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On the Convergence of Approximate Message
Passing with Arbitrary Matrices

Sundeep Rangan, Philip Schniter, Alyson K. Fletcher, and Subrata Sarkar

Abstract—Approximate message passing (AMP) methods and
their variants have attracted considerable recent attention for
the problem of estimating a random vector x observed through
a linear transform A. In the case of large i.i.d. zero-mean
Gaussian A, the methods exhibit fast convergence with precise
analytic characterizations on the algorithm behavior. However,
the convergence of AMP under general transforms A is not fully
understood. In this paper, we provide sufficient conditions for
the convergence of a damped version of the generalized AMP
(GAMP) algorithm in the case of quadratic cost functions (i.e.,
Gaussian likelihood and prior). It is shown that, with sufficient
damping, the algorithm is guaranteed to converge, although the
amount of damping grows with peak-to-average ratio of the
squared singular values of the transforms A. This result explains
the good performance of AMP on i.i.d. Gaussian transforms A,
but also their difficulties with ill-conditioned or non-zero-mean
transforms A. A related sufficient condition is then derived for
the local stability of the damped GAMP method under general
cost functions, assuming certain strict convexity conditions.

Index Terms—Approximate message passing, loopy belief prop-
agation, Gaussian belief propagation, primal-dual algorithms.

I. INTRODUCTION

Consider estimating a random vector x € R™ with indepen-
dent components x; ~ P(z;) from observations y € R™ that
are conditionally independent given the transform outputs

z = AXx, (D

ie, P(ylz) = II; P(yilzi). Here, we assume knowledge
of the matrix A € R™*" in (I) and the densities P(z;)
and P(y;|z;). Often, the goal is to compute either the
minimum mean-squared error (MMSE) estimate Xyuse =
Jenx P(x|ly)dx = E(x|y) or the maximum a posteriori
(MAP) estimate Xwap = argmaxycp» P(x|y), where in
either case P(x|y) denotes the posterior distribution. Using
F(z) := —InP(y|z) and G(x) := —InP(x) and Bayes
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rule, P(x|y) x P(y|x)P(x), it becomes evident that MAP
estimation is equivalent to the optimization problem

Xmap = argmin F'(Ax) + G(x) (2)

x€ER™
for separable F'(z) = >, Fi(2;) and G(x) = 3, Gj(z; ).
Such problems arise in a range of applications including sta-
tistical regression, inverse problems, and compressed sensing.

Most current numerical methods for solving the constrained
optimization problem attempt to exploit the separable
structure of the objective function using approaches like
iterative shrinkage and thresholding (ISTA) [2]—[7]], the alter-
nating direction method of multipliers (ADMM) [8]—[L1], or
primal-dual approaches [9]—[12].

In recent years, however, there has also been considerable
interest in approximate message passing (AMP) methods that
apply Gaussian and quadratic approximations to loopy belief
propagation (BP) in graphical models [[13]—[15]. AMP applied
to max-sum loopy BP produces a sequence of estimates
that approximate Xpap, while AMP applied to sum-product
loopy BP produces a sequence of estimates that approximate
Xmmse. For zero-mean i.i.d. sub-Gaussian A in the large-
system limit (i.e., m, n — oo with fixed m/n), AMP methods
are characterized by a state evolution whose fixed points, when
unique, coincide with Xyap or Xymse [L6]-[18]. In addition,
for large but finite-sized i.i.d. Gaussian matrices, recent work
[19] shows that AMP is close to Bayes-optimal.

Unfortunately, a rigorous characterization of AMP for
generic A remains lacking. The recent papers [20], [21]
studied the fixed-points of the generalized AMP (GAMP)
algorithm from [[15] for generic A. In [20], it was established
that the fixed points of max-sum GAMP coincide with the
critical points of the optimization objective in (). Similarly,
[20], [21] established that the fixed points of sum-product
GAMP are critical points of a large-system version of the
Bethe free energy from [22]. However, the papers [20], [21]]
did not discuss the convergence of the algorithm to those fixed
points. Indeed, similar to other loopy BP algorithms, GAMP
may diverge, as demonstrated for mildly ill-conditioned A in
[23]. Likewise, [24] showed that AMP can diverge with non-
zero-mean i.i.d. Gaussian A and the divergence can, in fact,
be predicted via a state-evolution analysis.

For general loopy BP, a variety of methods have been pro-
posed to improve convergence, including coordinate descent,
tree re-weighting, and double loop methods [25]-[29]. In this
paper, we propose and analyze a “damped” modification of
GAMP that is similar to the technique used in Gaussian
belief propagation [30], [31]—a closely related algorithm.


http://arxiv.org/abs/1402.3210v3

We also point out connections between damped GAMP and
the primal-dual hybrid-gradient (PDHG) algorithm [9]—[12]
popular in convex optimization. This connection enhances the
interpretability of AMP methods, especially for those who are
less familiar with belief propagation.

Our first main result establishes a necessary and sufficient
condition on the global convergence of damped GAMP for
arbitrary A in the special case of Gaussian P(z;) and P(y;|#;)
(i.e., quadratic F' and () and fixed scalar stepsizes. This
condition (see Theorem [2| below) shows that, with sufficient
damping, the Gaussian GAMP algorithm can be guaranteed
to converge. However, the amount of damping grows with the
peak-to-average ratio of the squared singular values of A. This
result explains why Gaussian GAMP converges (with high
probability) for large i.i.d. Gaussian A, but it also explains
why it needs to be damped significantly for non-zero-mean,
low-rank, or otherwise ill-conditioned A.

Our second result establishes the local convergence of
GAMP for strictly convex F' and G and arbitrary, but fixed,
vector-valued stepsizes. This sufficient condition is similar
to the Gaussian case, but involves a certain row-column
normalized version of A. (See Theorem [3] below.)

Finally, we present numerical experiments that verify the
tightness of the sufficient conditions from Theorems [2] and B

Notation: We use capital boldface letters like A for matrices,
small boldface letters like a for vectors, ()T for transposition,
()" for Hermitian (i.e., conjugate transposition), and a; = [a];
to denote the ith element of a. Also, we use ||A||z for the
spectral norm of A, ||A||r for the Frobenius norm of A,
and Diag(a) for the diagonal matrix created from vector a.
In addition, we use O for the all-zeros vector, 1 for the all-
ones vector, and Iy for the N x N identity matrix. Although
it is somewhat non-standard, we use A.B for component-
wise multiplication, A./B for component-wise division of the
matrices A and B, and |A| for component-wise magnitude
of A. Similarly, we use a > 0 to denote component-wise
inequality (i.e., a; > 0 for ¢ = 1,..,n). For a random vector
x, we denote its probability density function (pdf) by P(x),
and its expectation by E[x]. Similarly, we use P(x|y) and
E[x|y] for the conditional pdf and expectation, respectively.
We refer to the pdf of a Gaussian random vector x € R™ with
mean a and covariance R using NV (x; a, R) = exp(—(x —

a)"R™'(x —a)/2)//(2m)N|R]. Finally, P(x)  Q(x) says
that functions P(-) and Q(-) are equal up to a scahng that is
invariant to x.

