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Abstract—Rooted trees with probabilities are used to analyze
properties of a variable length code. A bound is derived on the
difference between the entropy rates of the code and a memory-
less source. The bound is in terms of normalized informational
divergence. The bound is used to derive converses for exact
random number generation, resolution coding, and distribution
matching.

I. I NTRODUCTION

A rooted tree with probabilities is shown in Fig.1. The
tree consists of a rootǫ, branching nodes{ǫ, 1}, and leaves
{0, 10, 11}. PY is the leaf distribution. James L. Massey
advocated the framework of such trees for the analysis of
variable length codes [1], [2], [3, Sec. 2.2.2].

Consider a discrete memoryless source (DMS)PZ with
letters in Z and consider a device that generates variable
length codewords with letters inZ. We are interested in two
properties.

(1) How well does our device mimic the DMSPZ?
(2) At which rate does our device produce output?

We measure (1) bynormalized informational divergenceand
(2) by entropy rate. In this work, we use the framework of
rooted trees with probabilities to relate these two measures.

This paper is organized as follows. In Sec.II , we review
properties of rooted trees with probabilities. In Sec.III , we de-
rive chain rules for such trees by using Rueppel and Massey’s
Leaf-Average Node Sum Interchange Theorem (LANSIT) [2].
We propose anormalizedLANSIT and statenormalizedchain
rules. In SecIV, we derive variable length results for normal-
ized informational divergence and entropy rate. In Sec.V, we
apply our results to derive converses, which recover existing
converses for exact random number generation [4], [5] and
generalize existing converses for resolution coding [6, Sec. II],
[7]. We establish a new converse for distribution matching [8]–
[10].

II. ROOTED TREES WITHPROBABILITIES

We consider finite rooted trees over finite alphabetsZ =
{0, 1, . . . ,m − 1}. An example forZ = {0, 1} is shown in
Fig. 1. A rooted treeT consists of branching nodesB with
m successors each and leavesL with no successors. Each
node except the root node has exactly one predecessor. The
root node has no predecessor. For each branching node, each
element ofZ labels exactly one outgoing branch. Each node
is uniquely identified by the string of labels on the path from
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Fig. 1. A rooted tree with probabilities over the binary alphabetZ = {0, 1}.

the root to the node. The root node is identified by the empty
string ε. For each nodet ∈ T , ℓ(t) denotes the number of
branches on the path from the root to the nodet. Equivalently,
ℓ(t) is the number of letters in the stringt.

A. Probabilities Induced by Leaf Distribution

Consider a random variableY with distributionPY on L.
We extendPY to T by associating with each stringt ∈ T a
probability

Q(t) =
∑

s∈L : s
ℓ(t)
1 =t

PY (s) (1)

wheresℓ(t)1 = s1s2 · · · sℓ(t). In other words,Q(t) is the sum
of the probabilities of all leaves that havet as a prefix. We
can interpretQ(t) as the probability of choosing a path from
the root to a leaf that passes through nodet. In particular, the
node probability of the root is alwaysQ(ǫ) = 1. For example,
the node probabilities in Fig.1 are

Q(ǫ) = 1, Q(0) = Q(1) =
1

2
, Q(10) =

1

8
, Q(11) =

3

8
.

For each stringt ∈ B and each letterz ∈ Z, we define a
branching probability

PYt
(z) =

Q(tz)

Q(t)
(2)

wheretz is the stringt concatenated with the letterz ∈ Z.
The branching distributions in Fig.1 are thus

PY1(0) =
1
8
1
2

=
1

4
, PY1(1) =

3
8
1
2

=
3

4
, (3)

PYǫ
(0) = PYǫ

(1) =
1

2
. (4)
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TABLE I
CHAIN RULES ON ROOTED TREES WITHPROBABILITIES.

function increment un-normalized normalized

LANSIT f(t) ∆f(tz) E[f(Y )]− f(ε) =
∑

t∈B

Q(t)E[∆f(tYt)]
E[f(Y )]−f(ε)

