arXiv:1401.7293v1 [cs.IT] 28 Jan 2014

Polar coding for interference networks

Lele Wang and Eren Sasoglu

Abstract—A polar coding scheme for interference networks aim here is to show the achievability of this inner bound by
is introduced. The scheme combines Arikan's monotone chain polar coding techniques.
rules for multiple-access channels and a method by Hassannd The Han-Kobayashi scheme consists in splitting each
Urbanke to ‘align’ two incompatible polarization processes. It , . . )
achieves the Han—Kobayashi inner bound for two-user integir- SENders message into two parts, and letting each receiver
ence channels and generalizes to interference networks. decode one part of the interfering sender’s message iniauldit
to both parts of its own sender’'s message. This createse-thre
sender multiple-access channel (MAC) for each receivat, an
|. INTRODUCTION the code rates are required to satisfy both MACs simultane-
Interference is one of the fundamental challenges in wsgeleously. Since these MACs share two of their three senders, the
communication. When multiple sender—receiver pairs corgituation is similar to @ompoundsetting, in which codes must
municate simultaneously over a shared medium, the sighg designed to perform well simultaneously over several (in
arrived at each receiver is a mixture of its intended sign#ilis case, two) MACs.
and undesired signals from all other transmitters. Theeefo Given these observations, one may hope to apply the stan-
even in the absence of noise, transmission from a sendey todi@rd results on MACs to design polar codes for the interfegen
receiver is limited by the presence of transmission fromeothchannel. In particular, the corner points of a MAC's capacit
parties. region are known to be achievable by standard polar coding
The two-user memoryless interference channel models tieghniques([2]. This readily implies the achievability biet
simplest such communication setting. It is described bynehaentire MAC capacity region by polar coding, since all achiev
nel input alphabets’, W, output alphabetd, Z, and for all able points can be turned into corner points by the ratétisygji
(z,w,y,2) € X x W x Y x Z, the probabilityP(y, z|z,w) techniques of([3]. Unfortunately, rate-splitting techués do
of receiving (y,z) when (z,w) are input to the channelnot generalize in a straightforward manner to the compound
(Figure[1). setting. In particular, it is shown in a parallel study [4hth
standard applications of rate-splitting techniques tad¢hieve
n optimal compound rates in general. This makes it unclear

X yn .
My A-M—» —M M,y whether polar coding techniques can be combined with rate-

— P(y, z|z,w) n splitting ideas to achieve the Han—Kobayashi inner bound.
MQAW’—» —W‘—»m Here, we show an alternative polar coding method that
achieves the capacity region of compound MACs and by
Fig. 1. Two-user interference channels. extension the Han—Kobayashi inner bound. The method is
based on appropriately combining two techniques developed
A (2NE1 2NE2 N code for the two-user interference chanrecently by Arikan [[5], and Hassani and Urbanke [6]. We

nel consists of briefly review these techniques first.
e two encoding functiong™ (M) andw™ (M,), defined
for messaged/; € [1:2VF1] and M, € [1:2VF2], Il. PRELIMINARIES

e two decoding functionsi; (y") and r (), defined A Aligning polarized indices [([6])

for each received sequengé ¢ YV and:"V ¢ ZV. _ . .
. . Consider two binary-input memoryless channBls X —
Messaged/; and M, are assumed to be uniformly d|str|butedy and Q X = 7 with equal symmetric capacities

. . . N)

The average probability of error is defined aé = I(P) = I(Q). Suppose we wish to design a polar code that

!:f){t(th M) ?’é (My, M2)}. A ra;?v%?lréﬁ}%’ﬁf\f) 1S aghleval.)tlt:a performs well over both of these channels. Bor= 2", define

if there exists a sequence , ,N) codes wi _ [1.01®n L,

i 2 _ g T?] Q’t - th) I tih UN = XNGy, where Gy = [17]7"By is the standard

My o0 £ 7 = 0. The capacily region is the closure o teyg5r transformation. Herepn denotes thenth Kronecker

set of achievable rate pairs. _ power andBy is the ‘bit-reversal’ permutation. Define the
The capacity region of the two-user interference ChanrkﬂllannelsPi LU —» YNU andQ; : U; — ZNVi—! and

is not known in general. The best known inner bound to thg,g

capacity region was given by Han and Kobayashiin [1]. Our

Gy ={i€[1:N]: I(P;) >1—-2"N"},
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for some < 1/2. Standard polarization results imply thalength2N sequence

|Gy|/N =~ I(P) = I(Q) =~ |Gz|/N for large N, and thus SON  (rrer—1 pdy—1
almost all bit indices belong to one of the following foursset T = (U "L ETTL U © Eays By

