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Integer-Forcing Source Coding

Or Ordentlich and Uri EreaMember, IEEE

Abstract—Integer-Forcing (IF) is a new framework, based

on compute-and-forward, for decoding multiple integer linear
combinations from the output of a Gaussian multiple-input X1
multiple-output channel. This work applies the IF approach 1
to arrive at a new low-complexity scheme, IF source coding, S

) N A . (X17 dl)
for distributed lossy compression of correlated Gaussianairces :
under a minimum mean squared error distortion measure. All ) D —
encoders use the same nested lattice codebook. Each encoder
quantizes its observation using the fine lattice as a quanti Ry
and redu_ces: the result modulo _the coarse Iatt_lce, wh|(_:h pl_aythe X5 _,- ~
role of binning. Rather than directly recovering the individual
quantized signals, the decoder first recovers a full-rank geof
judiciously chosen integer linear combinations of the quatized
signals, and then inverts it. In general, the linear combindons Fig. 1. The distributed source coding problem. Thth encodere), has
have smaller average powers than the original signals. This access to the vectox; that containsn i.i.d. realizations of the random
allows to increase the density of the coarse lattice, whichniturn  variable z,. It encodesx;, to an index taking values in, ..., 2" . The
translates to smaller compression rates. We also propose dn sourceses, ...,z are assumed correlated and the encoders are not allowed
analyze a one-shot version of IF source coding, that is simpl to cooperate. The decoders goal is to produce estimatesdf =, with
enough to potentially lead to a new design principle for analg- average distortiond, using theK indices it received from the encoders.
to-digital converters that can exploit spatial correlations between
the sampled signals.

(R, dic)

variables under a quadratic distortion measure. The bestkn
achievable scheme is that of Berger and Tung [1], [2], al-
though some examples where Berger-Tung compression can

The distributed lossy compression problem, depicted be outperformed are knowhl[4]4[6]. In the Gaussian case, the
Figure[d, consists of multiple distributed encoders and omerger-Tung approach reduces to each encoder compressing
decoder. The encoders have access to correlated obsesvaits source using a standard point-to-point quantizerpfedid
which they try to describe to the decoder with minimum ratey Slepian-Wolf[7] encoding. For the quadratic Gaussiseca
and minimum distortion [1]-=[3]. This problem naturally ses with K = 2, Wagneret al. [8] proved that this approach is
in numerous scenarios. For instance, consider a sensoorketvwoptimal.
where multiple sensors that observe correlated random variThe importance of the quadratic-Gaussian distributedyloss
ables are connected via finite rate links to a central precessompression problem has motivated researchers to design lo
but not to one another, and have to describe their obsengatigomplexity encoding schemes that approach the performance
to the central processor with minimum distortion. As anoth&f the Berger-Tung inner bound. This line of work was pio-
example, consider two competing television channels th@éered in[[9],[[10] and remains an active area of researeh, se
cover the same event and have to broadcast their programe t, [11]-[13] and references therein. However, at a héghl|
the same end-users (that may choose which channel to wated existing approaches for distributed source codingitrere
and therefore need to be able to recover both programs wiiBtably asymmetric in the rates they require from the ende
low distortion). Although the distributed lossy compressi as they rely on the lattice-based implementation of Wyrier-Z
problem is usually classified as a pure source-coding pmoblecoding [13], [14] and successive Wyner-Ziv codirigl[11], or
it is also an important building block in network channe$pecifically tailored to predefined correlation charastas of
coding problems. For instance, multiple relays may obseruge sources [10]. In general, the rate requirements in seeem
correlated signals that describe the messages transiojttbé that are based on Wyner-Ziv coding can be symmetrized
different encoders in the network. The relays can compress time-sharing between different compression/deconsimas
and-forward these signals further down the network in otder orders [18]. Nevertheless, schemes using time-sharing hav
ultimately help the decoder recover the transmitted messagfew drawbacks. First, it requires the encoders and the desod

A special case that received considerable attention is thatuse a larger number of codebooks, which complicates
of distributed lossy compression of jointly Gaussian randoimplementation. Second, it requires coordination betwiben

_ _ ~distributed encoders, which is less crucial when timedigigar

unggf V(";?;';tofNUO'.E{‘;é;’ﬁglsﬁzocv%%” o‘;ag_b%trzeer'fﬂriiﬁ' ?ngr‘g; is not used. Finally, the compression block must be at least a
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This scheme does not incorporate time-sharing. As in prefirst decodes integer linear combinations of the transuhitte
ous works, our approach is based on standard quantizatomuewords, which is possible if all transmitted codewords
followed by lattice-based binning. However, in contrast twere taken from the same linear codel[19], and then solves
previous works, in the proposed framework the decoder fitstese linear combinations for the transmitted codeword#- |
uses the bin indices for recovering linear combination$wisource coding, all encoders first quantize their obsematio
integer coefficients of the quantized signals, and only théine desired distortion level, and then reduce them modudo th
recovers the quantized signals themselves. The decodesame latticeA  The decoder receives the guantized modulo
free to optimize the full-rank set of integer-valued coédiits reduced signals. In order to form estimates of the original
such as to best exploit the correlations between the quhtizignals with the desired distortion level, it has to figure
signals. Choosing these coefficients appropriately resalt out what was the effect of the modulo reduction on each
performance that is close to that of a joint typicality deegd observation. Rather than doing this directly, it first tries
with a substantially smaller computational burden. In foe figure out what is the effect of reducirg linear combinations
only operations performed by the encoders are quantizatiwith integer-valued coefficients of the original signalsdutm
and lattice-binning which corresponds to nearest neigleer A, and only then extract the desired effects. See Figlre 2.
coding, whereas the decoder is only required to performixatr The rest of the paper is organized as follows. In Sediibn I
multiplications and nearest neighbor decoding operations we formally define the distributed lossy compression pnoble
An important feature of the proposed approach is that hand, and introduce the performance benchmark we use
it allows the system designer to trade-off performance atlroughout the paper which is based on the Berger-Tung
complexity. At one extreme, integer-forcing (IF) sourceliog inner bound. Basic lattice definitions and figures of merit
can be implemented using high-dimensional nested latticg% recalled in Section]ll, where standard results onclatti
that have near-optimum quantization and channel coding pguantization are also reviewed. The IF source coding scheme
formance. At the other extreme, IF source coding can fie presented in Section 1V, and the performance limits of
implemented with the low-complexity one-dimensional edal the scheme are derived for the asymptotic case of high-
integer latticeZ, used as a quantizer as well as a channel codiimensional “good” nested lattice codebooks. In SediibaV,
Surprisingly, the rate loss from using tih® lattice rather than comparison between the performance of IF source coding and
“good” high-dimensional nested lattices, amounts to aloutother known coding schemes is given for several scenarios.
bits per sample per encoder, at any distortion level. At highpplications of IF source coding to several communication
resolution, where the compression rate is high, this los® oforoblems that are not restricted to pure lossy compression
bits is insignificant. are also given. In particular, we study the performance of
Implementing thelD version of IF source coding only @ compress-and-forward scheme for relay networks where

requires each encoder to reduce its observation modulo the compression is performed via IF source coding. We also
lattice 2 AZ and then quantize the obtained signal oitd, —study the problem of distributively transmitting correlated

for someA > 0 which depends on the required distortionGaussian random variables ou&r parallel AWGN channels,
This simple operation can actually be implemented using afd show that IF source coding can improve over standard
analog-to-digital converter (ADE).The observation that at approaches. In Sectidn VI we describe and analyze the one-
high resolution1D IF source coding does not lose muctghot version of IF source coding, where the scdlédinteger
w.r.t. the asymptotic performance achieved by Berger-Eundattice is used for quantization and channel coding.
compression may challenge the current paradigm of ADC Notation.We denote scalars by lowercase letters, vectors by
design - rather than sample each source at a high rate &afface lowercase letters and matrices by boldface upperc
then compress it, why not sample at the compression régéers, e.g..x, x and X. Column vectors usually represent
to begin with? An idea in a similar spirit lies at the hearthe spatial dimension whereas row vectors represent the tim
of compressed sensing [16], where thember of samples dimension. For example = [z, --- zx]|" € R¥*! may
required to reconstruct a sparse signal is reduced acegptdin represent a Gaussian vector of correlated random variables
its sparseness level. Here, thember of sampled bitequired Whereasx;, € R'*" may represent i.i.d. realizations of the

for reconstructing a source is reduced towards the sourcegdom variable:;. We denote the Euclidean norm of a vector
rate-distortion function. The power consumption of an AD®Y || - || and the absolute value of the determinant of a square
depends on the number of bits it produces per sedorid [17]MAtrix by | - |. All variables in the paper are real-valued and
the front end of the ADC includes an analog modulo operatiodl] logarithms are to the base

the ADC will need less quantization levels, i.e., less Aitaus,

if analog modulo reduction can be implemented efficiently, Il. PROBLEM STATEMENT

the IF approach may potentially lead to a more efficient ADC

. We consider a distributed source coding setting with
architectures.

