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Abstract— Existing fixed-length feedback communication
schemes are either specialized to particular channels
(Schalkwijk–Kailath, Horstein), or apply to general channels
but either have high coding complexity (block feedback
schemes) or are difficult to analyze (posterior matching).
This paper introduces a new fixed-length feedback coding
scheme which achieves the capacity for all discrete memoryless
channels, has an error exponent that approaches the sphere
packing bound as the rate approaches the capacity, and has
O(n log n) coding complexity. These benefits are achieved by
judiciously combining features from previous schemes with new
randomization technique and encoding/decoding rule. These
new features make the analysis of the error probability for the
new scheme easier than for posterior matching.

Index Terms— Feedback, discrete memoryless channel, error
exponent.

I. INTRODUCTION

SHANNON showed that feedback does not increase
the capacity of memoryless point-to-point channels [1].

Feedback, however, has many benefits, including simpli-
fying coding and improving reliability. Early examples of
feedback coding schemes that demonstrate these benefits
include the Horstein [2], Zigangirov [3], and Burnashev [4]
schemes for the binary symmetric channel; and the
Schalkwijk–Kailath scheme for the Gaussian channel [5], [6].
Schalkwijk and Kailath showed that the error probability for
their scheme decays doubly exponentially in the block length.
It is known, however, that the error exponent for symmetric
discrete memoryless channels with feedback cannot exceed
the sphere packing bound [7]. Nevertheless, the schemes
in [3] and [4] can attain better error exponents than the
best known achievable error exponent without feedback.
D’yachkov [8] proposed a general scheme for any discrete
memoryless channel. The coding complexity for his scheme,
however, appears to be very high.

In addition to the traditional fixed-length setting in which
the number of channel uses is predetermined before trans-
mission commences, there has been work on variable-length
schemes in which transmission continues until the error
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probability is lower than a prescribed target. The optimal
error exponent for this setting was given explicitly by
Burnashev [9]. Recently, Shayevitz and Feder [10]–[12]
introduced the posterior matching scheme, which unifies and
extends the Schalkwijk–Kailath and the Horstein schemes
to general memoryless channels. While they were able to
show that the scheme achieves the capacity for most of these
channels in the variable-length setting, their analysis of the
error probability provides a lower bound that is applicable
only for low rates. A more general analysis of error probability
for variable-length schemes, including posterior matching, is
given in a recent paper by Naghshvar et al. [13]. Note that our
focus here is only on fixed-length coding schemes for which
the optimal error exponent is not known in general.

In this paper, which is a more detailed version of our
recent conference paper [14], we propose a new fixed-
length feedback coding scheme for memoryless channels,
which (i) achieves the capacity for all discrete memory-
less channels (DMCs), (ii) achieves an error exponent that
approaches the sphere packing bound for high rates (up to
O((I (X; Y ) − R)3)), and (iii) has coding complexity of only
O(n log n) for discrete memoryless channels. Our scheme is
motivated by the posterior matching scheme. However, unlike
posterior matching, we assume a discrete message space, e.g.,
as in the Burnashev scheme, apply a random cyclic shift to
the message points in each transmission, and use a maximal
information gain coding rule instead of the actual posterior
probability to simplify the analysis of the probability of error.
This simplicity of analysis, however, does not come at the
expense of increased coding complexity relative to posterior
matching.

The rest of the paper is organized as follows. In the next
section, we describe our feedback coding scheme and explain
in detail how it differs from posterior matching. In Section III,
we show that our scheme achieves the capacity of any DMC,
establish a lower bound on its error exponent, and compare
this bound to the sphere packing bound and bounds for other
schemes. In Section IV, we discuss the scheme’s coding
complexity. Details of the coding algorithm and its complexity
analysis are given in [15].

Remark 1: Throughout this paper, we use nats instead of bits
and ln instead of log to avoid adding normalization constants.
We denote the cumulative distribution function (cdf), the
probability mass function (pmf), and the probability den-
sity function (pdf) for a random variable X by FX , pX ,
and fX , respectively. We denote the set of integers {a, a +
1, . . . , b} as [a : b]. The uniform distribution over [0, 1]
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Fig. 1. Illustration of the new feedback scheme for a DMC with input and output alphabet {1, 2, 3}. The message M = 3 is transmitted. At time i , symbol
Xi = 2 is transmitted and symbol Yi = 2 is received.

is denoted by U[0, 1]. The fractional part of x is written
as x mod 1.

II. NEW FEEDBACK CODING SCHEME

Our scheme is motivated and is most similar to the posterior
matching scheme [12]. Hence we begin with a brief description
of posterior matching and its limitations, which have led to the
development of our scheme.

Posterior matching is a recursive coding scheme that
achieves the capacity of memoryless channels. Consider a
memoryless channel FY |X (y|x) with causal noiseless feed-
back, i.e., the transmitted symbol Xi at time i is a function of
the message and past received symbols Y i−1. Fix a distribution
FX on the input symbols. The message is represented by a
real number ! ∼ U[0, 1]. The transmitted symbol at time i
is Xi = F−1

X (Wi ), Wi = F!|Y i−1(!|Y i−1), where F!|Y i−1 ,
the posterior cdf of ! given the received symbols Y i−1, is
described recursively by

F!|Y 0(θ) = θ,

F!|Y i (θ |yi) = FW |Y (F!|Y i−1 (θ |yi−1) | yi).

