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Integer-Forcing Source Coding
Or Ordentlich and Uri Erez,Member, IEEE

Abstract—Integer-Forcing (IF) is a new framework, based
on compute-and-forward, for decoding multiple integer linear
combinations from the output of a Gaussian multiple-input
multiple-output channel. This work applies the IF approach
to arrive at a new low-complexity scheme, IF source coding,
for distributed lossy compression of correlated Gaussian sources
under a minimum mean squared error distortion measure. All
encoders use the same nested lattice codebook. Each encoder
quantizes its observation using the fine lattice as a quantizer
and reduces the result modulo the coarse lattice, which plays the
role of binning. Rather than directly recovering the individual
quantized signals, the decoder first recovers a full-rank set of
judiciously chosen integer linear combinations of the quantized
signals, and then inverts it. In general, the linear combinations
have smaller average powers than the original signals. This
allows to increase the density of the coarse lattice, which in turn
translates to smaller compression rates. We also propose and
analyze a one-shot version of IF source coding, that is simple
enough to potentially lead to a new design principle for analog-
to-digital converters that can exploit spatial correlations between
the sampled signals.

I. I NTRODUCTION

The distributed lossy compression problem, depicted in
Figure 1, consists of multiple distributed encoders and one
decoder. The encoders have access to correlated observations
which they try to describe to the decoder with minimum rate
and minimum distortion [1]–[3]. This problem naturally arises
in numerous scenarios. For instance, consider a sensor network
where multiple sensors that observe correlated random vari-
ables are connected via finite rate links to a central processor,
but not to one another, and have to describe their observations
to the central processor with minimum distortion. As another
example, consider two competing television channels that
cover the same event and have to broadcast their programs to
the same end-users (that may choose which channel to watch
and therefore need to be able to recover both programs with
low distortion). Although the distributed lossy compression
problem is usually classified as a pure source-coding problem,
it is also an important building block in network channel
coding problems. For instance, multiple relays may observe
correlated signals that describe the messages transmittedby the
different encoders in the network. The relays can compress-
and-forward these signals further down the network in orderto
ultimately help the decoder recover the transmitted messages.

A special case that received considerable attention is that
of distributed lossy compression of jointly Gaussian random

The work of U. Erez was supported in part by the Israel ScienceFoundation
under Grant No. 1557/13. The work of O. Ordentlich was supported by
the Adams Fellowship Program of the Israel Academy of Sciences and
Humanities, and a fellowship from The Yitzhak and Chaya Weinstein Research
Institute for Signal Processing at Tel Aviv University.

O. Ordentlich and U. Erez are with Tel Aviv University, Tel Aviv, Israel
(email: ordent,uri@eng.tau.ac.il).

x1 E1
R1

...

xK EK
RK

D
(x̂1, d1)

...
(x̂K , dK)

Fig. 1. The distributed source coding problem. Thekth encoderEk has
access to the vectorxk that containsn i.i.d. realizations of the random
variablexk. It encodesxk to an index taking values in1, . . . , 2nRk . The
sourcesx1, . . . , xK are assumed correlated and the encoders are not allowed
to cooperate. The decoder’s goal is to produce estimates of each xk with
average distortionsdk using theK indices it received from the encoders.

variables under a quadratic distortion measure. The best known
achievable scheme is that of Berger and Tung [1], [2], al-
though some examples where Berger-Tung compression can
be outperformed are known [4]–[6]. In the Gaussian case, the
Berger-Tung approach reduces to each encoder compressing
its source using a standard point-to-point quantizer, followed
by Slepian-Wolf [7] encoding. For the quadratic Gaussian case
with K = 2, Wagneret al. [8] proved that this approach is
optimal.

The importance of the quadratic-Gaussian distributed lossy
compression problem has motivated researchers to design low-
complexity encoding schemes that approach the performance
of the Berger-Tung inner bound. This line of work was pio-
neered in [9], [10] and remains an active area of research, see,
e.g., [11]–[13] and references therein. However, at a high level,
the existing approaches for distributed source coding are either
notably asymmetric in the rates they require from the encoders,
as they rely on the lattice-based implementation of Wyner-Ziv
coding [13], [14] and successive Wyner-Ziv coding [11], or
specifically tailored to predefined correlation characteristics of
the sources [10]. In general, the rate requirements in schemes
that are based on Wyner-Ziv coding can be symmetrized
by time-sharing between different compression/decompression
orders [13]. Nevertheless, schemes using time-sharing have a
few drawbacks. First, it requires the encoders and the decoders
to use a larger number of codebooks, which complicates
implementation. Second, it requires coordination betweenthe
distributed encoders, which is less crucial when time-sharing
is not used. Finally, the compression block must be at least as
long as the number of operation points that are time-shared.

In this work we propose a novel framework,integer-
forcing source coding, for distributed lossy compression with
symmetricrate and distortion requirements for all encoders.
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This scheme does not incorporate time-sharing. As in previ-
ous works, our approach is based on standard quantization
followed by lattice-based binning. However, in contrast to
previous works, in the proposed framework the decoder first
uses the bin indices for recovering linear combinations with
integer coefficients of the quantized signals, and only then
recovers the quantized signals themselves. The decoder is
free to optimize the full-rank set of integer-valued coefficients
such as to best exploit the correlations between the quantized
signals. Choosing these coefficients appropriately results in
performance that is close to that of a joint typicality decoder,
with a substantially smaller computational burden. In fact, the
only operations performed by the encoders are quantization
and lattice-binning which corresponds to nearest neighborde-
coding, whereas the decoder is only required to perform matrix
multiplications and nearest neighbor decoding operations.

An important feature of the proposed approach is that
it allows the system designer to trade-off performance and
complexity. At one extreme, integer-forcing (IF) source coding
can be implemented using high-dimensional nested lattices
that have near-optimum quantization and channel coding per-
formance. At the other extreme, IF source coding can be
implemented with the low-complexity one-dimensional scaled
integer latticeZ, used as a quantizer as well as a channel code.
Surprisingly, the rate loss from using the1D lattice rather than
“good” high-dimensional nested lattices, amounts to about2
bits per sample per encoder, at any distortion level. At high
resolution, where the compression rate is high, this loss of2
bits is insignificant.

Implementing the1D version of IF source coding only
requires each encoder to reduce its observation modulo the
lattice 2R∆Z and then quantize the obtained signal onto∆Z,
for some∆ > 0 which depends on the required distortion.
This simple operation can actually be implemented using an
analog-to-digital converter (ADC).1 The observation that at
high resolution1D IF source coding does not lose much
w.r.t. the asymptotic performance achieved by Berger-Tung’s
compression may challenge the current paradigm of ADC
design - rather than sample each source at a high rate and
then compress it, why not sample at the compression rate
to begin with? An idea in a similar spirit lies at the heart
of compressed sensing [16], where thenumber of samples
required to reconstruct a sparse signal is reduced according to
its sparseness level. Here, thenumber of sampled bitsrequired
for reconstructing a source is reduced towards the source’s
rate-distortion function. The power consumption of an ADC
depends on the number of bits it produces per second [17]. If
the front end of the ADC includes an analog modulo operation,
the ADC will need less quantization levels, i.e., less bits.Thus,
if analog modulo reduction can be implemented efficiently,
the IF approach may potentially lead to a more efficient ADC
architectures.

IF source coding can be seen as the source coding dual of IF
equalization [18]. IF equalization is a low complexity receiver
architecture for the Gaussian MIMO channel. The IF receiver

1The analog modulo operation is actually already implemented, to some
extent, in a class of ADCs calledfolding ADCs[15].

first decodes integer linear combinations of the transmitted
codewords, which is possible if all transmitted codewords
were taken from the same linear code [19], and then solves
these linear combinations for the transmitted codewords. In IF
source coding, all encoders first quantize their observations to
the desired distortion level, and then reduce them modulo the
same latticeΛ.2 The decoder receives the quantized modulo
reduced signals. In order to form estimates of the original
signals with the desired distortion level, it has to figure
out what was the effect of the modulo reduction on each
observation. Rather than doing this directly, it first triesto
figure out what is the effect of reducingK linear combinations
with integer-valued coefficients of the original signals modulo
Λ, and only then extract the desired effects. See Figure 2.

