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Polar coding for interference networks
Lele Wang and Eren Şaşoğlu

Abstract—A polar coding scheme for interference networks
is introduced. The scheme combines Arıkan’s monotone chain
rules for multiple-access channels and a method by Hassani and
Urbanke to ‘align’ two incompatible polarization processes. It
achieves the Han–Kobayashi inner bound for two-user interfer-
ence channels and generalizes to interference networks.

I. I NTRODUCTION

Interference is one of the fundamental challenges in wireless
communication. When multiple sender–receiver pairs com-
municate simultaneously over a shared medium, the signal
arrived at each receiver is a mixture of its intended signal
and undesired signals from all other transmitters. Therefore,
even in the absence of noise, transmission from a sender to its
receiver is limited by the presence of transmission from other
parties.

The two-user memoryless interference channel models the
simplest such communication setting. It is described by chan-
nel input alphabetsX , W , output alphabetsY, Z, and for all
(x,w, y, z) ∈ X ×W × Y × Z, the probabilityP (y, z|x,w)
of receiving (y, z) when (x,w) are input to the channel
(Figure 1).
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Fig. 1. Two-user interference channels.

A (2NR1 , 2NR2, N) code for the two-user interference chan-
nel consists of

• two encoding functionsxN (M1) andwN (M2), defined
for messagesM1 ∈ [1 : 2NR1 ] andM2 ∈ [1 : 2NR2 ].

• two decoding functionŝm1(y
N ) and m̂2(z

N ), defined
for each received sequenceyN ∈ YN andzN ∈ ZN .

MessagesM1 andM2 are assumed to be uniformly distributed.
The average probability of error is defined asP (N)

e =
P{(M̂1, M̂2) 6= (M1,M2)}. A rate pair(R1, R2) is achievable
if there exists a sequence of(2NR1 , 2NR2, N) codes with
limN→∞ P

(N)
e = 0. The capacity region is the closure of the

set of achievable rate pairs.
The capacity region of the two-user interference channel

is not known in general. The best known inner bound to the
capacity region was given by Han and Kobayashi in [1]. Our
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aim here is to show the achievability of this inner bound by
polar coding techniques.

The Han–Kobayashi scheme consists in splitting each
sender’s message into two parts, and letting each receiver
decode one part of the interfering sender’s message in addition
to both parts of its own sender’s message. This creates a three-
sender multiple-access channel (MAC) for each receiver, and
the code rates are required to satisfy both MACs simultane-
ously. Since these MACs share two of their three senders, the
situation is similar to acompoundsetting, in which codes must
be designed to perform well simultaneously over several (in
this case, two) MACs.

Given these observations, one may hope to apply the stan-
dard results on MACs to design polar codes for the interference
channel. In particular, the corner points of a MAC’s capacity
region are known to be achievable by standard polar coding
techniques [2]. This readily implies the achievability of the
entire MAC capacity region by polar coding, since all achiev-
able points can be turned into corner points by the rate-splitting
techniques of [3]. Unfortunately, rate-splitting techniques do
not generalize in a straightforward manner to the compound
setting. In particular, it is shown in a parallel study [4] that
standard applications of rate-splitting techniques fail to achieve
optimal compound rates in general. This makes it unclear
whether polar coding techniques can be combined with rate-
splitting ideas to achieve the Han–Kobayashi inner bound.

Here, we show an alternative polar coding method that
achieves the capacity region of compound MACs and by
extension the Han–Kobayashi inner bound. The method is
based on appropriately combining two techniques developed
recently by Arıkan [5], and Hassani and Urbanke [6]. We
briefly review these techniques first.

II. PRELIMINARIES

A. Aligning polarized indices ([6])

Consider two binary-input memoryless channelsP : X →
Y and Q : X → Z with equal symmetric capacities
I(P ) = I(Q). Suppose we wish to design a polar code that
performs well over both of these channels. ForN = 2n, define
UN = XNGN , whereGN =

[ 1,0
1,1

]⊗n
BN is the standard

polar transformation. Here,⊗n denotes thenth Kronecker
power andBN is the ‘bit-reversal’ permutation. Define the
channelsPi : Ui → Y NU i−1 andQi : Ui → ZNV i−1 and
sets

GY = {i ∈ [1 :N ] : I(Pi) > 1− 2−Nβ

},

GZ = {i ∈ [1 :N ] : I(Qi) > 1− 2−Nβ

},

BY = {i ∈ [1 :N ] : I(Pi) < 2−Nβ

},

BZ = {i ∈ [1 :N ] : I(Qi) < 2−Nβ

}.