= Cq— d —
AI gY N gZa Uc:,11+1’ Ed§,11+1’ ch &® Edq ) Edqa
A =Gy NBz, UN LEY L)
cq+1) Hdg+1)-
Ay =By NGz, _ .
Ay = By N By. Then, the mutual informations of channdls — Y2V {i—!

andU; — Z?NU*~! are aligned for the combined indices

It suffices to discuss only the bit indices of the above fodfi = Uc;, ® Eq; and U; = Eg;, and unchanged for the
types, and assume that the remaining bit values are fixed &afnaining ones. Note again that the indicesdip of the first
revealed to all receivers. Note that type-I indices seencleBlock andA, of the second block are not combined with each
channels for both? and  and thus can carry information.other and remain incompatible. This ensures that the cogabin
Similarly, type-1V indices are bad for both channels and cdRdices are polarized as desired. The fraction of incorbjeati
be fixed. Type-1l and Ill indices arencompatible i.e., they indices is thus halved by this alignment,(toly |+[.Au[)/2N.

are good for one channel and bad for the other. Moreov&ecursively aligning the indiceg times in this fashion then
the fraction(|.Ay | +|.A |)/N of incompatible indices is non- reduces this fraction t¢[.Ay | + |.Au[)/2* N, and thus the rate
negligible in general[7], and therefore standard polarimgpd /() = I(Q) can be achieved on both channels by picking a
does not achieve the compound capacity of arbitrary chann@rgek.
P andQ.

Hassani and Urbanke propose a simple solution to this 0“ c g N o
problem, whichaligns the good indices of the two channels. e
Given two independent binary-input memoryless channels uN © uN
P: X, — Y andQ : X, — Y5, define the binary-input 2 2
channels
4 \
(P,Q)” (y1,y2|u1) = Z 3P (y1|ur ® u2)Q(yz2|us),
[ f
(P, Q)" (y1,y2,u1|u2) = 5P(y1|ur ® u2)Q(ya|u2), 1 BN 1 BN
and note that g Vo
I((P,Q)”) < min{I(P), I(Q)} @ 2y 2y
I((P.Q)") > max{I(P), 1(Q)}. () (b)

_ll\_lr(:vxi I_etz andj be a type-Il and a type-lll index, respectlverFig. 2. Alignment of the incompatible indices
at is,

To show proper alignment of incompatible indices and its
corresponding decoding order, consider an example where
Ay = {c} and Ay = {d}. We combineU. from block 1
with E4 from block 2 as in Figuré€l2 (a). Decoding is thus
done in the following order. Variables along the solid line
arrows should be decoded before the variables along the dash
I((Pi,Py)7) =0 and I((P, P)") ~ 1, line arrows. Variables along arrows with the same nu?nber can
I((Qi,Qy)7) =0 and I((Q:,Q)") =1, be decoded parallelly. Figufé 2 (b) shows an example where

o ] ) o ~improper combining violates the successive decodabifieye
In words, combining two incompatible indices results in apy order to decodd/. & E,, one needs to knowE?~!, and

almost perfect ‘plus’ channel and almost useless ‘minuaheh particular E. However, the decoding of; involves U,

nel, regardless of the underlying channel. This ‘aligne’tiiu- hich won't be available before knowirld, & E,. Therefore,
tual informations for such indices. Taking two blocksiof', it is crucial to order type Il and type Ill indices in increasi
one can combine almost all type-Il indices from one blockqer and combine thgth type I index from one block with

with type-Ill indices from the other block, sindeli|/N ~  the i_th type Il index from another independent block.
| Aui |/N. More precisely, supposé; = {c1,¢2,...,cn}t and

