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Abstract—A signal recovery scheme is developed for linear
observation systems based on expectation consistent (EC) mean
field approximation. Approximate message passing (AMP) is
known to be consistent with the results obtained using the replica
theory, which is supposed to be exact in the large system limit,
when each entry of the observation matrix is independently
generated from an identical distribution. However, this is not
necessarily the case for general matrices. We show that EC
recovery exhibits consistency with the replica theory for awider
class of random observation matrices. This is numerically con-
firmed by experiments for the Bayesian optimal signal recovery
of compressed sensing using random row-orthogonal matrices.

I. I NTRODUCTION

Let us suppose that an originalN -dimensional vectorx =
(xi) ∈ R

N is transformed into anM -dimensional vectory =
(yµ) ∈ R

M by a matrixA = (Aµi) ∈ R
M×N as

y = Ax + n, (1)

wheren = (nµ) ∈ R
M is provided randomly. Many problems

of signal processing are formulated using this form. Equation
(1) describes the basic signal sampling scheme if we identify
y, x, andA as sampled signal values, Fourier coefficients, and
a Fourier matrix, respectively. In code division multiple access
(CDMA) systems,x andA correspond to transmitted signals
of N users and a set of signature sequences, whereasy is
the signal observed at a base station. In multi-input and multi-
output communication (MIMO) systems,x, y, andA represent
the transmitted and received signals byN andM antennas, and
the signal transmission efficiency between the input and output
antennas. In compressive sensing (CS),x, y, andA represent
a sparse signal, its measurement, and a measurement matrix.

For simplicity, we hereafter assume thatA is known
exactly. Then, a major problem is to design a computationally
efficient scheme for recoveringx from y accurately. A stan-
dard approach for this is to follow the least-square principle;
minimizing ||y − Ax||2 in conjunction with appropriatel2-
regularization terms with respect tox yields a signal recovery
scheme that performs with a low computational cost using
operations of linear algebra. Unfortunately, the optimality of
inference accuracy is not guaranteed for the resulting scheme
unlessx follows a distribution of a specific class. In recent
years, significant attention has been paid to the usage of the
l1-norm regularization whenx is supposed to be a sparse
signal. Thel1-based recovery is capable of recovering sparse
signals with a computational cost of the polynomial order of

N . However, this still does not achieve the optimal accuracy
in general [1], whereas perfect recovery is possible for the
noiseless case if the observation ratioα = M/N is sufficiently
large [2], [3], [4].

When the prior distribution ofx and the distribution of the
observation noisen are known, the Bayesian framework offers
an optimal recovery scheme in minimum mean square error
(MMSE) sense although its exact execution is computationally
difficult in most cases. The purpose of this paper is to develop a
computationally feasible approximate scheme for the Bayesian
signal recovery for a class of random observation matrixA.
For this, we employ an advanced mean field method known
as expectation consistent(EC) approximation developed in
statistical mechanics [5], [6] and machine learning [7]. The
developed scheme exhibits consistency with the replica theory,
which is supposed to provide exact predictions in the large
system limit.

II. RELATED WORK

Reference [8] used the replica method to find a decoupled
formulation for the input-output statistics of a CS system
whose measurement matrix is composed of independently and
identically distributed (i.i.d.) entries. As a corollary,this leads
to a computationally feasible characterization of the MMSEas
well. The MMSE of a similar i.i.d. setup was later evaluated
directly in [9] by using mathematically rigorous methods.
Numerical results therein verified the accuracy of the earlier
replica analysis. Finally, non-i.i.d. sensing matrices where
considered in [10], where the replica method was used to find
the support recovery performance of a class of CS systems.

To the best of our knowledge, computationally feasible
algorithms approximately performing the Bayesian recovery
were initially developed for a simple perceptron (linear clas-
sifier) [11] and later for CDMA [12], [13]. Recently, a similar
idea was applied for CS [4], [14], [15] asapproximate message
passing(AMP), and was summarized as a general formulation
termed generalized approximate message passing(GAMP)
[16]. However, these studies rely on the assumption that each
entry of A, Aij , is i.i.d., and the appropriateness for the
employment to other ensembles is not guaranteed. In fact, the
necessity for considering a certain characteristic feature ofA in
constructing the approximation was pointed out in [5], and its
significance was tested for the simple perceptron [17], CDMA
[18], and MIMO [19]. Here, we show how this approach is
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employed for the signal recovery of linear observations and
examine its significance for an example of CS.