(1)

http://arxiv.org/abs/1401.7293v1


2

for someβ < 1/2. Standard polarization results imply that
|GY |/N ≈ I(P ) = I(Q) ≈ |GZ |/N for large N , and thus
almost all bit indices belong to one of the following four sets:

AI = GY ∩ GZ ,

AII = GY ∩ BZ ,

AIII = BY ∩ GZ ,

AIV = BY ∩ BZ .

It suffices to discuss only the bit indices of the above four
types, and assume that the remaining bit values are fixed and
revealed to all receivers. Note that type-I indices see clean
channels for bothP andQ and thus can carry information.
Similarly, type-IV indices are bad for both channels and can
be fixed. Type-II and III indices areincompatible, i.e., they
are good for one channel and bad for the other. Moreover,
the fraction(|AII |+ |AIII |)/N of incompatible indices is non-
negligible in general [7], and therefore standard polar coding
does not achieve the compound capacity of arbitrary channels
P andQ.

Hassani and Urbanke propose a simple solution to this
problem, whichaligns the good indices of the two channels.
Given two independent binary-input memoryless channels
P : X1 → Y1 and Q : X2 → Y2, define the binary-input
channels

(P,Q)−(y1, y2 |u1) =
∑

u2

1
2P (y1 |u1 ⊕ u2)Q(y2 |u2),

(P,Q)+(y1, y2, u1 |u2) =
1
2P (y1 |u1 ⊕ u2)Q(y2 |u2),

and note that

I((P,Q)−) ≤ min{I(P ), I(Q)}

I((P,Q)+) ≥ max{I(P ), I(Q)}.
(2)

Now let i andj be a type-II and a type-III index, respectively.
That is,

I(Pi) ≈ 1 and I(Pj) ≈ 0,

I(Qi) ≈ 0 and I(Qj) ≈ 1.

It then follows from (2) that

I((Pi, Pj)
−) ≈ 0 and I((Pi, Pj)

+) ≈ 1,

I((Qi, Qj)
−) ≈ 0 and I((Qi, Qj)

+) ≈ 1,

In words, combining two incompatible indices results in an
almost perfect ‘plus’ channel and almost useless ‘minus’ chan-
nel, regardless of the underlying channel. This ‘aligns’ the mu-
tual informations for such indices. Taking two blocks ofUN ,
one can combine almost all type-II indices from one block
with type-III indices from the other block, since|AII |/N ≈
|AIII |/N . More precisely, supposeAII = {c1, c2, . . . , cm} and
AIII = {d1, d2, . . . , dn}, where the elements are written in
increasing order. DefineUN = XNGN andEN = X2N

N+1GN .
Then, combiningUcj with Edj

, j = 1, . . . , q = min{m,n},
and leaving the remaining symbols uncombined yields the

length-2N sequence

Ũ2N =
(

U c1−1, Ed1−1, Uc1 ⊕ Ed1
, Ed1

,

· · ·

U
cq−1
cq−1+1, E

dq−1
dq−1+1, Ucq ⊕ Edq

, Edq
,

UN
cq+1, E

N
dq+1

)

.

Then, the mutual informations of channels̃Ui → Y 2N Ũ i−1

and Ũi → Z2N Ũ i−1 are aligned for the combined indices
Ũi = Ucj ⊕ Edj

and Ũi = Edj
, and unchanged for the

remaining ones. Note again that the indices inAIII of the first
block andAII of the second block are not combined with each
other and remain incompatible. This ensures that the combined
indices are polarized as desired. The fraction of incompatible
indices is thus halved by this alignment, to(|AII |+|AIII |)/2N .
Recursively aligning the indicesk times in this fashion then
reduces this fraction to(|AII |+ |AIII |)/2kN , and thus the rate
I(P ) = I(Q) can be achieved on both channels by picking a
largek.
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Fig. 2. Alignment of the incompatible indices

To show proper alignment of incompatible indices and its
corresponding decoding order, consider an example where
AII = {c} and AIII = {d}. We combineUc from block 1
with Ed from block 2 as in Figure 2 (a). Decoding is thus
done in the following order. Variables along the solid line
arrows should be decoded before the variables along the dash
line arrows. Variables along arrows with the same number can
be decoded parallelly. Figure 2 (b) shows an example where
improper combining violates the successive decodability.Here
in order to decodeUc ⊕ Ed, one needs to knowEd−1, and
in particularEf . However, the decoding ofEf involvesUe,
which won’t be available before knowingUc⊕Ed. Therefore,
it is crucial to order type II and type III indices in increasing
order and combine thej-th type II index from one block with
the j-th type III index from another independent block.