The rest of the paper is organized as follows. In Section II
we formally define the distributed lossy compression problem
at hand, and introduce the performance benchmark we use
throughout the paper which is based on the Berger-Tung
inner bound. Basic lattice definitions and figures of merit
are recalled in Section III, where standard results on lattice
quantization are also reviewed. The IF source coding scheme
is presented in Section IV, and the performance limits of
the scheme are derived for the asymptotic case of high-
dimensional “good” nested lattice codebooks. In Section V,a
comparison between the performance of IF source coding and
other known coding schemes is given for several scenarios.
Applications of IF source coding to several communication
problems that are not restricted to pure lossy compression
are also given. In particular, we study the performance of
a compress-and-forward scheme for relay networks where
the compression is performed via IF source coding. We also
study the problem of distributively transmittingK correlated
Gaussian random variables overK parallel AWGN channels,
and show that IF source coding can improve over standard
approaches. In Section VI we describe and analyze the one-
shot version of IF source coding, where the scaled1D integer
lattice is used for quantization and channel coding.

Notation.We denote scalars by lowercase letters, vectors by
boldface lowercase letters and matrices by boldface uppercase
letters, e.g.,x, x and X. Column vectors usually represent
the spatial dimension whereas row vectors represent the time
dimension. For examplex = [x1 · · · xK ]T ∈ RK×1 may
represent a Gaussian vector of correlated random variables,
whereasxk ∈ R1×n may representn i.i.d. realizations of the
random variablexk. We denote the Euclidean norm of a vector
by ‖ · ‖ and the absolute value of the determinant of a square
matrix by | · |. All variables in the paper are real-valued and
all logarithms are to the base2.

II. PROBLEM STATEMENT

We consider a distributed source coding setting withK
encoding terminals and one decoder. Each of theK encoders
has access to a vectorxk ∈ Rn of n i.i.d. realizations of
the random variablexk, k = 1, . . . ,K. The random vector

2If the quantization is performed by the1D lattice Λf = ∆Z and the
coarse lattice used for binning isΛ = 2R∆Z, where2R is a positive integer,
the order of the modulo and quantization operations can be switched.
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Fig. 2. A schematic overview of the integer-forcing source coding framework with the nested lattice pairΛ ⊂ Λf . Each encoder adds a ditherdk uniformly
distributed over the Voronoi region of the fine latticeΛf and statistically independent of all other quantities, quantizes the dithered signal ontoΛf and reduces
the result modulo the coarse latticeΛ. The encoding rate is1

n
log(Vol(Λ)/Vol(Λf )). The decoder subtracts back the dithers and reduces the results modulo

Λ (this modΛ reduction is actually not necessary and is only illustratedfor didactic purposes). Then, the decoder multiplies the signals by a full-rank integer
matrix A ∈ ZK×K , reduces the resultsmodΛ and multiplies byA−1 to form the estimateŝx1, . . . , x̂K .

x = [x1 · · · xK ]T is assumed Gaussian with zero mean and
covariance matrix

Kxx , E(xxT ).

Each encoder maps its observationxk to an index using the
encoding function

Ek : R
n → {1, . . . , 2nRk},

and sends the index to the decoder.
The decoder is equipped withK decoding functions

Dk : {1, . . . , 2nR1} × · · · × {1, . . . , 2nRK} → R
n,

for k = 1, . . . ,K. Upon receivingK indices, one from each
terminal, the decoder generates estimates

x̂k = Dk (E1(x1), . . . , EK(xK)) , k = 1, . . . ,K.

A rate-distortion vector(R1, . . . , RK , d1, . . . , dK) is achiev-
able if there exist encoding functionsE1, . . . , EK and decoding
functionsD1, . . . ,DK such that

1

n
E
(
‖xk − x̂k‖2

)
≤ dk, (1)

for all k = 1, . . . ,K. LetX , [xT
1 · · · xT

K ]T . A conditionally
unbiasedrate-distortion vector(R1, . . . , RK , d1, . . . , dK) is
achievable if in addition to (1), the condition

E(x̂k|X) = xk, k = 1, . . . ,K (2)

is satisfied for any realization ofX. Note that this condition
is equivalent to

E(xk − x̂k|X) = 0, k = 1, . . . ,K.

Although condition (2) is not as common in the literature as
condition (1), in this paper we restrict attention to the condi-
tionally unbiased case, i.e., we impose condition (2). Several
applications of interest require the estimates formed by the
decoder to be conditionally unbiased. For instance, consider a
communication scenario where distributed antenna terminals
observe noisy linear combinations of the signals transmitted
by several encoders and want to forward a compressed version

of these signals to a central processor that needs to decode the
transmitted messages. In such a scenario it is most convenient
to treat the quantization noise as an additive one, meaning
that it is statistically independent of the signals that are
being quantized. This amounts to requiring condition (2).
Moreover, when the conditionally unbiased requirement (2)
is not essential to the application at hand, one can always
perform minimum mean-squared estimation ofX from X̂ and
further reduce the MSE distortion.

We further focus on the symmetric case whereR1 = · · · =
RK = R and d1 = · · · = dk = d. We do this for three
reasons. First, such a symmetry constraint naturally arises in
many applications, where the coding burden has to be equally
split between the distributed encoders. Second, this allows for
a simpler description of the proposed coding scheme and the
rate-distortion region it achieves. Finally, in an asymmetric
setting there exist several examples where structured binning
outperforms the standard approach of Berger-Tung compres-
sion [4]–[6]. Focusing on the symmetric case eliminates the
possibility of such examples that are, to some extent, skewed
towards using structured binnining. Nevertheless, we stress
that the scheme proposed in this paper is not restricted to
the symmetric case, and can be easily extended to achieve
asymmetric rate-distortion vectors by using a more compli-
catedchain of nested lattices, rather than the nested lattice
pair we use in the sequel.

Finding the full rate-distortion region, i.e., the set of all
achievable rate-distortion vectors, for the described setup is an
open problem forK > 2. ForK = 2, Wagneret al. [8] showed
that the Berger-Tung approach is optimal. This approach
consists of quantizing each source using standard single-source
rate-distortion theory with a Gaussian test channel, and then
using Slepian-Wolf encoding for compressing the quantization
indices. ForK > 2 it is now known that the Berger-Tung
approach does not attain the full rate-distortion region (see
e.g. [5]). However, to the best of our knowledge, it is not
known whether the Berger-Tung inner bound is loose for the
symmetric case. In the absence of a better known coding
scheme, we take the symmetric rate from Berger-Tung’s inner
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bound as our benchmark. More specifically, the sum-rate in
Berger-Tung’s inner bound is given by

K∑

k=1

Rk ≥ I(x;u), (3)

where u = [u1 · · ·uK ]T is a vector of auxiliary random
variables that satisfy the set of Markov chains

uk − xk − ({xj , uj}j 6=k)

and such that there exist functionsx̂k(u1, . . . , uK) satisfying
E(xk − x̂k)

2 < dk for all k = 1, . . . ,K. Optimizing overu is
a difficult task. A common and natural choice in the quadratic-
Gaussian case is taking

uk = αkxk + wk, k = 1, . . . ,K, (4)

where w1, . . . , wK are statistically independent zero mean
Gaussian random variables that are also independent ofx,
andα1, . . . , αK are some constants [20]. Such a choice was
shown to be optimal forK = 2 [8], but may be suboptimal for
larger dimensions. Since we are after conditionally unbiased
estimates for theK components ofx, we set αk = 1,
wk ∼ N (0, d) andx̂k(u1, . . . , uK) = uk for all k = 1, . . . ,K.
Substituting this choice in (3) gives

K∑

k=1

Rk ≥ 1

2
log

|Kxx + dI|
|dI|

=
1

2
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ . (5)

This sum-rate is achievable using Berger-Tung compression.
In this paper we are interested in the symmetric rate-distortion
region. To this end, we take (5) normalized byK as our
benchmark

RBT
bench(d) ,

1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ . (6)

Note thatRBT
bench(d) is not a lower bound on the minimal

symmetric rate-distortion function achieved by Berger-Tung
compression, as our choice ofu is not necessarily the best one.
It is also not an upper bound on the minimal symmetric rate-
distortion function achieved by Berger-Tung compression,as
the symmetric rate with our choice ofu may not be dominated
by the sum-rate constraint.

III. PRELIMINARIES

In this section we recall several lattice properties that will
be useful in the sequel and review the concept of dithered
lattice quantization.

