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Abstract—We study the two-user multiple-input single-output
(MISO) broadcast channel with confidential messages under
the assumption of alternating channel state information at the
transmitter (CSIT). We consider two alternating states: PD and
DP which occur for an equal fraction of time. In state PD, the
CSIT of the channel to the first receiver is available perfectly
without delay (P) while that of the second receiver is available
with a delay of one channel use (D); in state DP, the roles of the
receivers are reversed. We characterize the exact secure degrees
of freedom (s.d.o.f.) region of this system, and show as a corollary
that the sum s.d.o.f. is 3

2
. We observe that this sum s.d.o.f. is the

same as what can be achieved by the states PP and DD occurring
for equal fraction of time. Though the s.d.o.f. of the system in
the states PD and DP is not known individually, we are able
to establish the s.d.o.f. region when the two states alternate and
occur for an equal fraction of the time.

I. INTRODUCTION

Wireless systems are particularly vulnerable to security

attacks because of the inherent openness of the transmission

medium. With the widespread adoption of multiple-input

multiple-output (MIMO) systems, there has been a significant

recent interest in information theoretic physical layer security,

the main premise of which is to exploit the difference in

the wireless channels of different users. Information theoretic

security has been investigated for a variety of channel models

ranging from fading channels [1], [2], MIMO wiretap chan-

nels [3]–[6], multiple access channels [7]–[9], multi-receiver

wiretap channels [10], broadcast channels with confidential

messages [11]–[13], wiretap channels with helpers [14], etc.

The focus of this paper is on the fading two-user multiple-

input single-output (MISO) broadcast channel with confiden-

tial messages (BCCM), in which the transmitter (with two

antennas) has two confidential messages, one for each of the

single antenna users; Fig. 1. The secrecy capacity region of the

MISO BCCM for the case of perfect CSI at all terminals has

been characterized in [12], [13]. In practice, the CSIT may be

delayed, imperfect or may not even be available at all. While

the exact secrecy capacity is unknown for most of such cases,

the secure degrees of freedom (s.d.o.f.) is known for several

scenarios. For the two-user MISO BCCM, the sum s.d.o.f. is 2
with perfect and instantaneous CSIT [12]. With no CSIT, the

sum s.d.o.f. is zero as the two users are statistically equivalent

and hence no secrecy is possible. On the other hand, with
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Fig. 1. MISO broadcast channel with confidential messages.

completely outdated CSIT from both users, [15] has recently

shown a surprising result that sum s.d.o.f. increases to 1.

In practice, the nature of CSIT can vary across users. For

instance, consider the heterogeneous setting in which user 1
supplies perfect and instantaneous (P) CSIT while user 2
supplies delayed (D) CSIT; in short, we denote this CSIT

state as PD. In this setting, it is clear that a sum s.d.o.f.

of 1 is achievable. This can be done by transmitting to only

one user by using instantaneous channel knowledge from user

1. Alternatively, the sum s.d.o.f. of 1 can also be achieved

by treating this PD state as DD [15], i.e., by ignoring the

instantaneous CSI and using it only in a delayed manner. The

optimal s.d.o.f. for the state PD (as well as the state DP by

symmetry) remains an open problem.

We next argue that the nature of the channel knowledge

may also vary over time (in addition to varying over users).

This leads naturally to the setting of alternating CSIT in which

multiple CSIT states, for instance, PD and DP, arise over time.

The alternating CSIT framework was introduced in [16] where

it was shown that synergistic gains are possible by jointly

coding across these states. This motivates us to investigate

whether such synergies can be harnessed for secrecy as well.

To this end, we consider the two-user MISO BCCM with

alternating CSIT, in which the nature of CSIT alternates

between two states: PD and DP, and each of these states

occur for half of the total duration. The main contributions of

this paper are summarized as follows: (a) We characterize the

exact optimal s.d.o.f. region with alternating CSIT and show

as a corollary that the exact sum s.d.o.f. is 3
2 . (b) We present

a novel coding scheme which achieves this s.d.o.f. region

by coding across multiple CSIT states and jointly utilizing

disparate channel knowledge over time. Finally, it is worth



noting that while the optimal s.d.o.f. for the individual CSIT

states PD and DP remain open, we are able to determine the

exact s.d.o.f. for the alternating CSIT case. Further, if the best

achievable sum s.d.o.f. of the PD (or, by symmetry, DP) state

is indeed 1, then our results show that coding across the PD

and DP states jointly provides synergistic benefits for secrecy.