I di b th dina dual Egoding terminals and one decoder. Each ofkhencoders

ls_outrpe (?gslnﬂzcan (T.set(.an as (lesource CIO Tg aualohi3s access to a vectar, € R™ of n i.i.d. realizations of
equalizationi] ]. IF equa 1zalion IS a low COMPIEXIy T8 0 1 5nqom variablery,, £k = 1,..., K. The random vector
architecture for the Gaussian MIMO channel. The IF receiver

2If the quantization is performed by theD lattice Ay = AZ and the
1The analog modulo operation is actually already implendinte some coarse lattice used for binning is = 2 AZ, where2” is a positive integer,
extent, in a class of ADCs callefdlding ADCs[15]. the order of the modulo and quantization operations can lietsd.
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Fig. 2. A schematic overview of the integer-forcing souroeing framework with the nested lattice pairC A ;. Each encoder adds a dithéy, uniformly
distributed over the Voronoi region of the fine lattidg and statistically independent of all other quantities,nyizas the dithered signal onto; and reduces
the result modulo the coarse lattide The encoding rate i% log(Vol(A)/Vol(Ay)). The decoder subtracts back the dithers and reduces tHesremdulo
A (this mod A reduction is actually not necessary and is only illustrdt@ddidactic purposes). Then, the decoder multiplies tigeals by a full-rank integer
matrix A € ZX*X | reduces the resultsiod A and multiplies byA —! to form the estimates, ..., Xx.

x = [z; --- g7 is assumed Gaussian with zero mean araf these signals to a central processor that needs to delcede t
covariance matrix transmitted messages. In such a scenario it is most comtenie
N T to treat the quantization noise as an additive one, meaning

Kax = E(xx). that it is statistically independent of the signals that are

Each encoder maps its observatiop to an index using the being quantized. This amounts to requiring conditidh (2).
encoding function Moreover, when the conditionally unbiased requiremént (2)
is not essential to the application at hand, one can always

: R . L A
E o R = {1,...,2"7%, perform minimum mean-squared estimationXoffrom X and

and sends the index to the decoder. further reduce the MSE distortion.
The decoder is equipped with' decoding functions We further focus on the symmetric case wh&e=--- =
Rxk = Randd; = --- = di, = d. We do this for three
Dy i {1,200 {1, 20— R reasons. First, such a symmetry constraint naturally siise
for k = 1,..., K. Upon receivingK indices, one from each many applications, where the coding burden has to be equally
terminal, the decoder generates estimates split between the distributed encoders. Second, this alfow
. a simpler description of the proposed coding scheme and the
xp =Dy (E1(x1), -+ Ex (%K), k=1,... K. rate-distortion region it achieves. Finally, in an asynmet
A rate-distortion vecto Ry, ..., Rk, d1,...,dx) is achiev- Setting there exist several examples where structuredrignn
able if there exist encoding functiods, . . ., £x and decoding outperforms the standard approach of Berger-Tung compres-
functionsD;, . .., Dx such that sion [4]-[6]. Focusing on the symmetric case eliminates the
1 possibility of such examples that are, to some extent, stewe
—E (||xx — %&%) < di, (1) towards using structured binnining. Nevertheless, wesstre
n that the scheme proposed in this paper is not restricted to
forallk=1,...,K.LetX £ [xT ... xE]T. A conditionally the symmetric case, and can be easily extended to achieve
unbiasedrate-distortion vectorRs,...,Rk,d1,...,dx) iS asymmetric rate-distortion vectors by using a more compli-
achievable if in addition td{1), the condition catedchain of nested lattices, rather than the nested lattice

pair we use in the sequel.

Finding the full rate-distortion region, i.e., the set of al
is satisfied for any realization dX. Note that this condition achievable rate-distortion vectors, for the describedsit an
is equivalent to open problem foiX > 2. For K = 2, Wagneret al. [8] showed
E(xs —%[X) =0, k=1,...,K. that _the Berger—_T_ung approach is _optimal. This_ approach
consists of quantizing each source using standard singles
Although condition[(R) is not as common in the literature aste-distortion theory with a Gaussian test channel, aed th
condition [1), in this paper we restrict attention to the dien using Slepian-Wolf encoding for compressing the quaribnat
tionally unbiased case, i.e., we impose conditioh (2). 8dveindices. ForK > 2 it is now known that the Berger-Tung
applications of interest require the estimates formed lgy tApproach does not attain the full rate-distortion regioge(s
decoder to be conditionally unbiased. For instance, censid e.g. [5]). However, to the best of our knowledge, it is not
communication scenario where distributed antenna tedmin&nown whether the Berger-Tung inner bound is loose for the
observe noisy linear combinations of the signals transehittsymmetric case. In the absence of a better known coding
by several encoders and want to forward a compressed versoheme, we take the symmetric rate from Berger-Tung'’s inner

IE()A(]CDC):X]67 kZl,...,K (2)



bound as our benchmark. More specifically, the sum-rate ties in [) are broken in a systematic manner. The modulo

Berger-Tung’s inner bound is given by operation returns the quantization error w.r.t. the lattic
K
dA=y -
SRy > (), 3) [y] mo y — Qa(y)
k=1 and satisfies the property
whereu = [u; ---ug]? is a vector of auxiliary random [afy] mod A] mod A = [ay] mod A ®)

variables that satisfy the set of Markov chains
for anya € Z andy € R™ This property will be used

uk = @k — ({2, 45} 28) extensively in the sequel. The second moment d$ defined
and such that there exist functiofig(u, ..., ux) satisfying as
E(xy, —2)% < dj, forall k =1,..., K. Optimizing overu is ) 1 1 )
a difficult task. A common and natural choice in the quadratic o"(A) = n Vol(V) /uEV lull“du,

Gaussian case is taking
whereVol(V) is the volume ofV. The effective radius of a

up = oy +w, k=1,... K, (4) latticerert(A) is defined as the radius of andimensional ball
whose volume equalSol(V).

where w,,...,wy are statistically independent zero mean The latticeA can be used for quantizing continuous sources
Gaussian random variables that are also independent, of . I quantizing ) . :

. In particular, an encoder which is interested in conveying a
anda;,...,ax are some constants [20]. Such a choice Was%urce R" to a decoder can comput@a(y), which
shown to be optimal fof{ = 2 [8], but may be suboptimal for y € PUALY ),

) ; . . is a lattice point inA, and send a description of this point
larger dimensions. Since we are after conditionally urdias o .
; to the decoder. The quantization error of such a scheme is
estimates for theK components ofx, we seta, = 1,

N _ - e =y—Qa(y), which is a deterministic function gf. Recall
gﬁb:tﬁi?ﬁg)tﬁgdgﬁéﬁg .ird??)Kg)iv_e:k forallk =1,.... K. that in this paper we are interested in encoder/decodes pair
that produce conditionally unbiased estimates of the surc
1 K + dI| which is clearly not the case for a standard lattice quantize
5 1OgW This may be overcome by allowing the encoder and decoder
to use common randomness. L&t~ Unif()) be a random
) dither vector uniformly distributed ovey and statistically
independent of7, known to both the encoder and the decoder.
ere dithered lattice qunatizeassociated with the latticA
computesa(y + d) and sends a description of the obtained
lattice point to the decoder. The decoder produces the a&im

Ry,

Y

ot

1
I+ —Kxx|-
+ d
This sum-rate is achievable using Berger-Tung compressi
In this paper we are interested in the symmetric rate-distor
region. To this end, we takd](5) normalized By as our

1
3 log

benchmark G = Qaly+d)—d
RETed) 2 508 |1+ 7o (6) =y +Qy+d)—(y+d)

=y — [y +d] mod A.