III. PROBLEM SETUP

A. Model specification

In the following, we suppose that each entry ofx, xi

(i = 1, 2, . . . , N), is generated from a distributionP (x)
independently of one another. For simplicity, we focus on the
case where the observation noisen obeys a memoryless zero
mean Gaussian distribution, so that the conditional distribution
of y given x is provided as

P (y|x, A) = 1

(2πσ2)M/2
exp

(

−||y −Ax||2
2σ2

)

. (2)

General treatment that includes the case of non-Gaussian
noise can be found in [20]. Further, we assume that for
eigenvalue decompositionATA = ODOT, whereO is the
right eigenbasis ofA andD = (diδij) is the diagonal matrix
composed of eigenvaluesdi of ATA, O can be regarded as
a random sample from the uniform distribution ofN × N
orthogonal matrices andρATA(λ) = N−1

∑N
i=1 δ(λ − di)

asymptotically converges to a certain distributionρ(λ) with
a probability of unity asN → ∞. This assumption holds
whenAij ’s are generated independently of one another from
a zero mean Gaussian distribution. Further, this is also thecase
whenA is constructed by randomly selectingM rows from a
randomly generatedN ×N orthogonal matrix.

B. Bayesian recovery and expected performance

Let x̂(y) be an arbitrary recovery scheme giveny. Un-
der the above assumption, the mean square errormse =
N−1

∫

dxdyP (x, y|A)||x − x̂(y)||2 is minimized by the
Bayesian recovery

x̂Bayes(y) ≡
∫

dxxP (x|y, A), (3)

which achieves the minimum value ofmse (MMSE) as

mmse = N−1

(

〈

||x||2
〉

−
∫

dyP (y|A)
∣

∣

∣

∣

∣

∣
〈x〉|y

∣

∣

∣

∣

∣

∣

2
)

, (4)

where P (x, y|A) = P (y|x, A)∏N
i=1 P (xi), P (y|A) =

∫

dxP (x, y|A). 〈· · · 〉 and〈· · · 〉|y denote averages with respect

to the prior and posterior distributionsP (x) =
∏N

i=1 P (xi)
andP (x|y, A) = P (x, y|A)/P (y|A), respectively.

Although optimality of (3) is guaranteed, evaluating the
MMSE is generally difficult. The replica method from statis-
tical mechanics enables the evaluation for the large system
limit N,M → ∞ keepingα = N/M ∼ O(1) although
its mathematical validity is still open. For generality, let us
suppose that the true prior and the variance of Gaussian noise,
P0(x) andσ2

0 , may be different fromP (x) andσ2, respectively.
The replica symmetric (RS) computation [21], [22] evaluates
the performance of the Bayesian recovery as follows.

Theorem 1:The RS evaluation offers the typical value of
mse as

mse = q − 2m+Q0. (5)

Here,Q0 =
∫

dxx2P0(x), and q and m are determined by
extremizing the variational free energy density

φ(q,m,Q, q̂, m̂, Q̂) = − Q̂Q

2
− q̂q

2
+m̂m−G

(

−Q−q

σ2

)

+

(

q − 2m+Q0

σ2
− σ2

0(Q− q)

σ4

)

G′
(

−Q− q

σ2

)

−
∫

dx0P0(x
0)Dzln

[
∫

dxP (x)e−
Q̂+q̂
2

x2+(
√
q̂z+m̂x0)x

]

, (6)

where Dz = dz√
2π

e−
z2

2 stands for the Gaussian measure.

G(x) = extrΛ
{

− 1
2

∫

dλρ(λ) ln |Λ− λ|+ 1
2Λx

}

− 1
2 ln |x|− 1

2 ,
whereextrX {· · · } denotes the extremization with respect to
X , means the asymptotic form of the single rank Harish-
Chandra-Itykson-Zuber integral ofATA [23], which is linked
to theR-transform [24] asRATA(x) = G′(x).

Proof: Use techniques employed in [18], [25]1.