Anw = {di,ds,...,d,}, where the elements are written in ‘ o i

increasing order. Defing™ = XNGy andEN = X3 | Gn. B. ‘Polar Splitting’ for MAC ([3])

Then, combiningU., with Ey,, j = 1,...,q = min{m,n}, Consider a two-user MAGX x W, P(y|z,w),)), where
and leaving the remaining symbols uncombined yields tlsender 1 and sender 2 wish to communicate two messdges

I(P)~1 and I(P;) = 0,
I(Q:) ~ 0 and I(Q;) ~ 1

It then follows from [[2) that



and M, to the receiver by respectively sending codewords
XN (My) and WY (M3) over N uses of the channel. The

capacity region of this channel is given by
Uz,
p

where the union is over all distributions of the forpm =
p(q)p(x|q)p(w|q) P(y|z, w), and Z(p) is the set of non-
negative rate pairéR;, Rs) satisfying

®3)

Ry < I(X;Y,W[Q),

Ry <I(W;Y, X|Q), (4)

R+ Ry < I(X, W;Y[Q).
The subset of Z(p) satisfying Ri + Ro =
I(X,W;Y|Q) is called its dominant face and
the two points (I(X;Y|Q),I(W;Y,X|Q)) and

(I(X;Y,W|Q),I(W;Y]|Q)) are called itscorner points
We will first consider uniformX and W and constant;
generalizations to arbitrary distributions are discussed
SectionI-B.

In [5], Arikan develops a polar coding method that achieves
the entire dominant face based on the following observation

Let UN = XNGx and VYN = WNGy. Consider the chain
rules of the form

2N

> IS5 YN|STY),

i=1

where S?2V = (Sy,...,S;n) is a monotonepermutation
of UNVY, i.e., elements of bottUY and VN appear in

increasing order i52". Let Sy and Sy respectively denote

the set of indices 052" with S, = U, and S; = V;, and
define the rates

1 i

~ > IS5 YN,

i€ESy

R

1 [ (5)
RQZNEZS: I(Si; YN |81y,

Ill. Two-userRComMPOUND MAC

We are now ready to described a polar coding scheme
for the two-user compound MAC consisting of two channels
Py (y|lz,w) and Pz(z|z,w). The channel is assumed to be
known at the receiver but not at the transmitter. A rate pair
(R1, R2) is achievable if there exists a sequence of codes with
rates approachin@R;, R2) and vanishing error probability on
both MACs. The capacity region is described by

U@y (0) N %2(p)),

P

(6)

where %y (p) and Zz(p) are as in[(). Recall that for the
simple MAC, the time-sharing random variaklgin (4) can

be replaced by a convex hull operation on the union[in (3).
However, in the compound case, this substitution leads in
general to a strictly smaller rate region.

A. Uniform Independent Inputs

Ry

A

target point(1y, I2)

Fig. 3. Two MAC regions with equal sum-rate.

AssumeX and W are uniform and independerd = 0.
The simplest nontrivial case is when the two pentagonElin (4)
intersect as in Figurgl 3, with equal sum-rdteX, W;Y) =
I(X,W; Z). Let (I1, I) be a rate point on the dominant face
of this intersection. LeUYN = XVNGy and VY = WNGy.

By Proposition[IL, there exists aW and two monotone
permutationss?" and72" for which the mutual informations
I(S;; YN|S=Y) and I(T;; ZN|T%~1) are polarized, and the

The entire regionZ(p) can be achieved by polar coding ifcorresponding rate pairs ial(5) are close(1g, I;). However,
(Ry, Ry) can be set to arbitrary values on the dominant fa@$ in the point-to-point case, the two sets of mutual inferma

and if the mutual information$(S;; YV|Si~1) are polarized.

tions {I(S;; YN|S=1): i € Sy} and {I(T;; ZN|T1): i €

It turns out that these requirements are satisfied by permufa} may be incompatible. One can similarly identify the

tions of the formS2N = (U*, VN UN,).