Here FW |Y is the cdf of W conditioned on Y assuming
W ∼ U[0, 1] and X = F−1

X (W ). If Y is discrete, let

pY |W (y|w) = pY |X (y|F−1
X (w)).

Then,

FW |Y (w|y) =
∫ w

0 pY |W
(
y|w′) dw′

∫ 1
0 pY |W (y|w′) dw′

. (1)

The expression for continuous Y can be given similarly.
Note that the posterior cdf F!|Y i , which can be regarded as

the state of the transmission, forms a Markov chain. To analyze
the error probability, we can study the transition of this
Markov chain. However, the posterior cdf is a complicated
object. The analysis can be greatly simplified if a simpler
object (e.g., the posterior probability of the transmitted mes-
sage) can be used instead. As far as we know, this is not
feasible due to the asymmetry of the scheme in !, in the
sense that the behavior of the transition of F!|Y i depends on
the transmitted value of !. Indeed, Shayevitz and Feder [12]
needed to use iterated function system to study the transition
of the entire posterior distribution, giving a rather complicated
analysis of the error probability of posterior matching that
is applicable only for rates below a certain threshold. Fur-
thermore, this asymmetry results in messages having different
error probabilities, which makes the maximal probability of
error for the scheme worse than its average.

Our feedback coding scheme eliminates the aforementioned
asymmetry of posterior matching resulting in all messages
having the same error probability. As a result, we are able
to greatly simplify the analysis of the error probability and
obtain a bound on the error exponent for all rates.

Again consider a memoryless channel FY |X (y|x) with
causal noiseless feedback. We describe our scheme with the
aid of Figure 1. We assume that the message M is uniformly
distributed over [1 : enR] and represent message m ∈ [1 : enR]
by the subinterval [(m − 1)e−nR, me−nR ] in [0, 1] (if the
messages are not equally likely the subinterval length would
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be equal to the probability of the message). Fix the cdf
FX (x) of the input symbol X (which may be the capacity
achieving distribution for the channel), and partition the unit
interval I according to this distribution. The symbol to be
transmitted at time i is determined as follows. The decoder,
knowing Y i−1, partitions another unit interval J according
to the pseudo posterior probability distribution of M given
Y i−1 (the details of computing this distribution are described
later). The encoder, which has Y i−1 via the feedback, also
knows the partition of J . We denote the location of the
left edge of the subinterval corresponding to message m by
ti−1(m, yi−1, ui−1) (or ti−1(m) in short) and its length by
si−1(m, yi−1, ui−1) (or si−1(m) in short). All subintervals
are cyclically shifted by an amount Ui ∼ U[0, 1], which is
generated independently for each i and is known to both the
encoder and the decoder. In practice, Ui can be generated using
a random seed communicated to both the encoder and the
decoder via the forward or feedback channel.

A point wi is then selected in the subinterval corresponding
to the transmitted message m according to wi =

(
vi ·si−1(m)+

ti−1(m)
)

+ ui mod 1, where vi ∈ [0, 1] is selected using a
greedy rule to be described later. The symbol to be transmitted
at time i is the one corresponding to the subinterval in I
which contains wi . At the end of communication, the decoder
outputs the message m corresponding to the subinterval with
the greatest length sn(m).

We are now ready to formally describe our scheme. At time
i ∈ [1 : n], the encoder transmits

Xi = F−1
X (Wi ), Wi = wi (M, Y i−1, Ui , Vi ),

where

wi (m, yi−1, ui , vi ) = vi (m, yi−1, ui ) · si−1(m, yi−1, ui−1)

+ ti−1(m, yi−1, ui−1) + ui mod 1,

s0 (m) = e−nR,

t0 (m) = (m − 1) e−nR, (2)

si (m, yi , ui ) =
∫

[ti−1(m),ti−1(m)+si−1(m)]+ui mod 1
d FW |Y (w|yi ),

ti (m, yi , ui ) =
∑

m′<m

si (m′, yi , ui ),

where FW |Y is given in (1). Note that in the above integral we
used the notation [t, t + s] + u mod 1 to mean the set {x + u
mod 1 : x ∈ [t, t + s]}.

Assuming message m is transmitted, the encoder selects
vi (m, yi−1, ui ) ∈ [0, 1] using the maximal information gain
rule

vi (m, yi−1, ui ) = arg max
v∈[0,1]

E
[
ln si

(
m, (yi−1, Yi ), ui

)

∣∣∣Wi =wi (m, yi−1, ui , v)
]
, (3)

where Yi is distributed according to FY |W (y|wi ). Note that
this is a greedy rule that maximizes the “information gain”
for each channel use.

We now provide explanations for the main ingredients of
our scheme.
1) To explain the rule for selecting Xi in (2), note that at time i ,
both the encoder and the decoder know Y i−1. The encoder

generates Xi (M, Y i−1) that follows FX as closely as possible.
For a DMC,

P{Xi = x | Y i−1 = yi−1} =
∑

m : xi (m,yi−1)=x

pM |Y i−1(m | yi−1).