A lattice Λ is a discrete subgroup ofRn which is closed
under reflection and real addition. We denote the nearest
neighbor quantizer associated with the latticeΛ by

QΛ(y) = argmin
t∈Λ

‖y − t‖. (7)

The basic Voronoi region ofΛ, denoted byV , is the set of all
points in Rn which are quantized to the zero vector, where

ties in (7) are broken in a systematic manner. The modulo
operation returns the quantization error w.r.t. the lattice,

[y] mod Λ = y −QΛ(y)

and satisfies the property

[a[y] mod Λ] mod Λ = [ay] mod Λ (8)

for any a ∈ Z and y ∈ Rn. This property will be used
extensively in the sequel. The second moment ofΛ is defined
as

σ2(Λ) =
1

n

1

Vol(V)

∫

u∈V

‖u‖2du,

whereVol(V) is the volume ofV . The effective radius of a
latticereff(Λ) is defined as the radius of ann-dimensional ball
whose volume equalsVol(V).

The latticeΛ can be used for quantizing continuous sources.
In particular, an encoder which is interested in conveying a
sourcey ∈ Rn to a decoder can computeQΛ(y), which
is a lattice point inΛ, and send a description of this point
to the decoder. The quantization error of such a scheme is
e = y−QΛ(y), which is a deterministic function ofy. Recall
that in this paper we are interested in encoder/decoder pairs
that produce conditionally unbiased estimates of the source,
which is clearly not the case for a standard lattice quantizer.
This may be overcome by allowing the encoder and decoder
to use common randomness. Letd ∼ Unif(V) be a random
dither vector uniformly distributed overV and statistically
independent ofy, known to both the encoder and the decoder.
The dithered lattice qunatizerassociated with the latticeΛ
computesQΛ(y+ d) and sends a description of the obtained
lattice point to the decoder. The decoder produces the estimate

ŷ = QΛ(y + d)− d

= y +QΛ(y + d)− (y + d)

= y − [y + d] mod Λ.

The Crypto Lemma [21, Lemma 1] ensures that the estimation
error−[y+d] mod Λ is statistically independent ofy and is
uniformly distributed overV . The symmetry of the Voronoi
region V guarantees that the estimation error has the same
distribution asd and has zero mean. Thus,ŷ = y + d in
distribution, and is a conditionally unbiased estimate ofy.
Clearly, the average MSE distortion attained by dithered lattice
quantization is given by

1

n
E
(
‖y − ŷ‖2

)
=

1

n
E(‖d‖2) = σ2(Λ).

Of course, dithered lattice quantization, as described above,
requires an infinite rate as there is an infinite number of points
in Λ. This can be handled using an entropy coded dithered
quantizer (ECDQ) [22]–[24], or a nested lattice codebook [13].
In this work we take the latter approach.

The following definitions characterize the lattice “goodness”
properties needed in this paper.

Definition 1 (Goodness for MSE quantization):A lattice
Λ, or more precisely, a sequence of lattices with growing
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dimensionn, is said to be good for MSE quantization if3

lim
n→∞

σ2(Λ) = lim
n→∞

r2eff(Λ)

n
.

Definition 2 (Semi-norm ergodic noise):We say that a ran-
dom noise vectorz, or more precisely, a sequence of random
noise vectors with growing dimensionn, with (finite) effective
variance σ2

Z
, E‖z‖2/n, is semi norm-ergodicif for any

ǫ > 0, δ > 0 andn large enough

Pr
(
‖z‖ >

√
(1 + δ)nσ2

z

)
≤ ǫ. (9)

Note that by the law of large numbers, any i.i.d. noise is semi
norm-ergodic.

The next Lemma restates Corollary 2 from [25] to fit our
purposes.

Lemma 1:Let d1, · · · ,dK be statistically independent ran-
dom dither vectors, each uniformly distributed over the
Voronoi regionV of a latticeΛ that is good for MSE quantiza-
tion. Let z be an i.i.d. random vector statistically independent
of {d1, · · · ,dK}. Any deterministic linear combination of
d1, · · · ,dK , z is semi norm-ergodic.

Definition 3 (Goodness for channel coding):A lattice Λ,
or more precisely, a sequence of lattices with growing
dimension n, is said to be good for channel coding if
for any 0 < δ < 1 and any n-dimensional semi norm-
ergodic vectorz with zero mean and effective variance
E‖z‖2/n < (1− δ)r2eff(Λ)/n

lim
n→∞

Pr (z /∈ V) = 0.

A latticeΛ is said to be nested inΛf if Λ ⊆ Λf . The coding
scheme presented in this paper utilizes a pair of nested lattices
such that the fine latticeΛf is good for MSE quantization and
the coarse latticeΛ is good for channel coding. An ensemble
for drawing pairs of nested lattices that satisfy these goodness
properties is described in [25],4 and the existence of lattice
pairs with slightly more demanding “goodness” requirements
was shown in [5], [26]. A nested lattice codeC = Λf ∩V with
rate

R =
1

n
log

(
Vol(Λ)

Vol(Λf )

)
=

1

2
log

(
r2eff(Λ)

r2eff(Λf )

)
(10)

is associated with the nested lattice pair.
Before describing the integer-forcing source coding scheme,

let us illustrate how the codebookC described above can
be used for compressingn samples of a single memoryless
Gaussian sourceY ∼ N (0, P ) with distortiond. Assume that

3Note that our condition for MSE goodness is equivalent to themore
commonly used conditionσ2(Λ)/Vol(V)2/n → 1/(2πe) since the volume
of a unit n-dimensional ball grows like(2πe/n)n/2.

4In [25] the definition of goodness for channel coding was weaker than
that needed here. In particular, only the existence of lattices that achieve
a vanishing error probability undercoset nearest neighbor decoding in the
present of semi-norm ergodic noise was proved. However, a more careful
inspection of the derivation in [25] reveals that the probability of decoding
an erroneous point in the correct coset also vanishes with the dimensionn
for the choice of lattice parameters made in [25]. Thus, the existence of pairs
of nested lattices such that both fine and coarse lattices aregood for MSE
quantization and channel coding follows.

the fine latticeΛf , which is good for MSE quantization, has
second momentσ2(Λf ) = d. This implies thatr2eff(Λf )/n →
d. The coarse latticeΛ, which is good for AWGN channel
coding, has effective radiusr2eff(Λ) = n(P + d+ ǫ), for some
arbitrarily smallǫ > 0. A dither d uniformly distributed over
Vf is known to both the encoder and the decoder. The encoder
computes

[QΛf
(y + d)] mod Λ ∈ C,

and sends its index to the decoder. The decoder computes

ŷ =
[
[QΛf

(y + d)] mod Λ− d
]
mod Λ

(i.d.)
= [y + d] mod Λ

(w.h.p.)
= y + d (11)

where
(i.d.)
= stands for equality in distribution and

(w.h.p.)
=

for equality with high probability. The equality (11) follows
from the fact that the random vectory + d is semi-norm
ergodic due to Lemma 1 and has effective varianceE(‖y +
d‖2)/n = P + d. SinceΛ is good for channel coding and
E‖y+d‖2/n < r2eff(Λ)/n, the probability thatQΛ(y+d) 6= 0

vanishes, and hence,[y + d] mod Λ
(w.h.p.)

= y+d. Thus, with
high probability

1

n
E(‖y − ŷ‖2) = 1

n
E(‖d‖2) = d,

as desired. The required rate for achieving this distortionis

R(d) =
1

2
log

(
r2eff(Λ)

r2eff(Λf )

)

=
1

2
log

(
n(P + d+ ǫ)

nd

)

=
1

2
log

(
1 +

P + ǫ

d

)
(12)

where the additional+1 inside the logarithm, w.r.t. the stan-
dard Gaussian rate-distortion function, is a consequence of our
requirement that the reconstruction̂y forms a conditionally
unbiased estimate ofy. In fact, we can eliminate this term by
performing an additional Wiener estimation step onŷ, at the
expense of introducing bias [24].

IV. I NTEGER-FORCING SOURCE CODING

In the IF distributed source coding scheme all encoders use
the same nested lattice codebookC = Λf ∩ V , constructed
from the nested lattice pairΛ ⊂ Λf , with rate

R =
1

2
log

(
r2eff(Λ)

r2eff(Λf )

)
.