II. DAMPED GAMP

A. Review of GAMP

The GAMP algorithm was introduced in [[15] and rigorously
analyzed in [17]. The procedure (see Algorithm [I)) produces a
sequence of estimates xt t=1,2,...,that, in max-sum mode,
approximate Xyap and, in sum-product mode, approximate
Xmmse- The two modes differ only in the definition of the
scalar estimation functions g, and g, used in lines [8] O]
and [13] of Algorithm

Algorithm 1 GAMP with vector stepsizes and damping
Require: Matrix A, scalar estimation functions g, and g,
and damping constants 6,6, € (0, 1].
S = A.A (component-wise magnitude squared)
t=0
: Initialize 7% > 0, x*
stt=0
repeat

1./vh =87l

p' =s""+ vl Ax'

vl =v,.9.(p',vy)
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1: - rt=x'— 7t AHst
122 T =7t g (vt 1)
13: xt = (1 - ez)xt + emgm(rta Ti)

14: t—t+1
15: until Terminated

e In max-sum mode,

[92(x;77)]; = prox;, g, (1)) 3)
[gs (P, Vp)]i = Pi — Vp; PTOXE, /0, (pi/Vpi) “4)

using 7, = [Tryy ooy Ton | Vp = [Vpys e v vy Up, )T, and
prox;(r) := argmin f(z) + Lz — 7 5)

Note (@) implements scalar MAP denoising under prior
P(z;)oxexp(—G(z;)) and variance-7,., Gaussian noise.
o In sum-product mode,

J @i P(x;)

N(,Tj;Tj,Trj)d,Tj

9z r,Tr)l; = (6)
[ ( )]7 fP(I] N(.Ij;rj,Trj)d'rj

fZZ yz|Z1 (Zl’ 1:: 71/ )le
[gs(p’yp)]i = Dbi— fP yl|zz (27,7 Vp 1L)dzz

and so (6) is the scalar MMSE denoiser under P(z;) x
exp(—G(x;)) and variance-7,; Gaussian noise.

Note that, in Algorithm [I] and the sequel, a.b and a. /b de-
note component-wise multiplication and division, respectively,
between vectors a and b.

Algorithm [T reveals the computational efficiency of GAMP:
the vector-valued MAP and MMSE estimation problems are
reduced to a sequence of scalar estimation problems in Gaus-
sian noise. Specifically, each iteration involves multiplications
by S, ST, A and A" along with simple scalar estimations
on the components x; and z;; there are no vector-valued
estimations or matrix inverses.

We note that Algorithm [ writes GAMP in a “symmetrized”
form, where the steps in lines mirror those in lines [TOF
This differs from the way that GAMP is presented in most
other publications, such as [[15], which is obtained by replacing
the variables s, v,, and p in Algorithm @ by —s, 1./71p,
and p.T,, respectively. Note that, thoughout this paper, we
use 7 for variance quantities and v for precision (i.e., inverse
variance) quantities.



B. Damped GAMP

Algorithm [1l includes a small but important modification to
the original GAMP from [[15]]: lines [0 and [13| perform damping
using constants g, 0, € (0,1] that slow the updates of s?, x*
when 6,0, < 1, respectively. The original GAMP implicitly
uses 6 = 1 = 6,. In the sequel, we establish—analytically—
that damping facilitates the convergence of GAMP for general
A, a fact that has been empirically observed in past works
(e.g., 1231, 1241, 1320).

C. GAMP with Scalar Stepsizes

The computational complexity of Algorithm[1lis dominated
by the matrix-vector multiplications involving A, AH, S,
and ST. In [33], a scalar-stepsize simplification of GAMP
was proposed to avoid the multiplications by S and ST,
roughly halving the per-iteration complexity. The meaning of
“stepsize” will become clear in the sequel. Algorithm 2] shows
the scalar-stepsize version of Algorithm [1

For use in the sequel, we now show that scalar-stepsize
GAMP is equivalent to vector-stepsize GAMP under a dif-
ferent choice of S. While Algorithm [I] uses S = A.A,
Algorithm [2] effectively uses

A%

mn

S = 117, 7

i.e., a constant matrix having the same average value as A.A.
Thus, the two algorithms coincide when |A;;| is invariant to
1 and j. To see the equivalence, we first note that, under S
from (@), line [@ in Algorithm [I] would produce a version of
1/vt v,, containing identical elements 1 /vt v,, where

A%

- x m x

1 AR

t
Vp mn

for 7' = (1/n)17T,. Similarly, line- would produce a vector
1/7¢ with identical elements 1/7¢, where
1 A|? A

AR v 1AL

Tt mn s n e

for v! = (1/m)1"v!. Furthermore, v} = v/1 and line
imply that v} = (v} /m)17g,(p’, ), while 71 = 7/1 and
line [[2] imply that 72! = (7 /n)1Tg, (r*, 7%). Applying these
modifications to Algorithm [Il we arrive at Algorithm

D. Relation to Primal-Dual Hybrid Gradient Algorithms

An important case of (2)) is when F' and G are closed proper
convex functionals and the solution Xpmap exists. Recently,
there has been great interest in solving this problem from the
primal-dual perspective [9]], [12]], which can be described as
follows. Consider F'*, the convex conjugate of F', as given by
the Legendre-Fenchel transform

F*(s):= sup s'z — F(z). 8)
zER™
For closed proper convex F', we have F** = F', and so
F(Ax) = sup s'Ax — F*(s), ©)

scR™

Algorithm 2 GAMP with scalar stepsizes and damping

Require: Matrix A, scalar estimation functions g, and g,
and damping constants 6,6, € (0, 1].

1:t=0

2: Initialize 75 > 0, x*

3871 =0

4: repeat

1= (1 /mAe!

6 p'=s"1+uAx!

o= (é/m)ngs(p, vp)

8 f=(1- )t1+9595( ’ ;ta)
o 11t = (Al

10:  rt=xt—7lAMs

1. = (t/n)lT ! (xt,Th)

12 xt = (1—6,)x! 4—9mgm(t77f)
13: t+t+1

14: until Terminated

which gives the equivalent saddle-point formulation of @),

min sup s' Ax — F*(s) + G(x).
XER™ gcpm

The so-called primal-dual hybrid-gradient (PDHG) algorithm
recently studied in [9]-[12] is defined by the iteration

(10)

st Prox, p- (st*1 + Vprt) an
M prox, o (it - TTAHSt) (12)
x4 g — %), (13)

where 6 € [—1,1] is a relaxation parameter. Line (II) can be
recognized as proximal gradient ascent in the dual variable s
using stepsize v, while line (12)) is proximal gradient descent
in the primal variable x using stepsize ;.