Therefore, the distribution of Xi is determined by how we
divide the posterior probabilities of the message among the
input symbols. If M is continuous, we use the same trick as
in posterior matching, that is, Xi = F−1

X ◦ FM |Y i−1 (M | yi−1),
and Xi would follow FX . Since in our setting M is discrete,
the posterior cdf FM |Y i−1 contains jumps, and each message m
is mapped to an interval instead of a single point. We use Vi
to select a point on the interval and map it by F−1

X to obtain
the input symbol.
2) To explain the need for the circular shift of the intervals
via Ui , note that if we map a point on the interval directly
to the input symbol, the chosen symbol would depend on
both the position and the length of the interval corresponding
to the correct message. While the length of the interval
provides information about the posterior probability of the
message, the position of the interval does not contain any
useful information. By applying the random circular shift Ui ,
the analysis of the error probability involves only the interval
lengths. Suppose m is sent, define Si = si (m, Y i , Ui ) to be the
pseudo posterior probability of the transmitted message (the
length of the interval) at time i and Ti = ti (m, Y i , Ui ) (the
position of the interval). Note that {Si } forms a Markov chain,
and its transition can be specified by

Si =
∫

[0,Si−1]+Ũi mod 1
d FW |Y (w|Yi ),

where Yi ∼ pY |W ( · |Wi ) is independent of Ũ i , Si−1 and Y i−1,
and

Wi = Vi · Si−1 + Ũi mod 1,

Vi = arg max
v∈[0,1]

E
[
ln Si | Wi = v · Si−1 + Ũi mod 1

]
,

Note that Ũi = Ti−1 + Ui ∼ U[0, 1] is independent of Ũ i−1,
Si−1, and Y i−1.

As a result of the random circular shift, the analysis of error
reduces to studying the real-valued Markov chain {Si }. This is
simpler than the analysis of posterior matching, which involves
keeping track of the entire posterior distribution.
3) The reason we use the maximal information gain rule in (3)
to select Vi is that it yields a better bound on the error exponent
than the simpler rule of selecting Vi uniformly at random. With
this complicated rule, however, it is very difficult to calculate
the posterior probabilities. Hence, in our scheme, the interval
length si (m, yi , ui ) is an estimate of the posterior probability
assuming Vi is selected uniformly at random. In the following
we explain the method of estimating the posterior probability
in detail.

Define another probability distribution P̃ on
(M, Xn , Y n, W n, Un, V n) in which Xn is also generated
according to (2) but V n is an i.i.d. sequence with Vi ∼ U[0, 1]
instead of using (3). The receiver uses this distribution to
estimate the posterior probability of each message, i.e.,

si (m, yi , ui ) = P̃{M = m | Y i = yi , Ui = ui }.
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The expression in (2) is obtained inductively using

P̃{M = m | Y i = yi , Ui = ui }
∝ P̃{M = m | Y i−1 = yi−1, Ui = ui }

·P̃{Yi = yi | M = m, Y i−1 = yi−1, Ui = ui },
where

P̃{M = m | Y i−1 = yi−1, Ui = ui }
·P̃{Yi = yi | M = m, Y i−1 = yi−1, Ui = ui }

= si−1(m) · P̃{Yi = yi | M = m, Y i−1 = yi−1, Ui = ui }

= si−1(m) ·
∫ 1

0
P̃{Yi = yi | M = m, Y i−1 = yi−1,

Ui = ui , Vi = v} dv

= si−1(m) ·
∫ 1

0
P̃{Yi = yi | M = m, Y i−1 = yi−1,

Ui = ui , Wi = v · si−1(m) + ti−1(m) + ui mod 1}dv

=
∫

[ti−1(m),ti−1(m)+si−1(m)]+ui mod 1
P̃{Yi = yi |M = m, Y i−1 = yi−1, Ui = ui , Wi = w}dw

=
∫

[ti−1(m),ti−1(m)+si−1(m)]+ui mod 1
pY |W (yi |w) dw.

Note that we write si−1(m) = si−1(m, yi−1, ui−1) and
ti−1(m) = ti−1(m, yi−1, ui−1) for simplicity. Hence,

P̃{M = m | Y i = yi , Ui = ui }

=
∫
[ti−1(m),ti−1(m)+si−1(m)]+ui mod 1 pY |W (yi |w) dw

∑|M|
m̃=1

∫
[ti−1(m̃),ti−1(m̃)+si−1(m̃)]+ui mod 1 pY |W (yi |w)dw

=
∫
[ti−1(m),ti−1(m)+si−1(m)]+ui mod 1 pY |W (yi |w) dw

∫ 1
0 pY |W (yi |w) dw

=
∫

[ti−1(m),ti−1(m)+si−1(m)]+ui mod 1
d FW |Y (w|yi ).

The quantity si (m, yi , ui ) can be viewed as a pseudo posterior
probability of message m. Note that the pseudo posterior
probabilities of all the messages still sum up to one, hence
we know the correct message is recovered when its pseudo
posterior probability is greater than 1/2.

From the above description, the key differences between our
scheme and posterior matching are as follows:
1) We apply a random circular shift Ui to reduce the analysis
of error to studying the behavior of the Markov chain {Si }.
2) The message is an integer M ∈ [1 : enR] rather than a real
number ! ∈ [0, 1]. This again simplifies the analysis.
3) Instead of using the posterior probability of the message as
in posterior matching, we use the maximal information gain
rule, which is crucial to the analysis of the scheme.

As a result of these differences, our scheme can achieve
good error exponent over the entire rate range using a simpler
error probability analysis.

III. ANALYSIS OF THE PROBABILITY OF ERROR

In this section, we analyze the rate and the error exponent
of our scheme for DMCs. Note that in this case, Wi = w ∈
[0, 1] is mapped to Xi = x = F−1

X (w) if FX (x − 1) < w ≤
FX (x). As we discussed in the previous section, the pseudo

posterior probability of the transmitted message {Si } forms a
Markov chain. We obtain the bound on the error exponent by
analyzing this Markov chain.