E[ℓ(Y )]
=

∑

t∈B

PB(t) E[∆f(tYt)]

Path Length Lemma ℓ(t) 1 E[ℓ(Y )] =
∑

t∈B

Q(t) E[ℓ(Y )]
E[ℓ(Y )]

=
∑

t∈B

PB(t)E[∆ℓ(tYt)] = 1

Leaf Entropy Lemma − log2 Q(t) − log2 PYt
(z) H(PY ) =

∑

t∈B

Q(t)H(PYt
)

H(PY )
E[ℓ(Y )]

= H(PYB
|PB)

Leaf Divergence Lemma log2
Q(t)
Q′(t)

log2
PYt

(z)

P
Y ′

t

(z)
D(PY ‖PY ′ ) =

∑

t∈B

Q(t)D(PYt
‖PY ′

t
)

D(PY ‖P
Y ′ )

E[ℓ(Y )]
= D(PYB

‖PY ′

B

|PB)

B. Probabilities Induced by Alphabet Distribution

Let PZ be a distribution on the alphabetZ. The distribution
PZ induces a distribution onL, which we denote byPL

Z . For
eacht ∈ L, we have

PL
Z (t) := PZ(t1) · · ·PZ(tℓ(t)). (5)

For example, consider the binary distributionPZ(0) = 1 −
PZ(1) = 1

3 . For the leavesL = {0, 10, 11} in Fig. 1, the
distributionPZ induces the distribution

PL
Z (0) =

1

3
, PL

Z (10) =
2

3
· 1
3
, PL

Z (11) =
2

3
· 2
3
. (6)

If all strings in L are of lengthn, thenPL
Z (t) = Pn

Z (t) for
all t ∈ L, wherePn

Z is the usual product distribution ofn
independent random variables with distributionPZ .

III. C HAIN RULES ON TREES

A. Notation

We denote expectation byE[·] and define informational
divergence, entropy, and variational distance as

D(PY ‖PZ) :=
∑

z∈suppPY

PY (z) log2
PY (z)

PZ(z)
(7)

H(PY ) :=
∑

z∈suppPY

PY (z)[− log2 PY (z)] (8)

‖PY − PZ‖1 :=
∑

z∈suppPY ∪suppPZ

|PY (z)− PZ(z)| (9)

wheresuppPY is the support ofPY .

B. LANSIT

Let T be a rooted tree and letf be a function that assigns
to eacht ∈ T a real valuef(t). For eacht ∈ B and z ∈ Z
define the increment∆f(tz) := f(tz) − f(t). Rueppel and
Massey’s LANSIT is the following general chain rule.

Proposition 1 (LANSIT, [2, Theo 1]).

E[f(Y )]− f(ε) =
∑

t∈B

Q(t)E[∆f(tYt)]. (10)

In Tab. I, we display various instances of the LANSIT. The
Path Length Lemma and the Leaf Entropy Lemma can be
found, e.g, in Massey’s lecture notes [3, Sec. 2.2.2]. The Leaf
Divergence Lemma is to the best of our knowledge stated here
for the first time. If all paths in a tree have the same length

n, thenPY = PY n is a joint distribution of a random vector
Y n = Y1Y2 · · ·Yn that takes on values inZn. For i = ℓ(t),
we havePYt

= PYi+1|Y i

1
(·|t) and Q(t) = PY i

1
(t) and the

Leaf Entropy Lemma and the Leaf Divergence Lemma are
the usual chain rules for entropy and informational divergence,
respectively [11, Chap. 2].

C. Normalized LANSIT

Let B be a random variable on the set of branching nodes
B and define

PB(t) =
Q(t)

E[ℓ(Y )]
, t ∈ B. (11)

We have

∑

t∈B

PB(t)
(a)
=

∑

t∈B Q(t)

E[ℓ(Y )]

(b)
= 1 (12)

where (a) follows by the definition ofPB, and (b) follows by
the Path Length Lemma. It follows from (12) thatPB defines
a distribution onB. This observation leads to the following
simple and useful extension of the LANSIT.