II. PROBLEM STATEMENT

In the two-user MISO BCCM shown in Fig. 1, the received

signals at time t are given as follows:

Y (t) = H1(t)X(t) +N1(t) (1)

Z(t) = H2(t)X(t) +N2(t), (2)

where Y (t) and Z(t) are the channel outputs of receivers 1
and 2, respectively. The 2 × 1 channel input X(t) is power

constrained as E[||X(t)||2] ≤ P , and N1(t) and N2(t) are cir-

cularly symmetric complex white Gaussian noises with zero-

mean and unit-variance. The 1× 2 channel vectors H1(t) and

H2(t) of receivers 1 and 2, respectively, are independent and

identically distributed (i.i.d.) with continuous distributions, and

are also i.i.d. over time. We denote H(t) = {H1(t),H2(t)} as

the collective channel vectors at time t and H
n as the sequence

of channel vectors up until and including time n.

The nature of CSIT alternates between the following two

states which occur in equal fractions of time: 1) state S(t) =
PD, where the transmitter knows H1(t) at time t but gets

to know H2(t) at time t + 1; and 2) state S(t) = DP,

where the transmitter knows H2(t) at time t but gets to know

H1(t) at time t+ 1. Thus, at any given instance of time, the

transmitter knows the channel vector of one receiver perfectly

and instantaneously, whereas it gets to know the channel vector

of the other receiver with a unit delay.

A secure rate pair (R1, R2) is achievable if there exists a

sequence of codes which satisfy the reliability constraints at

the receivers, namely, Pr
[
Wi 6= Ŵi

]
≤ ǫn, for i = 1, 2, and

the secrecy constraints, namely,

1

n
I(W1;Z

n,Hn) ≤ ǫn,
1

n
I(W2;Y

n,Hn) ≤ ǫn, (3)

where ǫn → 0 as n → ∞. A s.d.o.f. pair (d1, d2) is achievable,

if there exists an achievable rate pair (R1, R2) such that

d1 = lim
P→∞

R1

logP
, d2 = lim

P→∞

R2

logP
. (4)

III. MAIN RESULT AND DISCUSSION

Theorem 1 The s.d.o.f. region of the two-user MISO BCCM

with alternating CSIT of PD and DP is:

3d1 + d2 ≤ 3 (5)

d1 + 3d2 ≤ 3. (6)

Fig. 2 shows the s.d.o.f. region stated in Theorem 1 together

with the s.d.o.f. regions with perfect CSIT from both receivers

[12] and delayed CSIT from both receivers [15].

The converse proof is presented in Section III-B. The

novel aspect of the achievable scheme, which is presented in
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Fig. 2. Comparison of the s.d.o.f. regions.

Section III-A, is that it uses a single artificial noise signal

and optimally mixes it with the information bearing signals

to guarantee the confidentiality for both users by leveraging

alternating CSIT. To the best of our knowledge, this use of

single noise for dual secrecy was unexplored previously.

A. Achieving the s.d.o.f. pair (34 ,
3
4 ) via Alternating CSIT

To show the achievability of the region described in Theo-

rem 1, it suffices to show the achievability of the point (34 ,
3
4 ).