Proposition 1 ([B]). For everye > 0, 5 < 1/2, and rate pair
(I1, I5) on the dominant face o#(p), there exist anV and
a permutations* = (U*, V¥ U} ,) such that
(I) |R1 — Il| < ¢ and |R2 — Igl < €,
(ii)
G|
N

62|

d
an N

>Ry —€

> Ro —,
where

¢V = {ie Sy: I(S; YN |S1) > 1 -2 Ny,
G® = {i e Sy: I(S; YV|S1) > 1 -2~}

type of indexi by comparing the mutual informations of
the bit-channelss; — Y~ S/—! and T, — ZNT*~1, where
S; =Ty, = U;, and find the type Il and type Il incompatible
index setsAl(ll) and A,(,,l) for U, andAﬁQ) and A,(,,Q) for V.

Now we apply the technique in Sectidn_II-A to align
incompatible indices of botli/’s and V’s. Here, as in the
point-to-point case, care must be taken to combine the rando
variables in a way that guarantees successive decodability
This can be done by aligning only thé’s or V’s in any
given recursion. Also, as before, only half of the incomiplati
indices of U’s (or V's) are aligned in a single recursion.
Aligning the two index sets alternately ovek recursions,
both fractions of incompatible indices can be reduced /"
times their original values.
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Fig. 4. First recursion.
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Fig. 5. Second recursion.

As an example, we show two recursions of alignment,
where incompatibleU’s are aligned in the first recursion
and incompatiblel’s are aligned in the second. Suppose
A = {eh Ay = {d} AP = {e}, A = {f}. In the
first recursion (blocks 1 and 2))’s are aligned whiléd/’s are
left uncombined (Figurgl4). The decoding order for receiver
is shown on the right. After stacking th&’s and V's ac-
cording to the monotone permutatioR = (U*, V¥, UX ),
decoding can be proceeded in a similar fashion as in the-point
to-point alignment (recall Figurel 2). In the second reansi
(Figure®), a copy of the length&v superblock is made (blocks
3 and 4) for bothU and V. The two superblocks of'’s are
aligned while the two superblocks 6f's are left uncombined
(as shown on the left). At the decoderll’s andV'’s from the
same block are stacked according to the monotone permutatio
52N The uncombined indices in each block are decoded until
reaching a combined index. Then the two combined indices are
decoded. Since in each recursion, only incompatible irsdice
for U (or V) are combined in the right order, successive
decodability is guaranteed as in the point-to-point casereM
specifically for the running example, variables along aowrr
with smaller number should be decoded before those with
a bigger number, and variables along arrows with the same
number can be decoded parallelly. The monotone permutation
58N is defined by variables listed according to such a decoding
order. The corresponding rate pdiR;, R5) are defined as
before

1 ,
R =+ _Z I(S; YN 5171,
€Sy
1 ,
R = _Z I(S; YN | 51,
€Sy
The decoding at the receiver 2 is performed according to
the monotone permutatio?”" in the similar fashion. The
resulting permutatio?®" and its rate pai( R}, R.) can be
defined similarly. Clearly, the fraction of incompatibladines
for U (andV) is halved in the first (second) recursion.
Ry

A

(11, 15)
(I, I2)

Ry

Fig. 6. Two MAC regions with unequal sum-rates.

To achieve a rate point/;, I) in the general case where
I(X,W;Y) # I(X,W; Z) as in Figurd b, one can find two
monotone permutations, which respectively approximate ra
pairs(I7, I5) on the dominant face aPy (y|x, w) and(Iy, I})
on the dominant face aPz(z|z, w), such that

I <min{I;, I},
I, < min{I}, I}}.

Then, applying the approach above achieves the target rate
point.



B. Arbitrary Inputs compound MAC region coincides with the capacity region of

Based on the polar coding scheme developed for unifole interference channe_l. Therefore, the same technicplap
and independenk and W, one can adapt the method [ [8’to the two-user strong interference channels.
Section IlI-D] to design a polar coding scheme for indepen-
dentnonuniformX and W. For correlated input distribution IV. INTERFERENCENETWORKS
P = p(q)p(x|q)p(w|q), there exist(X’, W', Q) mutually in-
dependent and functiongz’, ¢) andw(w’, ¢) that induce the
same distribution ag. Now consider a new MAC with inputs
X’ andW’, vector outpufY, @), and conditional distribution
P'(y,qla’,w") = p(q) P(ylz(2’, q), w(w', q)), whereQ is the
common randomness shared at the senders and the receiver

