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Abstract—A signal recovery scheme is developed for linear N. However, this still does not achieve the optimal accuracy
observation systems based on expectation consistent (ECeem  in general [[1], whereas perfect recovery is possible for the

field approximation. Approximate message passing (AMP) is noiseless case if the observation ratie= M /N is sufficiently
known to be consistent with the results obtained using the igica large [2], [3], [4].

theory, which is supposed to be exact in the large system limi
when each entry of the observation matrix is independently When the prior distribution ok and the distribution of the
generated from an identical distribution. However, this is not observation noise are known, the Bayesian framework offers
necessarily the case for general matrices. We show that EC an gptimal recovery scheme in minimum mean square error
nlecover%/ exfgbﬂs Cg”s'Ste.nCy with the re_|pr|1|_ca_ theory for alnlNlder (MMSE) sense although its exact execution is computatignal
class of random observation matrices. IS IS numerically @n- diffi H : :
. ; . . . ifficult in most cases. The purpose of this paper is to dgvalo
firmed by experiments for the Bayesian optimal signal recovey computationally feasible a , roF>)<imate schepmg for the BE/ S
of compressed sensing using random row-orthogonal matrice omp y Pp . e
signal recovery for a class of random observation matix
For this, we employ an advanced mean field method known

. INTRODUCTION as expectation consistenteC) approximation developed in

Let us suppose that an original-dimensional vectok =  statistical mechanics [5][ [6] and machine learnifig [7]eTh
(z;) € RY is transformed into ad/-dimensional vectoy =  developed scheme exhibits consistency with the replicaryhe
(y,.) € RM by a matrix4A = (A4,,) € RM*N as which is supposed to provide exact predictions in the large

system limit.
y = AX+n, (1)
wheren = (n,) € RM is provided randomly. Many problems Il. RELATED WORK

of signal processing are formulated using this form. Eaqunmati

(@) describes the basic signal sampling scheme if we identif ~ Referencel[8] used the replica method to find a decoupled
y, X, and A as sampled signal values, Fourier coefficients, andormulation for the input-output statistics of a CS system
a Fourier matrix, respectively. In code division multiplecass ~ whose measurement matrix is composed of independently and
(CDMA) systemsx and A correspond to transmitted signals identically distributed (i.i.d.) entries. As a corollatijs leads

of N users and a set of signature sequences, wherdas to a computationally feasible characterization of the MMBE
the signal observed at a base station. In multi-input andimul well. The MMSE of a similar i.i.d. setup was later evaluated
output communication (MIMO) systems, y, and A represent  directly in [S] by using mathematically rigorous methods.
the transmitted and received signals/yandM antennas, and Numerical results therein verified the accuracy of the earli
the signal transmission efficiency between the input andudut replica analysis. Finally, non-i.i.d. sensing matricesergh
antennas. In compressive sensing (GS)y, and A represent considered in[[10], where the replica method was used to find
a sparse signal, its measurement, and a measurement matritae support recovery performance of a class of CS systems.

For simplicity, we hereafter assume that is known To the best of our knowledge, computationally feasible
exactly. Then, a major problem is to design a computatignall algorithms approximately performing the Bayesian recpver
efficient scheme for recovering from y accurately. A stan- were initially developed for a simple perceptron (lineaasel
dard approach for this is to follow the least-square prilecip sifier) [11] and later for CDMAI[[1R2],[[13]. Recently, a simila
minimizing |ly — Ax||? in conjunction with appropriaté,- idea was applied for CS1[4], [14],15] approximate message
regularization terms with respect xoyields a signal recovery passing(AMP), and was summarized as a general formulation
scheme that performs with a low computational cost usingermed generalized approximate message pass{@AMP)
operations of linear algebra. Unfortunately, the optityatif =~ [16]. However, these studies rely on the assumption thdt eac
inference accuracy is not guaranteed for the resultingrsehe entry of A, A;;, is i.i.d., and the appropriateness for the
unlessx follows a distribution of a specific class. In recent employment to other ensembles is not guaranteed. In faet, th
years, significant attention has been paid to the usage of theecessity for considering a certain characteristic feadfird in
l;-norm regularization wherx is supposed to be a sparse constructing the approximation was pointed out'in [5], aisd i
signal. Thel;-based recovery is capable of recovering sparsaignificance was tested for the simple perceptron [17], CDMA
signals with a computational cost of the polynomial order of[18], and MIMO [19]. Here, we show how this approach is
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employed for the signal recovery of linear observations andere, Qo = [ dzz?Py(z), andq and m are determined by

examine its significance for an example of CS. extremizing the variational free energy density
Ill. PROBLEM SETUP olq,m, Q, 4,7, Q) = —%—Q—%—me—G (— QU_QQ
A. Model specification q—2m+Qo 03(Q—q) o (94
+ o2 B ot g2

