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On the Convergence of Approximate Message

Passing with Arbitrary Matrices
Sundeep Rangan, Philip Schniter, Alyson K. Fletcher, and Subrata Sarkar

Abstract—Approximate message passing (AMP) methods and
their variants have attracted considerable recent attention for
the problem of estimating a random vector x observed through
a linear transform A. In the case of large i.i.d. zero-mean
Gaussian A, the methods exhibit fast convergence with precise
analytic characterizations on the algorithm behavior. However,
the convergence of AMP under general transforms A is not fully
understood. In this paper, we provide sufficient conditions for
the convergence of a damped version of the generalized AMP
(GAMP) algorithm in the case of quadratic cost functions (i.e.,
Gaussian likelihood and prior). It is shown that, with sufficient
damping, the algorithm is guaranteed to converge, although the
amount of damping grows with peak-to-average ratio of the
squared singular values of the transforms A. This result explains
the good performance of AMP on i.i.d. Gaussian transforms A,
but also their difficulties with ill-conditioned or non-zero-mean
transforms A. A related sufficient condition is then derived for
the local stability of the damped GAMP method under general
cost functions, assuming certain strict convexity conditions.

Index Terms—Approximate message passing, loopy belief prop-
agation, Gaussian belief propagation, primal-dual algorithms.

I. INTRODUCTION

Consider estimating a random vector x ∈ Rn with indepen-

dent components xj ∼ P (xj) from observations y ∈ R
m that

are conditionally independent given the transform outputs

z = Ax, (1)

i.e., P (y|z) =
∏

i P (yi|zi). Here, we assume knowledge

of the matrix A ∈ Rm×n in (1) and the densities P (xj)
and P (yi|zi). Often, the goal is to compute either the

minimum mean-squared error (MMSE) estimate x̂MMSE =∫
RnxP (x|y) dx = E(x|y) or the maximum a posteriori

(MAP) estimate x̂MAP = argmax
x∈Rn P (x|y), where in

either case P (x|y) denotes the posterior distribution. Using

F (z) := − lnP (y|z) and G(x) := − lnP (x) and Bayes
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rule, P (x|y) ∝ P (y|x)P (x), it becomes evident that MAP

estimation is equivalent to the optimization problem

x̂MAP = argmin
x∈Rn

F (Ax) +G(x) (2)

for separable F (z) =
∑

i Fi(zi) and G(x) =
∑

j Gj(xj).
Such problems arise in a range of applications including sta-

tistical regression, inverse problems, and compressed sensing.

Most current numerical methods for solving the constrained

optimization problem (2) attempt to exploit the separable

structure of the objective function (2) using approaches like

iterative shrinkage and thresholding (ISTA) [2]–[7], the alter-

nating direction method of multipliers (ADMM) [8]–[11], or

primal-dual approaches [9]–[12].

In recent years, however, there has also been considerable

interest in approximate message passing (AMP) methods that

apply Gaussian and quadratic approximations to loopy belief

propagation (BP) in graphical models [13]–[15]. AMP applied

to max-sum loopy BP produces a sequence of estimates

that approximate x̂MAP, while AMP applied to sum-product

loopy BP produces a sequence of estimates that approximate

x̂MMSE. For zero-mean i.i.d. sub-Gaussian A in the large-

system limit (i.e., m,n→∞ with fixed m/n), AMP methods

are characterized by a state evolution whose fixed points, when

unique, coincide with x̂MAP or x̂MMSE [16]–[18]. In addition,

for large but finite-sized i.i.d. Gaussian matrices, recent work

[19] shows that AMP is close to Bayes-optimal.

Unfortunately, a rigorous characterization of AMP for

generic A remains lacking. The recent papers [20], [21]

studied the fixed-points of the generalized AMP (GAMP)

algorithm from [15] for generic A. In [20], it was established

that the fixed points of max-sum GAMP coincide with the

critical points of the optimization objective in (2). Similarly,

[20], [21] established that the fixed points of sum-product

GAMP are critical points of a large-system version of the

Bethe free energy from [22]. However, the papers [20], [21]

did not discuss the convergence of the algorithm to those fixed

points. Indeed, similar to other loopy BP algorithms, GAMP

may diverge, as demonstrated for mildly ill-conditioned A in

[23]. Likewise, [24] showed that AMP can diverge with non-

zero-mean i.i.d. Gaussian A and the divergence can, in fact,

be predicted via a state-evolution analysis.

For general loopy BP, a variety of methods have been pro-

posed to improve convergence, including coordinate descent,

tree re-weighting, and double loop methods [25]–[29]. In this

paper, we propose and analyze a “damped” modification of

GAMP that is similar to the technique used in Gaussian

belief propagation [30], [31]—a closely related algorithm.

http://arxiv.org/abs/1402.3210v3
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We also point out connections between damped GAMP and

the primal-dual hybrid-gradient (PDHG) algorithm [9]–[12]

popular in convex optimization. This connection enhances the

interpretability of AMP methods, especially for those who are

less familiar with belief propagation.

Our first main result establishes a necessary and sufficient

condition on the global convergence of damped GAMP for

arbitrary A in the special case of Gaussian P (xj) and P (yi|zi)
(i.e., quadratic F and G) and fixed scalar stepsizes. This

condition (see Theorem 2 below) shows that, with sufficient

damping, the Gaussian GAMP algorithm can be guaranteed

to converge. However, the amount of damping grows with the

peak-to-average ratio of the squared singular values of A. This

result explains why Gaussian GAMP converges (with high

probability) for large i.i.d. Gaussian A, but it also explains

why it needs to be damped significantly for non-zero-mean,

low-rank, or otherwise ill-conditioned A.

Our second result establishes the local convergence of

GAMP for strictly convex F and G and arbitrary, but fixed,

vector-valued stepsizes. This sufficient condition is similar

to the Gaussian case, but involves a certain row-column

normalized version of A. (See Theorem 3 below.)

Finally, we present numerical experiments that verify the

tightness of the sufficient conditions from Theorems 2 and 3.

Notation: We use capital boldface letters like A for matrices,

small boldface letters like a for vectors, (·)T for transposition,

(·)H for Hermitian (i.e., conjugate transposition), and ai = [a]i
to denote the ith element of a. Also, we use ‖A‖2 for the

spectral norm of A, ‖A‖F for the Frobenius norm of A,

and Diag(a) for the diagonal matrix created from vector a.

In addition, we use 0 for the all-zeros vector, 1 for the all-

ones vector, and IN for the N ×N identity matrix. Although

it is somewhat non-standard, we use A.B for component-

wise multiplication, A./B for component-wise division of the

matrices A and B, and |A| for component-wise magnitude

of A. Similarly, we use a ≥ 0 to denote component-wise

inequality (i.e., ai ≥ 0 for i = 1, .., n). For a random vector

x, we denote its probability density function (pdf) by P (x),
and its expectation by E[x]. Similarly, we use P (x|y) and

E[x|y] for the conditional pdf and expectation, respectively.

We refer to the pdf of a Gaussian random vector x ∈ R
N with

mean a and covariance R using N (x; a,R) = exp(−(x −
a)TR−1(x− a)/2)/

√
(2π)N |R|. Finally, P (x) ∝ Q(x) says

that functions P (·) and Q(·) are equal up to a scaling that is

invariant to x.

