = 2. [ |

do (13)

B. PFartial side-information

The symmetric randomness in this example makes is easy to
evaluate the impact of side-information regarding the control
randomness. Instead of perfect side-information, what happens
when the controller has access to only two bits of information
about the control direction?

Consider the space divided into quadrants, and only the
quadrant containing the direction will be revealed at time n.
Say only the quadrant of the control direction 6,,, Q1 or Qo,
is revealed to the controller at time n (Fig. 3(b)).

Theorem 4.3: The logarithmic decay rate with two bits of
side-information for the system (12) is at least .47, and the
tolerable growth rate is thus at least o« = 1.61.

This also follows using dynamic programming. Similar re-
sults for k-bits of side-information are summarized in Table 1.
Just three bits of side-information gets the tolerable growth
rate pretty close to the case of perfect side-information.

TABLE I
SYSTEM GROWTH AS A FUNCTION OF STATE-INFORMATION
Side-info | Decay rate | Tolerable growth

0 bits 0 1

1 bit 0.200 1.22

2 bits 0.477 1.61

3 bits 0.624 1.86
oo bits In2 2

Note that even in the presence of noisy information about
the control direction it is possible to stabilize the system for
certain growth rates . This parallels the result in [14].

C. A spinning observer: the estimation case

The behavior of the corresponding estimation problem
presents a sharp contrast to the control problem. Consider the
system below, where the observation directions #,, are random

] =[x

Yin] = [cos8, sinf,] {Xl[”q .

Xaln] (14)

If 6,, is perfectly known to the observer, the estimation error
goes to zero after the first two observations. So the logarithmic
decay rate of the error with perfect information is infinity,
unlike the control case which has a small finite decay rate.

Surprisingly, the two-step observability result is quite frag-
ile. We know from the arguments in [14] that even a slight
continuous uncertainty regarding 6,, renders the estimation
problem impossible. The error is not shrinking with time.
Partial side-information is no more useful than no side-
information at all.

V. AN INTERMITTENT CONTROLLER

This section considers the control problem that is the dual of
the intermittent Kalman filtering problem [20]. In [21], Mo and
Sinopoli found two interesting examples that defined corner
cases for the critical erasure probability for the estimation
problem. Building on this, Park and Sahai characterized the
difference in the critical drop probability in the presence and
absence of eigenvalue cycles [22]. The control counterpart is
defined below:

il =0 al [l s ]

Y[n] = {Xl[”q . (15)

Xa[n]

Let Appaz = |A1| > |A2| > 1, and S[n] is a Bernoulli-(p)
random variable. We use the terminology ‘control arrival’ in
the event that S[n] = 1. [23] showed that this system can
be mean-square stabilized by an LTI controller if and only if
L—p < G

Here, we investigate the impact of partial non-causal side-
information about control arrivals on the critical probability.
The logarithmic decay rate of the system does not serve
as a good measure in this problem since the probability of
the system state eventually being set to zero is 1, but the
interesting question is that of the rate of decay. The change
in the critical probability can be thought of as a proxy for the
value of side-information and we explore how it changes.

Non-causal look-ahead regarding the sequence 3[n| does not
change the critical probability for the observation problem.
We are interested in understanding the effect of this side-
information for the control problem.

Our first observation is to note that with infinite look-ahead
on the sequence ([n], the controller is able to plan for future
arrivals and will be able to set the state to zero on the second
arrival.

Theorem 5.1: The critical probability for the control prob-
lem eq. (15) is ﬁ

The proof follows from a time-reversal argument: the con-
trol problem is the same as the observation problem if time
is reversed and we are only waiting on the first two arrivals.

The result follows from arguments in [24]. |
With this background, we consider the case with \; = 2
and Ay = —2. These eigenvalues form a cycle of period

two. We can further separate out the angle and the mag-
nitude of the eigenvalues and write the gain matrix A =

dORI!

0. .
_1] is a matrix that rotates a vector by 7,

2
1 0 1 0], . . .
and {O B J = {O J is the identity matrix.
Theorem 5.2: A greedy control strategy that
projects the state vector in the control direction
Uln]=—-[2 2] [X1[n]X2 [nHT is the optimal strategy.

The basic idea is that controls applied at even and odd times
cannot substitute for each other and one of each is essential.
These arguments for the 2D-case generalize to systems of
dimension-k with an eigenvalue cycle of period-k and the same



results hold: the estimation critical probability and the control
critical probability are exactly the same. Further, since the
strategy is time-invariant, non-causal knowledge of the pattern
of arrivals would have no impact on the rate of the decay of
the system state. Here, side-information has no value.

On the other hand, consider a general aperiodic system.
The optimal strategy in this case is unclear without any look-
ahead, however, we can implement a finite-horizon dynamic
programming solution to the problem to numerically evaluate
the critical probability for a given system. This is explored
in Fig. 4, where the critical probabilities for the problem are
plotted against the maximum eigenvalue. The first interesting
observation is that the optimal dynamic programming solution
with no look-ahead decays exactly as the optimal LTT strategy:
the lines for ﬁ and the optimal dynamic programming
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strategy (¢ = 0) are on top of each other [25].

With infinite look-ahead, the critical probability decays as
ﬁ, which is the topmost line. To understand the behavior
in between, we plot the the strategy with one-step look-ahead
at each time (¢ = 1), and one-step look-ahead with probability
half (¢ = 0.5). The optimal dynamic programming strategies
are compared to a simple align-and-kill strategy (AK) that
assumes that the next control will arrive. The strategies seem
to converge at high eigenvalues and this warrants further
exploration. That the slopes are different suggests that the side-
information has a scaling effect on the mapping between the
eigenvalues and the critical erasure probability.

The change in the slopes of the curves shows that channel
predictability gets more valuable with increasing eigenvalues.
A system designer might prefer a noisier but more predictable
channel, even though it has lower anytime reliability. In
contrast to the observation problem, knowledge of future
control directions seems to be the useful side-information for
the general aperiodic control problem.
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Fig. 4. Ceritical erasure probability vs. mag. of max eigenvalue i—; =1.18.
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