B. ‘Polar Splitting’ for MAC ([5])

Consider a two-user MAC(X ×W , P (y|x,w),Y), where
sender 1 and sender 2 wish to communicate two messagesM1
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and M2 to the receiver by respectively sending codewords
XN(M1) and WN (M2) over N uses of the channel. The
capacity region of this channel is given by

⋃

p

R(p), (3)

where the union is over all distributions of the formp =
p(q)p(x|q)p(w|q)P (y|x,w), and R(p) is the set of non-
negative rate pairs(R1, R2) satisfying

R1 ≤ I(X ;Y,W |Q),

R2 ≤ I(W ;Y,X |Q),

R1 +R2 ≤ I(X,W ;Y |Q).

(4)

The subset of R(p) satisfying R1 + R2 =
I(X,W ;Y |Q) is called its dominant face, and
the two points (I(X ;Y |Q), I(W ;Y,X |Q)) and
(I(X ;Y,W |Q), I(W ;Y |Q)) are called its corner points.
We will first consider uniformX and W and constantQ;
generalizations to arbitrary distributions are discussedin
Section III-B.

In [5], Arıkan develops a polar coding method that achieves
the entire dominant face based on the following observations:
Let UN = XNGN and V N = WNGN . Consider the chain
rules of the form

2N
∑

i=1

I(Si;Y
N |Si−1),

where S2N = (S1, . . . , S2N ) is a monotonepermutation
of UNV N , i.e., elements of bothUN and V N appear in
increasing order inS2N . Let SU andSV respectively denote
the set of indices ofS2N with Si = Uk and Si = Vk, and
define the rates

R1 =
1

N

∑

i∈SU

I(Si;Y
N |Si−1),

R2 =
1

N

∑

i∈SV

I(Si;Y
N |Si−1).

(5)

The entire regionR(p) can be achieved by polar coding if
(R1, R2) can be set to arbitrary values on the dominant face
and if the mutual informationsI(Si;Y

N |Si−1) are polarized.
It turns out that these requirements are satisfied by permuta-
tions of the formS2N = (U i, V N , UN

i+1).

Proposition 1 ([5]). For everyǫ > 0, β < 1/2, and rate pair
(I1, I2) on the dominant face ofR(p), there exist anN and
a permutationS2N = (U i, V N , UN

i+1) such that

(i) |R1 − I1| < ǫ and |R2 − I2| < ǫ,
(ii)

|G(1)|

N
> R1 − ǫ and

|G(2)|

N
> R2 − ǫ,

where

G(1) = {i ∈ SU : I(Si;Y
N |Si−1) > 1− 2−Nβ

},

G(2) = {i ∈ SV : I(Si;Y
N |Si−1) > 1− 2−Nβ

}.

III. T WO-USERCOMPOUND MAC

We are now ready to described a polar coding scheme
for the two-user compound MAC consisting of two channels
PY (y|x,w) and PZ(z|x,w). The channel is assumed to be
known at the receiver but not at the transmitter. A rate pair
(R1, R2) is achievable if there exists a sequence of codes with
rates approaching(R1, R2) and vanishing error probability on
both MACs. The capacity region is described by

⋃

p

(

RY (p) ∩ RZ(p)
)

, (6)

where RY (p) and RZ(p) are as in (4). Recall that for the
simple MAC, the time-sharing random variableQ in (4) can
be replaced by a convex hull operation on the union in (3).
However, in the compound case, this substitution leads in
general to a strictly smaller rate region.

A. Uniform Independent Inputs

PSfrag replacements

R1

R2

target point(I1, I2)

Fig. 3. Two MAC regions with equal sum-rate.

AssumeX andW are uniform and independent,Q = ∅.
The simplest nontrivial case is when the two pentagons in (4)
intersect as in Figure 3, with equal sum-rateI(X,W ;Y ) =
I(X,W ;Z). Let (I1, I2) be a rate point on the dominant face
of this intersection. LetUN = XNGN andV N = WNGN .
By Proposition 1, there exists anN and two monotone
permutationsS2N andT 2N for which the mutual informations
I(Si;Y

N |Si−1) and I(Ti;Z
N |T i−1) are polarized, and the

corresponding rate pairs in (5) are close to(I1, I2). However,
as in the point-to-point case, the two sets of mutual informa-
tions {I(Si;Y

N |Si−1) : i ∈ SU} and {I(Ti;Z
N |T i−1) : i ∈

TU} may be incompatible. One can similarly identify the
type of index i by comparing the mutual informations of
the bit-channelsSj → Y NSj−1 andTk → ZNT k−1, where
Sj = Tk = Ui, and find the type II and type III incompatible
index setsA(1)

II andA(1)
III for U , andA(2)

II andA(2)
III for V .