When the correct prior and variance,P (x) = P0(x) and
σ2 = σ2

0 , are used, the replica symmetry ensures that the
dominant solution extremizing (6) satisfiesQ = Q0, q = m,
Q̂ = 0, and q̂ = m̂, which yieldsmmse = Q0 − q. It is
strongly conjectured that solutions of this type are always
thermodynamically dominant offering exact (but not rigorous)
predictions in the large system limit [26], [15]. Therefore,
our goal is to develop a computationally feasible scheme that
approximately evaluates (3) and becomes consistent with the
results predicted by (6) as the system size tends to infinity.

IV. EXPECTATION CONSISTENT SIGNAL RECOVERY

A. Gibbs free energy formalism

The following theorem constitutes the basis of our approx-
imation.

Theorem 2:Let us defineGibbs free energyas

Φ(m) = extr
h

{

h · m − ln

[
∫

dxP (x|y, A)eh·x
]}

. (7)

The global minimizer ofΦ(m) is m = 〈x〉|y.

Proof: The extremization of (7) offers

mi =

∫

dxxiP (x|y, A)eh·x
∫

dxP (x|y, A)eh·x . (8)

This means that for a given value ofm, h is determined so
that the average ofx for a modified distributionP (x|y, A, h) =
P (x|y, A)eh·x/

∫

dxP (x|y, A)eh·x coincides withm. In partic-
ular, h = 0 offers m = 〈x〉|y and corresponds to an extremum
point of Φ(m) since∂Φ(m)/∂mi = hi = 0 holds. Further-
more, m = 〈x〉|y is characterized as the globally minimum
point, which is shown as follows. For any value ofm, the
Hessian ofΦ(m) is evaluated as

(

∂2Φ(m)
∂mi∂mj

)

=
(

∂hj

∂mi

)

=
(

∂mj

∂hi

)−1

. However, (8) indicates that∂mj

∂hi
coincides with the

covariance ofxi andxj evaluated byP (x|y, A, h). Therefore,

both matrices
(

∂mj

∂hi

)

and
(

∂2Φ(m)
∂mi∂mj

)

=
(

∂mj

∂hi

)−1

are positive

1In [25], the free energy is expressed using the Stieltjes transform. The two
expressions are, however, mathematically equivalent, andalways transformable
to each other



definite. This means thatΦ(m) is a convex downward function
and has a unique minimum point.

B. Expectation consistent approximation

Theorem 2 indicates that Bayesian recovery can be per-
formed using the techniques of convex optimization ifΦ(m)
is correctly evaluated. Unfortunately, this is also practically
unfeasible in most cases as the assessment ofΦ(m) is compu-
tationally difficult in general. One could exceptionally evaluate
φ(m) with a low computational cost ifP (x|y, A) were a
factorized distribution asP (x) =

∏N
i=1 P (xi). Reference

[27] developed an approximation scheme based on Taylor’s
expansion around the factorized distribution by introducing an
expansion parameterβ in the interaction terms that result in
computational difficulty. In the current case, this impliesthat
the evaluation ofΦ(m) = Φ̃(m;β = 1) is performed such
that Φ(m) = Φ̃(m; 0) + ∂

∂β Φ̃(m; 0) + ∂2

2!∂β2 Φ̃(m; 0) + . . . by
introducing generalized Gibbs free energy

Φ̃(m;β) = const+ extr
h

{h · m

− ln

[

∫

dxe−
β

2σ2 ||y−Ax||2
N
∏

i=1

(

P (xi)e
hixi

)

]}

.(9)

This treatment leads to asymptotically exact results for
some systems as statistical properties of the interaction matrix
allow us to truncate the expansion up to the second order [27]
or enable us to sum up all relevant terms in Taylor series ana-
lytically [28]. In fact, whenAij ’s are independently generated
from the zero mean varianceM−1 Gaussian distribution (i.i.d.
Gaussian ensemble), the expansion yields an expression

Φ(m) ≃ extr
Q,E,h

{

1

2σ2
||y −Am||2 + M

2
ln

(

1 +
Q− q

ασ2

)

−NEQ

2
+h · m−

N
∑

i=1

ln

[
∫

dxiP (xi)e−
E
2
x2
i+hixi

]

}

+const, (10)

for largeN andM owing to the latter property, whereq =
N−1||m||2. Notation of “≃” means that the equation holds
approximately. Under appropriate conditions, its minimumis
guaranteed to converge to the fixed point of AMP for large
systems [15], and the treatment becomes asymptotically exact.