Now we generalize the result t&-senderL-receiver inter-
ference networks with input alphabéts, . . ., Xk, and output
alphabets)y, ..., Y;, and conditional distributior(y~|2%)
as depicted in Figur€]l7. Each sendere [1 : K] com-

Then the achievable rate region for the new MAC is the set X7 " .
of rate pairs(R;, Ry) such that My — Encl Decl = Mp,
Ry < I(XLY,Q,W') = I(X;Y,W]Q), P(y"|z")
Ry < I(W':Y,Q,X") = I(W;Y,X|Q), — X% Yy .
2 STOV:Y.Q.X) = I Q) e B ool e it
for distribution p’ = p(q)p(w)p(z')p(z|2’, ¢)p(w|w’,q) Fig. 7. K-senderL-receiver interference networks.

P(ylz(z',q), w(w', q)), wherep(z|z’,q) and p(w|w’,q) are
{0,1}-valued according tor(z’,q) and w(w’,q). This rate municates an independent messade at rate R; and each
region is identical ta%y (p) asp’ = p. Similarly the rate receiverl € [1 : L] wishes to recover a subs&y C [1 : K]
region Zy(p) N %z(p) can be described by consideringf the messages. The optimal rate region when the encoding
the compound MAC with inputsX’ and W', vector output is restricted to random coding ensembles with superpasitio
(Y,Z,Q), and conditional distribution’(y, z, ¢|z’,w") = coding and time sharin@[9] is the union ovgtAy, ..., A;) :
p(@)Py (ylz (2, q), w(w', q)) Pz (z]x(a’, q), w(w', q)). One A DDl e[l:L]} of the region
can apply the method designed for independent input
to achieve arbitrary point in the rate region of the new () %40, (7)
compound MAC. To complete the proof, one just need to le[1:L]
show the existence of a good common random sequghce
which @s _shared_at_ the senders gnd the receiver be_fore _ K: p(x»|q))P(yL|:vK) andZ4, (p) is the set of rate tuples
transmission. This is guaranteed since the average piipabiy;, 7= "7 !

; ) . (R;: j € A;) such that
of error over all possible choices gf is small.

for all 7 C A;. Here we introduce notation

F/ﬁere the input distribution is of the formp = p(q)

C. Main Result
Theorem 1. For everye > 0, 5 < 1/2, and rate pair([y, I2)

in the rate region%y (p) N Zz(p), there existN, M = 2N, R(T) := Z R;
and two monotone permutatigit™ and7?* with associated jeq
rate pairs (R, R3) and (RY, R%) such that forj = 1,2, and
(i) (X
|min{R§,R‘§-}—Ij| < €, Xg:=X;:j€7)
(i for an index set7. It is clear from [[¥) that this rate region is
|g(_j) A g(j)| also a compound MAC region.
% > min{R}, R’} — e, To apply the proposed polar coding scheme to the inter-
ference networks, one needs to (i) generalize Arikan’srpola
where splitting result to/-user MAC and (i) align more than two
g)(/l) ={ieSy: [(S; YM|Si1) > 1— 2—Nﬂ}7 incompatible polarization processes, egch of which i_rmalv
_ codes fromK users. We prove (i) in Section IVIA and discuss
1) _ g, . M | ri—1 _ §—NP s . . L ;
Gy ={ieTu: I(T; 27 |T) >1-2""}, (i) in Section[IV-B. We show two important applications in

Q@,g(;’ are defined similarly by replacing by V. Sectiond V- ang IV-D.
The above theorem implies that arbitrary point in the e

capacity region of the two-user compound MAC is achievable Polar Splitting’ for K-user MAC

with the proposed polar coding scheme. In the two-userConsider akK-user MAC, where transmittef, j € [1: K],

stronginterference channel, that I X; Y, W) < I(X; Z, W) wishes to communicate a messayge reliably to the receiver

and I(W;Z,X) < I(W;Y, X) for all p(z)p(w), decoding by sending a codeword(JN(Mj) = (X1, Xj2,...,X;n)

both messages at each receiver is optimal and the two-useer the memoryless channgl(y|z). The receiver wishes



to recover all the messagés;. ). The capacity region of the As i increases, the mutual information terms fin (9) increase