Now we apply the technique in Section II-A to align
incompatible indices of bothU ’s and V ’s. Here, as in the
point-to-point case, care must be taken to combine the random
variables in a way that guarantees successive decodability.
This can be done by aligning only theU ’s or V ’s in any
given recursion. Also, as before, only half of the incompatible
indices of U ’s (or V ’s) are aligned in a single recursion.
Aligning the two index sets alternately over2k recursions,
both fractions of incompatible indices can be reduced to1/2k

times their original values.
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As an example, we show two recursions of alignment,
where incompatibleU ’s are aligned in the first recursion
and incompatibleV ’s are aligned in the second. Suppose
A

(1)
II = {c},A

(1)
III = {d},A

(2)
II = {e}, A

(2)
III = {f}. In the

first recursion (blocks 1 and 2),U ’s are aligned whileV ’s are
left uncombined (Figure 4). The decoding order for receiver1
is shown on the right. After stacking theU ’s and V ’s ac-
cording to the monotone permutationS2N = (U i, V N , UN

i+1),
decoding can be proceeded in a similar fashion as in the point-
to-point alignment (recall Figure 2). In the second recursion
(Figure 5), a copy of the length-2N superblock is made (blocks
3 and 4) for bothU andV . The two superblocks ofV ’s are
aligned while the two superblocks ofU ’s are left uncombined
(as shown on the left). At the decoder 1,U ’s andV ’s from the
same block are stacked according to the monotone permutation
S2N . The uncombined indices in each block are decoded until
reaching a combined index. Then the two combined indices are
decoded. Since in each recursion, only incompatible indices
for U (or V ) are combined in the right order, successive
decodability is guaranteed as in the point-to-point case. More
specifically for the running example, variables along an arrow
with smaller number should be decoded before those with
a bigger number, and variables along arrows with the same
number can be decoded parallelly. The monotone permutation
S8N is defined by variables listed according to such a decoding
order. The corresponding rate pair(Rs

1, R
s
2) are defined as

before

Rs
1 =

1

N

∑

i∈SU

I(Si;Y
4N |Si−1),

Rs
2 =

1

N

∑

i∈SV

I(Si;Y
4N |Si−1).

The decoding at the receiver 2 is performed according to
the monotone permutationT 2N in the similar fashion. The
resulting permutationT 8N and its rate pair(Rt

1, R
t
2) can be

defined similarly. Clearly, the fraction of incompatible indices
for U (andV ) is halved in the first (second) recursion.

PSfrag replacements

R1

R2

(I ′1, I
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2)
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′′
2 )
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Fig. 6. Two MAC regions with unequal sum-rates.

To achieve a rate point(I1, I2) in the general case where
I(X,W ;Y ) 6= I(X,W ;Z) as in Figure 6, one can find two
monotone permutations, which respectively approximate rate
pairs(I ′1, I

′
2) on the dominant face ofPY (y|x,w) and(I ′′1 , I

′′
2 )

on the dominant face ofPZ(z|x,w), such that

I1 ≤ min{I ′1, I
′′
1 },

I2 ≤ min{I ′2, I
′′
2 }.

Then, applying the approach above achieves the target rate
point.
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B. Arbitrary Inputs

Based on the polar coding scheme developed for uniform
and independentX andW , one can adapt the method in [8,
Section III-D] to design a polar coding scheme for indepen-
dent nonuniformX andW . For correlated input distribution
p̃ = p(q)p(x|q)p(w|q), there exist(X ′,W ′, Q) mutually in-
dependent and functionsx(x′, q) andw(w′, q) that induce the
same distribution as̃p. Now consider a new MAC with inputs
X ′ andW ′, vector output(Y,Q), and conditional distribution
P ′(y, q|x′, w′) = p(q)P (y|x(x′, q), w(w′, q)), whereQ is the
common randomness shared at the senders and the receiver.
Then the achievable rate region for the new MAC is the set
of rate pairs(R1, R2) such that