Unfortunately, summing up all the relevant terms in Taylor
series for generic matrices is technically difficult. For avoid-
ing this difficulty, we employ an alternative approach based
on an identity Φ̃(m; 1) − Φ̃(m; 0) =

∫ 1

0
dβ ∂

∂β Φ̃(m;β) =
1

2σ2

∫ 1

0 dβ
〈

||y −Ax||2
〉

β
, following [5], [6]. Here,〈· · · 〉β de-

notes the average with respect to the modified distribution
Pβ(x|y, A) ∝ e−

β

2σ2 ||y−Ax||2 ∏N
i=1

(

P (xi)ehixi
)

in which h
is determined so that〈x〉β = m holds for eachβ. As a
decomposition

〈

||y −Ax||2
〉

β
= ||y − Am||2 + Tr

(

ATACβ

)

is allowed, whereCβ = (〈xixj〉β − mimj), evaluating the
second moment〈xixj〉β is necessary to perform the integral of
the last expression. Here, we approximately perform this byre-
placingPβ(x|y, A) with a Gaussian distributionPG

β (x|y, A) ∝
e−

β

2σ2 ||y−Ax||2−Λ
2
||x||2+hG·x, wherehG andΛ are determined

so that the first momentm = 〈x〉β and the macroscopic

second momentQ = N−1
〈

||x||2
〉

β
are consistent between

Pβ(x|y, A) andPG
β (x|y, A). Such an approximation scheme is

often termed theexpectation consistent (EC)approximation.
This yields the following theorem.

Theorem 3:EC approximation offers

Φ(m) ≃ extr
Q,E,h

{

1

2σ2
||y −Am||2 −NG

(

−Q− q

σ2

)

−NEQ

2
+h · m−

N
∑

i=1

ln

[
∫

dxiP (xi)e−
E
2
x2
i+hixi

]

}

+const, (11)

for large systems.

Proof: For considering the consistency ofm andQ, we
define the generalized Gibbs free energy asΦ̃(m, Q;β) =

extrh,E

{

−NEQ
2 +h·m−ln

[

∫

dxP (x)e−
β

2σ2 ||y−Ax||2−E
2
||x||2+h·x

]}

,

and denote its Gaussian approximation asΦ̃G(m, Q;β).
EC approximation offers an expressioñΦ(m, Q; 1) ≃
Φ̃(m, Q; 0) + Φ̃G(m, Q; 1) − Φ̃G(m, Q; 0). Each part on
the right-hand side is evaluated as follows:Φ̃(m, Q; 0) =

extrh,E

{

−NEQ
2 + h · m−∑N

i=1ln
[

∫

dxiP (xi)e−
E
2
x2
i+hixi

]}

.

Φ̃G(m, Q; 1)= 1
2σ2 ||y−Am||2+extrΛ

{

1
2 ln

∣

∣det
(

Λ−ATA
)∣

∣

+NΛ(Q−q)
2σ2

}

+ const. Φ̃G(m, Q; 0) = −N
2 ln

(

Q−q
σ2

)

− N
2 +

const. For N,M ≫ 1, one can replaceln
∣

∣det
(

Λ−ATA
)∣

∣

with N
∫

dλρ(λ) ln |Λ−λ|. Substituting the three expressions
in conjunction with this replacement into the identityΦ(m) =

extrQ

{

Φ̃(m, Q; 1)
}

≃ extrQ

{

Φ̃(m, Q; 0) + Φ̃G(m, Q; 1)

−Φ̃G(m, Q; 0)
}

yields (11).