In our scheme, the decoder declares m̂ =
arg maxm′ sn(m′, yn, un). Since the pseudo posterior
probabilities of all the messages sum up to one, if the
pseudo posterior probability of the transmitted message
Sn = sn(m, Y n, Un) > 1/2, we can be sure that the message
is recovered correctly. Hence, the probability of error is upper
bounded as

P(n)
e = P

{
M ̸= arg max

m
sn(m, Y n, Un)

}

≤ P {Sn ≤ 1/2}.
Remark 2: An alternative approach would be to use a

threshold decoder [16], which decodes to the message with
posterior probability greater than a threshold γ . However, this
would introduce another error event when there is a message
other than the correct one with pseudo posterior probability
greater than γ . As a result, we cannot analyze the error
probability by studying Sn only. Therefore we fix the threshold
at 1/2 to simplify the analysis.

To study how the error probability decays with n, we
consider the error exponent

E(R) = lim sup
n→∞

−n−1 ln P(n)
e (R).

We define the moment generating function of the ideal incre-
ment of information (or ideal moment generating function in
short) for DMC as

φ (ρ) =
∑

x

p(x)
∑

y

p(y|x)

(
p(x |y)

p(x)

)−ρ

=
∑

x

p(x)
∑

y

p(y|x)

(
p(y|x)∑

x ′ p(x ′)p(y|x ′)

)−ρ
.

The function ln φ (ρ) is convex, and it is not difficult to check
that

φ′ (0) = d
dρ
φ (ρ)

∣∣∣∣
ρ=0

= d
dρ

ln φ (ρ)

∣∣∣∣
ρ=0

= −I (X; Y ).

Similarly, we define the moment generating function of the
actual increment of information at s (or actual moment gen-
erating function in short) as

ψs (ρ) = E
[

S−ρ
i /S−ρ

i−1

∣∣∣ Si−1 = s
]
.

The function lnψs (ρ) is convex. To obtain the bound on
the error exponent, we also need the quantity

' = inf
τ (s)

sup
s∈(0,1)

ψs (τ (s)),

where τ (s) is nondecreasing and the infimum is taken over all
nondecreasing functions τ : (0, 1) → [0,∞). We have ' ≤ 1,
since we can take τ (s) = 0.

We introduce the following condition on a DMC, which is
sufficient for our scheme to achieve the capacity.

Definition 1: A pair of input symbols x1 ̸= x2 in a DMC
p(y|x) is said to be redundant if p(y|x1) = p(y|x2) for all y.
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Fig. 2. Comparisons of the bound on the error error exponent for a BSC(0.1).

Note that if the channel has redundant input symbols, we
can always use only one of these symbols and ignore the
others. Therefore we can assume without loss of generality
that the channel has no redundant input symbols.

We are now ready to state the main result of this paper.
Theorem 1: For any DMC p(y|x) without redundant input

symbols, we have ' < 1, and the maximal information
gain scheme can achieve the capacity. Further, for any
R < I (X; Y ), the error exponent is lower bound as

E(R) ≥ sup
ρ>0

{−ρR − ln max (φ (ρ) , ')}.

The proof of this theorem is detailed in the following
subsection.

The bound on the error exponent of our scheme becomes
quite tight as the rate tends to the capacity.

Corollary 1: The error exponent E(R) satisfies

E(R) = (I (X; Y ) − R)2

2Var[ln(p(Y |X)/p(Y ))] − O
(
(I (X; Y ) − R)3

)

as R tends to I (X; Y ).
The quantity Var[ln(p(Y |X)/p(Y ))] is known as the chan-

nel dispersion [17], [18]. Note that this is the same limit as
for the sphere packing bound. Hence the error exponent of
our scheme tends to the sphere packing bound when the rate
tends to the capacity. The proof of this corollary is given
in Appendix A.

To illustrate the above results, consider the following.
Example 1 (Binary Symmetric Channel): Consider a binary

symmetric channel with crossover probability p. It is well
known that the capacity of this channel is achieved with
X ∼ Bern(1/2). The maximal information gain rule always
selects the input symbol whose probability interval has the
larger overlapping area with the message interval. The actual

moment generating function is ψs(ρ) = pα + qβ, where
q = 1 − p, and

α=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2 p)−ρ
(

1 − 2s + 4sp
(ρ − 1)(q − p)

)
+ 2s
ρ − 1

s ≤ 1
2
,

(2s − 1)
(
2q − q − p

s

)−ρ

− 2s(1 − (2q − (q − p)/s)1−ρ)
(ρ − 1)(q − p)

s >
1
2
,

β =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2q)−ρ
(

1 − 2s − 4sq
(ρ − 1)(q − p)

)
+ 2s
ρ − 1

s ≤ 1
2
,

(2s − 1)
(
2 p + q − p

s

)−ρ

+ 2s(1 − (2 p − (q − p)/s)1−ρ)
(ρ − 1)(q − p)

s >
1
2
.

The value of ' can be found approximately using dynamic
programming. For example, for BSC(0.1), ' ≈ 0.8948.

Figure 2 compares the bound on the error exponent for our
scheme to the following.
1) The sphere packing exponent maxQ maxρ>0 E0
(ρ, Q) − ρR, where

E0 (ρ, Q) = − ln
∑

y

(
∑

x

Q (x) p (y|x)1/(1+ρ)

)1+ρ
.