To do so, we propose a scheme to send 3 confidential symbols

from the transmitter to each of the receivers in 4 channel

uses at high P (that is negligible noise). Let us denote by

(u1, u2, u3) and (v1, v2, v3) the confidential symbols intended

for receivers 1 and 2, respectively. Also, in 2 of the 4 channel

uses, the channel is in state PD; in the remaining 2 uses, the

channel is in state DP. The scheme is as follows:

1) At time t = 1, S(1) = PD: As the transmitter knows

H1(1), it sends:

X(1) = [u1 0]T + qH1(1)
⊥, (7)

where H1(1)H1(1)
⊥ = 0, and q denotes an artificial noise

distributed as CN (0, P ). Here H1(1)
⊥ is the beamforming

vector that ensures that the artificial noise q does not create

interference at receiver 1. For s.d.o.f. calculations, we disre-

gard the additive noise and the receivers’ outputs are:

Y (1) = h11(1)u1 (8)

Z(1) = h21(1)u1 + qH2(1)H1(1)
⊥ ∆
= K. (9)

Thus, receiver 1 has observed u1 while receiver 2 gets a linear

combination of u1 and q, which we denote as K . Due to

delayed CSIT from receiver 2, the transmitter can reconstruct

K in the next channel use and use it for transmission.

2) At time t = 2, S(2) = DP: the transmitter knows H2(2)
and K . It sends

X(2) = [v1 +K v2 +K]
T
+ u2H2(2)

⊥. (10)

The received signals are:

Y (2) =h11(2)v1 + h12(2)v2 + (h11(2) + h12(2))K

+ u2H1(2)H2(2)
⊥ (11)

=L1(v1, v2,K) + u2H1(2)H2(2)
⊥ (12)
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Z(2) =h21(2)v1 + h22(2)v2 + (h21(2) + h22(2))K
∆
=L2(v1, v2,K), (13)

where we have defined L1(v1, v2,K) and L2(v1, v2,K).

3) At time t = 3, S(3) = DP: the transmitter knows H2(3)
and L1(v1, v2,K) (via delayed CSIT from t = 2). Using these,

it transmits:

X(3) = [L1(v1, v2,K) 0]T + u3H2(3)
⊥, (14)

and the channel outputs are:

Y (3) = h11(3)L1(v1, v2,K) + u3H1(3)H2(3)
⊥ (15)

Z(3) = h21(3)L1(v1, v2,K). (16)

At the end of this step, note that, receiver 2 can decode v1
and v2 by first eliminating K using Z(1) and Z(3) to get a

linear combination of v1 and v2, which it can then use with

Z(2) to solve for v1 and v2.

4) At time t = 4, S(4) = PD: the transmitter knows H1(4)
and it sends

X(4) = [L1(v1, v2,K) 0]T + v3H1(4)
⊥, (17)

and the channel outputs are:

Y (4) = h11(4)L1(v1, v2,K) (18)

Z(4) = h21(4)L1(v1, v2,K) + v3H2(4)H1(4)
⊥. (19)

Thus, at the end of these four steps the outputs at the two

receivers can be summarized (see Fig. 3) as:

Y=




u1

α1L1(v1, v2,K) + u2

α2L1(v1, v2,K) + u3

L1(v1, v2,K)


,Z=




K

L2(v1, v2,K)
L1(v1, v2,K)

βL1(v1, v2,K)+v3




Using Y, receiver 1 can decode all three symbols (u1, u2, u3)
and using Z, receiver 2 can decode (v1, v2, v3).

Now we view the four slots described above as a block

and treat the equivalent channel from U = (U1, U2, U3) to

(Y,H) and (Z,H) as a memoryless channel by ignoring the

CSI of the previous block. We do the same for the channel

from V = (V1, V2, V3) to (Y,H) and (Z,H). Note that

using the proposed scheme, (U1, U2, U3) (resp., (V1, V2, V3))

can be reconstructed from (Y,H) (resp., (Z,H)) to within a

noise distortion. More formally, the following secrecy rate is

achievable for receiver 1 from [11], [17], [18]:

R1 =I(U;Y,H) − I(U;Z,H) (20)

=I(U;Y|H) − I(U;Z|H) (21)

where we noted that U, V and Q and independent of H.