R1 ≤ I(X ′;Y,Q,W ′) = I(X ;Y,W |Q),

R2 ≤ I(W ′;Y,Q,X ′) = I(W ;Y,X |Q),

R1 +R2 ≤ I(X ′,W ′;Y,Q) = I(X,W ;Y |Q)

for distribution p′ = p(q)p(w′)p(x′)p(x|x′, q)p(w|w′, q)
P (y|x(x′, q), w(w′, q)), wherep(x|x′, q) and p(w|w′, q) are
{0, 1}-valued according tox(x′, q) and w(w′, q). This rate
region is identical toRY (p) as p′ ≡ p. Similarly the rate
region RY (p) ∩ RZ(p) can be described by considering
the compound MAC with inputsX ′ and W ′, vector output
(Y, Z,Q), and conditional distributionP ′(y, z, q|x′, w′) =
p(q)PY (y|x(x′, q), w(w′, q))PZ(z|x(x′, q), w(w′, q)). One
can apply the method designed for independent input
to achieve arbitrary point in the rate region of the new
compound MAC. To complete the proof, one just need to
show the existence of a good common random sequenceqn,
which is shared at the senders and the receiver before the
transmission. This is guaranteed since the average probability
of error over all possible choices ofqn is small.

C. Main Result

Theorem 1. For everyǫ > 0, β < 1/2, and rate pair(I1, I2)
in the rate regionRY (p) ∩ RZ(p), there existN,M = 2kN ,
and two monotone permutationS2M andT 2M with associated
rate pairs(Rs

1, R
s
2) and (Rt

1, R
t
2) such that forj = 1, 2,

(i)
|min{Rs

j , R
t
j} − Ij | < ǫ,

(ii)
|G

(j)
Y ∩ G

(j)
Z |

M
> min{Rs

j , R
t
j} − ǫ,

where

G
(1)
Y = {i ∈ SU : I(Si;Y

M |Si−1) > 1− 2−Nβ

},

G
(1)
Z = {i ∈ TU : I(Ti;Z

M |T i−1) > 1− 2−Nβ

},

G
(2)
Y ,G

(2)
Z are defined similarly by replacingU by V .

The above theorem implies that arbitrary point in the
capacity region of the two-user compound MAC is achievable
with the proposed polar coding scheme. In the two-user
stronginterference channel, that isI(X ;Y,W ) ≤ I(X ;Z,W )
and I(W ;Z,X) ≤ I(W ;Y,X) for all p(x)p(w), decoding
both messages at each receiver is optimal and the two-user

compound MAC region coincides with the capacity region of
the interference channel. Therefore, the same technique applies
to the two-user strong interference channels.

IV. I NTERFERENCENETWORKS

Now we generalize the result toK-senderL-receiver inter-
ference networks with input alphabetsX1, . . . ,XK , and output
alphabetsY1, . . . ,YL, and conditional distributionP (yL|xK)
as depicted in Figure 7. Each senderj ∈ [1 : K] com-

Y n

1

M̂D1

Y n

L

M̂DL

P (yL |xK)

Xn

1

Xn

K

M1

MK

Enc 1

EncK

Dec 1

DecL

Fig. 7. K-senderL-receiver interference networks.

municates an independent messageMj at rateRj and each
receiverl ∈ [1 : L] wishes to recover a subsetDl ⊆ [1 : K]
of the messages. The optimal rate region when the encoding
is restricted to random coding ensembles with superposition
coding and time sharing [9] is the union over{(A1, . . . ,AL) :
Al ⊇ Dl, l ∈ [1 :L]} of the region

⋂

l∈[1:L]

RAl
(p), (7)

where the input distribution is of the formp = p(q)
(
∏K

j=1 p(xj |q)
)

P (yL|xK) andRAl
(p) is the set of rate tuples

(Rj : j ∈ Al) such that

R(J ) ≤ I(XJ ;Yl, XAl\J |Q) (8)

for all J ⊆ Al. Here we introduce notation

R(J ) :=
∑

j∈J

Rj

and
XJ := (Xj : j ∈ J )

for an index setJ . It is clear from (7) that this rate region is
also a compound MAC region.

To apply the proposed polar coding scheme to the inter-
ference networks, one needs to (i) generalize Arıkan’s polar
splitting result toK-user MAC and (ii) align more than two
incompatible polarization processes, each of which involves
codes fromK users. We prove (i) in Section IV-A and discuss
(ii) in Section IV-B. We show two important applications in
Sections IV-C and IV-D.

A. ‘Polar Splitting’ for K-user MAC

Consider aK-user MAC, where transmitterj, j ∈ [1 : K],
wishes to communicate a messageMj reliably to the receiver
by sending a codewordXN

j (Mj) = (Xj1, Xj2, . . . , XjN )
over the memoryless channelP (y|xK). The receiver wishes
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to recover all the messagesM[1:K]. The capacity region of the
K-user MAC is described by

⋃

p

R[1:K](p),

where the union is over all distributions of the formp =
p(q)

(
∏K

i=1 p(xi|q)
)

P (y|xK), and R[1:K](p) is defined as
in (8).