2) The random coding exponent maxQ maxρ∈(0,1]
E0 (ρ, Q) − ρR, which is a lower bound without feedback.
3) The dependence-testing (DT) bound [16], which is the
error exponent for random coding without feedback when a
threshold decoder is used.

Note that our error exponent approaches the sphere packing
exponent when R is close to the capacity. Also our exponent
almost coincides with the DT bound, with noticeable differ-
ence only when the rate is close to zero.
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Fig. 3. Illustration of the shifted pseudo posterior distribution during the
starting phase (assuming M = 3 is sent).

Fig. 4. Illustration of the shifted pseudo posterior distribution during the
ending phase (assuming M = 3 is transmitted).

A. Proof of Theorem 1

We first outline the main ideas of the proof of the theorem.
As we discussed, to analyze the error probability of our
scheme, it suffices to study how Si increases from S0 = e−nR

to Sn > 1/2. We divide the analysis of the scheme by the stage
of transmissions into: the starting phase, where Si is small,
the transition phase, where Si is not close to 0 or 1, and the
ending phase, where Si is close to 1. We outline the proof for
each phase.

The starting phase refers to the transmission period in
which Si ≤ Sstart , where Sstart is a constant that depends
on the channel. During this phase, the length of the message
interval [Ti−1 + Ui , Ti−1 + Si−1 + Ui ] mod 1 is close to 0
and is very likely to overlap with the probability interval
[FX (x − 1) , FX (x)] for only a single input symbol x as
illustrated in Figure 3. In this case, the maximal information
gain rule selects x and the probability of Xi would be close
to p(x). The following lemma shows that in this regime the
actual moment generating function is close to the ideal one.

Lemma 1 (Starting Phase MGF): For any DMC p(y|x)
with input pmf p(x), let Sstart = minx : p(x)>0 p (x), then there
exists ω ≥ 1 such that

(
1 − s

Sstart

)
φ (ρ) + s

Sstart
ω−ρ ≤ ψs (ρ)

≤
(

1 − s
Sstart

)
φ (ρ) + s

Sstart
ωρ

for s ≤ Sstart and ρ ≥ 0.
The proof of the lemma is given in Appendix B.
The ending phase refers to the transmission period in which

Si ≥ Send, where Send is a constant that depends on the
channel. During the ending phase, the length of the message
interval [Ti−1 + Ui , Ti−1 + Si−1 + Ui ] mod 1 is close to one.
Hence, the maximal information gain rule is free to select
any input symbol. However, the complement of the message
interval is likely to overlap with only one symbol probability
interval [FX (x̄ − 1) , FX (x̄)] as illustrated in Figure 4. In this
case, the maximal information gain rule selects the input
symbol x , which is the “opposite” of x̄ in the sense that the
posterior probability of Xi = x̄ is minimized when Xi = x

Fig. 5. Illustration of the shifted pseudo posterior distribution during the
transition phase (assuming M = 3 is sent).

is transmitted. This would maximize the posterior probability
of the message. We can bound the actual moment generating
function during this phase as follows.

Lemma 2 (Ending Phase MGF): For any DMC p(y|x),
there exists 0 < Send < 1, γ > 0 and 'end < 1 such that
when s ≥ Send,

ψs

(
γ (1 − s)−1

)
≤ 'end.

The proof of the lemma is given in Appendix C.
The transition phase refers to the transmission period in

which Sstart < Si < Send as illustrated in Figure 5. For
the error exponent in Theorem 1 to be nonzero, we need
' < 1, therefore we need to find a nondecreasing function
τ : (0, 1) → [0,∞) such that ψs (τ (s)) is bounded above and
away from 1. From the plot in Figure 6, we can see that ψs (ρ)
is well-behaved in the starting and ending phases, but not in
the transition phase. Nevertheless, it is possible to construct τ
satisfying the requirement, as shown in the following lemma.

Lemma 3: For a DMC p(y|x) without redundant input
symbols, we have ' < 1.

The proof of the lemma is given in Appendix D.
To show that our scheme achieves the capacity, recall that Si

should increase from S0 = e−nR to Sn > 1/2, or equivalently,
− ln Si should decrease from − ln S0 = n R to − ln Sn < ln 2.
When n is large, S0 is close to zero; hence the time spent in
the starting phase would dominate. Since the actual moment
generating function is close to the ideal one during this phase,
we expect the decrease in − ln Si for each time step to be close
to −φ′ (0) = I (X; Y ). Therefore as long as R < I (X; Y ),
− ln Si would decrease from n R to a value smaller than ln 2 in
n time steps. However, we still need to show that the transition
and the ending phase would not affect the performance of the
code. As we will see in the proof of the theorem, the fact that
' < 1 is sufficient for this purpose.

We now discuss the details of the proof of Theorem 1.
Let ρ∗ be the maximizer of −ρR − ln max {φ (ρ) , '}, and

define

τ2 (s) =
{
ρ∗ − ϵ when s < ξ

τ (s) when s ≥ ξ,

and

g (s) = exp
(

−
∫ s

ξ
τ2 (r) r−1 dr

)
,

where ϵ and ξ are suitable constants.
We now use Lemma 1 to 3 to prove the theorem. The

main idea is to design a function g(s) and apply the Markov
inequality to g(Sn). Note that d

dρ ln φ (ρ) is continuous at
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Fig. 6. Contour plot of ψs (ρ) for an example channel. Darker color indicates smaller ψs ( ρ). The minimizing function τ (s) is also plotted.