II. DAMPED GAMP

A. Review of GAMP

The GAMP algorithm was introduced in [15] and rigorously

analyzed in [17]. The procedure (see Algorithm 1) produces a

sequence of estimates x̂t, t = 1, 2, . . . , that, in max-sum mode,

approximate x̂MAP and, in sum-product mode, approximate

x̂MMSE. The two modes differ only in the definition of the

scalar estimation functions gs and gx used in lines 8, 9, 12,

and 13 of Algorithm 1:

Algorithm 1 GAMP with vector stepsizes and damping

Require: Matrix A, scalar estimation functions gx and gs,

and damping constants θs, θx ∈ (0, 1].
1: S = A.A (component-wise magnitude squared)

2: t = 0
3: Initialize τ t

x > 0, xt

4: st−1 = 0

5: repeat

6: 1./νt
p = Sτ t

x

7: pt = st−1 + νt
p.Axt

8: νt
s = νt

p.g
′
s(p

t,νt
p)

9: st = (1− θs)s
t−1 + θsgs(p

t,νt
p)

10: 1./τ t
r = STνt

s

11: rt = xt − τ t
r.A

Hst

12: τ t+1
x = τ t

r.g
′
x(r

t, τ t
r)

13: xt+1 = (1− θx)x
t + θxgx(r

t, τ t
r)

14: t← t+ 1
15: until Terminated

• In max-sum mode,

[gx(r, τ r)]j = proxτrjGj
(rj) (3)

[gs(p,νp)]i = pi − νpi
proxFi/νpi

(pi/νpi
) (4)

using τ r = [τr1 , . . . , τrn ]
T, νp = [νp1

, . . . , νpm
]T, and

proxf (r) := argmin
x

f(x) + 1
2 |x− r|2. (5)

Note (3) implements scalar MAP denoising under prior

P (xj)∝exp(−G(xj)) and variance-τrj Gaussian noise.

• In sum-product mode,

[gx(r, τ r)]j =

∫
xjP (xj)N (xj ; rj , τrj ) dxj∫
P (xj)N (xj ; rj , τrj ) dxj

(6)

[gs(p,νp)]i = pi − νpi

∫
ziP (yi|zi)N (zi;

pi

νpi
, 1
νpi

) dzi
∫
P (yi|zi)N (zi;

pi

νpi
, 1
νpi

) dzi
,

and so (6) is the scalar MMSE denoiser under P (xj)∝
exp(−G(xj)) and variance-τrj Gaussian noise.

Note that, in Algorithm 1 and the sequel, a.b and a./b de-

note component-wise multiplication and division, respectively,

between vectors a and b.

Algorithm 1 reveals the computational efficiency of GAMP:

the vector-valued MAP and MMSE estimation problems are

reduced to a sequence of scalar estimation problems in Gaus-

sian noise. Specifically, each iteration involves multiplications

by S, ST, A and AH along with simple scalar estimations

on the components xj and zi; there are no vector-valued

estimations or matrix inverses.

We note that Algorithm 1 writes GAMP in a “symmetrized”

form, where the steps in lines 6-9 mirror those in lines 10-

13. This differs from the way that GAMP is presented in most

other publications, such as [15], which is obtained by replacing

the variables s, νp, and p in Algorithm 1 by −s, 1./τ p,

and p.τ p, respectively. Note that, thoughout this paper, we

use τ for variance quantities and ν for precision (i.e., inverse

variance) quantities.
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B. Damped GAMP

Algorithm 1 includes a small but important modification to

the original GAMP from [15]: lines 9 and 13 perform damping

using constants θs, θx ∈ (0, 1] that slow the updates of st,xt

when θs, θx < 1, respectively. The original GAMP implicitly

uses θs = 1 = θx. In the sequel, we establish—analytically—

that damping facilitates the convergence of GAMP for general

A, a fact that has been empirically observed in past works

(e.g., [23], [24], [32]).

C. GAMP with Scalar Stepsizes

The computational complexity of Algorithm 1 is dominated

by the matrix-vector multiplications involving A, AH, S,
and ST. In [33], a scalar-stepsize simplification of GAMP

was proposed to avoid the multiplications by S and ST,

roughly halving the per-iteration complexity. The meaning of

“stepsize” will become clear in the sequel. Algorithm 2 shows

the scalar-stepsize version of Algorithm 1.

For use in the sequel, we now show that scalar-stepsize

GAMP is equivalent to vector-stepsize GAMP under a dif-

ferent choice of S. While Algorithm 1 uses S = A.A,

Algorithm 2 effectively uses

S =
‖A‖2F
mn

11T, (7)

i.e., a constant matrix having the same average value as A.A.

Thus, the two algorithms coincide when |Aij | is invariant to

i and j. To see the equivalence, we first note that, under S

from (7), line 6 in Algorithm 1 would produce a version of

1/νt
p containing identical elements 1/νtp, where

1

νtp
=
‖A‖2F
mn

1Tτ t
x =
‖A‖2F
m

τ tx

for τ tx = (1/n)1Tτx. Similarly, line 10 would produce a vector

1/τ t
r with identical elements 1/τ tr , where

1

τ tr
=
‖A‖2F
mn

1Tνt
s =
‖A‖2F
n

νts,

for νts = (1/m)1Tνt
s. Furthermore, νt

p = νtp1 and line 8

imply that νts = (νtp/m)1Tgs(p
t,νt

p), while τ t
r = τ tr1 and

line 12 imply that τ t+1x = (τ tr/n)1
Tgx(r

t, τ t
r). Applying these

modifications to Algorithm 1, we arrive at Algorithm 2.

D. Relation to Primal-Dual Hybrid Gradient Algorithms

An important case of (2) is when F and G are closed proper

convex functionals and the solution x̂MAP exists. Recently,

there has been great interest in solving this problem from the

primal-dual perspective [9], [12], which can be described as

follows. Consider F ∗, the convex conjugate of F , as given by

the Legendre-Fenchel transform

F ∗(s) := sup
z∈Rm

sTz− F (z). (8)

For closed proper convex F , we have F ∗∗ = F , and so

F (Ax) = sup
s∈Rm

sTAx− F ∗(s), (9)

Algorithm 2 GAMP with scalar stepsizes and damping

Require: Matrix A, scalar estimation functions gx and gs,

and damping constants θs, θx ∈ (0, 1].
1: t = 0
2: Initialize τ tx > 0, xt

3: st−1 = 0

4: repeat

5: 1/νtp = (1/m)‖A‖2F τ tx
6: pt = st−1 + νtpAxt

7: νts = (νtp/m)1Tg′s(p
t, νtp)

8: st = (1− θs)s
t−1 + θsgs(p

t, νtp)
9: 1/τ tr = (1/n)‖A‖2Fνts

10: rt = xt − τ trA
Hst

11: τ t+1x = (τ tr/n)1
Tg′x(r

t, τ tr)
12: xt+1 = (1− θx)x

t + θxgx(r
t, τ tr)

13: t← t+ 1
14: until Terminated

which gives the equivalent saddle-point formulation of (2),

min
x∈Rn

sup
s∈Rm

sTAx− F ∗(s) +G(x). (10)

The so-called primal-dual hybrid-gradient (PDHG) algorithm

recently studied in [9]–[12] is defined by the iteration

st ← proxνpF∗

(
st−1 + νpAxt

)
(11)

x̂t+1 ← proxτrG
(
x̂t − τrA

Hst
)

(12)

xt+1 ← x̂t+1 + θ(x̂t+1 − x̂t), (13)

where θ ∈ [−1, 1] is a relaxation parameter. Line (11) can be

recognized as proximal gradient ascent in the dual variable s

using stepsize νp, while line (12) is proximal gradient descent

in the primal variable x using stepsize τr.

PDHG can be related to damped scalar-stepsize GAMP as

follows. Since F is proper, closed, and convex, we can apply

the Moreau identity [34]

p = prox
νpF∗(p) + νp proxF/νp

(p/νp) (14)

to (4), after which the assumed separability of F implies that

[gs(p,νp)]i = proxνpiF∗

i
(pi). (15)

Thus, under θs = 1, scalar GAMP’s update of s (in line 8 of

Algorithm 2) matches PDHG’s in (11). Similarly, noting the

connection between (3) and (12), it follows that, under θx =
1, scalar GAMP’s update of x (in line 12 of Algorithm 2))

matches the PDHG update (13) under θ = 0.