Let UN
j = XN

j GN for j ∈ [1 :K]. Similar to the two-user
MAC case, we have the chain rule of the form

KN
∑

i=1

I(Si;Y
N |Si−1),

whereSKN is amonotonepermutation of(UN
1 , . . . , UN

K ), i.e.,
elements ofUN

j appear in increasing order inSKN for all j ∈
[1 :K]. LetSj denote the index set{i : Si = Ujk for somek}.
Define the associated rate tuple(R1, . . . , RK) of the monotone
permutation as

Rj =
1

N

∑

i∈Sj

I(Si;Y
N |Si−1)

for j ∈ [1 : K]. We now generalize Arıkan’s polar-splitting
result toK users.

Proposition 2. For every ǫ > 0, β < 1/2, and rate tuple
(I1, . . . , IK) on the dominant face ofR[1:K](p), there exists
an N and a monotone permutationSKN such that for all
j ∈ [1 :K],

(i)
|Rj − Ij | ≤ ǫ,

(ii)
|G(j)|

N
> Rj − ǫ,

where

G(j) = {i ∈ Sj : I(Si;Y
N |Si−1) > 1− 2−Nβ

}.

Proof: We prove statement (i) by induction. The case
K = 2 holds by Proposition 1. Suppose the statement holds
up toK − 1. We prove the statement forK.

Assume without loss of generality that we start by decoding
U i0
1 for somei0 ∈ [1 : N ]. We specifyi0 by the following

procedure. Leti increase from0 to N and consider the
quantities

1
N
I(UN

J ;Y N , U i
1) (9)

for eachJ ⊆ [2 :N ]. Some observations follow:
1) As i increases, each mutual information term increases

by at most1/N in each step, since the increment is
I(U1i;U

N
J |Y N , U i−1

1 )/N ≤ 1/N .
2) There exists ani such that for at least oneJ ⊆ [2 :K],

the following is violated

1
N
I(UN

J ;Y N , U i
1) < I(J ). (10)

To see 2), setU i
1 = ∅ andU i

1 = UN
1 respectively. We have

1
N
I(UN

J ;Y N ) ≤ I(J ) for J ⊂ [2 :K],
1
N
I(UN

[2:K];Y
N ) ≤ I([2 :K]) ≤ I(UN

[2:K];Y
N , UN

1 ).

As i increases, the mutual information terms in (9) increase
steadily. Therefore, there exists ani such that (10) is violated
for someJ ⊆ [2 :K]. Take the smallest suchi as i0.

Suppose ati = i0, the inequality in (10) is violated atJ0 for
the first time. As the increment on the left-hand-side of (10)
is bounded by1/N , we roughly have

1
N
I(UN

J0
;Y N , U i0

1 ) = I(J0). (11)

This divides theK-dimensional rate-approximation into two
subproblems of smaller dimensions.

Problem 1:For J ⊆ J0, we have

1
N
I(UN

J ;Y N , U i0
1 ) < I(J ) for all J ⊂ J0

and
1
N
I(UN

J0
;Y N , U i0

1 ) = I(J0).

This is a rate-approximation problem for the rate tuple
(Ij : j ∈ J0) on the dominant face of a|J0|-user MAC with
output(Y N , U i0

1 ).
Problem 2:For allJ ⊇ J0, we subtract (11) from (10). Let

T = J \J0, T0 = [2 :K] \ J0, andI ′1 = I1 −
1
N
I(U i0

1 ;Y N ).
This yields

1
N
I(UN

T ;Y N , UN
J0
, U i0

1 ) ≤ I(T ),
1
N
I(UN

T , UN
1,i0+1;Y

N , UN
J0
, U i0

1 ) ≤ I(T ) + I ′1,
1
N
I(UN

T0
, UN

1,i0+1;Y
N , UN

J0
, U i0

1 ) = I(T0) + I ′1.

This is a rate-approximation problem for the rate tuple
(I ′1, (Ij : j ∈ T0)) on the dominant face of a(K − |J0|)-user
MAC with output (Y N , U i0

1 , UN
J0
).

Note that 1 ≤ |J0| ≤ K − 1. Thus both problems are
reduced to a smaller dimension. The final path is obtained
by cascading1i0 , b|J0|N (the solution from problem 1), and
bKN−|J0|N−i0 (the solution from problem 2).

The polarization result (ii) is obtained by standard path
scaling as in [5]. This concludes the proof.