ρ = 0 and d
dρ ln φ (ρ)

∣∣∣
ρ=0

= −I (X; Y ), therefore, −Rρ −
ln max {φ (ρ) , ψ} is positive when ρ is small. If the proposed
bound on the error exponent holds, then E (R) > 0 for any
R < I (X; Y ), and thus capacity can be achieved.

Let ρ∗ be the maximizer of −ρR−ln max (φ (ρ) , '). Since
φ (ρ) is continuous, we may assume φ (ρ∗) ≥ ' . Let ϵ > 0
and τ ∗ (s) > 0 be a nondecreasing function such that

'eϵ ≥ ψs
(
τ ∗ (s)

)

for all s ∈ (0, 1).
By Lemma 1, there exists ξ2 such that when s ≤ ξ2, we have

ψs (ρ) ≤ φ (ρ) eϵ for ρ ≤ ρ∗ − 4ϵ/R. Again by Lemma 1,
there exists ξ ≤ ξ2 such that when s ≤ ξ , we have φ (ρ) ≤
ψs (ρ) eϵ for ρ ≤ τ ∗ (ξ2). Define

τ (s) =
{
ρ∗ − 4ϵ/R when s < ξ

τ ∗ (s) when s ≥ ξ.

Note that

ln φ
(
τ ∗ (ξ)

) ≤ lnψξ
(
τ ∗ (ξ)

) + ϵ

≤ ln' + 2ϵ

≤ ln φ
(
ρ∗) + 2ϵ

< ln φ
(
ρ∗ − 4ϵ/R

)
.

This implies that τ ∗ (ξ) ≥ ρ∗−4ϵ/R by the convexity of φ (ρ).
Hence τ (s) is nondecreasing. Define

g (s) = exp
(

−
∫ s

ξ
τ (r) r−1 dr

)
.

We then consider the quantity E [g (Si )]. Note that g (s) is
nonincreasing, hence

E
[

g (Si ) /g (Si−1)| Si−1 = s
]

= E
[

exp
(

−
∫ Si

s
τ (r) r−1 dr

)∣∣∣∣ Si−1 = s
]

≤ E
[

exp
(

−
∫ Si

s
τ (s) r−1 dr

)∣∣∣∣ Si−1 = s
]

= E
[

S−τ (s)
i /s−τ (s)

∣∣∣ Si−1 = s
]

≤ max
(
φ

(
ρ∗ − 4ϵ/R

)
eϵ, 'eϵ

)

= φ
(
ρ∗ − 4ϵ/R

)
eϵ.

Decoding succeeds if Sn ≥ 2/3 > 1/2. Since g (S0) =
e(ρ

∗−2ϵ/R)nR/ξ−(ρ∗−2ϵ/R), we have

P {Sn < 2/3}
≤ E [g (Sn)] /g (2/3)

≤ e(ρ
∗−4ϵ/R)nR

ξ−(ρ∗−4ϵ/R)
· (φ (ρ∗ − 4ϵ/R) eϵ)n

g (2/3)

= 1
ξ−(ρ∗−4ϵ/R)g (2/3)

· exp
(
−n ·

(
−ρ∗ R + ϵ − ln

(
φ

(
ρ∗ − 4ϵ/R

))))
.

The proof of the theorem is completed by letting ϵ → 0.

IV. CODING COMPLEXITY

In this section, we briefly discuss the implementation of our
coding algorithm and show that its computational complexity
for DMCs is O (n log n) and its memory complexity is O (n).

Although there are enR possible messages, most of them
share the same pseudo posterior probability, so instead of
storing the pseudo posterior probabilities of the messages
separately, we store intervals of message points with the
same pseudo posterior probability. We use one binary search
tree to keep track of boundary points of these intervals, and
another self balancing binary search tree to keep track of the
cumulative pseudo posterior probabilities up to their boundary
points. The encoder and the decoder both keep and update
a copy of each tree (which holds the same content due to
feedback).
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Fig. 7. Top: Running time of our coding algorithm for BSC(0.1) ver-
sus the number of channel uses n. Middle: Running time divided by n.
Bottom: Empirical error probability (the portion of trials where the decoded
message does not match the transmitted one).

We implemented the self balancing tree by a splay tree [19].
For n transmissions, the number of nodes in the tree is
at most n |X |, and therefore the queries and the updates
can be done in O (n |X | log (n |X |)) = O (n log n), and the
memory complexity is O (n). Detailed description of this
implementation can be found in [15].

To corroborate our analysis, we performed simulations of
our algorithm assuming a BSC(0.1) and rate R = 0.98C with
n from 2000 to 100, 000. For each n, 150 independent trials
are run to obtain an average running time and an estimate of
the error probability. Figure 7 shows that the average running
time is close to linear.

V. CONCLUSION

We proposed a new low coding complexity feedback
coding scheme which achieves the capacity of all DMCs. Our
scheme is much easier to analyze than posterior matching,
making it possible to establish a lower bound on the error
exponent that is close to the sphere packing bound at high
rate. It would be interesting to explore if our scheme can
be modified so that the error exponent exactly coincides
with the sphere packing bound when the rate is above a
certain threshold. Another possible extension is to investigate
whether our scheme achieves the channel dispersion given
in [18]. Although variable-length coding with feedback can
achieve zero dispersion [20], this may not be achievable using
our scheme since it is fixed-length.