Choosing U, V i.i.d. from a Gaussian distribution, we have:

I(U;Y|H) =I(U1, U2, U3;Y|H)

(a)
=h(U1) + h(U2) + h(U3)− h(U1, U2, U3|Y,H)

(b)
=3 logP + o(logP ),

where, (a) follows since Uis are independent of each other and

H, and (b) follows since (U1, U2, U3) can be reconstructed

from Y within noise distortion. We also have:

I(U;Z|H) = I(U1, U2, U3;Z|H)
(c)
=I(U1;Z|H)

(d)

≤I(U1;K|H)

=o(logP ),

where (c) follows because Z does not have any term involving

(U2, U3), and (d) follows from the Markov chain U1 → K →
Z. Thus, for the first user, a secrecy rate of 3 logP −o(logP )
is achievable per block (which itself contains 4 channel uses).

This means that a s.d.o.f. of 3
4 is achievable for receiver 1.

Similarly, s.d.o.f. of 3
4 is achievable for the second user, thus

showing the achievability of a sum s.d.o.f. of 3
2 for the system.

B. Converse Proof

Due to symmetry, it suffices to prove the bound in (5). To

this end, we denote the channel outputs as Y n = (Y n
pd, Y

n
dp)

and Zn = (Zn
dp, Z

n
pd), where the subscript Y n

ab (resp., Zn
ab)

denotes the portion of the channel output at receiver 1 (resp.,

receiver 2) corresponding to state AB.

Before we begin the converse proof, we introduce a property

of the channel which we call local statistical equivalence. Let

us focus on the channel output of receiver 2 corresponding to

the state PD at time t:

Zpd(t) = H2,pd(t)Xpd(t) +N2,pd(t). (22)



Now consider H̃2,pd(t), Ñ2,pd(t), which are independent of

and identically distributed as H2,pd(t) and N2,pd(t), respec-

tively. Using these random variables, we define an artificial

channel output as:

Z̃pd(t) = H̃2,pd(t)Xpd(t) + Ñ2,pd(t). (23)

Let Ω = (Hn, H̃n). Now the local statistical equivalence

property is the following:

h(Zpd(t)|Z
t−1
pd ,Ω) = h(Z̃pd(t)|Z

t−1
pd ,Ω). (24)

The proof of this property is given in Appendix A. We next

present the following lemma which is proved in Appendix B.

Lemma 1 For the channel model given in (1)-(2), with alter-

nating CSIT, we have:

h(Zn|Ω)
.

≥ h(Y n
pd|Z

n,Ω) (25)

2h(Zn|Ω)
.

≥ h(Y n
pd|Ω) (26)

h(Y n|Ω)
.

≥ h(Zn
dp|Y

n,Ω) (27)

2h(Y n|Ω)
.

≥ h(Zn
dp|Ω) (28)

where a
.

≥ b denotes lim
P→∞

a
logP

≥ lim
P→∞

b
logP

.

We proceed with the proof of the converse as follows:

nR1 ≤I(W1;Y
n|Ω) + no(n) (29)

≤I(W1;Y
n|Ω)− I(W1;Z

n|Ω) + no(logP ) + no(n)
(30)

=h(Y n|Ω)− h(Y n|W1,Ω)− h(Zn|Ω)

+ h(Zn|W1,Ω) + no(logP ) + no(n) (31)

≤h(Y n|Ω)−
1

2
h(Zn

dp|W1,Ω)− h(Zn
dp, Z

n
pd|Ω)

+ h(Zn
dp, Z

n
pd|W1,Ω) + no(logP ) + no(n) (32)

=h(Y n|Ω)−
1

2
h(Zn

dp|W1,Ω)− h(Zn
dp|Ω)

− h(Zn
pd|Z

n
dp,Ω) + h(Zn

dp|W1,Ω)

+ h(Zn
pd|Z

n
dp,W1,Ω) + no(logP ) + no(n) (33)

≤h(Y n|Ω)−
1

2
h(Zn

dp|W1,Ω)− h(Zn
dp|Ω)

+ h(Zn
dp|W1,Ω) + no(logP ) + no(n) (34)

=h(Y n|Ω) +
1

2
h(Zn

dp|W1,Ω)

− h(Zn
dp|Ω) + no(logP ) + no(n) (35)

≤h(Y n|Ω) +
1

2
h(Zn

dp|Ω)− h(Zn
dp|Ω)

+ no(logP ) + no(n) (36)