In summary, PDHG under θ = 0 (the Arrow-Hurwicz [35]

case) would be equivalent to non-damped scalar GAMP if the

stepsizes νtp and τ tr were fixed over the iterations. GAMP,

however, adapts these stepsizes. In fact, under the existence

of the second derivative f ′′, it can be shown that

prox′f (r) =
[
1 + f ′′

(
proxf (r)

)]−1
, (16)

implying that, for smooth F and G, GAMP updates τ tx
according to the average local curvature of G at the point

x = proxτ t
rG

(rt) and updates νts according to the average

local curvature of F ∗ at the point s = proxνt
pF

∗(pt). A
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different form of PDHG stepsize adaptation has been recently

considered in [36], one that is not curvature based.

Meanwhile, PDHG under θ 6= 0 is similar to fixed-stepsize

damped scalar GAMP with θs = 1 and θx = 1 + θ, although

not the same. Note that PDHG uses the damped version of x

only in the dual update (11) whereas GAMP uses the damped

version of x in both primal and dual updates. Also, PDHG

relaxes only the primal variable x, whereas damped GAMP

relaxes (or damps) both primal and dual variables.

III. DAMPED GAUSSIAN GAMP

A. Gaussian GAMP

Although Algorithms 1 and 2 apply to generic distributions

P (xj) and P (yi|zi), we find it useful to at first consider the

simple case of Gaussian distributions, and in particular

P (xj) = N (xj ;x0j , τ0j ), P (yi|zi) = N (zi; yi, ν
−1
wi

),

where τ0j are variances and νwi
are precisions (i.e., inverse

variances). In this case, the scalar estimation functions used

in max-sum mode are identical to those in sum-product mode,

and are linear [33]:

gs(p,νp) = νw.(p+ νw.y)./(νp + νw)− νw.y (17a)

gx(r, τ r) = τ 0.(r− x0)./(τ 0 + τ r) + x0. (17b)

Henceforth, we use “Gaussian GAMP” (GGAMP) when re-

ferring to GAMP under the estimation functions (17).

B. Convergence of GGAMP Stepsizes

We first establish the convergence of the GGAMP stepsizes

in the case of an arbitrary matrix A. For the vector-stepsize

case in Algorithm 1, lines 8 and 12 become

νt
s = νt

p.g
′
s(p

t,νt
p) = νt

p.νw./(ν
t
p + νw) (18a)

τ t+1
x = τ t

r.g
′
x(r

t, τ t
r) = τ t

r.τ 0./(τ
t
r + τ 0), (18b)

and, combining these with lines 6 and 10, we get

1./νt
s = Sτ t

x + 1./νw (19a)

1./τ t+1
x = STνt

s + 1./τ0, (19b)

which are invariant to θs, θx, s
t, and xt. The scalar-stepsize

case in Algorithm 2 is similar, and in either case, the following

theorem shows that the GGAMP stepsizes always converge.

Theorem 1: Consider Algorithms 1 or 2) with Gaussian

estimation functions (17) defined for any vectors νw and

τ 0 > 0. Then, as t → ∞, the stepsizes νt
p,ν

t
s, τ

t
r, τ

t
x (or

their scalar versions) converge to unique fixed points that are

invariant to θs and θx.

Proof: See Appendix A.

IV. SCALAR-STEPSIZE GGAMP CONVERGENCE

A. Scalar-stepsize GGAMP

An important special case that we now consider is scalar-

stepsize GGAMP from Algorithm 2 under identical variances,

i.e.,

νw = νw1, τ 0 = τ01, (20)

for some νw and τ0 > 0. In this case, lines 7 and 11 give

νts =
1

m
1T

(
νt
p.g

′
s(p

t,νt
p)
)
=

νtpνw

νtp + νw
(21a)

τ t+1x =
1

n
1T

(
τ t
r.g

′
x(r

t, τ t
r)
)
=

τ trτ0
τ tr + τ0

, (21b)

and, combining these with lines 5 and 9, we get

1

νts
=

1

νtp
+

1

νw
=

1

m
‖A‖2F τ tx +

1

νw
(22a)

1

τ t+1x

=
1

τ tr
+

1

τ0
=

1

n
‖A‖2Fνts +

1

τ0
. (22b)

B. Convergence

We now investigate the convergence of the primal and

dual variables xt and st for scalar GGAMP. Since, for this

algorithm, the previous section established that, as t → ∞,

the stepsizes νtp and τ tr converge independently of θs, θx, s
t,

and xt, we henceforth consider GGAMP with fixed stepsizes

νtp = νp and τ tr = τr, where νp and τr are the fixed points

of (22) for Algorithm 2. (A generalization to arbitrary fixed

stepsizes will be given in Section V.)

Theorem 2: Define

Γ(θs, θx) :=





2 [(2− θs)m+ θsn]

θsθxmn
if m ≥ n

2 [(2− θx)n+ θxm]

θsθxmn
if m ≤ n.

(23)

Under Gaussian priors (i.e., (17)) with identical variances (20),

scalar-stepsize GAMP from Algorithm 2 converges for any νw
and τ0 > 0 when

Γ(θs, θx) > ‖A‖22/‖A‖2F . (24)

Conversely, it diverges for large enough τ0νw when

Γ(θs, θx) < ‖A‖22/‖A‖2F . (25)

Proof: See Appendix C.

Theorem 2 provides a simple necessary and sufficient condi-

tion on the convergence of scalar GGAMP. To better interpret

this condition, recall that ‖A‖22 is the maximum squared

singular value of A and that ‖A‖2F is the sum of the squared

singular values of A (i.e., ‖A‖2F =
∑min{m,n}

i=1 σ2
i (A)). Thus

κ(A) :=
‖A‖22

‖A‖2F/min{m,n} (26)

is the peak-to-average ratio of the squared singular values of

A. Convergence condition (24) can then be rewritten as

κ(A) < κmax(θs, θx) := min{m,n}Γ(θs, θx), (27)

meaning that, for GGAMP convergence, it is necessary and

sufficient to choose κmax(θs, θx) above the peak-to-average

ratio of the squared singular values.

When there is no damping (i.e., θs = 1 = θx), the

definitions in (23) and (27) can be combined to yield

κmax(1, 1) =
2min{m,n}(m+ n)

mn
∈ (2, 4]. (28)



5

More generally, for θs, θx ∈ (0, 1], it can be shown that

2

θsθx
< κmax(θs, θx) ≤

4

θsθx
, (29)

so that the necessary and sufficient GGAMP convergence

condition (27) can be rewritten as

θsθx <
C

κ(A)
for some C ∈ (2, 4], (30)

which implies that, by choosing sufficiently small damping

constants θs and θx, scalar-stepsize GGAMP can always be

made to converge.

Condition (30) also helps to understand the effect of κ(A)
on the GGAMP convergence rate. For example, if we equate

θs = θx = θ for simplicity, then (30) implies that

θ <
√
C/κ(A). (31)

Thus, if GGAMP converges at rate θ, then after θ is adjusted

to ensure convergence, GGAMP will converge at a rate below√
C/κ(A). So larger peak-to-average ratios κ(A) will result

in slower convergence.