PDHG can be related to damped scalar-stepsize GAMP as
follows. Since F' is proper, closed, and convex, we can apply
the Moreau identity [34]

p = prox, p.(P) + VpProxp,, (p/vp) (14)

to (@, after which the assumed separability of F' implies that

[9s(P, vp)]i = prox,, g (pi). 5)

Thus, under 65 = 1, scalar GAMP’s update of s (in line [§] of
Algorithm 2) matches PDHG’s in (). Similarly, noting the
connection between (@) and (12), it follows that, under 6, =
1, scalar GAMP’s update of x (in line of Algorithm 2J)))
matches the PDHG update under 0 = 0.

In summary, PDHG under 6§ = 0 (the Arrow-Hurwicz [35]
case) would be equivalent to non-damped scalar GAMP if the
stepsizes z/f, and 7! were fixed over the iterations. GAMP,
however, adapts these stepsizes. In fact, under the existence

of the second derivative f”, it can be shown that

prox;(r) = [1 + f”(proxf(r))]_l,

implying that, for smooth F and G, GAMP updates 7}
according to the average local curvature of G at the point

X = prox,.;(r’) and updates v! according to the average
prOXv;F* (pt) A

(16)

local curvature of F'* at the point s =



different form of PDHG stepsize adaptation has been recently
considered in [36], one that is not curvature based.

Meanwhile, PDHG under 6 # 0 is similar to fixed-stepsize
damped scalar GAMP with 6§, = 1 and 6, = 1 + 6, although
not the same. Note that PDHG uses the damped version of x
only in the dual update (II) whereas GAMP uses the damped
version of x in both primal and dual updates. Also, PDHG
relaxes only the primal variable x, whereas damped GAMP
relaxes (or damps) both primal and dual variables.

III. DAMPED GAUSSIAN GAMP
A. Gaussian GAMP

Although Algorithms [1] and 2] apply to generic distributions
P(x;) and P(y;|z;), we find it useful to at first consider the
simple case of Gaussian distributions, and in particular

P(z;) = N(zj;20,,70,),  Pyilzi) = N(zi5 91, v, ),

where 79, are variances and vy, are precisions (i.e., inverse
variances). In this case, the scalar estimation functions used
in max-sum mode are identical to those in sum-product mode,
and are linear [33]:

9s(P,vp) = V. (P +V0.y)./(Vp +Vw) — vy (17a)
9z (v, ) = To.(r —x0)./(T0 + T+) + X0. (17b)

Henceforth, we use “Gaussian GAMP” (GGAMP) when re-
ferring to GAMP under the estimation functions (I7).

B. Convergence of GGAMP Stepsizes

We first establish the convergence of the GGAMP stepsizes
in the case of an arbitrary matrix A. For the vector-stepsize
case in Algorithm[I lines [8] and [12] become

t

vi = v,.g.(p" V) = vy /(v +ve)  (18)
T = 7t g (¢t 1) =7t . /(T + 7o),  (18b)
and, combining these with lines [6] and we get
L/vt = STt +1./v, (19a)
L/r8 = STt +1./7, (19b)

which are invariant to 6,,6,,s’, and x*. The scalar-stepsize
case in AlgorithmPlis similar, and in either case, the following
theorem shows that the GGAMP stepsizes always converge.

Theorem 1: Consider Algorithms [1 or ) with Gaussian
estimation functions defined for any vectors v, and
To > 0. Then, as t — oo, the stepsizes v, v!, Tl 7% (or
their scalar versions) converge to unique fixed points that are
invariant to 6, and 6.

Proof: See Appendix [Al [ |

IV. SCALAR-STEPSIZE GGAMP CONVERGENCE
A. Scalar-stepsize GGAMP

An important special case that we now consider is scalar-
stepsize GGAMP from Algorithm [2 under identical variances,
ie.,

Vy = Uyl,

7o =701, (20)

for some v, and 79 > 0. In this case, lines [7] and [[1] give
¢

1 viv
t Tt et oty Yptw
Vs = El (Vp'gs(p 7VP)) - V;E T vy (21a)
1 TtT
1 — _1T t' ! (At t — r 10 21b
Tz n (TT gz (r 77-7‘)) T,r\t + 7’07 ( )
and, combining these with lines [3] and O] we get
1 1 1 1 1
—=—t+t—=—|Alin+— (@2
Vg I/p Uy m Vw
S S N ERUA
p e il LN RN o)

B. Convergence

We now investigate the convergence of the primal and
dual variables x! and st for scalar GGAMP. Since, for this

algorithm, the previous section established that, as ¢ — oo,

the stepsizes v/}, and 7} converge independently of 6y, 6,,s’,

and X', we henceforth consider GGAMP with fixed stepsizes
vl = v, and 7} = 7,, where v, and 7, are the fixed points
of @2) for Algorithm 2l (A generalization to arbitrary fixed
stepsizes will be given in Section [V])

Theorem 2: Define
2[(2 = 05)m + 0sn]

00 ifm>n
mn
e,,0,) = s 23
( ) 2[(2—0)n + 0,m) fm < (23)
m < n.
0,0, mn -

Under Gaussian priors (i.e., (I7)) with identical variances 20),
scalar-stepsize GAMP from Algorithm 2] converges for any v,
and 79 > 0 when

T(0s,02) > | All3/I|A]%- 24)

Conversely, it diverges for large enough my1,, when
L(0s,62) < A3/ A% (25)
Proof: See Appendix [Cl [ |

Theorem [2| provides a simple necessary and sufficient condi-

tion on the convergence of scalar GGAMP. To better interpret

this condition, recall that ||A|% is the maximum squared

singular value of A and that ||A||% is the sum of the squared

singular values of A (i.e., [|A[|2 = S 2™ 52(A)). Thus
— A3

“(A) = A7 min{m, n)

is the peak-to-average ratio of the squared singular values of
A. Convergence condition (24) can then be rewritten as

K(A) < Emax(0s, 0;) = min{m, n}I'(0s,0,),

(26)

27)

meaning that, for GGAMP convergence, it is necessary and
sufficient to choose Kmax(0s,6,) above the peak-to-average
ratio of the squared singular values.