In the following, we suppose that each entry xf x; /-
(i = 1,2,...,N), is generated from a distributio®(z) —/da:OPo(azo)Dzanda:P(a:)e%I%f(\/??z*mo)z )
independently of one another. For simplicity, we focus om th

case where the observation nois@beys a memoryless zero de 22 .
mean Gaussian distribution, so that the conditional distion ~ Where Dz = 7€~ stands for the Gaussian measure.
of y givenx is provided as G(x) = extra {—5 [dA\p(A) In |A = A| + Az} —5 In 2|3,
) whereextrx {--- } denotes the extremization with respect to
P(y|x, A) = exp _||y—Ax|| _ ) X, means the asymptotic form of the single rank Harish-
’ (2mo2)M/2 202 Chandra-ltykson-Zuber integral ofT A [23], which is linked

- _ !
General treatment that includes the case of non-Gaussiéﬂ the R-transform [24] asf sz 4 () = G'(2).

noise can be found in[[20]. Further, we assume that for  Proof: Use techniques employed in ]18], [B5] [ |
eigenvalue de_comp05|t|oy1TA - ODOT’ where O is the When the correct prior and variancB(z) = FPy(x) and
right eigenbasis oA and D = (d;d;;) is the diagonal matrix  , B 0

composed of eigenvalues of ATA. O can be regarded as 7. — 70’ are used, the replica symmetry ensures that the
a random sample from the uniform distribution &f x N dominant solution extremizing|6) safisfigs= Qo, ¢ = m,

: 1N _ @ = 0, and ¢ = m, which yieldsmmse = Qy — ¢. It is
O”hogon?" matrices an@ar4(A) = N .Zizl.(S(A o ‘.iz) strongly conjectured that solutions of this type are always
asymptotically converges to a certain distributiof\) with 0 54vnamically dominant offering exact (but not rigasp
@hp)err?:"’_‘?!'tgrg gﬂg)r/a{aestind—; Oeon d-le—mls %?Sggpgggthh;k:rso nﬁredictions in the large system limit_[26],[15]. Therefpre
a zero rﬁean Gagussian distributFi)on Furt%/er this is alscdke ur goal is to develop a computationally feasible scheme tha
when A is constructed b randoml. selecti;zlg rows from a approximately evaluate§](3) and becomes consistent with th

y Y . results predicted by [6) as the system size tends to infinity.

randomly generatedV x N orthogonal matrix.

. IV. EXPECTATION CONSISTENT SIGNAL RECOVERY
B. Bayesian recovery and expected performance ) _
) ) A. Gibbs free energy formalism
Let x(y) be an arbitrary recovery scheme givgn Un- ) . )
der the above assumption, the mean square errgr — The following theorem constitutes the basis of our approx-

N-! [dxdyP(x,y|A)|[x — X(y)||> is minimized by the imation.

Bayesian recovery Theorem 2:Let us defineGibbs free energyas
K5 (y) = / dxxP(x|y, A), 3) d(m) = e)ﬁtr{h ‘m—In [ / dxP(x]y, A)eh-X] } )
which achieves the minimum value ofse (MMSE) as The global minimizer ofb(m) is m = (x),,.
2 . At
mmse — N1 <<||x||2> _ /dyP(y|A) H<X>\VH > 7 (4) Proof: The extremization of[{7) offers
[ dxa; P(x]y, A)e"* @®
m; = .
where P(x.y|4) = Py} A)TIY, P(z)), P(y|4) = [ dxP(xly, A)e

J dxP(x,y|A). (---) and(:-- )|y denote averages with respect ;s means that for a given value of, h is determined so
to the prior and posterior distribution(x) = [[,", P(z;) that the average offor a modified distributionP(x|y, A, h) =
and P(x|y, A) = P(x,y|A)/P(y|A), respectively. P(xly, A)e"*/ [ dxP(x|y, A)€"* coincides withm. In partic-
ular, h = 0 offersm = (x),, and corresponds to an extremum