C. Examples of Matrices

To illustrate how the level of damping is affected by the

nature of the matrix A, we consider several examples.

a) Large i.i.d. matrices: Suppose that A ∈ Rm×n has

i.i.d. components with zero mean and unit variance. For these

matrices, we know from the rigorous state evolution analysis

[16]–[18] that, in the large-system limit (i.e., m,n→∞ with

fixed m/n), scalar-stepsize GGAMP will converge without

any damping. We can reproduce this result using our analysis

as follows: By the Marcenko-Pastur Theorem [37], it can be

easily shown that

κ(A) ≈ min{m,n}
m

[
1 +

√
m

n

]2

≤ 2min{m,n}(m+ n)

mn
, (32)

with equality when m = n, and where the approximation be-

comes exact in the large-system limit. Because this Marcenko-

Pastur bound coincides with the θs = 1 = θx case (28) of the

convergence condition (27), our analysis implies that, for large

i.i.d. matrices, scalar stepsize GGAMP will converge without

damping, thereby confirming the state evolution analysis. Note

that we require that the asymptotic value of m/n 6= 1 so that

the inequality in (32) is strict; when m = n, (32) becomes an

equality and we obtain a condition Γ(θs, θx) = ‖A‖22/‖A‖2F
right on the boundary between convergence and divergence,

where Theorem 2 does not make any statements.

b) Subsampled unitary matrices: Suppose that A is

constructed by removing either columns or rows, but not

both, from a unitary matrix. Then, κ(A) = 1, so, from (29),

κ(A) < κmax(θs, θx) for any θs, θx ∈ (0, 1]. Hence, scalar

GGAMP will converge with or without damping.

c) Linear filtering: Suppose that A ∈ Rn×n is circulant

with first column h, so that (Ax)i = (h ∗ x)i, where ∗
denotes circular convolution. (Linear convolution could be

implemented via zero padding.) Then, it can be shown that

κ(A) =
maxk=0,...,n−1 |H(ej2πk/n)|2

1
n

∑n−1
k=0 |H(ej2πk/n)|2

, (33)

where H(ejω) is the DTFT of h. Equation (33) implies that

more damping is needed as the filter becomes more narrow-

band. For example, if H(ejω) has a normalized bandwidth of

B ∈ (0, 1], then κ(A) ≈ 1/B and, relative to an allpass filter,

GGAMP will need to slow by a factor of O(
√
B).

d) Low-rank matrices: Suppose that A ∈ Rm×n has

only r non-zero singular values, all of equal size. Then

κ(A) =
min{m,n}

r
,

which, from (31), implies the need to choose a damping

constant θ <
√
Cr/min{m,n}, slowing the algorithm by a

factor of
√
min{m,n}/r relative to a full-rank matrix. Hence,

more damping is needed as the relative rank decreases.

e) Walk-summable matrices: Closely related to Gaussian

GAMP is Gaussian belief propagation [30], [38], [39], which

performs a similar iterative algorithm to minimize a general

quadratic function of the form f(x) = xHJx + Real{cHx}
for some positive definite matrix J. Sufficient conditions for

the convergence of Gaussian belief propagation were first

shown in [39], [40], but those conditions are difficult to verify.

In a now classic result, [38] showed that Gaussian belief

propagation will converge when

λmax (|I− J|) < 1, and Jii = 1 for all i, (34)

where |I−J| is the component-wise magnitude. The condition

(34) is called walk summability, with the constraints Jii = 1
being for normalization.

A quadratic function f is said to be convex decompos-

able if it can be written in the form f(x) =
∑

i fi(xi) +∑
i,j fij(xi, xj) where {fi} are strictly convex quadratic func-

tions and {fij} are convex quadratic functions. Moallemi and

Van Roy [41] showed that if a quadratic objective function

is convex decomposable then min-sum message passing con-

verges to the global minimum. In [42], it was shown that a

function is convex decomposable if and only if it is walk-

summable (i.e., the two properties are equivalent).

To compare walk summability with GGAMP, first observe

that, in the identical-variance case (20), GGAMP performs the

same quadratic minimization with a particular c and with

J = τ0A
HA+ ν−1

w I.

Now, consider the high-SNR case, where τ0 = 1 and ν−1
w ≈ 0,

so that J ≈ AHA. Then the walk-summability condition (34)

reduces to

λmax

(
|I−AHA|

)
< 1, (35)
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where the normalizations Jii = 1 imply that the columns of

A have unit norm, i.e., that ‖A‖2F = n. Note that, if (35) is

satisfied, then

‖A‖22 = λmax(A
HA) ≤ 1 + |1− λmax(A

HA)|
= 1 + |λmax(A

HA− I)| ≤ 1 + λmax

(
|AHA− I|

)

= 1 + λmax

(
|I−AHA|

)
< 2.

Applying these results to the κ(A) definition (26), we find

κ(A) =
‖A‖22

‖A‖2F/min{m,n} <
2min{m,n}

n
< κmax(1, 1),

(36)

where the latter inequality follows from inspection of (28). We

conclude that, in the high-SNR regime, walk summability is

sufficient for GGAMP to converge with or without damping.

V. LOCAL STABILITY FOR STRICTLY CONVEX FUNCTIONS

We next consider the convergence with a more general class

of scalar estimation functions gs and gx: those that are twice

continuously differentiable with first derivatives bounded as

[g′s(p,νp)]i ∈ (0, 1), [g′x(r, τ r)]j ∈ (0, 1), (37)

for all p, r, νp and τ r. This condition arises in the important

case of minimizing strictly convex functions. Specifically, if

GAMP is used in max-sum mode so that the scalar estimation

functions are given by (3) and (4) with strictly convex, twice

differentiable functions Gi and Fj , then (3), (4), and (16) show

that the conditions in (37) will be satisfied.

Definition 1: Let xt+1 = ft(x
t) for t = 0, 1, 2, · · · be a

dynamical system with a fixed point x∗ (i.e., ft(x
∗) = x∗ ∀t).

We say that the system is locally stable at x∗ if ∃δ > 0 such

that, if ‖x0 − x∗‖ < δ, then limt→∞ xt = x∗.

Outside of the Gaussian scenario, we have not yet estab-

lished conditions on the global convergence of GAMP for

general scalar estimation functions.1 Instead, we now establish

conditions on local stability, as defined in [44]. To simplify

the analysis, we will assume that the GAMP algorithm uses

arbitrary but fixed stepsize vectors νp and τ r.

Under these assumptions, consider any fixed point (p, r) of

the GAMP method, and define the matrices

Qs := Diag(qs), qs := g′s(p,νp), (38a)

Qx := Diag(qx), qx := g′x(r, τ r), (38b)

evaluated at that fixed point. Note that, under assumption (37),

the components of qs and qx lie in (0, 1). Define the matrix

Ã := Diag 1/2(νp.qs)ADiag 1/2(τ r.qx). (39)

1Interestingly, it was shown by Moallemi and Van Roy [43] that, for
a certain class of convex optimization problems characterized by “scaled
diagonal dominance”, max-sum BP converges. As future work, it would be
interesting to study whether max-sum GAMP also converges for this class of
problems.

Then (38)-(39), together with lines 8 and 10 of Algorithm 1,

imply

m∑

i=1

|Ãij |2 = qxj
τrj

m∑

i=1

νpi
qsi |Aij |2 (40)

= qxj
τrj

m∑

i=1

Sijνpi
qsi = qxj

< 1. (41)

Hence, the column norms of Ã in (39) are less than one.

Similar arguments can be use to establish that, for any i,

n∑

j=1

|Ãij |2 = qsi < 1, (42)

so that Ã also has row norms less than one. We will thus call

Ã the row-column normalized matrix.

Theorem 3: Consider any fixed point (s,x) of GAMP Al-

gorithm 1 or Algorithm 2 with fixed vector or scalar stepsizes

νp and τ r, respectively, and scalar estimation functions gs
and gx satisfying the above conditions. Then, the fixed point

is locally stable if

θsθx‖Ã‖22 < 1, (43)

for Ã defined in (39). For the Gaussian GAMP algorithm, the

same condition implies the algorithm is globally stable.

Proof: See Appendix D.