BT i ini
ls\lor;emtehtﬁ:;er;etrgE( dﬁt(ﬁtigﬁt fSn::ch(\;ﬁrat():cr)llijg\?e;rlla thge:ng]gslThe Crypto Lemmad[21, Lemma 1] ensures that the estimation
y y 9 error —[y + d] mod A is statistically independent gf and is

compression, as our choicewfis not necessarily the best one.” . o .
mp 0 o Y . uniformly distributed overV. The symmetry of the Voronoi
It is also not an upper bound on the minimal symmetric rate-

distortion function achieved by Berger-Tung compressis, region V guarantees that the estimation error has the same

the symmetric rate with our choice afmay not be dominated d!str!but!on asd a_md has Z€ro mean. Thu;s, =yt d in
b . distribution, and is a conditionally unbiased estimateyof
y the sum-rate constraint.

Clearly, the average MSE distortion attained by dither#itka
guantization is given by

1. PRELIMINARIES ) .
In this section we recall several lattice properties thdt wi ~E (ly —311*) = E]E(HdHQ) =a?(A).

be useful in the sequel and review the concept of dithered ) ) o )
lattice quantization. Of course, dithered lattice quantization, as described/@bo

A lattice A is a discrete subgroup @&" which is closed requires an infinite rate as there is an infinite number ofsoin
under reflection and real addition. We denote the nearddt?- This can be handled using an entropy coded dithered

neighbor quantizer associated with the latticdy quar!tizer (ECDQ)22]+[24], or a nested lattice codebod.[1
In this work we take the latter approach.

Q(y) = argmin |y — t||. @) The following definitions characterize the lattice “goodsie
teA properties needed in this paper.
The basic Voronoi region ok, denoted by, is the set of all ~ Definition 1 (Goodness for MSE quantizatiord: lattice
points in R"™ which are quantized to the zero vector, wherd, or more precisely, a sequence of lattices with growing



dimensionn, is said to be good for MSE quantizatioﬁ if the fine latticeA ¢, which is good for MSE quantization, has
r2 (A) second momenIrQ(_Af) = d. This implies thatZ;(As)/n —
lim ¢%(A) = lim -, d. The coarse lattice\, which is good for AWGN channel
nee nTee coding, has effective radiug,(A) = n(P + d + ¢), for some
Definition 2 (Semi-norm ergodic noise)Ve say that a ran- arbitrarily smalle > 0. A dither d uniformly distributed over

dom noise vectog, or more precisely, a sequence of randorii; is known to both the encoder and the decoder. The encoder
noise vectors with growing dimension with (finite) effective computes
variance 0% = E||z||?/n, is semi norm-ergodidf for any
e >0, 8 >0 andn large enough [@a;(y +d)] mod A €C,
and sends its index to the decoder. The decoder computes

Pr(llz] > VT +0)naz) <e. )
v = [[Qa,(y +d)] mod A — d] mod A

Note that by the law of large numbers, any i.i.d. noise is semi

. i.d.
norm-ergodic. (.d) [y + d] mod A
The next Lemma restates Corollary 2 from|[25] to fit our (w-h-p.) y+d (11)
purposes.
Lemma 1:Letd;,---,dx be statistically independent ran-where (i.d) stands for equality in distribution angﬂip')

dom dither vectors, each uniformly distributed over théor equality with high probability. The equality_(111) folls
Voronoi regionV of a latticeA that is good for MSE quantiza- from the fact that the random vectgr + d is semi-norm
tion. Letz be an i.i.d. random vector statistically independemirgodic due to Lemmal 1 and has effective variafi¢gy +
of {dy,---,dk}. Any deterministic linear combination ofd|?)/n = P + d. Since A is good for channel coding and
d;,--- ,dg,z is semi norm-ergodic. Elly+d|?/n < rZ(A)/n, the probability thaf) (y +d) # 0
Definition 3 (Goodness for channel coding): lattice A, vanishes, and hencly; + d] mod A (whep) y +d. Thus, with
or more precisely, a sequence of lattices with growingigh probability
dimensionn, is said to be good for channel coding if

1 1
for any 0 <d <1 and any n-dimensional semi norm- —E(ly - yII*) = =E(||d||*) = 4,
ergodic vectorz with zero mean and effective variance . " ) " o o
El|z]|?/n < (1 — 8)r2(A)/n as desired. The required rate for achieving this distorion
e
. 1 r2¢(A)
lim Pr(z ¢ V) =0. R(d) = 10g( eff )

A lattice A is said to be nested i if A C Ay. The coding
scheme presented in this paper utilizes a pair of nestaddatt
such that the fine lattic& s is good for MSE quantization and
the coarse latticé is good for channel coding. An ensemble

for drav_vmg. pairs Of, nestgd Iatlces that sat_|sfy these gee.d where the additionak1 inside the logarithm, w.r.t. the stan-
properties is described i [Z]apd the existence of_Iattlce dard Gaussian rate-distortion function, is a consequehaero
pairs \r’wv'th sI_|ghEIy r;greAdeman§||ng_ goodgesi requ'“_er:emequirement that the reconstructignforms a conditionally
was shown in([5],[[26]. A nested lattice code= ANV wit unbiased estimate of. In fact, we can eliminate this term by

2

1 n(P+d+e)
~1 b Sl e
20g( nd )

%log (1+ P+€) (12)

d

rate performing an additional Wiener estimation step ygnat the
1 1(A 1 2:(A i i i
R="Llog Vol(A) \ 1 Io rgeff( ) (10) ©xpense of introducing bias [24].
n Vol(Ay) ) 2 rer(Ar)
is associated with the nested lattice pair. IV. INTEGER-FORCING SOURCE CODING

Before describing the integer-forcing source coding saem In the IF distributed source coding scheme all encoders use
let us illustrate how the codeboak described above canthe same nested lattice codebo®k= A NV, constructed
be used for compressing samples of a single memorylesfrom the nested lattice paik C A, with rate
Gaussian sourcg ~ A(0, P) with distortiond. Assume that 5
R = llog ( reff(A) )

SNote that our condition for MSE goodness is equivalent to rinere 2 Tgﬁ(Af)
commonly used condition?(A)/Vol(V)2/™ — 1/(2xe) since the volume . . . . . .
of a unit n-dimensional ball grows liké2me /n)"™/2. As in the previous section, the fine lattice; is good for
“In [25] the definition of goodness for channel coding was weakan MSE quantization witho?(A;) = d whereas the coarse
that needed here. In particular, only the existence ofckatithat achieve |attice A is good for channel coding. All encoders employ

a vanishing error probability undezosetnearest neighbor decoding in the imil di . Theth d dith
present of semi-norm ergodic noise was proved. However, ee roareful a similar encoding operation. encoader uses a dither

inspection of the derivation i [25] reveals that the prdligbof decoding dj, Statistically independent of everything else and unifigrm
an erroneous point _in the correct coset a]so vanishes w_n'ﬂ'dﬂmensionfr_z distributed oven/f, and employs dithered quantization of
for the choice of lattice parameters madelin! [25]. Thus, ttistence of pairs As Th . d h btained latti . dul
of nested lattices such that both fine and coarse latticeg@od for MSE onto I+ en., It reduces the o _tame "_ﬂt.'(:e pOIDt modauilo
quantization and channel coding follows. the coarse latticd and sends: R bits describing the index of




the resulting point to the decoder. Specifically, ktle encoder Moreover, if this holds for alk = 1,..., K, i.e., if
conveys the index corresponding to the point
’ PorEme B e E (Jaf (X + D)) _ r2g(A)