As in the previous section, the fine latticeΛf is good for
MSE quantization withσ2(Λf ) = d whereas the coarse
lattice Λ is good for channel coding. All encoders employ
a similar encoding operation. Thekth encoder uses a dither
dk, statistically independent of everything else and uniformly
distributed overVf , and employs dithered quantization ofxk

onto Λf . Then, it reduces the obtained lattice point modulo
the coarse latticeΛ and sendsnR bits describing the index of
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the resulting point to the decoder. Specifically, thekth encoder
conveys the index corresponding to the point

[
QΛf

(xk + dk)
]
mod Λ

to the decoder.
The decoder first subtracts back the dithers from each of

the reconstructed signals and reduces the results moduloΛ,
giving rise to

x̃k =
[[
QΛf

(xk + dk)
]
mod Λ− dk

]
mod Λ

=
[
xk +

[
QΛf

(xk + dk)
]
mod Λ− (xk + dk)

]
mod Λ

(i.d.)
= [xk + dk] mod Λ (13)

If the coarse latticeΛ is chosen such that its effective radius
is large enough, the modulo operation in (13) would have no
effect onxk + dk, and the decoder would have estimates of
eachxk with average MSE ofd, as desired. However, the
encoding rate grows withr2eff(Λ), and we would therefore
prefer to choose it as small as possible.

The key idea behind IF source coding is that if the elements
of x are correlated, then linear combinations of{xk+dk}Kk=1

with integer-valued coefficients may have smaller effective
variances than the original signals. The IF decoder therefore
first estimatesK integer linear combinations of{xk+dk}Kk=1,
and then uses these estimates for estimating the desired
signals. Using this approach,r2eff(Λ) should only be greater
than the largest effective variance among theK linear combi-
nations. When the entries ofx are sufficiently correlated, and
the integer-valued coefficients are chosen appropriately,this
may significantly reduce the required encoding rate.

Let X = [xT
1 · · · xT

K ]T , D = [dT
1 · · · dT

K ]T and X̃ =
[x̃T

1 · · · x̃T
K ]T . Using this notation, the decoder has access to

X̃ = [X+D] mod Λ,

where the notationmod Λ is to be understood as reducing
each rowof the obtained matrix modulo the coarse lattice. The
decoder chooses a full-rank integer-valued matrixA ∈ ZK×K

and computes

ÂX ,

[
AX̃

]
mod Λ

= [A [X+D] mod Λ] mod Λ

= [A(X+D)] mod Λ (14)

where (14) follows from the modulo property (8).
Let aTk be thekth row of the matrixA. The random vector

aTk (X+D) satisfies the conditions of Lemma 1 asaTkX is an
i.i.d. Gaussian vector and each of the statistically independent
dithersd1, . . . ,dK is uniformly distributed over the Voronoi
region of a lattice that is good for MSE quantization. There-
fore, aTk (X + D) is semi-norm ergodic. It follows from the
goodness ofΛ for channel coding that if

E
(
‖aTk (X+D)‖2

)

n
<

r2eff(Λ)

n

then forn large enough

[
aTk (X+D)

]
mod Λ

(w.h.p.)
= aTk (X+D).

Moreover, if this holds for allk = 1, . . . ,K, i.e., if

max
k=1,...,K

E
(
‖aTk (X+D)‖2

)

n
<

r2eff(Λ)

n

then forn large enough

ÂX
(w.h.p.)

= A(X+D). (15)

Noting that

E
(
‖aTk (X+D)‖2

)

n
= aTk (Kxx + dI)ak,

this implies that for (15) to hold, it suffices to set

r2eff(Λ)

n
= max

k=1,...,K
aTk (Kxx + dI)ak + ǫ

for some arbitrarily smallǫ > 0, which corresponds to a rate
of

R =
1

2
log

(
maxk=1,...,K aTk (Kxx + dI)ak + ǫ

d

)
.

The decoder proceeds by computing

X̂ = A−1ÂX
(w.h.p.)

= X+D,

which is (w.h.p.) a conditionally unbiased estimate ofX with
average MSE distortiond per component. The next theorem
summarizes the performance of IF source coding.

Theorem 1 (Performance of IF source coding):
For any distortion d > 0 and any choice of
A = [a1 · · · aK ]T ∈ ZK×K , there exists a (sequence
of) nested lattice pair(s)Λ ⊂ Λf such that IF source coding
can achieve any rate satisfying

R > RIF(A, d) ,
1

2
log

(
max

k=1,...,K
aTk

(
I+

1

d
Kxx

)
ak

)
.

For the optimal choice ofA, IF source coding can achieve
any rate satisfying

R > RIF(d) ,
1

2
log


 min

A∈Z
K×K

det(A) 6=0

max
k=1,...,K

aTk

(
I+

1

d
Kxx

)
ak


 .

The matrix I + 1
d
Kxx is symmetric and positive definite,

and therefore it admits a Cholesky decomposition

I+
1

d
Kxx = FFT , (16)

where F is a lower triangular matrix with strictly positive
entries. With this notation,

RIF(d) =
1

2
log


 min

A∈Z
K×K

det(A) 6=0

max
k=1,...,K

‖F ak‖2

 . (17)

Denote byΛ(FT ) the K dimensional lattice spanned by the
matrix FT , i.e.,

Λ(FT ) ,
{
FTa : a ∈ Z

K
}
.
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It follows that the problem of finding the optimal matrixA
is equivalent to finding theK shortest linearly independent
vectors of Λ(FT ). Although this problem is NP-hard in
general, its solution can be efficiently approximated usingthe
LLL algorithm [27], whose running time is polynomial.

Moreover, we can express the rate-distortion function
achieved by IF source coding using thesuccessive minima
of the latticeΛ(FT ).

Definition 4 (Successive minima):Let Λ(G) be the lat-
tice spanned by the full-rank matrixG ∈ RK×K . For
k = 1, . . . ,K, we define thekth successive minimum as

λk(G) , inf
{
r : dim

(
span

(
Λ(G)

⋂
B(0, r)

))
≥ k

}

whereB(0, r) =
{
x ∈ RK : ‖x‖ ≤ r

}
is the closed ball of

radiusr around0. In words, thekth successive minimum of
a lattice is the minimal radius of a ball centered around0 that
containsk linearly independent lattice points.

Using Definition 4 and (17), the IF rate-distortion function
is given by

RIF(d) =
1

2
log
(
λ2
K(FT)

)
, (18)

where the dependence of the r.h.s. ond is through the matrix
F defined in (16).

Next, we show in Lemma 2 that the performance of IF
source coding, in the symmetric setting considered, is inferior
to the Berger-Tung benchmark, i.e.,RIF(d) ≥ RBT

bench(d). We
will need the simple following proposition.

Proposition 1: For a lattice spanned by some full rank
matrix G ∈ RK×K

|G| ≤
K∏

k=1

λk(G)

Proof: Let a1, . . . , aK ∈ ZK be K linearly independent
vectors such thatλk(G) = ‖Gak‖ for all k = 1, . . . ,K, and
let A = [a1 · · · aK ]. Since all entries ofA are integer-valued
we must have|A| ≥ 1, and therefore

|G| ≤ |G| |A| = |GA|

= |[Ga1 · · · GaK ]| ≤
K∏

k=1

‖Gak‖

=

K∏

k=1

λk(G).

Lemma 2:For anyd > 0 and for any choice of full-rank
A ∈ ZK×K we have

1

2
log

(
max

k=1,...,K
aTk (I+

1

d
Kxx)ak

)
≥ 1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ ,

and therefore, in the considered symmetric setting, the rate-
distortion functionRIF(d) of IF source coding is never smaller
than the benchmarkRBT

bench(d).

Proof: Let F be as defined in (16). For the optimal choice
of A and for anyd > 0 we have

1

2
log

(
max

k=1,...,K
aTk (I+

1

d
Kxx)ak

)
=

1

2
log
(
λ2
K(FT)

)

≥ 1

2

1

K

K∑

k=1

log
(
λ2
k(F

T)
)

(19)

=
1

2K
log

(
K∏

k=1

λ2
k(F

T)

)

≥ 1

2K
log
(
|F|2

)
(20)

=
1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ , (21)

where (19) follows from the monotonicity ofλk(F
T) in k

along with the monotonicity of the logarithm function, (20)
follows from Proposition 1 and (21) follows from (16).