=h(Y n|Ω)−
1

2
h(Zn

dp|Ω) + no(logP ) + no(n) (37)

≤n logP −
1

2
h(Zn

dp|Ω) + no(logP ) + no(n), (38)

where (32) follows from the conditional version of (28)

(conditioned on W1) when applied to the second term in

(31), and (34) is due to the fact that h(Zn
pd|Z

n
dp,W1,Ω) ≤

h(Zn
pd|Z

n
dp,Ω). We also have the following bounds for user 1:

nR1 ≤I(W1;Y
n|W2,Ω) + no(n) (39)

≤I(W1;Y
n, Zn|W2,Ω) + no(n) (40)

=I(W1;Y
n|Zn,W2,Ω) + no(logP ) + no(n) (41)

≤h(Y n|Zn,W2,Ω) + no(logP ) + no(n) (42)

=h(Y n
pd, Y

n
dp|Z

n,W2,Ω) + no(logP ) + no(n) (43)

≤h(Y n
dp|Z

n,W2,Ω) + h(Y n
pd|Z

n,W2,Ω)

+ no(logP ) + no(n) (44)

≤
n

2
logP + h(Y n

pd|Z
n,W2,Ω) + no(logP ) + no(n)

(45)

≤
n

2
logP + h(Zn|W2,Ω) + no(logP ) + no(n), (46)

where (46) follows from the conditional version of (25)

(conditioned on W2). For receiver 2, we have

nR2 ≤I(W2;Z
n|Ω) + no(n) (47)

=h(Zn|Ω)− h(Zn|W2,Ω) + no(n) (48)

=h(Zn
pd, Z

n
dp|Ω)− h(Zn|W2,Ω) + no(n) (49)

≤h(Zn
pd|Ω) + h(Zn

dp|Ω)− h(Zn|W2,Ω) + no(n) (50)

≤
n

2
logP + h(Zn

dp|Ω)− h(Zn|W2,Ω) + no(n). (51)

In summary, from (38), (46) and (51), we have,

nR1 ≤n logP −
1

2
h(Zn

dp|Ω) + no(logP ) + no(n), (52)

nR1 ≤
n

2
logP + h(Zn|W2,Ω) + no(logP ) + no(n), (53)

nR2 ≤
n

2
logP + h(Zn

dp|Ω)− h(Zn|W2,Ω) + no(n). (54)

Eliminating h(Zn
dp|Ω) and h(Zn|W2,Ω) from these inequali-

ties and taking the limit n → ∞, we arrive at

3R1 +R2 ≤ 3 logP + o(logP ) (55)

Dividing by logP and taking the limit P → ∞, we get the

required result 3d1 + d2 ≤ 3.

IV. CONCLUSIONS

We characterized the exact s.d.o.f. region of the two-user

MISO BCCM and alternating CSIT, in which the nature of

the CSIT alternates between two states, PD and DP, each

occurring for an equal fraction of time. As a corollary, we

showed that the sum s.d.o.f. is 3
2 . The proposed scheme shows

how to optimally utilize such variations in channel knowledge

for secrecy. The novel aspect of the scheme is that a single ar-

tificial noise signal suffices to guarantee confidentiality of both

of the receivers. A more complete characterization involving

all possible nine combinations of the three states, perfect (P),

delayed (D) and no CSIT (N), will be pursued in the future.

APPENDIX A

PROOF OF LOCAL STATISTICAL EQUIVALENCE

Let us denote the common distribution of H2,pd(t),

H̃2,pd(t) by F . Also, let Ωt = Ω\
{
H2,pd(t), H̃2,pd(t)

}
. We



have,

h(Zpd(t)|Z
t−1
pd ,Ω)

=EF

[
h(Zpd(t)|Z

t−1
pd ,Ωt, H̃2,pd(t),H2,pd(t) = h(t))

]
(56)

=EF

[
h(h(t)Xpd(t) +N2,pd(t)|Z

t−1
pd ,Ωt)

]
(57)

=EF

[
h(h(t)Xpd(t) + Ñ2,pd(t)|Z

t−1
pd ,Ωt)

]
(58)