[QAf (X}C + dk)] mod A k:HllaX,K n n
to the decoder. then forn large enough
The decoder first subtracts back the dithers from each of —— (w.h.p.)
the reconstructed signals and reduces the results matulo AX =" AX+D). (15)
giving rise to Noting that
%y, = [[Qa, (¢ + di)] mod A — di ] mod A E(laf X+DI) _ rg 4 any
= [xk + [QAf (xg + dk)] mod A — (xx + dk)] mod A n = (Koo Ak
(i-d.) xp + dy,] mod A (13) this implies that for[(Ib) to hold, it suffices to set
2
If the coarse lattice\ is chosen such that its effective radius Teﬁ—(A) =, max a{(Kxx +dDay + ¢
n =1,....K

is large enough, the modulo operation in](13) would have no
effect onx;, + dy, and the decoder would have estimates dbr some arbitrarily smalk > 0, which corresponds to a rate
eachx,; with average MSE ofd, as desired. However, theof

: o
encoding rate grows withgz(A), and we would therefore 1 (man—L...,Kaf(Kxx+dI)ak +€)

prefer to choose it as small as possible. R = S log
. : o . 2 d
The key idea behind IF source coding is that if the elements _
of x are correlated, then linear combinations{af, +d;} X, The decoder proceeds by computing
with integer-valued coefficients may have smaller effectiv - = (w.h.p)
variances than the original signals. The IF decoder thezefo X=A"AX ="X+D,

first estimated integer linear combinations dfc. +dx}iZ1,  which is (w.h.p.) a conditionally unbiased estimateXofwith
and then uses these estimates for estimating the des'é%rage MSE distortiod per component. The next theorem

signals. Using this approachzq(A) should only be greater s mmarizes the performance of IF source coding.
than the largest effective variance among #idinear combi-

nations. When the entries af are sufficiently correlated, and _ Theorem 1 (Performance of IF source coding):
the integer-valued coefficients are chosen appropriatiely, For any distortion d > 0 and any choice of

may significantly reduce the required encoding rate. A= [a - aK]T. € ZK*K, there exists a (sequence
of) nested lattice pair(sh C Ay such that IF source coding

Let X = [xf' - xk]”, D = [df .. dfJT andX = an achieve any rate satisfyin
[xI ... xE]T. Using this notation, the decoder has access 15 y ying
- ! - 1
X = [X + D] mod A, R> Re(A,d) = 5 log (Jnax, a T+ Ko ) ar ) -

where the notationnod A is to be understood as reducing=or the optimal choice ofs, IF source coding can achieve
each rowof the obtained matrix modulo the coarse lattice. Thgny rate satisfying

decoder chooses a full-rank integer-valued matix Z%*¥
and computes

—

AX & [AX} mod A
= [A[X + D] mod A] mod A

1 . 1
R > Rip(d) £ 3 log Aerrzl}(n”( k:I{I,{-i-)-(,K al <I + EKXX) ay
det(A)#£0

= [A(X+D)] mod A (14) The matrixI + K, is symmetric and positive definite,
where [1#) follows from the modulo properfy (8). and therefore it admits a Cholesky decomposition
Letal be thekth row of the matrixA. The random vector 1
a] (X + D) satisfies the conditions of Lemrih 1 &8X is an I+ —Kux = FF', (16)
i.i.d. Gaussian vector and each of the statistically indelpat . . L : -
dithersdy,...,dk is uniformly distributed over the Voronoi where F is a lower triangular matrix with strictly positive

region of a lattice that is good for MSE quantization. Theree-nmes' With this notation,

fore, al (X + D) is semi-norm ergodic. It follows from the

goodness of\ for channel coding that if Rie(d) = llog min max_||F ak||2 _ 17)
T 2 2 AczZEXK k=1,.. K
E ([laf (X + D)|?) < r2¢(A) det(A)£0
n n

Denote byA(FT) the K dimensional lattice spanned by the
then forn large enough matrix F7, i.e.,

[a? (X + D)] mod A L") aT(X + D). A(FT) 2 (FTa : aczX).



It follows that the problem of finding the optimal matrix Proof: Let F be as defined i .(16). For the optimal choice
is equivalent to finding the< shortest linearly independentof A and for anyd > 0 we have

vectors of A(F7). Although this problem is NP-hard in

general, its solution can be efficiently approximated ushrey 5 log < L

max a{(I—i—lex)ak) = %log (AL (FT))
LLL algorithm [27], whose running time is polynomial.

=1,...K d

K

Moreover, we can express the rate-distortion function > 11 log (\2(FT 19
achieved by IF source coding using tkeccessive minima T 2K ; Og( k( )) (19)
of the lattice A(FT). ) K

Definition 4 (Successive minimalet A(G) be the lat- = 5K log H Aﬁ(FT)>
tice spanned by the full-rank matriG € RE*K. For k=1
k=1,..., K, we define thekth successive minimum as > T log (|F|2) (20)

Mk (G) = inf {r : dim (span (A(G) mB(O,T‘))) > k} = % log [T+ éKxx ; (21)

whereB(0,r) = {x € R™ : |x| <r} is the closed ball of 0 ¢ [I9) follows from the monotonicity of(FT) in k
radlu_'sr groundO_. I_n words_, thekth successive minimum of along with the monotonicity of the logarithm functior, [20)
a lattice is the minimal radius of a ball centered arooritiat follows from PropositiofifL and(21) follows frori {16). m
containsk linearly independent lattice points. . _ ] . )
] o ] ) ] As discussed in Sectioplll, in an asymmetric problem
~ Using Definition[4 and[(17), the IF rate-distortion functionyetting, structured binning may result in a better ratésdion
is given by region than the one obtained by Berger-Tung compression.
1 Lemma2 shows that under the symmetric setup, at least with
Rip(d) = 5 log (A (FT)), (18) |F source coding, this may not be the case. Nevertheless,
. ~ the complexity reduction obtained by using IF source coding
where the dependence of the r.h.s.dis through the matrix ather than Berger-Tung compression makes it an attractive
F defined in [IB). candidate for practical implementation. Moreover, as wadlsh
Next, we show in Lemmal2 that the performance of Ikee in Sectiof VI, a one-shot version of IF source coding can
source coding, in the symmetric setting considered, isimfe pe easily derived and analyzed. Although one-shot versibns
to the Berger-Tung benchmark, i.6%r(d) > Rpi.{d). We Berger-Tung compression were also considered ih [28] and an

will need the simple following proposition. inner bound was derived, it is unclear how to interpret this
Proposition 1: For a lattice spanned by some full ranknner bound for the problem at hand.
matrix G € RE*XK Remark 1:The crucial element in the IF source coding

scheme is that all encoders reduce their quantized signals
modulo the same coarse lattice. The modulo reduction plays
the role of binning. Theoretically, each encoder can first

K
G| < [[(G)
k=t reduce its observatiomod A and only then quantize it using

Proof: Let ai, . ..,ax € ZX be K linearly independent a quant_izer_ desigqed for the modulo reduced sourcé [24].
vectors such thad,(G) = ||Gay| for all k = 1,..., K, and No nesting is required between the quantizer and the coarse
let A = [a; --- ax]. Since all entries oA are integer-valued I:attlce. This results in the decoder receiving the S|gnals
we must haveA| > 1, and therefore Xp = [xk] _mod A+dg, k=1,...,K, whered;, is quanti-

zation noise. The decoder can proceed to compAe as
|G| < |G| |A| = |GA| described above. The difficulty with such an implementation
K is that the quantizer needs to be matched to the modulo re-
=|[Ga; --- Gag]| < H |Gay| duced source, which requires some sort of (high-dimengiona
Pl entropy coding. As we shall see in Sectlon MI-A, in th®
K version of IF source coding, where the coarse lattice asasgell
= H Ak(G). the quantizer are scaled integer lattices, the modulo temuc
k=1 can precede quantization without increasing complexity.