As discussed in Section II, in an asymmetric problem
setting, structured binning may result in a better rate-distortion
region than the one obtained by Berger-Tung compression.
Lemma 2 shows that under the symmetric setup, at least with
IF source coding, this may not be the case. Nevertheless,
the complexity reduction obtained by using IF source coding
rather than Berger-Tung compression makes it an attractive
candidate for practical implementation. Moreover, as we shall
see in Section VI, a one-shot version of IF source coding can
be easily derived and analyzed. Although one-shot versionsof
Berger-Tung compression were also considered in [28] and an
inner bound was derived, it is unclear how to interpret this
inner bound for the problem at hand.

Remark 1:The crucial element in the IF source coding
scheme is that all encoders reduce their quantized signals
modulo the same coarse lattice. The modulo reduction plays
the role of binning. Theoretically, each encoder can first
reduce its observationmodΛ and only then quantize it using
a quantizer designed for the modulo reduced source [24].
No nesting is required between the quantizer and the coarse
lattice. This results in the decoder receiving the signals
x̃k = [xk] mod Λ + dk, k = 1, . . . ,K, wheredk is quanti-
zation noise. The decoder can proceed to computêAX as
described above. The difficulty with such an implementation
is that the quantizer needs to be matched to the modulo re-
duced source, which requires some sort of (high-dimensional)
entropy coding. As we shall see in Section VI-A, in the1D
version of IF source coding, where the coarse lattice as wellas
the quantizer are scaled integer lattices, the modulo reduction
can precede quantization without increasing complexity.

Remark 2:Another implementation issue to consider is the
goodness requirements onΛ. WhenΛ is used for modulation
over the AWGN channel, it suffices to require thatΛ is good
undercosetnearest neighbor decoding. This means thatΛ is
split into cosets, usually using a coarse lattice nested inside it,
and the decoder only needs to choose the coset the transmitted
point belongs to. As a result, when coding for the AWGN
channel is considered, a construction A lattice [29], [30] with
a linear codebook of small prime cardinalityp suffices to
achieve a vanishing error probability. In such a construction,
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the minimum distance is limited byp, and the error probability
for decoding the actual point transmitted, rather than the coset,
cannot vanish with the dimension. However, all pairs of points
with nonincreasing (as a function ofn, the code dimension)
Euclidean distance belong to the same coset, and therefore
such a lattice is still good for coset nearest neighbor decoding.

In IF source coding, the decoder needs to decode theactual
lattice point ofΛ closest toaTk (X + D), rather than just its
coset. Therefore, construction A lattices obtained from a linear
codebook with smallp do not suffice in order to achieve a
vanishing error probability. However, one can still achieve
a very small error probability, though not vanishing with
the dimension, using standard Construction A lattices with
moderate values ofp. See Section VI for further discussion of
implementation issues.

V. EXAMPLES AND APPLICATIONS

This section provides several examples that demonstrate the
performance of IF source coding, along with applications and
communication scenarios where IF source coding is advanta-
geous. The section consists of three parts. First we comparethe
performance of IF source coding to that of a naive distributed
compression scheme that ignores the correlation between the
sources and to the Berger-Tung benchmark. Then, we use IF
source coding as a building block in a Gaussian layered relay
network, and demonstrate its advantages compared to other
known low complexity schemes. Finally, we show how the
idea behind IF source coding can be extended to form a signal-
to-noise ratio (SNR) independent joint source channel coding
scheme, whose distortion decreases as the SNR improves.

A. Examples

In this subsection we evaluate the minimal symmetric rate
needed in order to achieve a conditionally unbiased average
MSE of d for two schemes:

1) IF source coding - this rate is given in Theorem 1.
2) Compressing each source using standard rate-distortion

theory without exploiting the correlations between the
sources - this rate is given by

Rnaive(d) = max
k=1,...,K

1

2
log

(
1 +

Kxx(k, k)

d

)
, (22)

and is identical to the rate obtained using IF source coding
with the choiceA = I.

We also compare these rates to the Beger-Tung benchmark
RBT

bench(d) (6).
Example 1 (Integer decomposable covariance matrix):As

a first example, consider the case wherex is a Gaussian source
with zero mean and covariance matrixKxx = B−1B−T for
some full-rank integer matrixB ∈ ZK×K with determinant
|B| = 1.

The Berger-Tung benchmark symmetric rate-distortion

function is given by

RBT
bench(d) =

1

2K
log

∣∣∣∣I+
1

d
B−1B−T

∣∣∣∣

=
1

2K

(
log |B|−2 + log |BBT +

1

d
I|
)

=
1

2K
log |BBT +

1

d
I|.

It can be seen thatRBT
bench(d) → −1/2 log(d) asd → 0.

For IF source coding, one can chooseA = B. This choice
gives

RIF(B, d) =
1

2
log

(
max

k=1,...,K
bT
k

(
I+

1

d
Kxx

)
bk

)

=
1

2
log

(
max

k=1,...,K
‖bk‖2 +

1

d

)

It is easy to see thatRIF(B, d) → −1/2 log(d) as d → 0,
just as the benchmark rate-distortion function, and therefore,
according to Lemma 2, the choiceA = B is optimal at high
resolution.

The naive approach that compresses each source without
exploiting the existing correlations fails to achieve the bench-
mark rate-distortion function. In fact, it can only achieve

Rnaive(d) =
1

2
log

(
1 +

maxk=1,...,K ‖b̃k‖2
d

)
, (23)

whereb̃T
k is thekth row ofB−1. All entries ofb̃k are integer-

valued since the matrixB is integer-valued with determinant
1. Therefore‖b̃k‖2 ≥ 1 for all k = 1, . . . ,K. The obtained
compression rate approaches1

2 log(max ‖b̃k‖2) − 1/2 log(d)
asd → 0. Thus, at high resolution, IF source coding requires
1
2 log(max ‖b̃k‖2) bits less than the naive approach in order
to achieve the same distortion. This improvement can be made
unbounded by choosingB appropriately.

Example 2 (Compressing observations of correlated relays):
Consider the problem of distributively compressing aK-
dimensional Gaussian sourcex with zero mean and covariance
matrix Kxx = SNRHHT + I for someSNR > 0 and some
matrix H ∈ RK×K . This choice of covariance matrix
corresponds to the joint distribution of the signals observed
by K relays in the Gaussian network depicted in Figure 3,
where it is assumed that each of theK transmitters uses a
random i.i.d. Gaussian codebook such that each of the signals
s1, . . . , sK behaves statistically as white Gaussian noise. This
network will be studied in more detail in the next subsection.

We plot the averages of the minimal required compression
rates for the two schemes, i.e. the ergodic rate-distortionfunc-
tions of the two schemes, along with the ergodic benchmark
rate-distortion function, under the assumption that the entries
of H are i.i.d. standard normal random variables. Figure 4a
depicts these rates forK = 4 andSNR = 20dB as a function
of d. It is seen that at moderate to high resolution (small to
moderate values ofd) IF source coding closes about half of the
gap between the naive compression scheme and the benchmark
which corresponds to the Berger-Tung compression scheme.

One can argue that in the considered scenario the gap be-
tween the performance of the naive scheme and the benchmark
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w1 Tx 1
s1

...

wK Tx K
sK

H

x1

z1

Relay1
R0

...

xK

zK

RelayK
R0

CP

ŵ1

...
ŵK

Fig. 3. A Gaussian network withK users andK relays. Each relay sees
one output of the channelx = Hs + z and has a clean bit-pipe ofR0

bits/channel use to the central processor (CP). The CP triesto estimate the
messages transmitted by theK users.

is quite small, and therefore it is not clear if IF source coding
only slightly improves over the naive scheme, or closely
follows the performance of the Berger-Tung benchmark. To
illustrate that the latter is true, in Figure 4b we consider a
similar scenario where nowH ∈ R8×2 with i.i.d. N (0, 1)
entries. This models a network with2 transmitters and8 relays.
This choice of distribution tends to induce more correlation
between the entries ofx, which enlarges the performance gap
between Berger-Tung’s compression and the naive compres-
sion approach. Nevertheless, as seen from Figure 4b, the gap
between the performance of the Berger-Tung benchmark and
IF source coding remains approximately the same.

B. Layered Gaussian relay network

In this subsection we consider the Gaussian network from
Figure 3, and show that for a wide regime of parameters using
IF source coding as a building block improves upon other
competing low-complexity coding schemes.