To relate this condition to Theorem 2, consider the case

when νs and τx are fixed points of (19) with S = A.A, i.e.,

the component-wise magnitude square of A. From (41) and

(42), we have that

‖Ã‖2F = mqs = nqx ≤ min{m,n}max{qs, qx},

where

qs =
1

m

m∑

i=1

qsi , qx =
1

n

n∑

j=1

qxj
.

Thus, the peak-to-average ratio of Ã as defined in (26) is

bounded below as

κ(Ã) ≥ ‖Ã‖22
max{qs, qx}

.

Hence, a sufficient condition to satisfy (43) is given by

κ(Ã) <
1

θxθs max{qs, qx}
. (44)

In comparison, (27) and (29) show that a Gaussian GAMP with

scalar step sizes converges is κ(A) < C/(θsθx). We conclude

that the sufficient condition for the vector-stepsize GAMP

algorithm to converge is similar to the scalar-stepsize GAMP

algorithm, but where the peak-to-average ratio is measured on

a certain normalized matrix.
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VI. NUMERICAL RESULTS

In this section, we present some numerical simulations to

verify Theorems 2 and 3. This section is divided into two parts:

the first part is on the global convergence of damped GGAMP

(Theorem 2) and the second part is on the local stability of

damped GAMP (Theorem 3).

For both experiments, we first generated a matrix R ∈
Rm×n with elements drawn i.i.d. N (0, 1) and computed its

SVD to get orthogonal matrices U,V such that R = UΛVT.

Then we set A = UΣVT for Σ = Diag{σ1, ..., σr}, where

r = min{m,n}, σ1 = 1, and σi/σi−1 = ρ ∀i. The value

of ρ was chosen to achieve a desired value of the peak-to-

average ratio of the squared singular values of A, i.e., κ(A) in

(26). Finally, the measurements y were generated according to

y = Ax+w for the AWGN case, or y = sign(Ax+w) for the

binary case, where in either case w was a realization of white

Gaussian noise. The variance of w was chosen to achieve an

SNR of 50 dB, where SNR := E{‖Ax‖2}/E{‖w‖2}.

A. Global Convergence of Damped GGAMP

In this experiment, the elements of x were drawn i.i.d.

N (0, 1) and the measurements were generated using the

AWGN model as discussed above. For each choice of damping

factor θs = θx, scalar stepsize GGAMP was run from the fixed

initialization {x0=0, s−1=0, τx=1} and the MSE after 5000
iterations was recorded. This experiment was then repeated for

100 realizations of {A,x,w}. The damping factors θs = θx
were varied from 0.7 to 1 in steps of 0.005. To test the validity

of Theorem 2, we present the results in term of the “excess

MSE,” defined as the ratio of the MSE achieved by GAMP to

the MMSE, which was computed in closed form. To enhance

the readability of the plots, the excess MSE was clipped at

100 dB.

Figures 1 and 2 show the excess MSE versus κmax(θs, θx),
which—according to Theorem 2—is the maximum allowed

value of κ(A) under which GGAMP will converge with

damping factors (θs, θx), as defined in (27). In both figures,

the dimensions of A were 200×100, and the excess MSE from

each realization is plotted as a dot. The figures show that the

excess MSE was zero dB whenever κmax(θs, θx) > κ(A), and

conversely the excess MSE was greater than zero dB whenever

κmax(θs, θx) < κ(A), which verifies the claim of Theorem 2.

B. Local Convergence of GAMP

To test the local stability of damped GAMP, we used the

following procedure. For each realization of {A,x,y}, the

parameters {νp, τ r, θs, θx} were chosen and vector-stepsize

GAMP was run from the initialization {x0 = 0, s−1 = 0,

τx = 1} with the stepsizes fixed at the chosen {νp, τ r}.
The values of {νp, τ r, θs, θx} were chosen so that GAMP

converged to some fixed point {x, s,p, r}; more details are

provided below. Next, GAMP was initialized near to the fixed

point and tested for local convergence (under the same fixed

stepsizes {νp, τ r}.) In particular, it was initialized at {x0 =
x+xε, s−1 = s}, where the elements of xε were drawn i.i.d.

N (0, 1), with xε subsequently normalized such that the initial
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Fig. 1. The excess MSE of GGAMP vs κmax(θs, θx) for κ(A) = 4.
Each point represents one realization, and excess MSE values were clipped
at 100 dB. To the right of the red dashed line, the condition κmax(θs, θx) >
κ(A) is satisfied, in which case GGAMP converges to the MMSE solution,
as predicted by Theorem 2.
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Fig. 2. The excess MSE of GGAMP vs κmax(θs, θx) for κ(A) = 10.
Each point represents one realization, and excess MSE values were clipped
at 100 dB. To the right of the red dashed line, the condition κmax(θs, θx) >
κ(A) is satisfied, in which case GGAMP converges to the MMSE solution,
as predicted by Theorem 2.

MSE was 15 dB above the MSE at the fixed point. This test

was repeated 20 times for each fixed point. If θsθx‖Ã‖22 < 1
then, according to Theorem 3, GAMP should converge to the

fixed point. Each dot in Figures 3-6 represents the excess MSE,

now defined as the ratio of the maximum MSE among all

local runs of GAMP to the MSE at the fixed point. The above

procedure was repeated for a range of θs = θx and many

realizations of {A,x,y}, as detailed below. As before, the

excess MSE values were clipped at 100 dB before plotting.

Figures 3 and 4 show the excess MSE versus θsθx‖Ã‖22
for Bernoulli-Gaussian x with sparsity rate 0.1 and AWGN

measurements. Figure 3 investigates the case where κ(A) = 4
and Figure 4 investigates the case where κ(A) = 10. For each

plot, the dimensions of A were 200× 100, the stepsizes were

νpi
= (

∑n
j=1 A

2
ij)

−1 ∀i, the damping factors θs = θx were

varied from 0.45 to 0.95 in steps of 0.05, and 50 realizations of



8

0 0.5 1 1.5 2 2.5 3 3.5 4

0

20

40

60

80

100

PSfrag replacements

e
x
c
e
s
s

M
S

E
[d

B
]

θsθx‖Ã‖22
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Fig. 3. Excess MSE (dB) vs θsθx‖Ã‖2
2

for BG prior and AWGN likelihood
and κ(A) = 4. Excess MSE values were clipped at 100 dB. To the left of

the red dashed line, the sufficient condition θsθx‖Ã‖2
2
< 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

20

40

60

80

100

PSfrag replacements

e
x
c
e
s
s

M
S

E
[d

B
]

θsθx‖Ã‖22

κ(A)

GAMP

Fig. 4. Excess MSE (dB) vs θsθx‖Ã‖2
2

for BG prior and AWGN likelihood
and κ(A) = 10. Excess MSE values were clipped at 100 dB. To the left of

the red dashed line, the sufficient condition θsθx‖Ã‖2
2
< 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.

{A,x,y} were tested. Also, τrj = (
∑m

i=1 A
2
ij)

−1 in Figure 3

and τrj = (10
∑m

i=1 A
2
ij)

−1 in Figure 4, for all j. This

particular choice of τ r was used to ensure that the fixed-

stepsized GAMP converged to a fixed point for the chosen

range of θs, θx.

Figure 5 and 6 show the excess MSE versus θsθx‖Ã‖22
for Bernoulli-Gaussian x with sparsity rate 0.1 and binary

measurements. Figure 5 investigates the case where κ(A) = 4
and Figure 6 investigates the case where κ(A) = 10. For each

plot, the dimensions of A were 400× 100, the stepsizes were

νpi
= 10 ∀i and τrj = 1 ∀j, the damping factors θs = θx were

varied from 0.45 to 0.95 in steps of 0.05, and 50 realizations

of {A,x,y} were tested.