=EF

[
h(h(t)Xpd(t) + Ñ2,pd(t)|Z

t−1
pd ,Ωt, H̃2,pd(t) = h(t))

]

(59)

=EF

[
h(Z̃pd(t)|Z

t−1
pd ,Ωt,H2,pd(t), H̃2,pd(t) = h(t))

]
(60)

=h(Z̃pd(t)|Z
t−1
pd ,Ω), (61)

where (57) follows because Xpd(t) does not depend on

(H2,pd(t), H̃2,pd(t)), (58) follows since the additive noises

N2,pd(t) and Ñ2,pd(t) are i.i.d. and independent of all

other random variables, (59)-(60) follow since H2,pd(t) and

H̃2,pd(t) have the same distribution F and the fact that Xpd(t)

does not depend on (H2,pd(t), H̃2,pd(t)).

APPENDIX B

PROOF OF LEMMA 1

Due to symmetry, it suffices to prove (25) and (26):

h(Zn|Ω) =h(Zn
pd|Ω) + h(Zn

dp|Z
n
pd,Ω) (62)

=

n∑

t=1

h(Zpd(t)|Z
t−1
pd ,Ω) + h(Zn

dp|Z
n
pd,Ω) (63)

Using the local statistical equivalence property, we get,

h(Zn|Ω) =
n∑

t=1

h(Z̃pd(t)|Z
t−1
pd

,Ω) + h(Zn
dp|Z

n
pd,Ω) (64)

Adding (63) and (64), and lower bounding, we get,

2h(Zn|Ω) ≥
n∑

t=1

h(Zpd(t), Z̃pd(t)|Z
t−1
pd ,Ω)+2h(Zn

dp|Z
n
pd,Ω)

≥
n∑

t=1

h(Zpd(t), Z̃pd(t)|Z
t−1
pd ,Ω)

+ h(Zn
dp|Z

n
pd,Ω) + no(logP ) (65)

=

n∑

t=1

h(Zpd(t), Z̃pd(t), Ypd(t)|Z
t−1
pd ,Ω)

−
n∑

t=1

h(Ypd(t)|Zpd(t), Z̃pd(t), Z
t−1
pd ,Ω)

+ h(Zn
dp|Z

n
pd,Ω) + no(logP ) (66)

≥
n∑

t=1

h(Zpd(t), Ypd(t)|Z
t−1
pd ,Ω)

+ h(Zn
dp|Z

n
pd,Ω) + no(logP ) (67)

≥
n∑

t=1

h(Zpd(t), Ypd(t)|Z
t−1
pd , Y t−1

pd ,Ω)

+ h(Zn
dp|Z

n
pd, Y

n
pd,Ω) + no(logP ) (68)

= h(Zn
pd, Y

n
pd|Ω) + h(Zn

dp|Z
n
pd, Y

n
pd,Ω) + no(logP ) (69)

= h(Zn, Y n
pd|Ω) + no(logP ), (70)

where (65) follows by noting that

h(Zn
dp|Z

n
pd,Ω) ≥ h(Zn

dp|Z
n
pd, X

n,Ω) = no(logP ) (71)

and (66) follows since given (Zpd(t), Z̃pd(t)), one can re-

construct Xpd(t) and hence Ypd(t) within noise distortion,

implying that h(Ypd(t)|Zpd(t), Z̃pd(t), Z
t−1
pd ,Ω) ≤ no(logP ).

Now we use (70) in two ways:

2h(Zn|Ω) ≥h(Zn, Y n
pd|Ω) + no(logP ) (72)

=h(Zn|Ω) + h(Y n
pd|Z

n,Ω) + no(logP ) (73)

which implies h(Zn|Ω)
.

≥ h(Y n
pd|Z

n,Ω). Alternatively from

(70), we also have

2h(Zn|Ω) ≥h(Y n
pd|Ω) + h(Zn|Y n

pd,Ω) + no(logP ) (74)

≥h(Y n
pd|Ω) + no(logP ) (75)

which implies 2h(Zn|Ω)
.

≥ h(Y n
pd|Ω) thus proving Lemma 1.
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