When there is no damping (ie, 8, = 1 = 6,), the
definitions in and can be combined to yield

Kmax(1,1) = 2min{m,n}(m +n)

€(2,4. (28

mn



More generally, for 65,0, € (0,1], it can be shown that

4
<—7
~ 0,0,

< Kmax (95 ’ em) (29)

00,
so that the necessary and sufficient GGAMP convergence
condition (27) can be rewritten as

0.0, <

for some C' € (2,4], (30)

C
r(A)
which implies that, by choosing sufficiently small damping
constants 6, and 6,, scalar-stepsize GGAMP can always be
made to converge.

Condition (30 also helps to understand the effect of x(A)
on the GGAMP convergence rate. For example, if we equate
0s = 0, = 0 for simplicity, then (3Q) implies that

0 < /C/k(A).

Thus, if GGAMP converges at rate 6, then after 6 is adjusted
to ensure convergence, GGAMP will converge at a rate below
/C/k(A). So larger peak-to-average ratios (A ) will result
in slower convergence.

€19

C. Examples of Matrices

To illustrate how the level of damping is affected by the
nature of the matrix A, we consider several examples.

a) Large i.i.d. matrices: Suppose that A € R™*™ has
i.i.d. components with zero mean and unit variance. For these
matrices, we know from the rigorous state evolution analysis
[LO6]-[18]] that, in the large-system limit (i.e., m,n — oo with
fixed m/n), scalar-stepsize GGAMP will converge without
any damping. We can reproduce this result using our analysis
as follows: By the Marcenko-Pastur Theorem [37], it can be

easily shown that
min{m, n} m]?
N {1 + —}
m n

< 2min{m,n}(m +n)

mn

k(A)

(32)

with equality when m = n, and where the approximation be-
comes exact in the large-system limit. Because this Marcenko-
Pastur bound coincides with the 8, = 1 = 0, case (28) of the
convergence condition (27), our analysis implies that, for large
ii.d. matrices, scalar stepsize GGAMP will converge without
damping, thereby confirming the state evolution analysis. Note
that we require that the asymptotic value of m/n # 1 so that
the inequality in is strict; when m = n, becomes an
equality and we obtain a condition I'(0s,6,.) = ||A||3/||A]%
right on the boundary between convergence and divergence,
where Theorem [2] does not make any statements.

b) Subsampled unitary matrices: Suppose that A is
constructed by removing either columns or rows, but not
both, from a unitary matrix. Then, x(A) = 1, so, from 29),
K(A) < Kmax(0s,0;) for any 65,6, € (0,1]. Hence, scalar
GGAMP will converge with or without damping.

¢) Linear filtering: Suppose that A € R"*"™ is circulant
with first column h, so that (Ax); = (h x x);, where *
denotes circular convolution. (Linear convolution could be
implemented via zero padding.) Then, it can be shown that

maxg—o,...,n—1 [H(e>™/)]?
& 2o | H(ed2mk/m)[2

K(A) = ; (33)

where H(e“) is the DTFT of h. Equation (33) implies that
more damping is needed as the filter becomes more narrow-
band. For example, if H(e/*) has a normalized bandwidth of
B € (0,1], then x(A) ~ 1/B and, relative to an allpass filter,
GGAMP will need to slow by a factor of O(v/B).

d) Low-rank matrices: Suppose that A € R™*™ has
only r non-zero singular values, all of equal size. Then

H(A) = min{m,n}7

r

which, from (@I), implies the need to choose a damping
constant § < /Cr/min{m,n}, slowing the algorithm by a
factor of y/min{m,n}/r relative to a full-rank matrix. Hence,
more damping is needed as the relative rank decreases.

e) Walk-summable matrices: Closely related to Gaussian
GAMP is Gaussian belief propagation [30], [38], [39], which
performs a similar iterative algorithm to minimize a general
quadratic function of the form f(x) = x"Jx 4 Real{c"x}
for some positive definite matrix J. Sufficient conditions for
the convergence of Gaussian belief propagation were first
shown in [39], [40], but those conditions are difficult to verify.
In a now classic result, [38] showed that Gaussian belief
propagation will converge when

Amax (I —=J]) <1, and J; =1 for all i, (34)
where [I—J] is the component-wise magnitude. The condition
(34) is called walk summability, with the constraints J;; = 1
being for normalization.

A quadratic function f is said to be convex decompos-
able if it can be written in the form f(x) = >, fi(z;) +
>_i; fij(zi, x;) where {f;} are strictly convex quadratic func-
tions and {f;;} are convex quadratic functions. Moallemi and
Van Roy [41] showed that if a quadratic objective function
is convex decomposable then min-sum message passing con-
verges to the global minimum. In [42], it was shown that a
function is convex decomposable if and only if it is walk-
summable (i.e., the two properties are equivalent).

To compare walk summability with GGAMP, first observe
that, in the identical-variance case 20), GGAMP performs the
same quadratic minimization with a particular ¢ and with

J=1A"A + 'L

Now, consider the high-SNR case, where 7o = 1 and v/, L~ 0,
so that J ~ A" A. Then the walk-summability condition (34)
reduces to

Amax (IT— AFA|) <1, (35)



where the normalizations J;; = 1 imply that the columns of
A have unit norm, i.e., that ||A||% = n. Note that, if (33) is
satisfied, then

JAIZ = Amax(APA) <141 = Amax(AMA))
1+ Amax(ATA =) <1+ Apax (JA7A — 1))

= 1+ Amax (I — AMA|) < 2.

Applying these results to the x(A) definition 26), we find

A3 2min{m, n}

~A) = AT/ minfm, n) n

< ’imax(lv ]‘)7

(36)
where the latter inequality follows from inspection of (28). We
conclude that, in the high-SNR regime, walk summability is
sufficient for GGAMP to converge with or without damping.

V. LOCAL STABILITY FOR STRICTLY CONVEX FUNCTIONS

We next consider the convergence with a more general class
of scalar estimation functions g and g,: those that are twice
continuously differentiable with first derivatives bounded as
(37)

[g;(p, V;D)]i € (07 1), [g;(r, TT)]j € (07 1),

for all p, r, v, and 7,.. This condition arises in the important
case of minimizing strictly convex functions. Specifically, if
GAMP is used in max-sum mode so that the scalar estimation
functions are given by (3) and (@) with strictly convex, twice
differentiable functions G; and F;, then (3), @), and (I6) show
that the conditions in (37) will be satisfied.

Definition 1: Let x'Tt = f,(x!) for t = 0,1,2,--- be a
dynamical system with a fixed point x* (i.e., fi(x*) = x* V?).
We say that the system is locally stable at x* if 3§ > 0 such
that, if ||x — x*|| < §, then lim;_,, x! = x*.

Outside of the Gaussian scenario, we have not yet estab-
lished conditions on the global convergence of GAMP for
general scalar estimation functionsﬂ Instead, we now establish
conditions on local stability, as defined in [44]]. To simplify
the analysis, we will assume that the GAMP algorithm uses
arbitrary but fixed stepsize vectors v, and 7.