APPENDIX A
PROOF OF COROLLARY 1

Recall that the error exponent in Theorem 1 is

E(R) ≥ sup
ρ>0

{−ρR − ln max (φ (ρ) , ')}.

Consider the Taylor expansion of ln φ (ρ) at ρ = 0,

ln φ (ρ) = ln
∑

y

(
∑

x

p(x)p(y|x)1−ρ
)(

∑

x

p(x)p(y|x)

)ρ

= ρ · −I (X; Y ) + ρ2

2
· σ 2 + O

(
ρ3

)
,

where

σ 2 = Var[ln(p(Y |X)/p(Y ))]
= E

[
ln(p(Y |X)/p(Y ))2

]
− E [ln(p(Y |X)/p(Y ))]2

=
∑

x

∑

y

p(x)p(y|x)

×
(

ln
p(y|x)∑

x ′ p(x ′)p(y|x ′)

)2

− I (X; Y )2.

Take ρ = σ−2 (I (X; Y ) − R). As R → I (X; Y ), we have
ρ → 0, and therefore φ (ρ) → 1 will be larger than ' , and

E(R) ≥ −ρR − ln φ (ρ)

= ρ (I (X; Y ) − R) − ρ2

2
· σ 2 − O

(
ρ3

)

= 1
2
σ−2 (I (X; Y ) − R)2 − O

(
(I (X; Y ) − R)3

)
.

This completes the proof of the corollary.

APPENDIX B
PROOF OF LEMMA 1 (STARTING PHASE MGF)

Assume S0 = s ≤ Sstart, then

S1 =
∫

[0,s]+U1 mod 1
d FW |Y (w|Y1)

=
∫

[−s/2,s/2]+U ′
1 mod 1

d FW |Y (w|Y1),

where U ′
1 = U1 + (s/2) mod 1. Note that F−1

X (w) = x
if FX (x − 1) < w ≤ FX (x). Let α=s/ minx p (x), and let A
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be the event that
(

1 − α

2

)
FX (x − 1) + α

2
FX (x) < U ′

1

≤ α

2
FX (x − 1) +

(
1 − α

2

)
FX (x)

for some x . Then P {A} = 1 − α. Note that A is indepen-
dent of F−1

X

(
U ′

1

)
(the input symbol that U ′

1 is mapped to).
Conditioned on A, the intervals [−s/2, s/2] + U ′

1 mod 1 does
not cross the boundary points FX (x), and we have S1 =
S0 + ln pX |Y

(
F−1

X

(
U ′

1

) |Y1

)
/pX

(
F−1

X

(
U ′

1

) )
.

We now show that S0/S1 is almost surely bounded by a
constant independent of S0 = s. Note that

S0/S1 ≥ min
x,y:p(x |y)>0

p (x)

p (x |y)

def= ωlower

almost surely. Next we establish an upper bound.
If p (x |y) > 0 for any x, y, then

S0/S1 ≤ max
x,y

p (x)

p (x |y)
.

Note that when S0 ≤ minx p (x), the interval [0, s)+U1 mod 1
intersects at most one boundary point FX (x). Assume FX (i) ∈
([0, s) + U1 mod 1), and let r = s−1 (FX (i) − (U1 mod 1)) be
the portion of the interval lying in the X = i region, then
the maximal information gain scheme would select X among
x ∈ {i, i + 1} that gives a larger

E [ ln (r p (i |Y ) + (1 − r) p (i + 1|Y ))| X = x]
def= bx (r) .

If we have pY |X (y|i + 1) > 0 for any y with pY |X (y|i) > 0,
then S0/S1 ≤ maxx,y:p(x |y)>0 p(x)/p(x |y) holds when X = i .
Otherwise there exists a y such that pY |X (y|i) > 0,
pY |X (y|i + 1) = 0, then bi (r) → −∞ when r → 0.
By continuity, assume bi+1 (r) > bi (r) for r < ri,i+1, then
when X = i we have r ≥ ri,i+1, and

S0/S1 ≤ r−1
i,i+1 max

x,y:p(x |y)>0

p (x)

p (x |y)

almost surely. Define ri+1,i similarly. Therefore S0/S1 ≤
ωupper

def=
(

maxi, j r−1
i, j

)(
maxx,y:p(x |y)>0 p(x)/p(x |y)

)
, and

(1 − α)φ (ρ) + αωρlower ≤ E
[

S−ρ
1 /S−ρ

0

∣∣∣ S0 = s
]

≤ (1 − α)φ (ρ) + αωρupper.

The proof of Lemma 1 is completed by letting ω =
max

{
ωupper,ω

−1
lower

}
.

APPENDIX C
PROOF OF LEMMA 2 (ENDING PHASE MGF)

Assume S0 = s ≥ 1 − ξ . Note that the interval of the
message [0, s] + U1 mod 1 overlaps all the intervals corre-
sponding to the input symbols. Therefore the encoder can
choose among all symbols the one that minimizes the expected
value of − ln S1.

S1 =
∫

[0,s]+U1 mod 1
d FW |Y (w|Y1)

= 1 −
∫

[−(1−s)/2,(1−s)/2]+U ′
1 mod 1

d FW |Y (w|Y1) ,

where U ′
1 = U1 + ((1 + s) /2) mod 1. Note that F−1

X (w) = x
if FX (x −1) < w ≤ FX (x). Let α = (1 − s) / minx p (x), and
let A be the event that

(
1 − α

2

)
FX (x − 1) + α

2
FX (x) < U ′

1

≤ α

2
FX (x − 1) +

(
1 − α

2

)
FX (x)

for some k. Then P {A} = 1 − α. Note that A is independent
of F−1

X

(
U ′

1

)
(the input symbol that U ′

1 is mapped to).
Conditioned on A and U ′

1 = u′
1, the intervals

[− (1 − s) /2, (1 − s) /2]+U ′
1 mod 1 does not cross the bound-

ary points FX (x). Assume the interval maps to x1 = F−1
X

(
u′

1

)
.