Figures 3-6 show an excess MSE of ≈ 0 dB whenever

θsθx‖Ã‖22 < 1, hence verifying Theorem 3.
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Fig. 5. Excess MSE (dB) vs θsθx‖Ã‖2
2

for BG prior and Probit likelihood
and κ(A) = 4. Excess MSE values were clipped at 100 dB. To the left of

the red dashed line, the sufficient condition θsθx‖Ã‖2
2
< 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.
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Fig. 6. Excess MSE (dB) vs θsθx‖Ã‖2
2

for BG prior and Probit likelihood
and κ(A) = 10. Excess MSE values were clipped at 100 dB. To the left of

the red dashed line, the sufficient condition θsθx‖Ã‖2
2
< 1 is satisfied, in

which case damped GAMP locally converges to a fixed point, as predicted
by Theorem 3.

CONCLUSIONS

A key outstanding issue for the adoption of AMP-related

methods is their convergence for generic finite-dimensional

linear transforms. Similar to other loopy BP-based methods,

standard forms of AMP may diverge. In this paper, we

presented a damped version of the generalized AMP algorithm

that, when used with fixed stepsizes, can guarantee global

convergence for Gaussian distributions and local convergence

for the minimization of strictly convex functions (i.e., strictly

concave log-priors). The required amount of damping is re-

lated to the peak-to-average ratio of the squared singular values

of the transform matrix. However, much remains unanswered:

Most importantly, we have yet to derive a condition for global

convergence even in the case of strictly convex functions. Sec-

ondly, our analysis assumes the use of fixed stepsizes. Third,

short of computing the peak-to-average singular-value ratio,
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we proposed no method to compute the damping constants.

Hence, an adaptive method may be useful in practice. One

such method, [23], has been proposed, but it comes without

convergence guarantees. Thus, future work might aim to

analyze the convergence of such methods. Also, a more recent

algorithm, Vector AMP (VAMP) [45], [46], has improved

convergence on larger classes of random matrices. Another

line of future work could seek conditions for convergence of

VAMP on deterministic matrices.

APPENDIX A

PROOF OF THEOREM 1

The variance updates of both Algorithms 1 and 2 are both of

the form (19) with different choices of S. So, the theorem will

be proven by showing that the updates (19) converge for any

non-negative matrix S ≥ 0. To this end, we use the results in

[47]. Specifically, for any νw and τ 0 > 0, define the functions

Φs(τx) := [Sτx + 1./νw]
−1

Φx(νs) :=
[
STνs + 1./τ 0

]−1

so that the updates (19) can be written as

νt
s = Φs(τ

t
x), τ t+1

x = Φx(ν
t
s).

It is easy to check that, for any S ≥ 0,

(i) Φs(τ x) > 0,

(ii) τx ≥ τ ′
x ⇒ Φs(τx) ≤ Φs(τ

′
x), and

(iii) For all α > 1, Φs(ατ x) > (1/α)Φs(τ x).

with the analogous properties being satisfied by Φx(νs). Now

let Φ := Φx ◦ Φs be the composition of the two functions so

that τ t+1
x = Φ(τ t

x). Then, Φ satisfies the three properties:

(i) Φ(τ x) > 0,

(ii) τx ≥ τ ′
x ⇒ Φ(τ x) ≥ Φ(τ ′

x), and

(iii) For all α > 1, Φ(ατ x) < αΦ(τ x).

Also, for any νs ≥ 0, we have Φx(νs) ≤ τ 0 and therefore,

Φ(τ x) ≤ τ 0 for all τx ≥ 0. Hence, taking any τx ≥ τ 0, we

obtain:

τx ≥ Φ(τx).

Using Theorem 2 in [47], it can be shown that the updates

τ t+1
x = Φ(τ t

x) converge to a unique fixed point. A similar

argument shows that νt
s also converges to a unique fixed point.

APPENDIX B

LINEAR SYSTEM STABILITY CONDITION

The proofs of both Theorems 2 and 3 are based on analyzing

the GAMP algorithm via an equivalent linear system and then

applying results from linear stability theory. For both results

we will show that the condition of the theorem is equivalent

to an eigenvalue test on a certain matrix.

First consider the Gaussian GAMP algorithm with fixed

vector stepsizes. With fixed stepsizes and Gaussian estimation

functions (17), Algorithm 1 reduces to a linear system:

st = (1− θs)s
t−1 + θsQs(s

t−1 + νp.Axt)

− θsνw.y (45a)

xt+1 = (1− θx)x
t + θxQx(x

t − τ r.A
Hst − x0)

+ θxx0, (45b)

where

Qs = Diag(qs), qs = νw./(νw + νp), (46a)

Qx = Diag(qx), qx = τ 0./(τ 0 + τ r). (46b)

Note that the components of qs and qx are in (0, 1). We can

write the system (45) in matrix form as
[

st

xt+1

]
= G

[
st−1

xt

]
+ b, (47)

for an appropriate matrix G and vector b. The matrix G is

given by

G :=

[
I 0

−θxDiag(τx)A
H Dx

] [
Ds θs Diag(νs)A
0 I

]
,

(48)

where

Ds = (1− θs)I+ θsQs (49a)

Dx = (1− θx)I+ θxQx. (49b)

Here we have used that

qs.νp = νs, qx.τ r = τ x. (50)

Note that both Dx and Ds are diagonal matrices with entries

in the interval (0, 1).
Now, consider the case of the more general scalar estimation

functions satisfying (37) and other assumptions in Section V.

Due to the differentiability assumptions, to prove the local

stability, we only have to look at the linearization of the

system around the fixed points [44]. With fixed stepsizes, the

linearization of the updates in Algorithm 1 around any fixed

point is given by

st = (1− θs)s
t−1 + θsQs(s

t−1 + νp.Axt) (51a)

xt+1 = (1− θx)x
t + θxQx(x

t − τ r.A
Hst) (51b)

where the matrices Qs and Qx in (46) are replaced by the

derivatives (38). This linear system is also of the form (47)

with the same matrix (48). Also, under the assumptions of the

theorem, qs and qx are vectors with components in (0, 1).
Hence, we conclude that to prove the global stability of

Gaussian GAMP, or the local stability of GAMP under the

assumptions of Theorem 3, it suffices to show that the linear

system (47) with a matrix G of the form (48) is stable. The

matrices Ds and Dx are given in (49) where Qs and Qx are

diagonal matrices with elements in (0, 1).
To evaluate this condition, first recall that the linear system

(47) is stable when the eigenvalues of G are in the unit circle.

However, if we define

T =

[
Diag−1/2(θsνs) 0

0 Diag−1/2(θxτ x)

]
,

the eigenvalues of G are identical to those of H given by

H := TGT−1 =

[
I 0
−FH Dx

] [
Ds F

0 I

]
, (52)

where

F =
√

θsθxDiag(ν1/2
s )ADiag(τ 1/2

x ). (53)
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Expanding the matrix product in (52), we get

H =

[
Ds F

−FHDs Dx − FHF

]
. (54)

Now, for any λ ∈ C, define the matrix

Hλ := λI−H =

[
λI−Ds −F
FHDs λI−Dx + FHF

]
. (55)

For stability, we need to show that for any |λ| ≥ 1, Hλ is

invertible. We simplify this condition as follows: Consider any

λ with |λ| ≥ 1. Now, Ds in (49b) is a diagonal matrix with

entries in [0, 1). Hence λI − Ds is invertible since |λ| ≥ 1.

Therefore, taking a Schur complement, we see that Hλ is

invertible if and only if the matrix

Jλ := λI−Dx + FHF+ FHDs(λI −Ds)
−1F

= λI−Dx + λFH(λI −Ds)
−1F.

is invertible. We can summarize the result as follows.