Under these assumptions, consider any fixed point (p,r) of
the GAMP method, and define the matrices

Qs =
Q. :

(38a)
(38b)

qS = g;(pa V;D)v
qz ‘= g/z(rvTT)v

Diag(qs),
Diag(q.),

evaluated at that fixed point. Note that, under assumption (37),
the components of q; and q, lie in (0, 1). Define the matrix

A := Diag /?(v,.q.)A Diag /2 (1,.q.). (39)

!Interestingly, it was shown by Moallemi and Van Roy [43] that, for
a certain class of convex optimization problems characterized by “scaled
diagonal dominance”, max-sum BP converges. As future work, it would be
interesting to study whether max-sum GAMP also converges for this class of
problems.

Then (38)-(B9), together with lines [B] and [10] of Algorithm [
imply

Z |Aij|2 = la;Try Z ypiq5i|Aij|2 (40)
i=1 i1
= o, Tr; D SijVpis, = Guy, < 1. (A1)
=1

Hence, the column norms of A in (39) are less than one.
Similar arguments can be use to establish that, for any i,

S 4GP =q., < 1, (42)
j=1

0 that A also has row norms less than one. We will thus call
A the row-column normalized matrix.

Theorem 3: Consider any fixed point (s,x) of GAMP Al-
gorithm [I or Algorithm [2] with fixed vector or scalar stepsizes
v, and T, respectively, and scalar estimation functions g,
and g, satisfying the above conditions. Then, the fixed point
is locally stable if

00, Al3 < 1, 43)

for A defined in (39). For the Gaussian GAMP algorithm, the
same condition implies the algorithm is globally stable.

Proof: See Appendix [ |

To relate this condition to Theorem consider the case
when v, and T, are fixed points of with S = A A, ie,
the component-wise magnitude square of A. From (1) and
@2), we have that

|Al% = mg, = ng, < min{m,n} max{7,,7q,},

where

1 1 —
QSZE;(]SN qmzﬁzlqrj
1= Jj=

Thus, the peak-to-average ratio of A as defined in (26) is
bounded below as

~ Al2
Ko A
max{7;, 7, }
Hence, a sufficient condition to satisfy (@3) is given by

K(A) !

. 44
< 0.0 max{q,,q,} “4)

In comparison, and show that a Gaussian GAMP with
scalar step sizes converges is k(A) < C/(050,). We conclude
that the sufficient condition for the vector-stepsize GAMP
algorithm to converge is similar to the scalar-stepsize GAMP
algorithm, but where the peak-to-average ratio is measured on
a certain normalized matrix.



VI. NUMERICAL RESULTS

In this section, we present some numerical simulations to
verify Theorems2land[3 This section is divided into two parts:
the first part is on the global convergence of damped GGAMP
(Theorem ) and the second part is on the local stability of
damped GAMP (Theorem [3).

For both experiments, we first generated a matrix R €
R™*™ with elements drawn i.i.d. N'(0,1) and computed its
SVD to get orthogonal matrices U, V such that R = UAVT,
Then we set A = UXV' for ¥ = Diag{o1,...,0,}, where
r = min{m,n}, o1 = 1, and 0;/0;—1 = p Vi. The value
of p was chosen to achieve a desired value of the peak-to-
average ratio of the squared singular values of A, i.e., x(A) in
(26). Finally, the measurements y were generated according to
y = Ax+w for the AWGN case, or y = sign(Ax+w) for the
binary case, where in either case w was a realization of white
Gaussian noise. The variance of w was chosen to achieve an
SNR of 50 dB, where SNR := E{||Ax||?}/E{|w]?}.

A. Global Convergence of Damped GGAMP

In this experiment, the elements of x were drawn i.i.d.
N(0,1) and the measurements were generated using the
AWGN model as discussed above. For each choice of damping
factor 65 = 6, scalar stepsize GGAMP was run from the fixed
initialization {x°=0, s~'=0, 7, =1} and the MSE after 5000
iterations was recorded. This experiment was then repeated for
100 realizations of {A,x, w}. The damping factors 65 = 0,
were varied from 0.7 to 1 in steps of 0.005. To test the validity
of Theorem 2] we present the results in term of the “excess
MSE,” defined as the ratio of the MSE achieved by GAMP to
the MMSE, which was computed in closed form. To enhance
the readability of the plots, the excess MSE was clipped at
100 dB.

Figures [Tl and 2] show the excess MSE versus Kmax (05, 0.),
which—according to Theorem 2—is the maximum allowed
value of x(A) under which GGAMP will converge with
damping factors (6s,0,,), as defined in 7). In both figures,
the dimensions of A were 200 x 100, and the excess MSE from
each realization is plotted as a dot. The figures show that the
excess MSE was zero dB whenever kyax (05, 0,) > k(A), and
conversely the excess MSE was greater than zero dB whenever
Kmax (0s,0z) < k(A), which verifies the claim of Theorem [2]

B. Local Convergence of GAMP

To test the local stability of damped GAMP, we used the
following procedure. For each realization of {A,x,y}, the
parameters {v,, 7., 0,,0,} were chosen and vector-stepsize
GAMP was run from the initialization {x° = 0, s™! = 0,
T, = 1} with the stepsizes fixed at the chosen {v,,7,}.
The values of {v,,T,,6,,6,} were chosen so that GAMP
converged to some fixed point {x,s, p,r}; more details are
provided below. Next, GAMP was initialized near to the fixed
point and tested for local convergence (under the same fixed
stepsizes {v,, 7, }.) In particular, it was initialized at {x° =
X+X.,s = s}, where the elements of x. were drawn i.i.d.
N(0,1), with x. subsequently normalized such that the initial
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Fig. 1. The excess MSE of GGAMP vs kmax(0s,60z) for k(A) = 4.

Each point represents one realization, and excess MSE values were clipped
at 100 dB. To the right of the red dashed line, the condition Kmax (6s,0z) >
k(A) is satisfied, in which case GGAMP converges to the MMSE solution,
as predicted by Theorem 2]
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Fig. 2. The excess MSE of GGAMP vs kmax(0s,60z) for k(A) = 10.