The Gaussian network we consider consists ofK non-
cooperating transmitters, each with messagewk and rateRk.
A central processor (CP) is interested in decoding allK
messages. However, it does not have a direct access to the
signals transmitted by theK transmitters. Instead, there are
K relays, each of which observes a noisy linear combination
of the transmitted signals. Each relay has a clean bit-pipe of
rateR0 bits/channel use connecting it to the CP which it uses
for helping the CP decode all messages.

Let sk ∈ R1×n be the signal transmitted by thekth
transmitter duringn consecutive channel uses. We assume all
transmitters are subject to the same power-constraint suchthat
E‖sk‖2 ≤ nSNR for all k = 1, . . . ,K. Let xk ∈ R1×n be the
signal received by thekth relay duringn consecutive channel
uses, and letS = [sT1 · · · sTK ]T andX = [xT

1 · · · xT
K ]T . The

signals are related by

X = HS+ Z, (24)

where H ∈ RK×K is the channel matrix between theK
transmitters and theK relays and the entries ofZ ∈ RK×n

are i.i.d.N (0, 1). We are interested in the maximal achievable
sum-rateRsum=

∑K

k=1 Rk.

Clearly, Rsum cannot exceed the MIMO capacity5 corre-
sponding to the channel (24) between the transmitters and
relays, and it also cannot exceedKR0 because even if each
relay could decode all messages, theK relays cannot convey
more thanKR0 bits/channels use to the CP through the bit-
pipes. Thus, we have

Rsum≤ RMIMO , min

(
1

2
log |I+ SNRHHT |,KR0

)
.

(25)

An inner bound forRsum can be attained by the following
scheme. Each relay can compress its observationxk with
rateR0 and send the compression index to the CP. The CP
obtainsK estimateŝxk = xk+dk of the relays’ observations,
wheredk ∈ R1×n is the quantization error, and can use these
estimates in order to decode the desired messages. Specifically,
using this approach the CP decodes the messages from

X̂ = HS+ Z+D, (26)

where D = [dT
1 · · · dT

K ]T . If the quantization errors are
statistically independent of everything else, as in IF source
coding,D can be treated as another additive noise. Let

d(R0) = max
k=1,...,K

1

n
E(‖dk‖2).

Assuming that all transmitters use i.i.d. Gaussian codebooks, it
follows from the entropy power inequality [31, Problem 9.21]
that the CP can decode all messagesw1, . . . , wK from the
channel (26) if

Rsum ≤ 1

2
log

∣∣∣∣I+
SNR

1 + d(R0)
HHT

∣∣∣∣ (27)

Clearly, the degradation of this scheme w.r.t. the MIMO capac-
ity depends on the value ofd(R0). Improving the compression
scheme decreasesd(R0) which in turn increasesRsum. One
can use the conditionally unbiased version of Berger-Tung
in order to obtain a smalld(R0). However, this solution
requires joint typicality decoding at the CP which is difficult to
implement. Alternatively, IF source coding can be employed,
which considerably reduces the implementation complexityat
the price of slightly increasingd(R0). The relays can also
employ naive conditionally unbiased compression, which is
also a low-complexity scheme. This reduces to performing
IF source coding with the choiceA = I which is often
suboptimal. The latter approach is often termed compress-and-
forward in the literature [19].

Alternatively, instead of compressing their noisy obser-
vations, the relays can attempt to decode the transmitted
messages, or a function of the transmitted messages. In the
decode-and-forward scheme [32] each relay decodes one of
the messages and forwards this message to the CP. The
compute-and-forward scheme [19] generalizes decode-and-
forward and allows each relay to decode a linear combination
of the messages, which is forwarded to the CP. Since decode-
and-forward is a special case of compute-and-forward, its
performance is never better.

5Here, by capacity we mean the mutual information corresponding to a
white input, as the transmitters are non-cooperating.
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Fig. 4. Comparison between the ergodic rates for the variouscompression schemes from Example 2.

In Figure 5a we plot the ergodic rates achieved using
IF source coding, compress-and-forward and compute-and-
forward, over the Gaussian network from Figure 3 ForR0 = 2
andK = 4, where the entries ofH are assumed i.i.d.N (0, 1).
Figure 5b depicts the same ergodic rates forR0 = 3.

The figures demonstrate that while compute-and-forward
outperforms both compression-based schemes whenR0 is
the system’s bottleneck, for relatively largeR0 (w.r.t. the
1/K times the MIMO capacity) compression is preferable
over decoding. The gains of IF source coding over naive
compression are evident.

One can further improve performance using a quantize-map-
and-forward like scheme [33], [34] where each relay quantizes
its observation, bins it, and sends the bin index to the CP.
The difference between such schemes and the compression
based schemes described above is that in quantize-map-and-
forward the CP decodes the messages from the bin indices
themselves without “decompressing” the relays’ observations.
Such an approach improves upon compression based schemes.
However, to date it lacks a signal processing based architecture
allowing to reduce the problem to multiple instances of a
point-to-point problem, as is the case for IF source coding.
We note however that progress in the direction of developing
a low-complexity architecture for quantize-map-and-forward
has been made in [35].

C. Distributed joint source-channel coding

In this subsection we consider the setup depicted in Fig-
ure 6. In this setup, there areK distributed encoders, each
with access to the vectorxk that containsn i.i.d. samples of
the random variablexk. We assume that the random vector
x = [x1 · · · xK ]T is a Gaussian vector with zero mean and
covariance matrixKxx. Each encoder is equipped with an
encoding functionEk : Rn → Rn, such that the signal it
transmits to the decoder issk = Ek(xk). All encoders are
subject to the same power constraintE(‖sk‖2) = nP . The
decoder observes the transmitted signals throughK parallel

AWGN channels

yk = sk + zk, k = 1, . . . ,K

where the entries ofz1, . . . , zK are i.i.d. Gaussian random
variables with zero mean and varianceN . The decoder hasK
functionsDk : Rn × · · · × Rn → Rn that it uses in order to
form estimateŝxk = Dk(y1, . . . ,yK) for each source.

Let SNR , P/N . An SNR-distortion vector
(SNR, d1, . . . , dK) is achievable if there exist encoding
functions E1, . . . , EK and decoding functionsD1, . . . ,DK

such that
1

n
E
(
‖xk − x̂k‖2

)
≤ dk, (28)

for all k = 1, . . . ,K. A conditionallyunbiasedSNR-distortion
vector (SNR, d1, . . . , dK) is achievable if in addition to (28),
the condition

E(x̂k|X) = xk, k = 1, . . . ,K (29)

is satisfied. As before, we restrict attention to conditionally un-
biased estimates, and focus on the maximal distortion among
theK vectors, i.e.,d = maxk=1,...,K dk.

An obvious approach for the considered problem issepara-
tion of source coding and channel coding. This corresponds to
using AWGN capacity achieving codebooks for transforming
the K AWGN channels intoK bit-pipes each with capacity
C = 1/2 log(1 + SNR) bits/channel use, and then using
distributed source coding with rateC bits/sample at each
encoder in order to describe the sources to the decoder. The
main drawback of this approach is that it must be designed for
specific values ofSNR and required distortionsd1, . . . , dK .
The predefinedSNR acts as a threshold. If the actualSNR

experienced by the communication system turns out to be
higher than this threshold, the expected distortions wouldbe
d1, . . . , dk, but would not improve when the actualSNR is
improved.

Taking K = 1 in our setup reduces it to a point-to-point
problem of Gaussian source transmission over an AWGN
channel. It is well known [36] that analog transmission of the
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Fig. 5. Ergodic rates over the network from Figure 3 forK = 4
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Fig. 6. A distributed joint source-channel coding setting.Each encoder wishes
to describe its observationxk to the decoder through an AWGN channel, with
minimal average MSE distortion. The sources are correlatedand the encoders
are distributed.

source with appropriate scaling at the encoder and decoder
achieves the optimal performance. Moreover, the transmitter’s
operation does not depend on the noise’s variance at the
receiver. As a result, if the noise variance turns out to be
smaller than expected, the decoder can improve the quality
of its estimate for the source. This desirable phenomena was
extended to the Wyner-Ziv/dirty-paper setting in [37]. Here,
we use the idea of IF source coding for constructing a joint
source-channel coding scheme for our setup with an arbitrary
number of users. The encoders’ operation in the proposed
scheme is independent of the noise variance, and the obtained
expected distortion at the decoder decreases withN , provided
thatN is below some predefined threshold.