Remark 2: Another implementation issue to consider is the
goodness requirements dn WhenA is used for modulation
Lemma 2:For anyd > 0 and for any choice of full-rank oyer the AWGN channel, it suffices to require thiais good
A € ZF*% we have undercosetnearest neighbor decoding. This means thas
split into cosets, usually using a coarse lattice nestederns
»  and the decoder only needs to choose the coset the trargmitte
point belongs to. As a result, when coding for the AWGN
and therefore, in the considered symmetric setting, the- rathannel is considered, a construction A latticel [29]] [3thw
distortion functionRr(d) of IF source coding is never smallera linear codebook of small prime cardinalify suffices to

than the benchmarkE! (d). achieve a vanishing error probability. In such a constounti

1
I _Kxx
+ d

1 o1 1
it - >
5 log (k_I?aXK a, (I+ dex)ak) e log



the minimum distance is limited by, and the error probability function is given by
for decoding the actual point transmitted, rather than teet;

cannot vanish with the dimension. However, all pairs of poin REI {d) = LK log [T + éBle*T

with nonincreasing (as a function af, the code dimension) 2

Euclidean distance belong to the same coset, and therefore _ 1 (10g|B|2 +log |BB” + 11|)
such a lattice is still good for coset nearest neighbor diegod 2K d

In IF source coding, the decoder needs to decodachgal
lattice point of A closest toa} (X + D), rather than just its
coset. Therefore, construction A lattices obtained fromear 1t can be seen thakEl (d) — —1/21og(d) asd — 0.
codebook with smalp do not suffice in order to achieve a For IF source coding, one can chooke= B. This choice
vanishing error probability. However, one can still aclievgives
a very small error probability, though not vanishing with 1 1
the dimension, using standard Construction A lattices with Rjg(B,d) = —1og< max b} (I+ —Kxx) bk)
moderate values qf. See Sectioh VI for further discussion of 2 k=1,....K d

i ion i 1 1
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It is easy to see thaRe(B,d) — —1/2log(d) asd — 0,
V. EXAMPLES AND APPLICATIONS just as the benchmark rate-distortion function, and theeef
according to LemmAl2, the choice = B is optimal at high
This section provides several examples that demonstrate faso|ution.
performance of IF source coding, along with applicationd an The naive approach that compresses each source without

communication scenarios where IF source coding is advangpioiting the existing correlations fails to achieve trenbh-
geous. The section consists of three parts. First we contiparemark rate-distortion function. In fact, it can only achieve
performance of IF source coding to that of a naive distribute

compression scheme that ignores the correlation between th Ruaiveld) = 110 14 maxg—1,... x ||bx|? 23)
sources and to the Berger-Tung benchmark. Then, we use IF =~ "¢ 2 8 d ’

source coding as a building block in a Gaussian layered relay  _ .

network, and demonstrate its advantages compared to otWéereby is thekth row of B~'. All entries ofb,, are integer-
known low complexity schemes. Finally, we show how th&alued since the matriB is integer-valued with determinant
idea behind IF source coding can be extended to form a signkl-Therefore||by[|> > 1 for all k = 1,..., K. The obtained
to-noise ratio (SNR) independent joint source channelragpdicompression rate approachgsog(max |[b||*) — 1/2log(d)

scheme, whose distortion decreases as the SNR improvesasd — 0. Thus, at high resolution, IF source coding requires
1 log(max ||by||?) bits less than the naive approach in order

to achieve the same distortion. This improvement can be made
unbounded by choosinB appropriately.
Example 2 (Compressing observations of correlated relays)
In this subsection we evaluate the minimal symmetric raféonsider the problem of distributively compressing/&
needed in order to achieve a conditionally unbiased averatjmensional Gaussian sourgavith zero mean and covariance
MSE of d for two schemes: matrix K,, = SNRHH” + I for someSNR > 0 and some
matrix H € RX*X_ This choice of covariance matrix

1) IF source _codmg - this rate is givenin Theorgm 1.' corresponds to the joint distribution of the signals obedrv
2) Compressing each source using standard rate-dlstortbon

theory without exploiting the correlations between theY K r.e'"?‘ys in the Gaussian network deplctgd inFigre 3,
. L Where it is assumed that each of thé transmitters uses a
sources - this rate is given by

random i.i.d. Gaussian codebook such that each of the signal

A. Examples

1 Kox (b, ) s1,...,8g behaves statistically as white Gaussian noise. This
Riaive(d) = (nax o log (1 + T’) . (22) network will be studied in more detail in the next subsection
We plot the averages of the minimal required compression
and is identical to the rate obtained using IF source codifges for the two schemes, i.e. the ergodic rate-distoftioo-
with the choiceA — I. tions (_)f the_ two schemes, along with the e_rgod|c ben_chmark
rate-distortion function, under the assumption that theies
We also compare these rates to the Beger-Tung benchmgflgy are i.i.d. standard normal random variables. Fidure 4a
Rpgne(d) @) depicts these rates fdt = 4 andSNR = 20dB as a function
Example 1 (Integer decomposable covariance matr3:  of d. It is seen that at moderate to high resolution (small to
a first example, consider the case wherie a Gaussian sourcemoderate values af) IF source coding closes about half of the
with zero mean and covariance matii&., = B~'B~" for gap between the naive compression scheme and the benchmark
some full-rank integer matriB € Z**X with determinant which corresponds to the Berger-Tung compression scheme.
Bl = 1. One can argue that in the considered scenario the gap be-
The Berger-Tung benchmark symmetric rate-distortiamveen the performance of the naive scheme and the benchmark



Clearly, Rsym cannot exceed the MIMO capaﬁt;corre-
sponding to the channe[(R4) between the transmitters and

| Ro : .
wi —{ Tx 1} —=L>Relay 1 relays, and it also cannot exceédR, because even if each

relay could decode all messages, #erelays cannot convey

Z1

: w1 more thanK R, bits/channels use to the CP through the bit-
H ' CP —: pipes. Thus, we have
Ve 'LZ)K

1
Rsum < Rmivo £ min (5 log |I + SNRHHTl, KRy | .

| Ry
e T o

Fo 3 AG ) aork wittic & rel Each rel An inner bound forRgqm can be attained by the following

oné output of the channek ~ Hs + 2 and has a clean bitpipe of,  SCheme. Each relay can compress its observatiowith

bits/channel use to the central processor (CP). The CP tuiestimate the rate Ry and send the compression index to the CP. The CP

messages transmitted by thé users. obtainsK estimatesk;, = x;, +d;, of the relays’ observations,
whered;, € R'*™ is the quantization error, and can use these
estimates in order to decode the desired messages. Sgbgifica

is quite small, and therefore it is not clear if IF source ogdi using this approach the CP decodes the messages from

only slightly improves over the naive scheme, or closely N

follows the performance of the Berger-Tung benchmark. To X=HS+Z+D, (26)

illustrate that the latter is true, in Figutel4b we consider ghere p — [df ... dZL]T. If the quantization errors are

similar scenario where nod € R**? with i.id. N'(0,1) gatistically independent of everything else, as in IF seur

entries. This models a network wightransmitters and relays. coding, D can be treated as another additive noise. Let

This choice of distribution tends to induce more correlatio

between the entries of, which enlarges the performance gap d(Rp) = max lIE(||dk||2).

between Berger-Tung’s compression and the naive compres- k=1,...K' 1

sion approach. Nevertheless, as seen from Figure 4b, the daguming that all transmitters use i.i.d. Gaussian codkefab

between the performance of the Berger-Tung benchmark aotlows from the entropy power inequality [31, Problem 9.21