Each point represents one realization, and excess MSE values were clipped

at 100 dB. To the right of the red dashed line, the condition Kmax (6s,0z) >

k(A) is satisfied, in which case GGAMP converges to the MMSE solution,
as predicted by Theorem 2]

MSE was 15 dB above the MSE at the fixed point. This test
was repeated 20 times for each fixed point. If 056, A]|% < 1
then, according to Theorem B, GAMP should converge to the
fixed point. Each dot in Figures Bl{f] represents the excess MSE,
now defined as the ratio of the maximum MSE among all
local runs of GAMP to the MSE at the fixed point. The above
procedure was repeated for a range of 6§, = 6, and many
realizations of {A,x,y}, as detailed below. As before, the
excess MSE values were clipped at 100 dB before plotting.
Figures [3] and @ show the excess MSE versus 0,0,|/ A2
for Bernoulli-Gaussian x with sparsity rate 0.1 and AWGN
measurements. Figure (8] investigates the case where k(A) = 4
and Figure 4 investigates the case where x(A) = 10. For each
plot, the dimensions of A were 200 x 100, the stepsizes were
vp, = (374 A7) 7" Vi, the damping factors 6 = 6, were
varied from 0.45 to 0.95 in steps of 0.05, and 50 realizations of
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Fig. 3. Excess MSE (dB) vs 050;||A||2 for BG prior and AWGN likelihood

and k(A) = 4. Excess MSE values were clipped at 100 dB. To the left of

the red dashed line, the sufficient condition €S€z||A||% < 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3]
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Fig. 4. Excess MSE (dB) vs 050;||A||% for BG prior and AWGN likelihood

and k(A) = 10. Excess MSE values were clipped at 100 dB. To the left of

the red dashed line, the sufficient condition 656x||A||% < 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem [3

{A,x,y} were tested. Also, 7, = (31", A%;)~" in Figure 3]
and 7., = (10X°7, A%)~" in Figure @ for all j. This
particular choice of 7, was used to ensure that the fixed-
stepsized GAMP converged to a fixed point for the chosen
range of 0,0,.

Figure 3] and [§] show the excess MSE versus 6,0,/ A|2
for Bernoulli-Gaussian x with sparsity rate 0.1 and binary
measurements. Figure [§] investigates the case where k(A) = 4
and Figure [6] investigates the case where x(A) = 10. For each
plot, the dimensions of A were 400 x 100, the stepsizes were
vp, = 10 Vi and 7., = 1V}, the damping factors 05 = 0, were
varied from 0.45 to 0.95 in steps of 0.05, and 50 realizations
of {A,x,y} were tested.

Figures show an excess MSE of ~ 0 dB whenever
050 ||Al|3 < 1, hence verifying Theorem 31
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Fig. 5. Excess MSE (dB) vs 050 ||A||2 for BG prior and Probit likelihood
and k(A) = 4. Excess MSE values were clipped at 100 dB. To the left of
the red dashed line, the sufficient condition €S€z||A||% < 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem [3]
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Fig. 6. Excess MSE (dB) vs 056 ||A||2 for BG prior and Probit likelihood
and k(A) = 10. Excess MSE values were clipped at 100 dB. To the left of
the red dashed line, the sufficient condition 656x||A||% < 1 is satisfied, in
which case damped GAMP locally converges to a fixed point, as predicted
by Theorem [3]

CONCLUSIONS

A key outstanding issue for the adoption of AMP-related
methods is their convergence for generic finite-dimensional
linear transforms. Similar to other loopy BP-based methods,
standard forms of AMP may diverge. In this paper, we
presented a damped version of the generalized AMP algorithm
that, when used with fixed stepsizes, can guarantee global
convergence for Gaussian distributions and local convergence
for the minimization of strictly convex functions (i.e., strictly
concave log-priors). The required amount of damping is re-
lated to the peak-to-average ratio of the squared singular values
of the transform matrix. However, much remains unanswered:
Most importantly, we have yet to derive a condition for global
convergence even in the case of strictly convex functions. Sec-
ondly, our analysis assumes the use of fixed stepsizes. Third,
short of computing the peak-to-average singular-value ratio,



we proposed no method to compute the damping constants.
Hence, an adaptive method may be useful in practice. One
such method, [23]], has been proposed, but it comes without
convergence guarantees. Thus, future work might aim to
analyze the convergence of such methods. Also, a more recent
algorithm, Vector AMP (VAMP) [45], [46], has improved
convergence on larger classes of random matrices. Another
line of future work could seek conditions for convergence of
VAMP on deterministic matrices.

APPENDIX A
PROOF OF THEOREMII]

The variance updates of both Algorithms[Iland 2] are both of
the form (19)) with different choices of S. So, the theorem will
be proven by showing that the updates converge for any
non-negative matrix S > 0. To this end, we use the results in
[47]. Specifically, for any v,, and 79 > 0, define the functions

By(1y) = [STa+1./vy] "
-1
P, (vy) : {STVS +1./70
so that the updates can be written as

ve=0u(1h), T = (V).

It is easy to check that, for any S > 0,

(i) @(1z) >0,

(i) 7, > 7, = Os(1,) < (7)), and

(iii) For all o > 1, @s(aty) > (1/a)Ps(T4).
with the analogous properties being satisfied by @, (v;). Now
let ® := &, o §, be the composition of the two functions so
that 751 = ®(7%). Then, ® satisfies the three properties:

i) @(ry) >0,

(i) 72 > 7, = (1) > ®(7,), and

(iii) For all o > 1, ®(aTy) < a®(7,).
Also, for any v, > 0, we have ®,(vs) < 79 and therefore,
®(1,) < T for all T,, > 0. Hence, taking any 7, > T, we
obtain:

Ty > O(74).

Using Theorem 2 in [47], it can be shown that the updates
Tt = ®(7l) converge to a unique fixed point. A similar
argument shows that v/}, also converges to a unique fixed point.

APPENDIX B
LINEAR SYSTEM STABILITY CONDITION

The proofs of both Theorems] and 3] are based on analyzing
the GAMP algorithm via an equivalent linear system and then
applying results from linear stability theory. For both results
we will show that the condition of the theorem is equivalent
to an eigenvalue test on a certain matrix.

First consider the Gaussian GAMP algorithm with fixed
vector stepsizes. With fixed stepsizes and Gaussian estimation
functions (I7), Algorithm [] reduces to a linear system:

st = (1—05)s"™ +0,Qs(s"™ +v,.Ax")

— 0.y (45a)
xM = (1 -60,)x" +0,Q.(x" — 7 AMst — Xp)
+ 0.0, (45b)

where

(462)
(46b)

Qs = Diag(qs),
Qz = Diag(qm)u

Note that the components of qs and q, are in (0,1). We can
write the system (43) in matrix form as

st gt1
[xt-H] =G [ «t + b,
for an appropriate matrix G and vector b. The matrix G is
given by

G::[ I 0

qs = V. /(Vw + Vp),
Qe = T70./(T0 + T1).

(47)

] [DS 0, Diag(v,)A

—0, Diag(t,)AP D, | | 0 I ’
(48)
where
D, = (1 -605)I+6,Q; (49a)
D, = (1-6,)I+0,Q,. (49b)
Here we have used that
Qqs-Vp = Vs, Qg.Tr = Tg. (50)

Note that both D, and D, are diagonal matrices with entries
in the interval (0, 1).