Lemma 1: Consider the GAMP Algorithm 1 for any scalar

estimation functions satisfying the conditions in Section V

including (37). The GAMP algorithm is locally stable around

a fixed point if and only if Jλ is invertible for all |λ| ≥ 1,

where

Jλ = λI −Dx + λFH(λI−Ds)
−1F, (56)

and F is given in (53). In the special case of Gaussian

estimation functions (17), the above condition implies the

GAMP Algorithm 1, will be globally stable.

A similar calculation can be performed for the GAMP al-

gorithm with scalar stepsizes. In this case, the vector stepsizes

such as τ x and νs are replaced with the scalar quantities τx
and νs. For the case of Gaussian estimation functions (17) and

identical variances (20) we obtain the following:

Lemma 2: Consider the GAMP Algorithm 2 with scalar

stepsizes, Gaussian scalar estimation functions (17) and iden-

tical variances (20). Then, the algorithm is globally stable if

and only if Jλ is invertible for all |λ| ≥ 1, where

Jλ = (λ − dx)I+
λ

λ− ds
FHF, (57)

where

F =
√
θsθxνsτxA, (58)

and

ds = (1− θs) + θsqs, qs =
νw

νp + νw
, (59a)

dx = (1− θx) + θxqx, qx =
τ0

τ0 + τr
. (59b)

APPENDIX C

PROOF OF THEOREM 2

Our first step in the proof is to simplify the condition in

Lemma 2.

Lemma 3: Consider the GAMP algorithm with scalar

stepsizes, Algorithm 2, with the Gaussian scalar estimation

functions (17) and fixed stepsizes. Then the system is stable

if and only if

σ2
max(A) < ‖A‖2F γ, (60)

where

γ :=
1

‖A‖2F θsθx

[
2

τx
− θx

τ0

] [
2

νs
− θs

νw

]
. (61)

Proof: From Lemma 2, we know that the system is stable

if and only if Jλ in (57) is invertible for all |λ| ≥ 1. To

evaluate this condition, suppose that Jλ is not invertible for

some |λ| ≥ 1. Then, there exists an v 6= 0 such that Jλv = 0,

which implies that

FHFv =
(dx − λ)(λ − ds)

λ
v.

Using the expression for F in (58), this is equivalent to

AHAv =
(dx − λ)(λ − ds)

θxθsτxνsλ
v.

Thus, v is an eigenvector of AHA. But, σ2 is an eigenvalue

of AHA if and only if σ is a singular value of A. Hence, we

conclude that Jλ is non-invertible if and only if there exists a

singular value σ of A such that

σ2θxθzτxνsλ = (dx − λ)(λ − ds).

Equivalently, we have shown that the system is stable if and

only if the the second-order polynomial

p(λ) := λ2 + (σ2θxθsτxνs − dx − ds)λ+ dsdx

has stable roots for all singular values of A, σ. Now recall

that ds and dx ∈ (0, 1). By the Jury stability condition, the

p(λ) has stable roots if and only p(1) > 0 and p(−1) > 0.

Now, the first condition is always satisfied since

p(1) = σ2θxθzτxνs + (1− ds)(1− dx) > 0.

So, the polynomial is stable if and only if

0 < p(−1) = −σ2θxθzτxνs + (1 + ds)(1 + dx),

or equivalently,

σ2θxθzτxνs < (1 + ds)(1 + dx).

For this to be true for all singular values of A, we need

σ2
max(A)θxθzτxνs < (1 + ds)(1 + dx).

Thus, the system is stable if and only if (60) is satisfied with

γ :=
(1 + dx)(1 + ds)

θsθxνsτx‖A‖2F
. (62)

So, we simply need to prove that (62) matches the definition

in (61). To this end, first note that

1 + dx
τx

(a)
=

2− θx
τx

+
θx
τr

(b)
=

2

τx
− θx

τ0
, (63)

where (a) follows from the definition qx = τx/τr in (49a)

and (b) follows from the fixed-point equation (22b). Similarly

using (49b) and (22a), we obtain that

1 + ds
νs

=
2− θs
νs

+
θs
νp

=
2

νs
− θs

νw
. (64)

Substituting (63) and (64) into (62), we obtain (61) and the

lemma is proven.
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Let

Γ := inf
νw>0

γ, (65)

where γ is defined in (61) and the minimization is over νw
with the other parameters, ‖A‖2F , τ0, m and n, being fixed.

It follows that if

σ2(A) < Γ‖A‖2F
then the system is stable for all νw. Conversely, if

σ2(A) > Γ‖A‖2F
then there exists at least one νw such that the system is

unstable. So, the theorem will be proven if we can show that

Γ defined in (65) matches the expression in (23).

To calculate the minima in (65), it is useful to write a scaled

version of the updates. Let

s :=
m

‖A‖2Fνsτ0
, x :=

τ0
τx

(66a)

u :=
m

‖A‖2Fνwτ0
, β :=

m

n
. (66b)

Then, the fixed points of (22) are given by

s =
1

x
+ u, x =

β

s
+ 1. (67)

Also, γ in (61) is given by,

γ =
1

mθsθx
(2x− θx)(2s− θsu). (68)

Moreover, the minimization in (65) is equivalent to

Γ = inf
u≥0

γ, (69)

since minimizing over νw is equivalent to minimizing over u
in the scaled system. To evaluate the minima (69), we first

prove the following.

Lemma 4: The minimization in (69) is given by

Γ = lim
u→0

γ. (70)

That is, the minima is achieved as u→ 0.

Proof: From (67),

uβ

s
= s− u+ β − 1. (71)

Substituting (67) into (68) and applying (71), we obtain

γ =
1

mθsθx

(
2β

s
+ 2− θx

)
(2s− θsu)

=
1

mθsθx

[
4β − (2− θx)θsu+ 2(2− θx)s−

2βθsu

s

]

=
1

mθsθx
[A(s, u) +B] , (72)

where

A(s, u) := 2(2− θx − θs)s+ θxθsu

B := 4β − 2θs(β − 1)
(73)

Now let s′, x′ and A′(s, u) denote the derivatives with respect

to u. From (67) we have

s′ = − x′

x2
+ 1, x′ = −βs′

s2
, (74)

and therefore,

s′ =
s2x2

s2x2 − β
. (75)

Now from (67), we have

sx > 1 and sx > β.

Therefore, (sx)2 > β and hence, from (75), s′ > 0. It follows

that

A′(s, u) = 2(2− θx − θs)s
′ + θxθs > 0,

since both 2 − θx − θs ≥ 0 and θxθx > 0. Hence, from (72),

we have
∂γ

∂u
=

A′(s, u)

mθsθx
> 0,

and it follows that the γ is minimized by taking u as small as

possible. Therefore,

Γ = inf
u≥0

γ = lim
u→0

γ.

We conclude by evaluating the limit in (70). The following

lemma shows that value of the minimization agrees with (23),

and hence completes the proof of the theorem.

Lemma 5: For any damping constants θs, θx, the limit in

(70) is given by (23).

Proof: First consider the case when β ≥ 1 (i.e. m ≥ n).

In this case, as u → 0 the solutions to the fixed points (67)

will satisfy s→ 0 and x→∞. Hence, the limit of A(s, u) in

(73) is

lim
u→0

A(s, u) = 0.

Therefore,

Γ = lim
u→0

γ
(a)
=

B

mθsθx

(b)
=

4β − 2θs(β − 1)

mθsθx
(c)
=

2 [(2 − θs)m+ θsn]

θsθxmn
,

where (a) used (72); (b) used (73) and (c) used the fact that

β = m/n. This proves the m ≥ n case of (23).

For the case when β < 1 (i.e. m < n) and u = 0, the

solutions to fixed point in (67) are

x =
1

1− β
, s =

1

x
= 1− β.