MMSE is generally difficult. The replica method from statis- point of &(m) sinpeB@(m)/ar_ni = h; = 0 holds. Further—
tical mechanics enables the evaluation for the large systefio® M = (X)), is characterized as the globally minimum
limit N,M — oo keepinga = N/M ~ O(1) although point, which is shown as follows. For any value of, the

bl . . 2 .
its mathematical validity is still open. For generalityt les  Hessian of®(m) is evaluated as((fm‘fa(a)j = g—:ji
suppose that the true prior and the variance of Gaussiae,nois, ,, \ -1 o e _
Pyx) ando?, may be different fromP(x) ando?, respectively. a—h]) - However, [(8) indicates thagz- coincides with the
The replica symmetric (RS) computatidn [21], [22] evalsate covariance ofr; andz; evaluated byP(x|y, 4, h). Therefore,

I —1
the performance of the Bayesian recovery as follows. both matrice< 667;]) and((f:%z)_) _ (%) are positive
i (2 J i

Although optimality of [8) is guaranteed, evaluating the

Theorem 1:The RS evaluation offers the typical value of

mse as 1In [25], the free energy is expressed using the Stieltigssfoam. The two
expressions are, however, mathematically equivalentabwalys transformable
mse = g — 2m + Q. (5)  to each other




definite. This means that(m) is a convex downward function second momen) = N~' (]|x||*)_ are consistent between

. o . B
and has a unique minimum point. B Ps(x|y, A) and P§(x|y, A). Such an approximation scheme is
often termed thexpectation consistent (E@pproximation.
B. Expectation consistent approximation This yields the following theorem.

Theorem® indicates that Bayesian recovery can be per- Theorem 3:EC approximation offers

formed using the techniques of convex optimizatior®ifm) 1 Q—gq

is correctly evaluated. Unfortunately, this is also preaity ®(m) ~ extr {Flly— Am|]* - NG (— 5 )
unfeasible in most cases as the assessmeffrf is compu- @.Eh GN o
tationally difficult in general. One could exceptionallyadwate _NEQ “h. m—Zln /dI_P(I_)efgz?Jrhizi
¢(m) with a low computational cost ifP(x]y, A) were a 2 — o

factorized distribution asP(x) = vazl P(x;). Reference +const, - (11)

[27] developed an approximation scheme based on Taylor’?

expansion around the factorized distribution by introdgaan ~ 10r large systems.

expansion parametet in the interaction terms that result in Proof: For considering the consistency of and Q, we
computational difficulty. In the current case, this impltesat  define the generalized Gibbs free energydasn, Q:3) =
the evaluation ofd(m) = ®(m; 8 = 1) is performed such extry _NEQ_i_h.m_ln[fdxp(x)e—fgHy—AxH?_ngH?ﬁ-hvx}
that &(m) = ®(m;0) + 2 &(m;0) + 525z B(M; 0) + ... by U2

introducing generalized Gibbs free energy and denote its Gaussian approximation @5 (M, Q: B).
_ EC approximation offers an expressioft(m,Q;1) ~
o(m; B) :const+e>§tr{h-m oM, Q;0) + ®“(m,Q;1) — ®(m,Q;0). Each part on

]} the right-hand side is evaluated as folIovxfB(m,Q;O) =
(9)

PG (M, Q; 1) =515 |ly—Am||? +extry {1 1In |det (A — ATA)|

: _ NA(Q— = -

This treatment leads to asymptotically exact results for+%} + const. @M, Q;0) = —FIn (LL) - ¥ +
some systems as statistical properties of the interact@mixn  const. For N, M >> 1, one can replacén ‘det (A—AT A)]
allow us to truncate the expansion up to the second order [2€}ith N [ dAp(\)In|A — A|. Substituting the three expressions
lor.enﬁlbls |t0 fsum UE‘ aIIAreIevant_te(;ms deayllor series agan conjunction with this replacement into the identiym) =
ytically [28]. In fact, whenA,;’s are independently generate {~ _ } N {~ _ = _
from the zero mean variandd —! Gaussian distribution (i.i.d. extrg ®(M, Q5 1) ¢ = extrg ( (M, Q;0) + @%(m, Q;1)

N

i=1

Gaussian ensemble), the expansion yields an expression  —&%(m, Q; 0)} yields [11). [
B(m) ~ extr LHY— Am|]? + M. 14 Q—q Here, two points are worth noting. First, for the current
Q.Eh | 202 2 ao? characterization ofA based on the eigenvalue decomposition

N AT A = ODOT, all statistical features oft are summarized
—T—i—h-m—zln d; P(x;)e 2t in G(x), which is defined for the asymptotic eigenvalue

i=1 distributionp(A), in (IT). This means that the functional form
+const, (10)  to0 be optimized for computing the Bayesian recovery varies