Now, consider the case of the more general scalar estimation
functions satisfying (37) and other assumptions in Section [V
Due to the differentiability assumptions, to prove the local
stability, we only have to look at the linearization of the
system around the fixed points [44]]. With fixed stepsizes, the
linearization of the updates in Algorithm [1| around any fixed
point is given by

st = (1—60,)s™ +0,Q(s"™ + v,.Ax")
xM = (1-6,)x' +0,Q.(x' — 7,..AHs!)

(51a)
(51b)

where the matrices Q, and Q, in are replaced by the
derivatives (38). This linear system is also of the form (@7)
with the same matrix [@8). Also, under the assumptions of the
theorem, qs and q, are vectors with components in (0, 1).

Hence, we conclude that to prove the global stability of
Gaussian GAMP, or the local stability of GAMP under the
assumptions of Theorem [3 it suffices to show that the linear
system (&7) with a matrix G of the form (48) is stable. The
matrices D, and D, are given in where Qs and Q, are
diagonal matrices with elements in (0, 1).

To evaluate this condition, first recall that the linear system
is stable when the eigenvalues of G are in the unit circle.
However, if we define

T — Diag~'/2(0,v,) 0
- 0 Diag™Y%(0,7,) |’
the eigenvalues of G are identical to those of H given by
I 0 D, F
o -1 _ s
H:=TGT _[—FHDJ{O I}’ (52)

where

F = /0,0, Diag(v/?)A Diag(71/?). (53)



Expanding the matrix product in (32), we get
D, F }

H= [—F"'Ds D, — F'F o

Now, for any A € C, define the matrix

A - D -F

H“:AI_H:[ FHD, )\I—D1+F"'F]' (55)

For stability, we need to show that for any |A| > 1, Hj is
invertible. We simplify this condition as follows: Consider any
A with [A] > 1. Now, Dy in is a diagonal matrix with
entries in [0,1). Hence AI — Dy is invertible since |A| > 1.
Therefore, taking a Schur complement, we see that H) is
invertible if and only if the matrix

J) := \MI-D, + F'F + F'D,(A\I - D,)'F
= M -D, + \F'(\I - D,)"'F.

is invertible. We can summarize the result as follows.

Lemma 1: Consider the GAMP Algorithm [ for any scalar
estimation functions satisfying the conditions in Section
including (37). The GAMP algorithm is locally stable around
a fixed point if and only if J, is invertible for all |\| > 1,
where

Jy =M —-D, + \F'(AI - D,)"'F, (56)

and F is given in (33). In the special case of Gaussian
estimation functions (I7), the above condition implies the
GAMP Algorithm [I, will be globally stable.

A similar calculation can be performed for the GAMP al-
gorithm with scalar stepsizes. In this case, the vector stepsizes
such as 7, and v, are replaced with the scalar quantities 7,
and v,. For the case of Gaussian estimation functions and
identical variances (20) we obtain the following:

Lemma 2: Consider the GAMP Algorithm [2| with scalar
stepsizes, Gaussian scalar estimation functions and iden-
tical variances (20). Then, the algorithm is globally stable if
and only if J is invertible for all |A| > 1, where

IJr=(\—dy)I F'F, 57
r=( ) T d (57)
where
F=+00vsT, A, (58)
and
Vw
ds: 1_95 95 S s — P 59
( ) +0sqs, q —— (59a)
dy = (1—0,)+0 - 10 (59b)
xr T QOa qI - 7'0—|—7'T'
APPENDIX C

PROOF OF THEOREM 2]

Our first step in the proof is to simplify the condition in
Lemma

Lemma 3: Consider the GAMP algorithm with scalar
stepsizes, Algorithm 2] with the Gaussian scalar estimation
functions and fixed stepsizes. Then the system is stable
if and only if

Orax(A) < A7, (60)

where

1 2 0|2 6
= | —— = | == —]. 61
T TATz6.0 B | G

Proof: From Lemma[2] we know that the system is stable
if and only if J, in is invertible for all || > 1. To
evaluate this condition, suppose that J is not invertible for
some |\| > 1. Then, there exists an v # 0 such that Jyv = 0,
which implies that

dy — A) (A —ds

(= NO-d),
Using the expression for F in (38), this is equivalent to

(dm - /\)(/\ — ds)
—_——V.
0,0, T Vs A

Thus, v is an eigenvector of AHA. But, 02 is an eigenvalue
of AHA if and only if & is a singular value of A. Hence, we

conclude that J is non-invertible if and only if there exists a
singular value o of A such that

020,07 A = (dp — N) (N — d).

FHFv =

AFAv =

Equivalently, we have shown that the system is stable if and
only if the the second-order polynomial

PN) = X2 4 (02005705 — dyp — ds)\ + dsd,,

has stable roots for all singular values of A, o. Now recall
that ds and d, € (0,1). By the Jury stability condition, the
p(A\) has stable roots if and only p(1) > 0 and p(—1) > 0.
Now, the first condition is always satisfied since

p(1) = 0%0,0.7,vs + (1 — ds)(1 — dy) > 0.
So, the polynomial is stable if and only if
0 < p(=1) = —0%0,0,7,vs + (1 + ds)(1 + do),
or equivalently,
0200, 7,vs < (14 ds)(1 +dy).
For this to be true for all singular values of A, we need

02 (A)0,0.Tovs < (1+ds)(1 +dy).

max
Thus, the system is stable if and only if (60) is satisfied with

(1+d.)(1+ds)
=— 62
= G, AT (62)
So, we simply need to prove that (62) matches the definition
in (61). To this end, first note that
1 + dz a 2 - 91 91 2 9%
@ L

Tx Tx Tr Tx TO

; (63)

where (a) follows from the definition ¢, = 7, /7 in (@9a)
and (b) follows from the fixed-point equation (22B). Similarly
using and (22d), we obtain that

1+d, 2-6, 6, 2 0,

+2= s (64)

Vg Vg Vp Vs Uy
Substituting (63) and into (62), we obtain (61)) and the
lemma is proven. [ ]



Let

I.= infow7 (65)

Uy >
where « is defined in (6I) and the minimization is over v,
with the other parameters, ||Al[/%, 7o, m and n, being fixed.
It follows that if
2 2
o*(A) <T[A[l%

then the system is stable for all v,,. Conversely, if
o*(A) > T A%

then there exists at least one v, such that the system is
unstable. So, the theorem will be proven if we can show that
I" defined in (63) matches the expression in (23).
To calculate the minima in (63)), it is useful to write a scaled
version of the updates. Let
m

T0
= = — 66
CT AR T (06)
m m
="  5.=" 66b
T A e n (66b)
Then, the fixed points of [22)) are given by
1
s =—+u, :vzﬁ—i—l. 67)
x s
Also, 7 in (&) is given by,
1
Moreover, the minimization in (63) is equivalent to
I'= gg)% (69)

since minimizing over v,, is equivalent to minimizing over
in the scaled system. To evaluate the minima (69), we first
prove the following.