K-user MAC is described by steadily. Therefore, there exists asuch that[(I0) is violated
for someJ C [2: K]. Take the smallest suchasio.
U‘%)H:K] (»), Suppose at = i, the inequality in[(ID) is violated af, for
P the first time. As the increment on the left-hand-side[af (10)
where tirge union is ove;{ all distributions of the form= s bounded byl /N, we roughly have
, z;|q)) P(y|="™), and Z. is defined as :
ﬁfqé)ll'll_l p(xilq)) Plyla™) 1:x](p) LI YU = 1), a1)

Let U;Y = X;"Gy for j € [1: K]. Similar to the two-user s divides thek -dimensional rate-approximation into two
MAC case, we have the chain rule of the form subproblems of smaller dimensions.

Problem 1:For J C J,, we have

KN
I(S; YN |S™h), _
; ( | ) LIUT YN Uy <1(g) forall J C T

whereSE ¥ is amonotonepermutation ol U, ..., U¥),i.e,, and

elements of/,V appear in increasing order 5" for all j € LIUE YN, UP) = I(%).

[1: K]. LetS; denote the index sdt: S; = U;;, for somek}. This i N bl tor th |
Define the associated rate tupl;, . . ., Ry ) of the monotone s Is a rate-approximation problem for the rate tuple

(I;: j € Jo) on the dominant face of a7|-user MAC with

ermutation as ;
P output (YN, U7°).

R; = 1 Z I(S;; YN |81 Problem 2:For all 7 O J,, we subtract((111) froni(10). Let
N T=T\Jo, To=2: K]\ Jo, and [} = I, — LI1(U{*; Y'V).
This yields
for j € [1: K]. We now generalize Arikan’s polar-splitting y }
result to K users. LI(UF; YN, Ul UP) < I(T),
Proposition 2. For everye > 0,3 < 1/2, and rate tuple %I(UJTV,UfVJOH;YN,U%,Ui”) <I(T)+ 11,
(I1,...,Ix) on the dominant face_z O{Zyl:K](p), there exists %I(UJTVO,U{V%H;YN’U%’U{()) =1(To) + 1.
an N and a monotone permutatiof"V such that for all . L
je: Kl This is a rate-approximation problem for the rate tuple
() (I1,(I;: j € To)) on the dominant face of @K — |Jo|)-user
R, — 1| < MAC with output (Y~ , U, UJ).
PTG Note thatl < || < K — 1. Thus both problems are
(i) _ reduced to a smaller dimension. The final path is obtained
1GU)| S R by cascadingl?, bl70IN (the solution from problem 1), and
N 16 pEN—=IJ0IN=io (the solution from problem 2).
where The polarization result (ii) is obtained by standard path

Gl _ lies; (S vV |8 1) > 1 2*NB}. scaling as in[[b]. This concludes the proof. ]
Proof: We prove statement (i) by induction. The cas8. Aligning polarized indices foK users
K = 2 holds by Propositio]1. Suppose the statement hOIdSSuppose we have two monotone permutations for fio
up to K — 1. We prove the statement fat. _user MACs. To align the incompatible indices for all users,
Assume without loss of generality that we start by decodingye can continue the method in SecionTll-A and sequentiall
U," for SOmezo < [1: N]. We specifyio by the following align the incompatible indices for ea€h", j € [1: K]. After
proceq_ure. Leti increase from0 to N and consider the alternately aligningK index sets overK'm recursions, the
quantities N N fraction of the incompatible indices for each user is reduce
nI(Uz:Y7,Ui) to 1/2™ times the original fraction. The method for aligning
for each.7 C [2: N]. Some observations follow: L monotone permutations can be done by recursively aligning
1) Asi increases, each mutual information term increasB¥C Permutations as in_[6].
by at mostl/N in each step, since the increment is

LU UY YN, U= /N < 1/N. C. Han—Kobayashi Inner bound
2) There exists an such that for at least on¢ € [2: K], As an important special case, we show how the scheme
the following is violated above can be used to achieve the Han—Kobayashi inner bound,
%I(UJJV; YN UY) < I(7). (10) the best known inner bound for general two-user interfezenc
, , N ) channelsP (y1, y2|z1, x2).
To see 2), set} = () andU; = U;' respectively. We have  The Han—Kobayashi coding scheme is illustrated in Fig-
LIy, yN)y < I(J) forJc[2:K], ure[8. Messag@/, is split into two independent part&.;, L»)

and messag#@/, is split into two independent par{d.s, L4).