Substituting s = 1− β and u = 0 into (72),

γ =
1

mθsθx
[2(2− θx − θs)(1− β) + 4β − 2θs(β − 1)]

=
2 [(2− θx)n+ θxm]

θsθxmn
,

where again we have used the fact that β = m/n. Therefore,

Γ = lim
u→0

γ =
2 [(2− θx)n+ θxm]

θsθxmn
,

and this proves the m < n case of (23).
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APPENDIX D

PROOF OF THEOREM 3

We begin with a technical lemma.

Lemma 6: Let λ ∈ C, ds,max, dx, σ ∈ [0, 1) with |λ| ≥ 1.

Define the set,

P :=

{
λ− dx +

σ2λ

λ− ds
| ds ∈ [0, ds,max]

}
. (76)

Then 0 6∈ conv(P ), the convex hull of P .

Proof: Write λ in polar coordinates, λ = reiθ . We first

consider the case where θ ∈ (0, π). Under this assumption,

we claim for all z ∈ P ,

Imag((λ̄− dx)z) < 0. (77)

Since P is compact, this would imply that (77) holds for all

z ∈ conv(P ). In particular, 0 6∈ conv(P ). So, we need to show

that (77) holds for all z ∈ P .

To this end, let z ∈ P so that,

z = λ− dx +
σ2λ

λ− ds
, (78)

for some ds ∈ [0, ds,max]. Then,

Imag((λ̄− dx)z)

= Imag

[
|λ− dx|2 +

σ2(λ̄− dx)λ

λ− ds

]

=
σ2

|λ− ds|2
Imag

[
(λ̄− dx)(λ̄− ds)λ

]

=
σ2

|λ− ds|2
Imag

[
r2λ̄− (ds + dx)|λ|2 + dsdxλ

]

=
σ2

|λ− ds|2
[
−r3 sin θ + rdsdx sin θ

]

=
r sin θσ2

|λ− ds|2
[
−r2 + dsdx

]
. (79)

Now, since θ ∈ (0, π), sin θ > 0. Also, since |λ| ≥ 1, r ≥ 1.

Therefore, r2 > dsdx since ds, dx < 1. Hence, (79) shows

that (77) holds for all z ∈ P .

Similarly, for the case when θ ∈ (−π, 0), (79) shows that

Imag((λ̄− dx)z) > 0, (80)

for all z ∈ P . The same argument then shows that 0 6∈
conv(P ).

It remains to consider the cases when θ = 0 or θ = π. For

θ = 0, λ = r and any z ∈ P is of the form,

z = r − dx +
σ2r

r − ds

(a)
> r − dx

(b)
> 0,

where (a) follows from the fact that r > ds and (b) follows

from the fact that r > dx. So, for all z ∈ P , z is real and

positive. Hence, 0 6∈ conv(P ). Similarly, when θ = π, λ = −r
and

z = −r − dx +
σ2r

r + ds
< −r − dx + σ2

(a)
< −r + σ2

(b)
< 0,

where (a) follows since dx > 0 and (b) follows since r ≥ 1
and σ2 < 1. Therefore, for all z ∈ P , z is real and negative.

Hence, 0 6∈ conv(P ). We have thus shown that 0 6∈ conv(P )
for all values of θ.

We can now prove the main result. Suppose that (43) is

satisfied. By the definition of F in (53) and Ã in (39), we

have that

σ2
max(F) < 1. (81)

Now, from Lemma 1 we need to show that the matrix Jλ in

(56) is invertible for all λ ∈ C with |λ| ≥ 1. We prove this by

contradiction.

Suppose that Jλ in (56) is not invertible for some λ with

|λ| ≥ 1. Then, there exists an x with ‖x‖2 = 1 such that

xHJλx = 0. Therefore, if we define y = Fx, the definition

of Jλ in (56) shows that

xH(λI −D)x+ λyH(λI −Ds)
−1y = 0.

Since Dx and Ds are diagonal, we have

n∑

j=1

(λ− dxj
)|xj |2 +

m∑

i=1

λ

λ− dsj
|yj |2 = 0. (82)

Since ‖x‖2 = 1, we have
∑

j |xj |2 = 1. Also, since ‖F‖22 =

σ2
max(F) < 1,

∑

i

|yi|2 = ‖Fx‖2 = σ2‖x‖2 = σ2

for some σ2 < 1. Therefore, (82) shows that

0 ∈ conv(P ), (83)

where P is the set (76) where

dx =

n∑

j=1

dxj
|xj |2, ds,max = max

j
dsj . (84)

Now, from (38) and the contractivity assumption (37), the

elements of the diagonal matrices Qx and Qs must be in

the interval (0, 1). Hence, from (49), the elements dxj
and

dsj ∈ (0, 1). Therefore, dx, ds,max in (84) are in (0, 1). From

Lemma 6, 0 6∈ conv(Pλ) which is a contradiction of (83).

Hence, the assumption that Jλ is not invertible must be false,

and the theorem is proven.
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[37] V. A. Marčenko and L. A. Pastur, “Distribution of eigenvalues for some

sets of random matrices,” Math. USSR–Sbornik, vol. 1, no. 4, pp. 457–
483, 1967.

[38] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums
and belief propagation in Gaussian graphical models,” The Journal of

Machine Learning Research, vol. 7, pp. 2031–2064, 2006.
[39] Y. Weiss and W. T. Freeman, “Correctness of belief propagation in

Gaussian graphical models of arbitrary topology,” in Advances in neural

information processing systems, 2000, pp. 673–679.
[40] P. Rusmevichientong and B. Van Roy, “An analysis of belief propagation

on the turbo decoding graph with Gaussian densities,” IEEE Trans.

Inform. Theory, vol. 47, no. 2, pp. 745–765, 2001.
[41] C. C. Moallemi and B. Van Roy, “Convergence of min-sum message

passing for quadratic optimization,” IEEE Trans. Inform. Theory, vol. 55,
no. 5, pp. 2413–2423, 2009.

[42] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, “Walk-sums and
belief propagation in Gaussian graphical models,” J. Machine Learning

Res., vol. 7, pp. 2031–2064, Oct. 2006.
[43] C. C. Moallemi and B. Van Roy, “Convergence of min-sum message-

passing for convex optimization,” IEEE Trans. Inform. Theory, vol. 56,
no. 4, pp. 2041–2050, 2010.

[44] M. Vidyasagar, Nonlinear Systems Analysis. Englewood Cliffs, NJ:
Prentice-Hall, 1978.

[45] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message
passing,” in Proc. IEEE ISIT, 2017, pp. 1588–1592.

[46] A. K. Fletcher and P. Schniter, “Learning and free energies for vector
approximate message passing,” in IEEE Intl. Conf. Acoustics, Speech

and Signal Processing (ICASSP), 2017, pp. 4247–4251.
[47] R. D. Yates, “A framework for uplink power control in cellular radio

systems,” IEEE J. Sel. Areas Comm., vol. 13, no. 7, pp. 1341–1347,
September 1995.


	I Introduction
	II Damped GAMP
	II-A Review of GAMP
	II-B Damped GAMP
	II-C GAMP with Scalar Stepsizes
	II-D Relation to Primal-Dual Hybrid Gradient Algorithms

	III Damped Gaussian GAMP
	III-A Gaussian GAMP
	III-B Convergence of GGAMP Stepsizes

	IV Scalar-Stepsize GGAMP Convergence
	IV-A Scalar-stepsize GGAMP
	IV-B Convergence
	IV-C Examples of Matrices

	V Local Stability for Strictly Convex Functions
	VI Numerical Results
	VI-A Global Convergence of Damped GGAMP
	VI-B Local Convergence of GAMP

	Appendix A: Proof of Theorem 1
	Appendix B: Linear System Stability Condition
	Appendix C: Proof of Theorem 2
	Appendix D: Proof of Theorem 3 
	References