Lemma 4: The minimization in (69) is given by

I' = lim ~. (70)
u—0
That is, the minima is achieved as u — 0.
Proof: From (&7),
%zs—u—i—ﬁ—l. (71)
s

Substituting (67) into (68) and applying (ZI), we obtain
253

T molsoz (? 2 9w> (25 — O,u)
B mﬁlsez [46 —(2—0,)0u+2(2—0,)s — @
= g, o0 72)
where
A(s,u) :=2(2 — 0, — 05)s + 0,0,u .

B:=48—20,(8 —1)
Now let s’, 2’ and A’(s, u) denote the derivatives with respect
to u. From (67) we have

/ /
T Bs
§=—-=+1, 2'=—-—,
T s

(74)

11

and therefore,

(75)

Now from (&7), we have
sx > 1 and sz > (.

Therefore, (sz)? > 3 and hence, from (Z3), s’ > 0. It follows
that

Al(s,u) =2(2—0, —05)s" + 6,05 > 0,

since both 2 — 0, — 0, > 0 and 0,60, > 0. Hence, from (72)),

we have
Oy _ Al(s,u)
ou  mbsl,

>0,

and it follows that the v is minimized by taking w as small as
possible. Therefore,
=gy = g
|
We conclude by evaluating the limit in (Z0). The following
lemma shows that value of the minimization agrees with (23),
and hence completes the proof of the theorem.
Lemma 5: For any damping constants 6, 6,, the limit in
(Z0) is given by 23).
Proof: First consider the case when 8 > 1 (i.e. m > n).
In this case, as u — 0 the solutions to the fixed points (67)
will satisfy s — 0 and = — oo. Hence, the limit of A(s,u) in

3 is

ili% A(s,u) =0.
Therefore,
o @ B ®4f-20,(8-1)
U=ty = 00, — a6,
() 2[(2 = 0s)m + O4n)
- 0,0,mn ’

where (a) used ([72); (b) used (73) and (c) used the fact that
B = m/n. This proves the m > n case of 23).

For the case when § < 1 (i.e. m < n) and u = 0, the
solutions to fixed point in (©7) are

1 1
Substituting s = 1 — B8 and u = 0 into ([72),
1
7= e (22— 0= 0)(1 = ) + 45— 20,(5 — 1)

2 [(% —0,)n + 0,m]

3

0,0, mn
where again we have used the fact that 8 = m/n. Therefore,

2[(2 = 0,)n + 0,m]

I'=1i =
uli%/y 0.0, mn ’
and this proves the m < n case of (23). [ ]



APPENDIX D
PROOF OF THEOREM [3]

We begin with a technical lemma.
Lemma 6: Let A € C, ds max,dsz,0 € [0,1) with |A] > 1.
Define the set,

2
P {)\—dw—i—a—/\ (76)

A —ds
Then 0 & conv(P), the convex hull of P.
Proof: Write )\ in polar coordinates, A = re??. We first
consider the case where 6 € (0, 7). Under this assumption,
we claim for all z € P,

Imag((\ — d,)z) < 0.

| dy € [0, dymas] } |

(77)

Since P is compact, this would imply that (Z7) holds for all
z € conv(P). In particular, 0 & conv(P). So, we need to show
that (77) holds for all z € P.
To this end, let z € P so that,
o)\

p=A—dy + — "

A —ds (78)

for some ds € [0, ds max|- Then,

Imag((\ — dg)z)
2\ —di)A
=1 —d,? 0(79”
mag ||\ |+ > d,
o2

= mlmag (A —da) (A —ds)A]
o? -
= mImag (72X = (ds + do) |\ + dsdy
0'2 )
= m [—r3 sin @ + rdgd, sin 9}
r sin o2
=P [~ + dsdy] - (79)

Now, since 6 € (0,7), sinf > 0. Also, since |A\| > 1, r > 1.
Therefore, > > d,d, since ds,d, < 1. Hence, (79) shows
that (Z7) holds for all z € P.

Similarly, for the case when 6 € (—,0), (Z9) shows that

Imag((\ — dy)z) > 0, (80)

for all z € P. The same argument then shows that 0 ¢
conv(P).

It remains to consider the cases when 8 = 0 or § = 7. For
0 =0, A =r and any z € P is of the form,

2 a b
z:r—dm—l—l (>)T—dz(>)0,
r—dg

where (a) follows from the fact that r > d, and (b) follows
from the fact that » > d,. So, for all z € P, z is real and
positive. Hence, 0 ¢ conv(P). Similarly, when § = 7, A = —r
and

2
(a) (®)
or <—r—dy+0°< —r+o%<0,
7+ dg

where (a) follows since d,, > 0 and (b) follows since r > 1
and 02 < 1. Therefore, for all z € P, z is real and negative.

z=—r—d; +

Hence, 0 & conv(P). We have thus shown that 0 & conv(P)
for all values of 6. [ |

We can now prove the main result. Suppose that [@3) is
satisfied. By the definition of F in (33) and A in (39), we
have that

o2 () < 1.

max

81)

Now, from Lemma [1] we need to show that the matrix J in
(36) is invertible for all A € C with |A| > 1. We prove this by
contradiction.

Suppose that Jy in (36) is not invertible for some A\ with
|A\| > 1. Then, there exists an x with |x|*> = 1 such that
xHJ AX = 0. Therefore, if we define y = Fx, the definition
of J in (36) shows that

<ML - D)x + Ay"(AI - D,) "ty = 0.
Since D, and Dy are diagonal, we have

n m A
Z()\ —dy)|zi* + Z WUM2 =0.
j=1

i=1 i

(82)

Since ||x[|* = 1, we have ), |z;|* = 1. Also, since [|F||3 =
o2 (F) <1,

max
Y vl = IFx|? = o®||x||* = o
A

for some o2 < 1. Therefore, (82) shows that

0 € conv(P), (83)
where P is the set (76) where
2
dz = J:Zl d;pj |:I:]| 9 ds,max = m‘;r.iX de . (84)

Now, from (38) and the contractivity assumption (37), the
elements of the diagonal matrices Q, and Qs must be in
the interval (0,1). Hence, from (@9), the elements d, 5 and
ds; € (0,1). Therefore, d,, ds max in (84) are in (0,1). From
Lemma [6] 0 ¢ conv(Py) which is a contradiction of (83).
Hence, the assumption that J is not invertible must be false,
and the theorem is proven.
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