1 N . yvN . N . yN N
N Uik ¥7) < 1([2: K]) < I(Upis Y7, UT). MessageL;,j € [1 : 4], is carried by codeword’}¥ (L;).



""""""""""""" D. Superposition Coding for Broadcast Channels

E o The method for interference networks also implies the

Ly =V - z1(v1,v2) ——Y{\—> L1, L2, L3 achievability of the superposition cpding inner bound fqr
! P(y?|2?) general broadcast channels. As the simplest example,d=nsi

! a two-user broadcast channBly,, y2|z), where the sender

—— YN —» L, L3, L, wishes to communicate messabg to receiver 1 and message

M, to receiver 2.

| z2(vs,va)

Fig. 8. Han—-Kobayashi coding scheme.

1
M= VN — XN :
SC(U17’!)2) P(ylvaIx) [
1
1

Then the channel inputs<?¥ and XJ¥ are formed using Mg—>V2N—E->
two symbol-by-symbol mappingsl(};l,vg) and z5(vs, vy). '
Receiver 1 uniquely decodés, Lo, L3) upon receiving';™ '

while receiver 2 uniquely decodés,, L, L) upon receiving P(yr, yo|v1, v2)
Y;V. The achievable rate region of the Han—Kobayashi coding =~ ~--------------------o--=

scheme is given by Fig. 9. Cover’'s homogeneous superposition coding.

UPrOLe?(%l(p)m‘%?(p))' (12) Cover's homogeneous superposition codihg! [10] is illus-
p trated in Figurd ® . Two auxiliary sequences of codewords
N N i i
Here the input distribution is of the formp = p(q) ViV (My) and V5 (M,) are generated according to indepen-

dent distribution p(v1)p(v2). Then the channel inpufX?’

is formed through the symbol-by-symbol mappingy, , v2).
This transforms the broadcast channel into a two-sender two
receiver interference networks

(ITj=1 p(vjl@)p(1]v1, v2, p(@2|vs, va, @) Py, y2|21, 72),

where p(z1|v1,v2,q) and p(az|vs,vs,q) are {0,1}-valued
according to functionse;(vi,ve,q) and xs(vs,vs,q). The
rate regionZ;(p) is the set of rate triple$R}, R}, R}) such

that P(y1,y2|v1,v2) = P(y1, y2|x(vi, v2)),

R, < IV(T): YN, V([1:31\7)|Q) where sendey € {1,2} communicates an independent mes-
sageM; and receiverj € {1,2} recovers a subsé?; = {j}
for all 7 C [1:3]. The rate regionZ,(p) is the set of rate of the messages. Clearly, this is another special case of the

triples (R}, R4, R)) such that interference networks.
It is worth mention that compared to Bergmans's het-
R, <I(V(J); Y, V([2:4\J)|Q) erogeneous superposition coding[11], where the codeword

XN (M, M) is generated conditioned on the codeword
for all 7 C [2 : 4]. The operator Prgj,, is to apply the V¥~ (M) according to distributiornp(v)p(x|v), Cover’s ho-
Fourier—Motzkin elimination from the 4-dimensional spacemogeneous superposition coding achieves in general #lystric
(R}, R,, Ry, R)) to the 2-dimensional spacéR;, R,) by larger rate region in the two-user broadcast channels under
settingR; = R} + RS, and Ry = R} + R). optimal decoding([12]. The rate region achievable by Caver’