Here, two points are worth noting. First, for the current
characterization ofA based on the eigenvalue decomposition
ATA = ODOT, all statistical features ofA are summarized
in G(x), which is defined for the asymptotic eigenvalue
distributionρ(λ), in (11). This means that the functional form
to be optimized for computing the Bayesian recovery varies
depending on the employed matrix ensemble. For instance,
G(x) = −α

2 ln
(

1− α−1x
)

should be used for the i.i.d. Gaus-
sian ensemble, which reduces (11) to (10). However, whenA
is constructed by randomly selectingM rows from a randomly
generatedN × N orthogonal matrix (row-orthogonal ensem-
ble), the proper function to be employed is given byG(x) =
extrΛ

{

− 1−α
2 ln Λ− α

2 ln |Λ− α−1|+ 1
2Λx

}

− 1
2 ln |x| − 1

2 .
This implies that the employment of AMP (in general, GAMP),
the fixed point of which asymptotically extremizes (10), for
generic matrix ensembles may not be a theoretically appro-
priate treatment even if it leads to a satisfiable approximation
accuracy [29]. Second, although we imposed the consistency
of the second moment in a macroscopic manner, one can
construct a more accurate approximation by achieving the con-
sistency in a component wise manner as forQi =

〈

x2
i

〉

β
. Such

an approximation was once tested for CDMA demodulation
[30]; however, it incursO(N3) computational costs and is
difficult to use for large systems.

C. Consistency with the replica theory

Following the argument of [5], one can show that EC
approximation becomes asymptotically consistent with the



replica theory for matrix ensembles of the current characteriza-
tion. For this, we denote the function to be extremized in (11)
asΦ(m, Q, h, E), and introduce the auxiliary partition function
Y (Q,E;β) =

∫

dhdme−βΦ(m,Q,h,E). In the limit β → ∞,
Y (Q,E;β) is dominated by the values ofm andh for which
Φ(m, Q, h, E) is stationary, provided the paths of integration
are chosen such that the integral exists. Further, assumingthe
stationarity with respect toQ and E, we have an expres-
sion of free energy density asf = N−1 minm {Φ(m)} =
N−1 extrQ,E

{

− limβ→∞ β−1lnY (Q,E;β)
}

. Variation with
respect toQ offersE = 2

σ2G
′ (−(Q− q)/σ2

)

.

For assessing the average off with respect toA, x0, and
n, we employ the replica method using the average under the
replica symmetric ansatz, which offers

1

N
ln

[

exp

[

− β

2σ2

n
∑

a=1

∣

∣

∣

∣A(x0 − ma) + n
∣

∣

∣

∣

2

]]

A,n

=n

(

−
(

β(q−2m+Q0)

σ2
− σ2

0β
2(q−q)

σ4

)

G′
(

−β(q−q)

σ2

)

+G

(

−β(q − q)

σ2

))

+O(n2), (12)

where we setq = N−1||ma||2, q = N−1ma · mb (a 6= b),
andm = N−1x0 ·ma. It is worth noting thatq → q holds for
β → ∞ and we can identifylimβ→∞ β(q − q) = Q − q ≡ χ
by a linear response argument. Forβ → ∞, the integrations
over ma

i andha
i can be performed by using the saddle-point

method. This yieldsma
i = 0 and ha

i =
√
q̂zi + m̂x0

i as the
saddle point, where

q̂=
2

σ2

(

q−2m+Q0

σ2
− σ2

0χ

σ4

)

G′′
(

− χ

σ2

)

+
2σ2

0

σ4
G′
(

− χ

σ2

)

, (13)

m̂=
2

σ2
G′
(

− χ

σ2

)

= E, (14)

andzi is a standard Gaussian random variable. Combining all
these, we find the consistency between EC approximation and
the replica theory as

[f ]A,x0,n = extr
q,m,Q,q̂,m̂,Q̂

{

φ(q,m,Q, q̂, m̂, Q̂)
}

(15)

by identifyingE = Q̂+ q̂ in (6).

V. EXPERIMENTAL VALIDATION

We performed numerical experiments for the signal recov-
ery of compressed sensing using the Bernoulli-Gaussian prior

P (x) = (1− ρ)δ(x) + ρ
exp

(

− x2

2σ2
X

)

√

2πσ2
X

, (16)

for examining the accuracy of the developed scheme. In the
experiments, we setρ = 0.1, σ2

X = 1, andσ2 = 0.01, and
the correct prior and noise value were used for simulating the
Bayesian optimal recovery. The performance was examined for
i) row-orthogonal and i.i.d. Gaussian ensembles. In addition
to these, iii) randomM row selection from discrete cosine
transform matrix (random DCT), which does not follow a ro-
tationally invariant distribution but shares the same eigenvalue
distribution with the row-orthogonal ensemble, was testedfor
investigating the significance of rotational invariance.