Proposition 2 (Normalized LANSIT).

E[f(Y )]− f(ε)

E[ℓ(Y )]
=

∑

t∈B

PB(t)E[∆f(tYt)]. (13)

For a real-valued functiong defined on the set of distribu-
tions, we use the notation

E[g(PYB
)|PB ] :=

∑

t∈B

PB(t)g(PYt
). (14)

Accordingly, we defineH(PYB
|PB) and D(PYB

‖PY ′

B
|PB).

Using this notation, we list normalized versions of the Path
Length Lemma, the Leaf Entropy Lemma, and the Leaf
Divergence Lemma in Tab.I. These normalized versions are
instances of the normalized LANSIT.

IV. I NFORMATIONAL DIVERGENCE AND ENTROPY RATE

We compare an arbitrary distributionPY on the set of leaves
L to the distributionPL

Z on L that is induced by a DMS
PZ . Note that in general,PY generates letters fromZ with
memory, see Fig.1 and (4) for an example.



A. Codewords of Length1

We start with the special case whenℓ(t) = 1 for all t ∈ L
and equivalently,L = Z. The DMS we compare to is the
uniform distributionPU onZ. In this case, normalized and un-
normalized informational divergence are the same and entropy
rate is the same as entropy. We have

D(PY ‖PU ) = H(PU )−H(PY ). (15)

In particular, if D(PY ‖PU ) → 0 then H(PY ) → H(PU ).
Next, suppose the DMS we compare to has a distributionPZ

that is not necessarily uniform. By Pinsker’s inequality [11,
Lemma 11.6.1], we have

D(PY ‖PZ) → 0 ⇒ ‖PY − PZ‖1 → 0. (16)

Let g be a function that is continuous inPZ . Then we have

‖PY − PZ‖1 → 0 ⇒ |g(PY )− g(PZ)| → 0. (17)

For instance, the entropyH is continuous in PZ [12,
Lemma 2.7] and therefore

‖PY − PZ‖1 → 0 ⇒ |H(PY )−H(PZ)| → 0. (18)

Combining (16) and (18), we get the relation

D(PY ‖PZ) → 0 ⇒ |H(PY )−H(PZ)| → 0. (19)

B. Codewords of Length Larger than1: First Attempt

Consider the special case when the generated strings are of
fixed lengthn ≥ 1 with the joint distributionPY n . Suppose
further that

D(PY n‖Pn
Z )

n
≤

√
n

n
. (20)

As n → ∞, the normalized informational divergence ap-
proaches zero. By Pinsker’s inequality, we have

‖PY n − Pn
Z‖1 ≤

√√
n2 ln 2. (21)

Forn ≥ 9, the right-hand side of (21) is larger than2, which is
useless because variational distance is trivially boundedfrom
above by2. This example illustrates that the line of arguments
(16)–(19) does not directly generalize to codeword lengths
larger than one. This is our motivation to analyze the variable
length case within the framework of rooted trees.

C. Normalized Pinsker’s Inequality

Proposition 3 (Normalized Pinsker’s Inequality).

D(PY ‖PL
Z )

E[ℓ(Y )]

(a)
= D(PYB

‖PZ |PB)

(b)
≥ 1

2 ln 2
E

[

‖PYB
− PZ‖21

∣

∣

∣
PB

]

(c)
≥ 1

2 ln 2
E
2
[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

. (22)

Proof: Equality in (a) follows by the Normalized Leaf
Divergence Lemma, (b) follows by Pinsker’s inequality, and
(c) follows by Jensen’s inequality [11, Chap. 2].

Prop.3 is a quantitative statement. Qualitatively, we have

D(PY ‖PL
Z )

E[ℓ(Y )]
→ 0 ⇒ E

[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

→ 0. (23)

If L = Z, i.e., all strings inL are of length1 andB = {ε},
then (22) is simply the original Pinsker’s inequality and (23)
recovers implication (16).