; _ depending on the employed matrix ensemble. For instance,
for large N and M owing to the latter property, wherg = 2, ) L
N-'{|m||%. Notation of ~" means that the equation holds &%) = —%5 gi (1 _h'ah x)dshouldltie usefoforkthe Li.d. sﬁus—
approximately. Under appropriate conditions, its minimism slan ensembie, which re ucésl( ; )[f0l (10). However, when
guaranteed to converge to the fixed point of AMP for largelS constructed by randomly selecting rows from a randomly

systems , and the treatment becomes asymptoticallgt.exa generatedV x N orth_ogonal matrix (row-o_rth(_)gonal ensem-
y ([15] ymp bt ble), the proper function to be employed is given®&yx) =

Unfortunately, summing up all the relevant terms in Taylorextry {—152InA — $In|A —a~!|+ $Az} — SInjz| — 1.
series for generic matrices is technically difficult. Foo@¢  This implies that the employment of AMP (in general, GAMP),
ing this difficulty, we employ an alternative approach basedhe fixed point of which asymptotically extremizés](10), for
on an identity ®(m;1) — ®(m;0) = j;)l dﬁ%&)(m;ﬁ) = generic matrix ensembles may not be a theoretically appro-

1 fol dB (|ly — Ax|[2),,, following [B], [6]. Here, (- ) , de- priate treatment even if it leads to a satisfiable approxonat

202 o B " . accurac . Second, although we imposed the consistenc
notes the average with respect to the modified dlstrlbu'uoq)f the sye%%}d moment in a gr]nacroscoppic manner. one car}wl

B 2 . .
Py(xly, A) o e 22V MIETTY (P(x)ehe:) in which h construct a more accurate approximation by achieving the co
is determined so thafx), = m holds for eachS. As a  sistency in a component wise manner as@gr= (22) .. Such
decomposition(||y — AX||2>5 =[ly — Am||? + Tr (ATACs)  an approximation was once tested for CDMA demodulation
is allowed, whereCs = ((x;z;), — mim;), evaluating the [30]; however, it incursO(N?3) computational costs and is
second momenfz; ;) ; is necessary to perform the integral of difficult to use for large systems.
the last expression. Here, we approximately perform thigeby
placing Ps(x|y, A) with a Gaussian distributioﬁ’ﬁG (x]y,A) <  C. Consistency with the replica theory

e 57 V= AP = 2IXP+h%x \where hG and A are determined Following the argument of([5], one can show that EC
so that the first momentn = (x), and the macroscopic approximation becomes asymptotically consistent with the



replica theory for matrix ensembles of the current charazte

tion. For this, we denote the function to be extremizedn) (11 13 )
as®(m, @, h, E), and introduce the auxiliary partition function "
Y(Q,E;B) = [dhdme A2MQNE) In the limit B — oo, -14} T
Y (Q, E; 8) is dominated by the values ofi andh for which 9. x
®(m, @, h, E) is stationary, provided the paths of integration _ 15/
are chosen such that the integral exists. Further, assuttneng @ @
stationarity with respect td) and £, we have an expres- ‘' [t
sion of free energy density ag = N~ !miny, {®(m)} = £-16} e
N~ extrg,p {—limg0 S InY(Q, E; 8) }. Variation with e
respect toQ offers E = G’ (—(Q — ¢)/0?). _17 i

For assessing the average fofvith respect to4, x°, and
n, we employ the replica method using the average under the  _;q

replica symmetric ansatz, which offers 1 15 1% o 25 3
1 B < 0 2
N " lexp [_ 202 Z HA(X -m) + n|| Fig. 1.  The normalized mean square erfof||m — x°||2/||x°||?} versus
a=1 An 1/a = N/M. Full (blue) and broken (green) curves represent the ttieare

a—2m-+ o2B8%a—7 - prediction assessed by the replica method for the row-othagand i.i.d.
=n <— <ﬂ(q 3 QO) — Oﬁ (Z Q) G' - ﬂ(q 3 q) Gaussian ensembles, respectively. Circle (blue) indicaig@erimental results
%( 7 o o ot;tained by the EC recove(;y ?esi%ned tf)or Aﬂ:\/(laprowr;prﬁhpggﬁmt;le,
— whereas cross (green) stands for those , which isBeittor the
e (_#)) +om?), (12) (green) y

p i.i.d. Gaussian ensemble. Asterisk (magenta) shows thut fes random DCT
obtained by the EC recovery designed for the row-orthogenaemble.

where we sety = N7Y|m?||2, g = N~'m? . mP (a # b),
andm = N~'x%.me, It is worth noting thaig — ¢ holds for