B. Aligning polarized indices forK users

Suppose we have two monotone permutations for twoK-
user MACs. To align the incompatible indices for all users,
one can continue the method in Section III-A and sequentially
align the incompatible indices for eachUN

j , j ∈ [1 :K]. After
alternately aligningK index sets overKm recursions, the
fraction of the incompatible indices for each user is reduced
to 1/2m times the original fraction. The method for aligning
L monotone permutations can be done by recursively aligning
two permutations as in [6].

C. Han–Kobayashi Inner bound

As an important special case, we show how the scheme
above can be used to achieve the Han–Kobayashi inner bound,
the best known inner bound for general two-user interference
channelsP (y1, y2|x1, x2).

The Han–Kobayashi coding scheme is illustrated in Fig-
ure 8. MessageM1 is split into two independent parts(L1, L2)
and messageM2 is split into two independent parts(L3, L4).
MessageLj, j ∈ [1 : 4], is carried by codewordV N

j (Lj).
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Y N

1
L̂1, L̂2, L̂3

Y N

2
L̂2, L̂3, L̂4

P (y2 |x2)

XN

1
L1

L2

XN

2
L3

L4

x1(v1, v2)

x2(v3, v4)

V N

1

V N

2

V N

3

V N

4

P (y2 |v4)

Fig. 8. Han–Kobayashi coding scheme.

Then the channel inputsXN
1 and XN

2 are formed using
two symbol-by-symbol mappingsx1(v1, v2) and x2(v3, v4).
Receiver 1 uniquely decodes(L̂1, L̂2, L̂3) upon receivingY N

1 ,
while receiver 2 uniquely decodes(L̂2, L̂3, L̂4) upon receiving
Y N
2 . The achievable rate region of the Han–Kobayashi coding

scheme is given by

⋃

p

Proj4→2

(

R1(p) ∩ R2(p)
)

. (12)

Here the input distribution is of the formp = p(q)
(
∏4

j=1 p(vj |q)
)

p(x1|v1, v2, q)p(x2|v3, v4, q)P (y1, y2|x1, x2),
where p(x1|v1, v2, q) and p(x2|v3, v4, q) are {0, 1}-valued
according to functionsx1(v1, v2, q) and x2(v3, v4, q). The
rate regionR1(p) is the set of rate triples(R′

1, R
′
2, R

′
3) such

that

R′
J ≤ I(V (J );Y N

1 , V ([1 : 3] \ J )|Q)

for all J ⊆ [1 : 3]. The rate regionR2(p) is the set of rate
triples (R′

2, R
′
3, R

′
4) such that

R′
J ≤ I(V (J );Y N

2 , V ([2 : 4] \ J )|Q)

for all J ⊆ [2 : 4]. The operator Proj4→2 is to apply the
Fourier–Motzkin elimination from the 4-dimensional space
(R′

1, R
′
2, R

′
3, R

′
4) to the 2-dimensional space(R1, R2) by

settingR1 = R′
1 +R′

2 andR2 = R′
3 +R′

4.
It is clear from the Han–Kobayashi coding scheme that for

each pair of functionsx1(v1, v2) andx2(v3, v4), the message
splitting transforms the the original two-user interference
channel into a four-sender two-receiver interference networks

P (y2 |v4) = P (y1, y2 |x1(v1, v2), x2(v3, v4)),

where senderj ∈ {1, 2, 3, 4} communicates an independent
messageLj at rateR′

j , receiver 1 recovers the subsetD1 =
{1, 2, 3} of the four messages, and receiver 2 recovers the
sucsetD2 = {2, 3, 4} of the four messages.

Note from expression (12) that the auxiliary rate region
(R′

1, R
′
2, R

′
3, R

′
4) is the intersection of two 3-dimensional

MAC regions, two dimensions of which are in common.
Therefore, one just needs to find two monotone permutations
that achieves any target point in the two MACs respectively
and sequentially align the two codes shared in common using
the method in Section III-A.

D. Superposition Coding for Broadcast Channels

The method for interference networks also implies the
achievability of the superposition coding inner bound for
general broadcast channels. As the simplest example, consider
a two-user broadcast channelP (y1, y2|x), where the sender
wishes to communicate messageM1 to receiver 1 and message
M2 to receiver 2.

Y N

1
M̂1

Y N

2
M̂2

P (y1, y2 |x)
XNM1

M2

x(v1, v2)
V N

1

V N

2

P (y1, y2 |v1, v2)

Fig. 9. Cover’s homogeneous superposition coding.