The proposed coding approach utilizes a single latticeΛ
with σ2(Λ) = P , that is good for channel coding and for MSE
quantization. In particular, its goodness for MSE quantization
implies thatr2eff(Λ)/n ≈ P . The coding scheme is designed
assuming that the AWGN variance is not greater than some
nominal valueNnom. However, whenN < Nnom, the obtained
distortion decreases asN decreases.

Each encoder scales its observation by someβ > 0 to be

defined shortly,6 adds a ditherdk uniformly distributed over
V , and reduces the resultmod Λ such that the transmitted
signals are

sk = [βxk + dk] mod Λ, k = 1, . . . ,K.

Note that the power constraints are satisfied assk is uniformly
distributed overV and therefore its second moment equals
σ2(Λ). The decoder first performs MMSE estimation of each
sk, by scaling eachyk by α =

√
P/(P +N), subtracting

back the dither and reducingmod Λ. This gives

ỹk = [αyk − dk] mod Λ

= [sk + (α− 1)sk + αzk − dk] mod Λ

= [βxk + zeff,k] mod Λ,

where

zeff,k , (α− 1)sk + αzk.

The noisezeff,k is statistically independent ofxk, and has
effective variance of

1

n
E(‖zeff,k‖2) =

NP

N + P
, k = 1, . . . ,K.

Moreover, it is a linear combination of a dither uniformly
distributed over the Voronoi region of a lattice that is goodfor
MSE quantization and an AWGN, and therefore, by Lemma 1,
it is semi-norm ergodic.

As before, letX = [xT
1 · · · xT

K ]T , and defineỸ andZeff

in a similar manner. The decoder chooses a full-rank matrix
A ∈ ZK×K and computes

β̂AX ,

[
AỸ

]
mod Λ

= [A([βX+ Zeff] mod Λ)] mod Λ

= [A(βX + Zeff)] mod Λ.

6In general, performance can be improved by letting each encoder use a
different βk. We disregard this possibility for simplicity of exposition.
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Let aTk be thekth row ofA. The random vectoraTk (βX+Zeff)
is semi-norm ergodic with zero mean and effective variance

σ2
k ,

1

n
E(‖aTk (βX + Zeff)‖2)

= aTk

(
β2Kxx +

NP

N + P
I

)
ak.

SinceΛ is good for channel coding, ifσ2
k < P for all k =

1, . . . ,K, then

β̂AX
(w.h.p.)

= A(βX+ Zeff), (30)

and the decoder can further compute

X̂ =
1

β
A−1β̂AX

(w.h.p.)
= X+

1

β
Zeff,

which are unbiased estimates of eachxk with average MSE
distortion ofdIF = NP/β2(N + P ).

The remaining question is how to chooseβ such that (30)
indeed holds. Recall thatβ is chosen by the encoders that
only know thatN < Nnom, rather than the exact value ofN .
Therefore, the encoders should chooseβ as

βopt(P,N
nom,Kxx) ,

max
β>0

s.t. min
A∈Z

K×K

det(A) 6=0

max
k=1,...,K

aTk (β
2Kxx +

NnomP

Nnom+ P
I)ak = P

and the symmetric distortion obtained by the proposed scheme
is

dIF =
N

β2
opt(P,N

nom,Kxx)

which decreases asN decreases, as desired.
A naive joint source-channel coding schemes that ignores

the correlations between the entries ofx would be transmitting
each xk in an analog Goblick-like scheme. The distortion
achieved by such a scheme would be7

dnaive=
N

P
max

k=1,...,K
Kxx(k, k).

It can be easily verified that the same distortion is achievedif
one constrainsA = I in the scheme proposed here. Therefore,
the proposed IF based joint source-channel coding scheme
strictly improves upon the naive one.

It is also worth mentioning that the proposed scheme easily
generalizes to a dirty paper scenario, where the output of
each AWGN channel is further corrupted by an arbitrary
interferencevk known to encoderk but not to the decoder,
i.e.,yk = sk +vk+zk. In the proposed scheme, the encoders
can transmitsk = [βxk − vk + dk] mod Λ and the decoder
remains the same.

7Taking into account the constraint that the estimate for each xk must be
conditionally unbiased.

VI. ONE-SHOT INTEGER-FORCING SOURCE CODING

One of the advantages of IF source coding is that its
complexity and performance can be traded-off, by choosing
nested lattice codes that can be easily implemented, but are
less effective as channel codes and MSE quantizers.

In the previous sections we have considered the extreme
case of high-dimensional pairs of nested lattices where thefine
lattice is good for MSE quantization and the coarse lattice is
good for channel coding. In this section we consider the other
extreme, where both lattices are scaled versions of the integer
lattice Z. With this choice of nested lattice pair, IF source
coding becomes extremely easy to implement. Moreover, this
one-shot version of IF source coding does not induce any
latency and does not assume the existence of an unlimited
number of i.i.d. samples to be compressed.

Let Λf =
√
12dZ andΛ = 2R

√
12dZ. If 2R is a positive

integer thenΛ ⊆ Λf , and the codebookC = Λf ∩ V with
rateR is a valid codebook for IF source coding. Letdk be a
random dither uniformly distributed overVf , known to both
thekth encoder and the decoder. Thekth encoder conveys the
index corresponding to the point

[
QΛf

(xk + dk)
]
mod Λ

to the decoder. Note that for a 1D lattice, the quantization
operation reduces to a simple slicer. Thus all operations are
easy to implement.

The decoder first subtracts back the dither and reduces
mod Λ to obtain

x̃k
(i.d.)
= [xk + dk] mod Λ,

and then chooses some full-rank matrixA ∈ ZK×K and
computes

Âx , [Ax̃] mod Λ = [A(x+ d)] mod Λ, (31)

whered = [d1 · · · dK ]T . In contrast to the case of a high-
dimensional nested lattice codebook, where the probability that
Âx 6= Ax could be made as low as desired ifr2eff(Λ) is large
enough, here this probability is finite for any finite value of
2R

√
12d. In particular, letaTk be thekth row ofA and define

the random variable

wk , aTk (x+ d)

with zero mean and variance

σ2
w,k = aTk (Kxx + dI)ak.

We have

Pr
(
Âx 6= Ax

)
= Pr

(
K⋃

k=1

[wk] mod Λ 6= wk

)

= Pr

(
K⋃

k=1

QΛ(wk) 6= 0

)

= Pr

(
K⋃

k=1

|wk| ≥
1

2
2R

√
12d

)

≤
K∑

k=1

Pr
(
|wk| ≥ 2R

√
3d
)
, (32)
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where the last inequality follows from the union bound. Next,
we apply the following Lemma from [38], [39]

Lemma 3: [39, Lemma 3] Consider the random variable

zeff =

L∑

ℓ=1

αℓzℓ +

K∑

k=1

βkdk

where{zℓ}Lℓ=1 are i.i.d. Gaussian random variables with zero
mean and some varianceσ2

z and {dk}Kk=1 are i.i.d. random
variables, statistically independent of{zℓ}Lℓ=1, uniformly dis-
tributed over the interval[−ρ/2, ρ/2) for someρ > 0. Let
σ2

eff , E(z2eff). Then

Pr(zeff > τ) = Pr(zeff < −τ) ≤ exp

{
− τ2

2σ2
eff

}
.

One can easily verify thatwk satisfies the conditions of
Lemma 3 asaTk x is a Gaussian random variable statistically
independent of the dither vectord. Therefore, we can further
bound (32) as

Pr
(
Âx 6= Ax

)
≤

K∑

k=1

2 exp

{
− 22R3d

2aTk (Kxx + dI) ak

}

≤ 2K exp

{
−3

2
22(R− 1

2
log(maxk=1,...,K a

T
k (I+ 1

d
Kxx)ak))

}

= 2K exp

{
−3

2
22(R−RIF(A,d))

}
, (33)

whereRIF(A, d) is the minimum required rate for a IF source
coding when a good nested lattice pair is used, as defined in
Theorem 1. The decoder proceeds by computing

x̂ = A−1Âx = x+ d+A−1
(
Âx−Ax

)
. (34)

Sincedk is statistically independent ofx andE(d2k) = d for
all k = 1, . . . ,K, we see that provided that̂Ax = Ax the
one-shot version of IF source coding produces conditionally
unbiased estimates ofxk with distortion d. The probability
thatÂx = Ax can be controlled by increasingR−RIF(A, d)
which is the coding overhead w.r.t. to IF source coding with
an optimal nested lattice pair. For instance, ifK = 4, taking
R = RIF(A, d) + 2 results inPr

(
Âx 6= Ax

)
≤ 3 · 10−10.