D. Continuity for Trees

Proposition 4. Let P be a distribution onZ and let g be
a real-valued function whose maximum and minimum values
differ at most bygmax. Suppose thatg is continuous inPZ ,
i.e., there is a functionδ(ǫ) such that for allǫ ≥ 0

‖P − PZ‖1 ≤ ǫ ⇒ |g(P )− g(PZ)| ≤ δ(ǫ) (24)

whereδ(ǫ) → 0 as ǫ → 0. Then we have for allǫ ≥ 0

E

[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

≤ θ

⇒
∣

∣

∣
E
[

g(PYB
)
∣

∣PB

]

− g(PZ)
∣

∣

∣
≤ δ(ǫ) +

θ

ǫ
gmax. (25)

Proof: The proof is given in AppendixA.
By settingθ = ǫ2 in (25), we get the qualitative implication

E

[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

→ 0

⇒
∣

∣

∣
E
[

g(PYB
)
∣

∣PB

]

− g(PZ)
∣

∣

∣
→ 0. (26)

If L = Z, then (26) recovers (17) for boundedg. For a specific
function g, if the functionδ(ǫ) is known, then the right-hand
side of (25) can be minimized overǫ to get a bound that
depends only onθ.

E. Entropy Rate Continuity on Trees

The entropy is continuous inPZ [12, Lemma 2.7] and
bounded bylog2 |Z|. Thus, Prop.4 applies forg = H and
we have the implication

E

[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

→ 0

⇒
∣

∣

∣

∣

H(PY )

E[ℓ(Y )]
−H(PZ)

∣

∣

∣

∣

(a)
=

∣

∣

∣
H(PYB

|PB)−H(PZ)
∣

∣

∣

(b)→ 0. (27)

Step (a) follows by the Normalized Leaf Entropy Lemma
and (b) follows by (26). Note that by the Normalized Leaf
Divergence Lemma,H(PZ) is the entropy rate ofPL

Z . For
L = Z, (27) recovers implication (18).

Proposition 5. The following implication holds:

E

[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

≤ θ(ǫ)

⇒
∣

∣

∣

∣

H(PY )

E[ℓ(Y )]
−H(PZ)

∣

∣

∣

∣

≤ σ(ǫ), 0 ≤ ǫ ≤ 1

2
(28)

where

θ(ǫ) =
1

log2 |Z|ǫ
2 log2

|Z|
eǫ

, σ(ǫ) = ǫ log2
|Z|2
eǫ2

. (29)

Proof: The proof is given in AppendixB.
In (28), as ǫ → 0, both θ(ǫ) → 0 and σ(ǫ) → 0, which

shows that Prop.5 provides a quantitative version of (27).
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Fig. 2. Normalized informational divergence versus entropy rate for the
rooted tree in Fig.1. We compare a leaf distributionPY with the DMS
PZ(0) = 1 − PZ(1) = 1

3
. The induced leaf distributionPL

Z
is calculated

in (6). In horizontal direction, we displayH(PY )/E[ℓ(Y )] and in vertical
direction D(PY ‖PL

Z )/E[ℓ(Y )]. The green cross corresponds to thePY

stated in Fig.1. The black dots result from1000 distributionsPY that were
generated by choosing the entries uniformly at random between zero and
one and then normalizing to one. The black arrow indicates the point that
corresponds toPY = PL

Z
. The red lines display the bounds from Prop.6

with α in vertical andH(PZ ) ± β(α) in horizontal direction. Note that the
red bounds apply toany rooted tree with alphabet size|Z| = 2. Changing
PZ and therebyH(PZ) changes only the horizontal position of the bounds.

F. Normalized Informational Divergence and Entropy Rate

By the qualitative implications (23) and (27), we have

D(PY ‖PL
Z )

E[ℓ(Y )]
→ 0 ⇒

∣

∣

∣

∣

H(PY )

E[ℓ(Y )]
−H(PZ)

∣

∣

∣

∣

→ 0. (30)

For L = Z, (30) recovers implication (19). The next proposi-
tion provides a quantitative version of implication (30).