IF source coding remains approximately the same. that the CP can decode all messages. .., wx from the
channel[(2b) if
B. Layered Gaussian relay network Rsym < 1lo I+ SNR HH” (27)
. y y sum = 5 g 1+ d(Ro)

In this subsection we consider the Gaussian network froa

. } ) early, the degradation of this scheme w.r.t. the MIMO capa
Figure[3, and show that for a wide regime of parameters u5||rt1§ depends on the value d@f R,). Improving the compression

IF source coding as a building block improves upon Oth%cheme decreasekR,) which in turn increaseteun One

comhpetmg Iovy-complexni coding sc_f:jemes. ) ¢ can use the conditionally unbiased version of Berger-Tung
The Gaussian network we consider consistSIofnon- i, qrger to obtain a smalli(Ry). However, this solution

cooperating transmitters, each with messageand rateR;.. requires joint typicality decoding at the CP which is difficio

A central p|r_|ocessor (_C(F;) IS mte;]ested 'g_ decoding Jll implement. Alternatively, IF source coding can be emplgyed

messages. However, it does not have a direct access to gy, considerably reduces the implementation compleadity

signals transmitted by thé& transmltters_. In_stead, ther(_e argp o price of slightly increasingl(R,). The relays can also

K relays, eac_h of W,h'Ch observes a noisy linear Comb'nat'%rﬁ‘lploy naive conditionally unbiased compression, which is

of the transmitted signals. Each relay has a clean b|t—pfpeaﬂso a low-complexity scheme. This reduces to performing

rate Ry bits/channel use connecting it to the CP which it US§E source coding with the choica — T which is often

for helping the CP decode aII. messages. ) suboptimal. The latter approach is often termed compreds-a

Let s, € R'*™ be the signal transmitted by theth forward in the literature [19].

transmitter during: consecutive channel uses. We assume a”AIternativer instead of compressing their noisy obser-

transn;itters are subject to the same power-conlstraintmaad:h vations, the relays can attempt to decode the transmitted
_ Xn . .

Ellsk[* <nSNRforall k =1,..., K. Letx; € R™*" be the masqages, or a function of the transmitted messages. In the

signal received bytheth r;:‘la;y duringn CO;]SGCUU\;E;}I‘]&I’]I’]H decode-and-forward schemie [32] each relay decodes one of

uses, and le§ = [s; --- sk]" andX =[x; --- xk]". The he messages and forwards this message to the CP. The

signals are related by compute-and-forward schemé [19] generalizes decode-and-

X — 1S + 7 24 forward and allows each relay to decode a linear combination

o 2 (24) of the messages, which is forwarded to the CP. Since decode-

and-forward is a special case of compute-and-forward, its

where H € RE*K js the channel matrix between th& )
performance is never better.

transmitters and thél relays and the entries & € R¥*"
are i.i.d.N(0,1). W;:; are interested in the maximal achievable so1e 1y capacity we mean the mutual information corresipgndo a
sum-rateRsym = Zk:l Ry. white input, as the transmitters are non-cooperating.
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Fig. 4. Comparison between the ergodic rates for the vamouspression schemes from Examiple 2.

In Figure [5G4 we plot the ergodic rates achieved usimfdVGN channels
IF source coding, compress-and-forward and compute-and-
forward, over the Gaussian network from Figlire 3 Rgr= 2
andK = 4, where the entries dil are assumed i..dV(0,1). where the entries 0f,,...,zx are ii.d. Gaussian random
Figure[Sh depicts the same ergodic rates fRgr= 3. variables with zero mean and variante The decoder ha&

The figures demonstrate that while compute-and-forwafighctionsDy, : R™ x --- x R® — R” that it uses in order to
outperforms both compression-based schemes wRgnis form estimatesc, = Dy (y1,...,yx) for each source.
the system’s bottleneck, for relatively large, (w.r.t. the Let SNR £ P/N. An SNR-distortion vector
1/K times the MIMO capacity) compression is preferabl¢SNR, d;,...,dx) is achievable if there exist encoding

Ye =Sk +2zx, k=1,....K

over decoding. The gains of IF source coding over naif@nctions &;,...,£x and decoding function®,,..., Dk
compression are evident. such that

One can further improve performance using a quantize-map- 1 I
and-forward like schemé [33], [34] where each relay quastiz gE (ka — Xl ) < di, (28)

its observation, bins it, and sends the bin index to the CFBT allk =1 K. A conditionallyunbiasedSNR-distortion

The difference between such schemes and the COmpresg)@Ror (SNR. d d«) is achievable if in addition td 728
based schemes described above is that in quantize-map-an 'coﬁlditio’n 1o dic) d.(28),

forward the CP decodes the messages from the bin indices

themselves without “decompressing” the relays’ obseoweti ExilX)=xk, k=1,....K (29)
Such an approach improves upon compression based schemes.,. . . . :

However, to date it lacks a signal processing based arctitec is satisfied. As before, we restrict attention to conditltynan-
allowing ’to reduce the problem to multiple instances of iased estimates, and focus on the maximal distortion among
point-to-point problem, as is the case for IF source codinb.eK Vectors, 1.e.4 = maxj=1,...K di.

We note however that progress in the direction of developi?%ﬁ‘gfsg'?g: ?gg.rr?acazgoéggﬁnC;ncsc;(;?nredTphrg béiﬁgga;i' ds to
a low-complexity architecture for quantize-map-and-fardy : u Ny ing. 1hi p

has been made ifi [35]. using AWGN capacity achieving codebooks for transforming
- the K AWGN channels intoK bit-pipes each with capacity

C = 1/2log(l + SNR) bits/channel use, and then using
distributed source coding with rat€' bits/sample at each
encoder in order to describe the sources to the decoder. The

In this subsection we consider the setup depicted in Figrain drawback of this approach is that it must be designed for
ure[8. In this setup, there at® distributed encoders, eachspecific values oSNR and required distortionds, ..
with access to the vectot;, that containg: i.i.d. samples of The predefinedSNR acts as a threshold. If the actu@NR
the random variable;;,. We assume that the random vectoexperienced by the communication system turns out to be
x = [z1 -+ 2x|T is a Gaussian vector with zero mean antigher than this threshold, the expected distortions wded
covariance matrixK,x. Each encoder is equipped with aniy, ..., dx, but would not improve when the actudNR is
encoding function&, : R™ — R", such that the signal it improved.
transmits to the decoder is, = &i(xx). All encoders are  Taking K = 1 in our setup reduces it to a point-to-point
subject to the same power constraiii|s,|?) = nP. The problem of Gaussian source transmission over an AWGN
decoder observes the transmitted signals throligparallel channel. It is well known[[36] that analog transmission & th

C. Distributed joint source-channel coding

. dx.



11

12

| / 10

! — |

ER)

Compute-and-forward
Integer—Forcing compression |-
Compress—-and-Forward 2k
MIMO upper bound

Compute-and-forward
Integer—Forcing compression
Compress—and-Forward
MIMO upper bound

. . . . . . . . . . . . . .
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

SNRI[dB] SNRI[dB]
(8) Ro = 2 (b) Ro = 3

Fig. 5. Ergodic rates over the network from Figlile 3 fér= 4

defined shortlﬁ adds a dithed; uniformly distributed over

z

f V, and reduces the resulhod A such that the transmitted
xi —[ & Pl signals are

X1 sp = [Axr +dg] mod A, k=1,..., K.