The next theorem summarizes the discussion above.

Theorem 2 (One-shot IF source coding):Let RIF(d) be as
defined in Theorem 1 and setR = RIF(d) + ∆ for some
∆ > 0. If 2R is a positive integer, the one-shot version of IF
source coding with latticesΛf =

√
12dZ andΛ = 2R

√
12dZ

produces conditionally unbiased estimates with average MSE
distortiond for eachxk, k = 1, . . . ,K with probability greater
than1− 2K exp{− 3

22
2∆}.

A. Modulo Analog-to-Digital Converters

Theorem 2 shows that a simple implementation of IF source
coding with 1D lattices only requires a small rate overhead
w.r.t. to the asymptotic performance of IF source coding. The
simplicity of the one-shot IF source coding scheme suggests
that this framework may be useful for designing Analog-to-
Digital converters (ADCs) that can exploit correlations ina

distributed manner. To illustrate the problem, consider the
Gaussian MIMO channelx = Hs + z, whereH ∈ RK×M

is the channel matrix,z ∈ RK×1 is a vector of AWGN
and s are theM inputs to channel, which are assumed to
be i.i.d. normally distributed. The front-end of the MIMO
receiver consists ofK ADCs, one for the output of each
receive antenna. Today, each of these ADCs is designed w.r.t.
themarginaldistribution of each output, ignoring the fact that
theK ADCs sample correlated signals. Often, the variance of
each output is quite large although theconditional variance
when all other samples are given is small. Thus, exploiting
the spatial correlation may significantly reduce the distortion
created by the ADCs. However, the ADCs are expected to
work at very high rates, which precludes cooperation between
their operations. We show that a variant of the one-shot IF
source coding scheme allows the ADCs to exploit the spatial
correlations with no cooperation and with roughly the same
encoding complexity as a standard ADC, and only a small
increase in the decoding complexity.

The one-shot version of IF source coding described above
requires each encoder to first quantize its observation using a
scaled integer lattice, and then reduce the result modulo the
coarse lattice, which is also a scaled version ofZ. This can be
implemented by applying an ADC as the quantizer followed by
a digital modulo reduction. However, the power consumption
and the complexity of an ADC are dictated by the number
of bits it produces. Therefore, if the modulo operation can
be implemented efficiently in the analog domain, performance
can be improved by first applying the modulo reduction, and
only then incorporating the ADC. Since the modulo reduced
signal is of a smaller support, less bits are required for
describing it with the same average distortion level. The next
lemma shows that ifΛf =

√
12dZ andΛ = 2R

√
12dZ the

operationsQΛf
and mod Λ commute, i.e., one can first reduce

the signalmodΛ and then quantize toΛf , rather than first
quantizing and then reducingmodΛ.

Lemma 4:Let 2R be a positive odd integer and define the
nested latticesΛ =

√
12dZ and Λf = 2R

√
12dZ for some

d > 0. for anyx ∈ R we have

[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ) .

Proof: See Appendix A

Lemma 4 implies that the1D version of IF source coding
can indeed be implemented by first reducing the sourcex
moduloΛ and only then quantizing it toΛf . The advantage in
switching the order of the operations is that if the1D modulo
reduction, which is equivalent to the “saw-tooth” function,
can be efficiently implemented in the analog domain, then
the quantizer that follows it can be implemented using an
ADC with only R bits/sample. The relation betweenR, the
obtained distortion, and the error probability is characterized
in Theorem 2 and depends onRIF(d). Figure 7 depicts the
architecture of the proposed modulo ADC, that can replace
the encoders in the one-shot IF source coding scheme.
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x

modΛ

. . .. . .

QΛf
(·)

Modulo ADC

Fig. 7. A schematic illustration of the modulo ADC for2R = 5. This
component can act as an encoder in the one-shot version of IF source coding.

VII. SUMMARY AND CONCLUSIONS

We have presented and analyzed a new low-complexity
framework for distributed lossy compression, which is based
on the integer-forcing architecture. This framework allows
the system designer to trade performance and complexity by
appropriately choosing the nested lattice codebooks that are
used. A remarkable feature of the proposed scheme is that it
admits a very simple one-shot version, whose performance
is not very far from that obtained using IF source coding
with asymptotically good nested lattice codes. We have also
shown that if one can implement the1D modulo operation
with an analog circuit, which corresponds to implementing the
“saw-tooth” function, then the IF source coding approach can
translate to a novel ADC design, suitable for sampling spatially
correlated sources. Such ADCs can potentially be very useful
for the front-end of a MIMO receiver, where standard ADC
designs are already challenged by the growing transmission
rates.

We remark that the IF equalization framework for Gaussian
MIMO channels [18] has been extended to an equaliza-
tion framework for Gaussian intersymbol-interference chan-
nels [40]. In a similar manner, the IF source coding framework
proposed here, which is suitable for distributed lossy compres-
sion of spatially correlated signals, can be extended to an IF
compression framework for stationary temporally correlated
signals. Nevertheless, such a solution is less attractive as
one can always use a sequential Wyner-Ziv like compression
scheme for a stationary source. In such a scheme the first
samples of the source are compressed without binning/modulo
reduction, and the next samples are first binned/modulo re-
duced and then compressed. The decoder uses the samples
that are not binned for recovering the next samples in a
sequential manner. This Wyner-Ziv scheme suffers from the
intrinsic overhead of having to describe the first samples to
the decoder without binning. This overhead can be made
negligible by increasing the length of the compression block.
For spatially correlated sources a similar Wyner-Ziv like com-
pression scheme will result in asymmetric compression rates,
which is a consequence of the lack of “spatial stationarity”.

APPENDIX A
PROOF OFLEMMA 4

We begin with two general Lemmas from which Lemma 4
is immediately deduced.

Lemma 5:For any pair ofn-dimensional nested lattices
Λ ⊆ Λf and anyx ∈ Rn

[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ)

+QΛ

([
QΛf

(x)
]
mod Λ + x−QΛf

(x)
)
.

Proof:
[
QΛf

(x)
]
mod Λ = QΛf

(x)−QΛ

(
QΛf

(x)
)

= QΛf
(x−QΛ(x) +QΛ(x))−QΛ

(
QΛf

(x)
)

= QΛf
(x−QΛ(x)) +QΛf

(QΛ(x))−QΛ

(
QΛf

(x)
)

= QΛf
([x] mod Λ) +QΛ(x) −QΛ

(
QΛf

(x)
)
, (35)

where in the last equality we have used the fact that
QΛf

(QΛ(x)) = QΛ(x) sinceΛ ⊆ Λf . We have,

QΛ(x) = QΛ

(
QΛf

(x) + x−QΛf
(x)
)

= QΛ

(
QΛf

(x) −QΛ

(
QΛf

(x)
)
+QΛ

(
QΛf

(x)
)
+ x−QΛf

(x)
)

= QΛ

([
QΛf

(x)
]
mod Λ + x−QΛf

(x)
)
+QΛ

(
QΛf

(x)
)
.

(36)

Substituting (36) in (35) gives the desired result.

Lemma 6: If the pair of nested latticesΛ ⊆ Λf satisfies the
tiling conditionV = (Λf ∩ V) + Vf then

[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ) .

for anyx ∈ Rn.

Proof: For anyx ∈ Rn we have
[
QΛf

(x)
]
mod Λ ∈ (Λf ∩ V) , andx−QΛf

(x) ∈ Vf .

Therefore
[
QΛf

(x)
]
mod Λ + x−QΛf

(x) ∈ (Λf ∩ V) + Vf ,

The tiling conditionV = (Λf ∩ V) + Vf implies that
[
QΛf

(x)
]
mod Λ + x−QΛf

(x) ∈ V ,
which implies that

QΛ

([
QΛf

(x)
]
mod Λ + x−QΛf

(x)
)
= 0.

The result now follows immediately from Lemma 5.

It is easy to verify that if2R is a positive odd integer the
nested latticesΛ =

√
12dZ and Λf = 2R

√
12dZ satisfy

the tiling condition V = (Λf ∩ V) + Vf , and Lemma 4
immediately follows from Lemma 6
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