1 1.5 2 2.5 3
−18

−17

−16

−15

−14

−13

1/ α

m
se

 [
d

B
]

Fig. 1. The normalized mean square errorE
{

||m − x0||2/||x0||2
}

versus
1/α = N/M . Full (blue) and broken (green) curves represent the theoretical
prediction assessed by the replica method for the row-othogonal and i.i.d.
Gaussian ensembles, respectively. Circle (blue) indicates experimental results
obtained by the EC recovery designed for the row-orthogonalensemble,
whereas cross (green) stands for those by AMP, which is suitable for the
i.i.d. Gaussian ensemble. Asterisk (magenta) shows the result for random DCT
obtained by the EC recovery designed for the row-orthogonalensemble.

The equation to be solved for the recovery can be read as

h=
1

σ2
AT (y −Am) + Em, (17)

mi=
ρZ(hi, E)

1−ρ+ρZ(hi, E)

hi

E + σ−2
X

, (18)

Qi=
ρZ(hi, E)

1−ρ+ρZ(hi, E)

(

1

E+σ−2
X

+

(

hi

E+σ−2
X

)2
)

, (19)

where Z(hi, E) = (1 + σ2
XE)−1/2 exp

(

h2
i

2(E+σ−2

X
)

)

, χ =

N−1
∑N

i=1(Qi − m2
i ), andE = 2

σ2G
′ (−χ/σ2

)

. The naive
iterative substitution scheme did not exhibit a good conver-
gence property. Therefore, we introduced a dumping factorγ
and updatedmi and χ as (1 − γ)mi + γmnew

i → mi and
(1− γ)χ+ γχnew → χ, wheremnew

i andχnew are the values
evaluated from the right-hand sides of (18) and (19). For all
experiments, we truncated the updates up to3× 103 iterations
setting γ = 0.05, which led to no divergent behavior but
exhibited slower convergence asα decreases.

We constructed the EC approximation assuming the row-
orthogonal ensemble. For comparison, we also tested the
performance of AMP designed for (16), which is suitable
for the i.i.d. Gaussian ensemble. Symbols in Fig. 1 show the
signal recovery performance evaluated from103 experiments
of N = 210 systems while curves stand for the theoretical
prediction assessed by the replica method. These indicate the
superiority of the row-orthonal to the i.i.d. Gaussian ensembles
in the noisy setting, which was also reported forlp-recovery
in [25]. Excellent agreement between the circles/crosses and
the full/broken curves experimentally validates the consistency
between the ensemble-dependent proper approximations and
the replica theory. Slight deviation of symbols for the inap-
propriate recovery schemes indicates the necessity for knowing
statistical properties of the observation matrix for constructing



a theoretically proper approximation, whereas its significance
becomes smaller as the compression rateα grows. The result
for random DCT indicates that the performance of the row-
orthogonal ensembles can be practically gained with a low
computational cost, approximatelyO(N), by random row
choice of a Fourier matrix similarly to the noise free case
reported in [31].

VI. SUMMARY

We developed a computationally feasible approximate
scheme of signal recovery for linear observations affectedby
Gaussian noises. The scheme follows the Gibbs free energy
formalism of statistical mechanics and approximately over-
comes the computational difficulty for evaluating the Gibbs
free energy by using a Gaussian approximation for which the
consistency with the true distribution is imposed for the first
moment and a part of the second moment. The asymptotic
consistency with the replica theory is guaranteed for a class of
the measurement matrix ensembles that are characterized by
rotational invariance. Experiments for the Bayesian optimal
recovery for compressed sensing using the Bernoulli-Gaussian
prior numerically validated the theoretically obtained results.

The combination of the developed recovery scheme and
hyper-parameter estimation [14], [15] is under way. Designing
a good iteration scheme to solve the recovery equation (17)–
(19) is an interesting and important task.
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