” p _) Note that the power constraints are satisfied;as uniformly

f{ XK distributed overV and therefore its second moment equals
X5 SK D YK a2(A). The_decoder first performs MMSE estimation of each

sk, by scaling eacly, by « = /P/(P + N), subtracting

back the dither and reducingiod A. This gives

Fig. 6. A distributed joint source-channel coding settifgch encoder wishes
to describe its observatiaxy, to the decoder through an AWGN channel, with
minimal average MSE distortion. The sources are correlatetithe encoders = [sk + (@ — 1)sg + @z — di] mod A

are distributed.
= [Bxx + Zeff, k] mod A,

Vi = [ayr — dg] mod A

where

source with appropriate scaling at the encoder and decoder
achieves the optimal performance. Moreover, the traneristt
operation does not depend on the noise’s variance at fige noisezcq, is statistically independent ofy, and has
receiver. As a result, if the noise variance turns out t0 R&fective variance of

smaller than expected, the decoder can improve the quality

of its estimate for the source. This desirable phenomena was —E(||zefr 1 |?) = NP . k=1,...,K.

extended to the Wyner-Ziv/dirty-paper setting in1[37]. Eler n ’ N+ P

we use the idea of IF source coding for constructing a joiMoreover, it is a linear combination of a dither uniformly
source-channel coding scheme for our setup with an ampitrafistributed over the Voronoi region of a lattice that is gdod
number of users. The encoders’ operation in the proposR$E quantization and an AWGN, and therefore, by Lerfiina 1,
scheme is independent of the noise variance, and the obtaifés semi-norm ergodic.

Zei ) = (0 — 1)y, + azy.

expected distortion at the decoder decreases Witprovided As before, letX = [xI' ... xE]7, and defineY and Zes
that IV is below some predefined threshold. in a similar manner. The decoder chooses a full-rank matrix

The proposed coding approach utilizes a single latfice A € Z*** and computes
with o2(A) = P, that is good for channel coding and for MSE — .
quantization. In particular, its goodness for MSE quartitize fAX = [AY] mod A
implies thatr2;(A)/n ~ P. The coding scheme is designed = [A([BX + Ze] mod A)] mod A
assuming that the AWGN variance is not greater than some _A(BX 4+ 7 dA
nominal valueN™™, However, whenV < N"™™M the obtained = [A(BX + Zer)] mod A.

distortion decreases d€ decreases. o _ _
In general, performance can be improved by letting each dercase a

Each encoder scales its observation by sgmne 0 to be different 8,. We disregard this possibility for simplicity of expositio
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Let a{ be thekth row of A. The random vectoif(ﬂX+Zeﬁ) VI. ONE-SHOTINTEGER-FORCING SOURCE CODING
is semi-norm ergodic with zero mean and effective variance onpe of the advantages of IF source coding is that its

complexity and performance can be traded-off, by choosing

op £ lE(HaiF(ﬁX + Zer)||?) nested lattice codes that can be easily implemented, but are
" NP less effective as channel codes and MSE quantizers.
=al (ﬁngx + WI) ag. In the previous sections we have considered the extreme
+ case of high-dimensional pairs of nested lattices wheréirlbe
Since A is good for channel coding, #2 < P for all k = lattice is good for MSE quantization and the coarse lattice i
1,... K, then good for channel coding. In this section we consider therothe
extreme, where both lattices are scaled versions of thgente

m (w-hp.) A(BX + Zer), (30) Iatti<_:e Z. With this choice of nesteq lattice pair, IF source
coding becomes extremely easy to implement. Moreover, this
and the decoder can further compute one-shot version of IF source coding does not induce any

latency and does not assume the existence of an unlimited

X = 1 ~15AX number of i.i.d. samples to be compressed.
B Let Ay = V12dZ and A = 2%\/12dZ. If 2% is a positive
(w.h.p.) X+ lz integer thenA C Ay, and the codebookK = Ay NV with
o B effs rate R is a valid codebook for IF source coding. L&t be a

) _ ) _ random dither uniformly distributed ovés;, known to both
which are unbiased estimates of eaghwith average MSE he kth encoder and the decoder. Thiéa encoder conveys the

distortion ofdr = NP/B*(N + P). index corresponding to the point
The remaining question is how to chooSesuch that[(30)

indeed holds. Recall that is chosen by the encoders that [Qa, (zk + di)] mod A

only know thatN' < N"™, rather than the exact value &f. to the decoder. Note that for a 1D lattice, the quantization

Therefore, the encoders should chogsas operation reduces to a simple slicer. Thus all operatioas ar
nom A easy to implement.

Bop( P, N™ Kx) = o The decoder first subtracts back the dither and reduces

Nhomp i

maxs.t. min  max a; (3°Kyx + ———D)a, = P mod A to obtain

>0 AcZEXE k=1,....K Nnom p _ (i)
det(A)#0 T =" [k + di] mod A,

and the symmetric distortion obtained by the proposed sehe@d then chooses some full-rank matik € ZX** and

is computes
e N Ax 2 [AXx]mod A = [A(x+d)]mod A,  (31)
Bapt( P, NMo™ K ) whered = [d; --- dk]”. In contrast to the case of a high-
which decreases a§ decreases, as desired. dimensional nested lattice codebook, where the probgpthlét

A naive ioi h | codi h hat i Ax # Ax could be made as low as desired-3{(A) is large
haive joint source-channel coding schemes that 'gnorgﬁough, here this probability is finite for any finite value of

the correlations between the entriesxofvould be transmitting 97./124. In particular, leta” be thekth row of A and define
eachz, in an analog Goblick-like scheme. The distortion, random variable Pk

achieved by such a scheme wouldlbe
wy 2 al (x+d)

N
dnaive = 5 | Max Kyx (k. k). with zero mean and variance
2 _ T
It can be easily verified that the same distortion is achigfed e = 2y, (Koox + dlay.

one constraind = I in the scheme proposed here. Therefor&ye have
the proposed IF based joint source-channel coding scheme
strictly improves upon the naive one. Pr (ﬂ #+ Ax) =Pr <
It is also worth mentioning that the proposed scheme easily
generalizes to a dirty paper scenario, where the output of
each AWGN channel is further corrupted by an arbitrary
interferencev;, known to encodek but not to the decoder,
i.e.,yr = sk + Vi + 2. In the proposed scheme, the encoders
can transmits, = [#x; — vi + di] mod A and the decoder
remains the same.

C=

[wg] mod A # wk>

k=1

|
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7Taking into account the constraint that the estimate fohegc must be
conditionally unbiased.

(lenl > 27%V3d),  (32)
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where the last inequality follows from the union bound. Nexdistributed manner. To illustrate the problem, considex th
we apply the following Lemma froni [38]/ [39] Gaussian MIMO channet = Hs + z, whereH € RXXM
is the channel matrixz € RX*! is a vector of AWGN
and s are the M inputs to channel, which are assumed to
L K be i.i.d. normally distributed. The front-end of the MIMO
“eff = Zo‘m + Zﬂkdk receiver consists ofX ADCs, one for the output of each
=1 k=1 receive antenna. Today, each of these ADCs is designed w.r.t
where{zZ}éL:1 are i.i.d. Gaussian random variables with zerthe marginaldistribution of each output, ignoring the fact that
mean and some varianeg and {dk}kK: are i.i.d. random the K ADCs sample correlated signals. Often, the variance of
variables, statistically independent ff,},__,, uniformly dis- €ach output is quite large although thenditional variance
tributed over the interval—p/2, p/2) for somep > 0. Let When all other samples are given is small. Thus, exploiting

Lemma 3: [39, Lemma 3] Consider the random variable

o2 2 E(z2%). Then the spatial correlation may significantly reduce the digsar
) created by the ADCs. However, the ADCs are expected to
Pr(zeft > 7) = Pr(zeff < —7) < exp {_ 7'2 } ) Work at very high rates, which precludgs cooperation betwee
206 their operations. We show that a variant of the one-shot IF

source coding scheme allows the ADCs to exploit the spatial
correlations with no cooperation and with roughly the same
)éncoding complexity as a standard ADC, and only a small

One can easily verify thatv, satisfies the conditions of
Lemmal3 as} x is a Gaussian random variable statisticall
independent of the dither vectdr Therefore, we can further increase in the decoding complexity.