B — oo and we can identifytims .o, 5(¢ —7) = Q — q = The equation to be solved for the recovery can be read as
by a linear response argument. Fdr— oo, the integrations 1 ¢
overm¢ andh¢ can be performed by using the saddle-point hz;A (y —Am) + Em, 17)
method. This yieldsn¢ = 0 and h¢ = /Gz; + ma? as the Z(hi, E) h.
saddle point, where e pLA, g (18)
) Oy o2 202 L—p+pZ(hi, E) E + 0¥
. q—zzm 0 O0pX X 99 X
i () () e 5) e :
0,— P20 B) ( 1 +( hi ) ) (19)
" 1—p+pZ(hi, EY\ E+o® \E+o?) )
g g

- n _
andz; is a standard Gaussian random variable. Combining alfthere Z(hi, B) = (1 + 0% E)""/?exp (2(E+g;(2))’ X =
these, we find the consistency between EC approximation ang —1 Zﬁ\;(Qi —m2), andE = %G’ (—X/Ug)- The naive

3

the replica theory as iterative substitution scheme did not exhibit a good conver
. . oA gence property. Therefore, we introduced a dumping fagtor
[f]A,xo,n = . mi;(ltjrm 5 {sb(q, m,Q,q,m, Q)} (15  and updatedn; and y as (1 — v)m; + ym*¥ — m; and
B (1 —v)x + ™™ — x, wherem?®™ andx**" are the values
by identifying E = Q + 4 in (). evaluated from the right-hand sides bf1(18) ahdl (19). For all
experiments, we truncated the updates up 0102 iterations
V. EXPERIMENTAL VALIDATION setting v = 0.05, which led to no divergent behavior but

. . . exhibited slower convergence asdecreases.
We performed numerical experiments for the signal recov-

ery of compressed sensing using the Bernoulli-Gaussiam pri  We constructed the EC approximation assuming the row-
) orthogonal ensemble. For comparison, we also tested the
exp (—Q) performance of AMP designed fof{16), which is suitable
57 (16)  for the i.i.d. Gaussian ensemble. Symbols in Fig. 1 show the
X signal recovery performance evaluated frafa? experiments
for examining the accuracy of the developed scheme. In thef N = 2!0 systems while curves stand for the theoretical
experiments, we set = 0.1, 0% = 1, ando? = 0.01, and  prediction assessed by the replica method. These indicate t
the correct prior and noise value were used for simulatieg th superiority of the row-orthonal to the i.i.d. Gaussian enikes
Bayesian optimal recovery. The performance was examined fan the noisy setting, which was also reported fgirecovery
i) row-orthogonal and i.i.d. Gaussian ensembles. In amditi in [25]. Excellent agreement between the circles/crosses a
to these, iii) randomM row selection from discrete cosine the full/broken curves experimentally validates the cstesicy
transform matrix (random DCT), which does not follow a ro- between the ensemble-dependent proper approximations and
tationally invariant distribution but shares the same migéue  the replica theory. Slight deviation of symbols for the inap
distribution with the row-orthogonal ensemble, was tested propriate recovery schemes indicates the necessity fawikigo
investigating the significance of rotational invariance. statistical properties of the observation matrix for camsing

P(x) = (1 - p)d(z) + p



a theoretically proper approximation, whereas its sigaifae
becomes smaller as the compression raigrows. The result
for random DCT indicates that the performance of the row-
orthogonal ensembles can be practically gained with a low!!!
computational cost, approximatel@(N), by random row
choice of a Fourier matrix similarly to the noise free case

reported in[[31].

[10]

[12]

VI. SUMMARY
[13]

We developed a computationally feasible approximate
scheme of signal recovery for linear observations affettgd
Gaussian noises. The scheme follows the Gibbs free enerdifl
formalism of statistical mechanics and approximately ever
comes the computational difficulty for evaluating the Gibbs 15]
free energy by using a Gaussian approximation for which thé
consistency with the true distribution is imposed for thstfir
moment and a part of the second moment. The asymptotigs)
consistency with the replica theory is guaranteed for asabdis
the measurement matrix ensembles that are characterized f1y]
rotational invariance. Experiments for the Bayesian ogtim
recovery for compressed sensing using the Bernoulli-Gaiss

prior numerically validated the theoretically obtaineduis. (18]

The combination of the developed recovery scheme and
hyper-parameter estimation |14], [15] is under way. Deisign  [19]
a good iteration scheme to solve the recovery equaliioh (17)—
(I9) is an interesting and important task.
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