Cover’s homogeneous superposition coding [10] is illus-
trated in Figure 9 . Two auxiliary sequences of codewords
V N
1 (M1) and V N

2 (M2) are generated according to indepen-
dent distributionp(v1)p(v2). Then the channel inputXN

is formed through the symbol-by-symbol mappingx(v1, v2).
This transforms the broadcast channel into a two-sender two-
receiver interference networks

P (y1, y2 |v1, v2) = P (y1, y2 |x(v1, v2)),

where senderj ∈ {1, 2} communicates an independent mes-
sageMj and receiverj ∈ {1, 2} recovers a subsetDj = {j}
of the messages. Clearly, this is another special case of the
interference networks.

It is worth mention that compared to Bergmans’s het-
erogeneous superposition coding [11], where the codeword
XN(M1,M2) is generated conditioned on the codeword
V N (M1) according to distributionp(v)p(x|v), Cover’s ho-
mogeneous superposition coding achieves in general a strictly
larger rate region in the two-user broadcast channels under
optimal decoding [12]. The rate region achievable by Cover’s
superposition encoding and optimal decoding is [12]

⋃

p

4
⋃

i=1

(

R1i(p) ∩ R2i(p)
)

,

where the distribution is of the formp = p(v1)p(v2)
p(x|v1, v2)P (y1, y2|x) with {0, 1}-valued p(x|v1, v2) and
R1i(p) ∩ R2i(p) corresponds to the rate region when the de-
coders are required to uniquely recover the following message
sets

i = 1: A1 = {1},A2 = {2};

i = 2: A1 = {1, 2},A2 = {2};

i = 3: A1 = {1},A2 = {1, 2};

i = 4: A1 = {1, 2},A2 = {1, 2}.

For example,R13(p)∩R23(p) is the set of(R1, R2) such that

R1 < I(V1;Y1),
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R1 < I(V1;Y2, V2),

R2 < I(V2;Y2, V1),

R1 +R2 < I(V1, V2;Y2).

To achieve arbitrary point here, one can first find a good point-
in-point code forR13(p) and a monotone permutation for the
MAC regionR23(p). Then apply method in II-A to align the
incompatible indices in the code forV N

1 . This achieves any
point in the rate regionR13(p) ∩ R23(p). Similarly for each
decoding set, one can design a corresponding polar coding
scheme based on the method above. Therefore, the proposed
polar coding scheme achieves the optimal rate region given
Cover’s superposition encoding. The generalization toL-user
broadcast channels can be done similarly.

As a side remark, the independence betweenV1 and V2

in Cover’s superposition coding is important for transforming
the broadcast channel into a two-user interference channel.
For general correlated(V1, V2) ∼ p(v1, v2) as in Marton
coding for broadcast channels, one needs different techniques.
A method for Marton coding as well as an alternative polar
coding scheme for Bergmans’s superposition coding can be
found in [13].

V. D ISCUSSION

We have shown a polar coding method for the general
interference networks that achieves the optimal rate region
when the encoding is restricted to random coding ensembles
with superposition coding and time sharing [9]. As spe-
cial cases, the method achieves the capacity region of the
compound MAC, the Han–Kobayashi inner bound for two-
user interference channels, and the superposition coding inner
bound for broadcast channels.

One drawback of the current method is the long blocklength
needed for large scale networks. When there areL receivers
in the networks, one needs to doL− 1 alignments to resolve
the incompatible indices inL permutations, which makes the
blocklength scale with the network size.

One crucial component in the current method is Arıkan’s
‘polar splitting’ for MAC. It would be interesting to compare
it to regular rate splitting for MAC as in [3]. Both schemes
achieve optimal performance in MAC. However, for interfer-
ence channels, the former, together with the alignment method,
achieves the best known rate region while the latter is strictly
suboptimal information theoretically [4].

In a parallel study [4], a successive decoding based ran-
dom coding scheme is presented, which also achieves Han–
Kobayashi inner bound. Some similarities and connections can
be found in the way the two schemes resolve the incompati-
bility of the two MACs.
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[8] E. Şaşoğlu, E. Telatar, and E. Arikan, “Polarizationfor
arbitrary discrete memoryless channels,” 2009. [Online].Available:
http://arxiv.org/abs/0908.0302

[9] B. Bandemer, A. El Gamal, and Y.-H. Kim, “Optimal achievable rates
for interference networks with random codes,” 2012, preprint available
at http://arxiv.org/abs/1210.4596/.

[10] T. M. Cover, “Broadcast channels,”IEEE Trans. Inf. Theory, vol. 18,
no. 1, pp. 2–14, Jan. 1972.

[11] P. P. Bergmans, “Random coding theorem for broadcast channels with
degraded components,”IEEE Trans. Inf. Theory, vol. 19, no. 2, pp. 197–
207, 1973.
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