bound [(32) as . . .
The one-shot version of IF source coding described above
— K 22734 requires each encoder to first quantize its observatiorguesin
Pr (AX a Ax) < Z 2 exp {_Qag (Ko + dI) ak} scaled integer lattice, and then reduce the result mod@o th
coarse lattice, which is also a scaled versioZoThis can be
< 2K exp {_§22(R% log(maxy=1,....k a (I+3Ksxx )ar)) } implemented by applying an ADC as the quantizer followed by
2 a digital modulo reduction. However, the power consumption
— 2K exp {_§2Q(RR|F(A.,¢1))}’ (33) and _the_ complexity of an ADC are dictated by the number
2 of bits it produces. Therefore, if the modulo operation can

whereRig(A., d) is the minimum required rate for a IF source?® implemented efficiently in the analog domain, perforneanc

coding when a good nested lattice pair is used, as definec®{! P& improved by first applying the modulo reduction, and
Theoren{lL. The decoder proceeds by computing only then incorporating the ADC. Since the modulo reduced
signal is of a smaller support, less bits are required for

x=A'"Ax=x+d+ A" (XE — Ax) . (34) describing it with the same average distortion level. Thet ne
_ _ o _ lemma shows that if\; = v/12dZ and A = 2%\/12dZ the
Sincedy, is statistically independent of and E(d}) = d for operationg), and mod A commute, i.e., one can first reduce
all k = 1,..., K, we see that provided thaix = Ax the the signalmodA and then quantize td\, rather than first
one-shot version of IF source coding produces conditignatyyantizing and then reducingodA.

unbiased estimates of;, with distortion d. The probability R . i )
that Ax — Ax can be controlled by increasing— Ri(A, d) Lemma 4:Let 2 be a positive odd w;_;neger and define the
which is the coding overhead w.rt. to IF source coding witheSted lattices\ = v12dZ and Ay = 27v12dZ for some

an optimal nested lattice pair. For instancekif= 4, taking ¢ > 0- for anyz € R we have
R = R(A,d) + 2 results inPr Ax £+ Ax) < 3-10710,
The next theorem summarizes the discussion above. [Qa, (z)] mod A = Qx, ([z] mod A).

Theorem 2 (One-shot IF source codind)et Ri(d) be as
defined in Theoren]1l and sé&t = Rje(d) + A for some
A > 0. If 2F is a positive integer, the one-shot version of IF  Proof: See AppendiXA [ ]
source coding with latticed ; = v/12dZ and A = 2%/12dZ
produces conditionally unbiased estimates with averag& M%a
distortiond for eachzy, k = 1, ..., K with probability greater
than1 — 2K exp{—3224}.

Lemmal4 implies that thé D version of IF source coding
n indeed be implemented by first reducing the source
moduloA and only then quantizing it td ;. The advantage in
switching the order of the operations is that if thB modulo
o reduction, which is equivalent to the “saw-tooth” functjon
A. Modulo Analog-to-Digital Converters can be efficiently implemented in the analog domain, then
Theoreni 2 shows that a simple implementation of IF sourtiee quantizer that follows it can be implemented using an
coding with 1D lattices only requires a small rate overheadDC with only R bits/sample. The relation betwed®, the
w.r.t. to the asymptotic performance of IF source codinge Tlobtained distortion, and the error probability is charezesl
simplicity of the one-shot IF source coding scheme suggestsTheorem 2 and depends dRg(d). Figure[T depicts the
that this framework may be useful for designing Analog-taarchitecture of the proposed modulo ADC, that can replace
Digital converters (ADCs) that can exploit correlationsan the encoders in the one-shot IF source coding scheme.
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Modulo ADC Lemma 5:For any pair ofn-dimensional nested lattices
A C Ay and anyx € R"

[Qa, (x)] mod A = Q4, ([x] mod A)

+Qa ([QAJ,(X)} mod A +x — QAf(x)) .
! _:)/l/l/ f_i_) Proof:
I
| I

_______________________ 1 [QAf (X)} mod A = QAf (X) - QA (QAf (X))
' N _ _ =Qr; (x = Qa(x) + Qa(x)) — Qa (Qa, (%))
e e o e e o aiiEessoting = Qa; (x = Qa(x)) + @, (Qa(x)) ~ Qa (@n, (X))
= Qx, ([x] mod A) + Qa(x) — Qa (Qa,(x)), (35)

where in the last equality we have used the fact that

Qa; (Qa(x)) = Qa(x) sinceA C Ay. We have,
We have presented and analyzed a new low-complexity

framework for distributed lossy compression, which is biaséa () = Qa (Qa, (x) +x — Qa, (%))
on the integer-forcing architecture. This framework abiow = Qx (Qa,(x) — Qa (Qa; (X)) + Qa (Qa, (X)) +x — Qa, (x))
the system designer to trade performance and complexity _
appropriately choosing the nested lattice codebooks treat atlyQA ([@n, ()] mod A4 = Q1 (x)) +Qa (Qa, (x)).
used. A remarkable feature of the proposed scheme is that it
admits a very simple one-shot version, whose performanelbstituting[(36) in[(35) gives the desired resullt. u
is not very far from that obtained using IF source coding Lemma 6:If the pair of nested latticeA C A satisfies the
with asymptotically good nested lattice codes. We have altitng conditionV = (A; NV) + V; then
shown that if one can implement theD modulo operation
with an analog circuit, which corresponds to implementime t [@a ()] mod A = Qu, ([x] mod A).
“saw-tooth” function, then the IF source coding approadh c3or any x € R™.
translate to a novel ADC design, suitable for sampling siigti
correlated sources. Such ADCs can potentially be very usefu
for the front-end of a MIMO receiver, where standard ADC [Qx,(x)] mod A € (A NV), andx — Q4 (x) € Vy.
designs are already challenged by the growing transmission
rates. Therefore

We remark that the IF equalization framework for Gaussian [Qa, (x)] mod A +x — Qa,(x) € (Ay N V) +Vy,
MIMO channels [[18] has been extended to an equaliza-
tion framework for Gaussian intersymbol-interferencerchaThe tiling conditionV = (Ay NV) + V; implies that
nels [40]. In a similar manner, the IF source coding framéwor _
proposed here, which is suitable for distributed lossy c@sp (@, (9] mod A+ = Qu, (x) €V,
sion of spatially correlated signals, can be extended toFanwhich implies that
compression framework for stationary temporally coresdat
signals. Nevertheless, such a solution is less attractive a @ ([Qa, ()] mod A +x = Qa, (x)) = 0.

one can always use a sequential Wyner-Ziv like compressiy;ne result now follows immediately from Lemmha 5. m
scheme for a stationary source. In such a scheme the flrsFt is easy to verify that if27 is a positive odd integer the
samples of the source are compressed without binning/modHESted lattices\ = v/12dZ and Ay = 9R\/12d7 satisfy

reduction, and the next samples are first binned/modulo Re tiling conditony —= (A,NV V: and Lemm
duced and then compressed. The decoder uses the Sanmﬁ"?edizftely follows from L(enJ;mE]é LR ah
a

that are not binned for recovering the next samples in
sequential manner. This Wyner-Ziv scheme suffers from the
intrinsic overhead of having to describe the first samples to
the decoder without binning. This overhead can be madé] S.-Y. Tung, “Multiterminal source coding,” Ph.D. distation, Cornell
negligiblg by increasing the length _Of_the compre_ssipn kloc [2] _llgngs:gsg?/ ‘%\j’zli:i'terminal source coding,” ihectures presented CISM
For spatially correlated sources a similar Wyner-Ziv likers Summer School on the Information Theory Approach to Conatni
pression scheme will result in asymmetric compressiorsrate  tions July 1977.

which is a consequence of the lack of “spatial stationarity” ! ﬁ'nﬁggﬁyﬂrggg EOTl Kim,Network information theory Cambridge

[4] B. Nazer and M. Gastpar, “Computation over multiple@ssx channels,”

VIl. SUMMARY AND CONCLUSIONS

Proof: For anyx € R™ we have
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