Proposition 6. Let θ, σ be the functions defined in Prop.5.
For 0 ≤ α ≤ 1

2 ln 2θ
2(12 ), defineǫ′ = θ−1(

√
α2 ln 2) and

β(α) = σ(ǫ′). We have the implication

D(PY ‖PL
Z )

E[ℓ(Y )]
≤ α ⇒

∣

∣

∣

∣

H(PY )

E[ℓ(Y )]
−H(PZ)

∣

∣

∣

∣

≤ β(α) (31)

α → 0 ⇒β(α) → 0. (32)

Proof: Statement (31) follows by combining Prop.3 and
Prop. 5. As α → 0, ǫ′ = θ−1(

√
α2 ln 2) → 0 by (29) and

therefore,β(α) = σ(ǫ′) → 0. This proves (32).
In Fig. 2, we display the bounds from Prop.6 for the rooted

tree in Fig.1.

V. CONVERSES

We want to encode a DMSPX with letters inX to mimic
a target DMSPZ with letters inZ. Variable length coding
uses a complete dictionaryD with letters inX , a complete
codebookC with letters in Z, and a mappingf : D → C.
A set is complete if it is the set of leaves of a rooted tree
as defined in Sec.II . The encoder parses the input stream
by the dictionary, which generates a random variableD with

distribution PD
X . The mapping generates a random variable

Y = f(D). Two classes of mappings are of interest.

1. The mappingf is deterministicbut the input does not
need to be reconstructed from the output.

2. The mappingf is random but the input has to be
reconstructed correctly from the output with probability
close to one.

In the following, we derive rate converses for encoders in class
1. (2.) that bound the minimum (maximum) rate, at which a
required normalized informational divergence can be achieved.

A. Converse for Deterministic Encoders

Consider an encoder of class 1. Since the mappingf is
deterministic, we have

H(PD) = H(PDf(D)) ≥ H(Pf(D)) = H(PY ). (33)

By the Normalized Leaf Entropy Lemma, we have

H(PD) = H(PD
X ) = E[ℓ(D)]H(PX). (34)

SupposeD(PY ‖P C
Z )/E[ℓ(Y )] ≤ α. Then by Prop6 we have

H(PY ) ≥ H(PZ)E[ℓ(Y )]− β(α)E[ℓ(Y )]. (35)

Using (34) and (35) in (33) and reordering the terms gives the
following result.

Proposition 7.

D(PY ‖P C
Z)

E[ℓ(Y )]
≤ α ⇒ E[ℓ(D)]

E[ℓ(Y )]
≥ H(PZ)

H(PX)
− β(α)

H(PX)
. (36)

SinceE[ℓ(Y )] ≥ 1, Prop.7 provides a rate converse also for
un-normalized informational divergence. Prop.7 establishes
quantitative variable-length versions of the converses in[6,
Sec. II] both for normalized and un-normalized informational
divergence. Prop.7 implies [7, Prop. III]. Exact generation of
PZ requiresα = 0, which impliesβ(α) = 0, and we recover
the converses by Knuth and Yao [4] and Han and Hoshi [5].

B. Converse for Random Encoders

Let g be a decoder that calculates an estimateD̂ = g(Y )
and letPe := Pr{D̂ 6= D} be the probability of erroneous
decoding. We have

H(PD)−H(PY ) ≤ H(PD|PY )
(a)
≤ H2(Pe) + Pe log2 |D| (37)

where (a) follows by Fano’s inequality [11, Theo. 2.10.1]
and whereH2 denotes the binary entropy function. Suppose
D(PY ‖P C

Z)/E[ℓ(Y )] ≤ α. Then by Prop6 we have

H(PY ) ≤ H(PZ)E[ℓ(Y )] + β(α)E[ℓ(Y )]. (38)

Combining (37), (38), and (34) and reordering the terms
proves the following proposition.