It is clear from the Han—Kobayashi coding scheme that fsuperposition encoding and optimal decodind_is [12]
each pair of functiong (v1,v2) andxa(vs, v4), the message 4
splitting transforms the the original two-user interfezen UU(L@”(Z))QL@%(Z)))’

channel into a four-sender two-receiver interference ogks/ b el

where the distribution is of the fornp = p(v1)p(vs2)
p(z|vi,v2)P(y1, y2|z) with {0,1}-valued p(z|vi,v2) and
where sendeyj € {1,2,3,4} communicates an independent?1:(p) N %2i(p) corresponds to the rate region when the de-

P(y?|v*) = P(y1, y2|21(v1,v2), m2(v3, v4)),

messagel; at rate R, receiver 1 recovers the subsgt = coders are required to uniquely recover the following mgssa
{1,2,3} of the four messages, and receiver 2 recovers tfgtS
sucsetD, = {2, 3,4} of the four messages. i=1: Ay = {1}, A, = {2}

Note from expression[(12) that the auxiliary rate region .
. , . . . =2: A, ={1,2}, A, = {2};
(R}, Ry, Rs, R)) is the intersection of two 3-dimensional Z Av={1,2}, 4, = {2}
MAC regions, two dimensions of which are in common. i=3: A = {1}, Ay = {1,2}
Therefore, one just needs to find two monotone permutations i=4: Ay ={1,2}, A, = {1,2}.
that achieves any target point in the two MACs respective .
and sequentially align the two codes shared in common usi'r%/%r exampleZ1s(p) %23 (p) is the set o i, ;) such that

the method in Section TIA. Ry < I(V1; Y1),



Ry < I(V1;Y3, Va), In a parallel study([4], a successive decoding based ran-
Ry < I(Va; Ya, V1), dork? cod:]ng schime :js presented,I which alzo achieves Han—
) Kobayashi inner bound. Some similarities and connectians ¢
Ryt Ry < I(V1, Va5 V). be found in the way the two schemes resolve the incompati-
To achieve arbitrary point here, one can first find a good poirility of the two MACs.
in-point code for%;3(p) and a monotone permutation for the
MAC region %»3(p). Then apply method ifI=A to align the
incompatible indices in the code fd#. This achieves any ) i
point in the rate regiom#:s(p) N %s3(p). Similarly for each L._Wang would like to thank_ Young-Han Kim for sug-
decoding set, one can design a corresponding polar codﬁ?g“:‘t'”g the problem and the guidance throughout. Her quk
scheme based on the method above. Therefore, the propdgedtPPorted by the 2013 Qualcomm Innovation Fellowship,

polar coding scheme achieves the optimal rate region givilf SAMSUNG Global Research Outreach program, and
Cover’s superposition encoding. The generalizatior toser the National Science Foundation under grant CCF-1116139.

E. Sasoglu’s work is supported by the Swiss National igme
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broadcast channels can be done similarly.

As a side remark, the independence betwégnand V5
in Cover's superposition coding is important for transfarg
the broadcast channel into a two-user interference channﬁl]
For general correlatedV;,V2) ~ p(vi,ve) as in Marton
coding for broadcast channels, one needs different teaksiq
A method for Marton coding as well as an alternative poIaF ]
coding scheme for Bergmans's superposition coding can be
found in [13]. (3]

V. DiIscuUssION [4]

We have shown a polar coding method for the general
interference networks that achieves the optimal rate regi
when the encoding is restricted to random coding ensembles
with superposition coding and time sharing [9]. As spedl
cial cases, the method achieves the capacity region of t
compound MAC, the Han—Kobayashi inner bound for two-
user interference channels, and the superposition codimey i
bound for broadcast channels. (8]

One drawback of the current method is the long blocklength
needed for large scale networks. When there lameceivers [9]
in the networks, one needs to do— 1 alignments to resolve
the incompatible indices i, permutations, which makes theyygj
blocklength scale with the network size.

One crucial component in the current method is Arikanig!]
‘polar splitting’ for MAC. It would be interesting to compar
it to regular rate splitting for MAC as in_[3]. Both schemeg12]
achieve optimal performance in MAC. However, for interfer-
ence channels, the former, together with the alignmentaagth ;3
achieves the best known rate region while the latter isthtric
suboptimal information theoretically|[4].

Foundation under grant PBELPP37726.
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