Proposition 8. The inequalities

Pe ≤ ǫ ≤ 1

2
,

D(PY ‖P C
Z )

E[ℓ(Y )]
≤ α (39)



imply

E[ℓ(D)]

E[ℓ(Y )]
≤ H(Z)

H(X)
+

β(α)

H(X)
+

H2(ǫ) + ǫ log2 |D|
E[ℓ(Y )]H(X)

. (40)

Inequality (40) establishes a rate converse for distribution
matching. Variable length codes for which achievability can
be shown are presented in [8], [9], [10].

APPENDIX

A. Proof of Prop.4

We have

|E[g(PYB
)|PB ]− g(PZ)| =

∣

∣

∣

∑

t∈B

PB(t)[g(PYt
)− g(PZ)]

∣

∣

∣

≤
∑

t∈B

PB(t)
∣

∣g(PYt
)− g(PZ)

∣

∣ (41)

=
∑

t : ‖PYt
−PZ‖1<ǫ

PB(t)
∣

∣g(PYt
)− g(PZ)

∣

∣

+
∑

t : ‖PYt
−PZ‖1≥ǫ

PB(t)
∣

∣g(PYt
)− g(PZ)

∣

∣. (42)

We next bound the two sums in (42). The first sum in (42) is
bounded by

∑

t : ‖PYt
−PZ‖1<ǫ

PB(t)
∣

∣g(PYt
)− g(PZ)

∣

∣

(a)
≤

∑

t : ‖PYt
−PZ‖1<ǫ

PB(t)δ(ǫ)

≤ δ(ǫ) (43)

where (a) follows from (24). The second sum in (42) is
bounded as

∑

t : ‖PYt
−PZ‖1≥ǫ

PB(t)
∣

∣g(PYt
)− g(PZ)

∣

∣

(a)
≤

∑

t : ‖PYt
−PZ‖1≥ǫ

PB(t)gmax

≤ gmax

∑

t : ‖PYt
−PZ‖1≥ǫ

PB(t)
‖PYt

− PZ‖1
ǫ

≤ gmax

ǫ

∑

t∈B

PB(t)‖PYt
− PZ‖1

(b)
=

gmax

ǫ
E

[

‖PYB
− PZ‖1

∣

∣

∣
PB

]

(c)
≤ gmax

ǫ
θ. (44)

Step (a) follow from the assumption in the proposition and
we used definition (14) in (b). Inequality (c) follows from the
suppositionE[‖PYB

− PZ‖1|PB ] < θ. Using the two bounds
(43) and (44) in (42), we get

∣

∣

∣
E
[

g(PYB
)
∣

∣PB

]

− g(PZ)
∣

∣

∣
≤ δ(ǫ) +

θ

ǫ
gmax. (45)

B. Proof of Prop.5

We apply Prop.4 with

g = H (46)

gmax = log2 |Z| (47)

δ(ǫ)
(a)
= −ǫ log2

ǫ

|Z| , 0 ≤ ǫ ≤ 1

2
(48)

where we apply [12, Lemma 2.7] in (a). We have
∣

∣

∣

∣

H(PY )

E[ℓ(Y )]
−H(PZ)

∣

∣

∣

∣

(a)
=

∣

∣

∣
H(PYB

|PB)−H(PZ)
∣

∣

∣
(49)

(b)
≤ δ(ǫ) +

θ

ǫ
log2 |Z|

(c)
= −ǫ log2

ǫ

|Z| +
θ

ǫ
log2 |Z|. (50)

This bound holds for allǫ and we minmize it by calculating
its derivative with respect toǫ and setting it equal to zero:

∂

∂ǫ

[

−ǫ log2
ǫ

|Z| +
θ

ǫ
log2 |Z|

]

(51)

= − log2
ǫ

|Z| − log2 e−
θ

ǫ2
log2 |Z| !

= 0 (52)

⇒θ(ǫ) :=
ǫ2

log2 |Z| log2
|Z|
eǫ

. (53)

We plugθ(ǫ) into (50) and define

σ(ǫ) := ǫ log2
|Z|2
eǫ2

. (54)
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