Define the opposite symbol opp (x1) as the symbol x̄1 that
minimizes

E
[

pX |Y (x1|Y )
∣∣ X = x̄1

]
.

In case of a tie, choose the symbol that minimizes
E

[(
pX |Y (x1|Y )

)2
∣∣∣ X = x̄1

]
, and so on. Since

E
[
− ln S1| U ′

1 = u′
1, X = x

]

= E
[
− ln

(
1 −

∫

[− 1−s
2 , 1−s

2 )+u′
1 mod 1

d FW |Y (w|Y )
)∣∣∣X = x

]

= E
[
− ln

(
1 − 1 − s

pX (x1)
pX |Y (x1|Y )

)∣∣∣X = x
]

=
K∑

k=1

k−1
( 1 − s

pX (x1)

)k
E

[(
pX |Y (x1|Y )

)k
∣∣∣ X = x

]

+ O
(
(1 − s)K+1

)

by the Taylor series expansion, we can find Send such that
the maximal information gain scheme chooses opp (x1) =
opp(F−1

X

(
u′

1

)
) whenever s ≥ Send and u′

1 satisfies the con-
ditions of the event A.

Note that pX (x1) is the weighted mean of
E

[
pX |Y (x1|Y )

∣∣ X = x̄1
]

over x̄1, and those values are
not all equal (or else the capacity of the channel is zero), we
have, for any x1,

E
[

pX |Y (x1|Y )
∣∣ X = opp (x1)

]
≤ (1 − η) pX (x1)

for a constant η > 0 which does not depend on x1.
Assume Send is close enough to 1 such that s−(1−s)−1 ≥

e1−η/4 for s ≥ Send.

E
[

S−γ (1−s)−1

1

∣∣∣ A, S0 = s
]

= E
[(

1 −
pX |Y

(
F−1

X

(
U ′

1

)
|Y

)

pX

(
F−1

X

(
U ′

1

)) (1 − s)
)−γ (1−s)−1

∣∣∣∣X = opp
(

F−1
X

(
U ′

1
))

, S0 = s
]

≤ max
x∈X

E
[(

1 − pX |Y (x |Y )

pX (x)
(1 − s)

)−γ (1−s)−1

∣∣∣∣X = opp (x) , S0 = s
]

≤ max
x∈X

E
[

exp
(
γ
( pX |Y (x |Y )

pX (x)
+ η

8

))∣∣∣∣X = opp (x) , S0 = s
]
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≤ max
x∈X

exp
(

E
[
γ
( pX |Y (x |Y )

pX (x)
+ η

4

)∣∣∣∣X = opp (x) , S0 = s
])

≤ exp (γ ((1 − η) + η/4))
= eγ (1−η/4)e−ηγ /2

for Send is close enough to 1 and γ = γ (η, Send) > 0 small
enough (depend only on the channel, η and Send). The third
line from the bottom can be shown by differentiating the
expressions with respect to γ . We have

E
[

S−γ (1−s)−1

1 /S−γ (1−s)−1

0

∣∣∣ A, S0 = s
]

≤ e−γ (1−η/4)E
[

S−γ (1−s)−1

1

∣∣∣ A, S0 = s
]

≤ e−ηγ /2.

Define ω = maxx,y:p(x)>0
p(x |y)
p(x) , then

S−γ (1−s)−1

1 /S−γ (1−s)−1

0 ≤ (1 − ω (1 − s))−γ (1−s)−1
sγ (1−s)−1

≤ eγ (1+ω−η/4).

Hence,

ψs

(
γ (1 − s)−1

)
= (1 − α) e−ηγ /2 + αeγ (1+ω−η/4)

≤ e−ηγ /2 + 1 − s
minxk p (xk)

eγ (1+ω−η/4)

≤ e−ηγ /4

for 1−s small enough. This completes the proof of Lemma 2.

APPENDIX D
PROOF OF LEMMA 3

By Lemma 2, when Si ≥ Send, the actual moment gener-
ating function can be bounded. It is left to bound the actual
MGF for Si < Send. We first prove that ψ ′

s (0) for s ≤ Send
can be bounded above and away from 0.

Since the maximal information gain rule (3) minimizes the
expectation of − ln Si , it has a smaller E [− ln Si | Si−1 = s]
than any other rule of selecting Vi . In particular, if we
generate Vi according to U[0, 1], the expectation would be
Ẽ[− ln Si |Si−1 = s], where Ẽ denotes the expectation under
the probability measure P̃. Therefore,

E[− ln Si |Si−1 = s]
≤ Ẽ[− ln Si |Si−1 = s]
= Ẽ

[
− ln

∫

[Ti−1,Ti−1+s]+Ui mod 1
fW |Y (w|Yi ) dw

]

= Ẽ
[
− ln

∫

[Ti−1,Ti−1+s]+Ui mod 1

fY |W (Yi |w)

fY (Yi )
dw

]

= Ẽ
[
− ln

∫

[0,s]+Ui mod 1

fY |W (Yi |w)

fY (Yi )
dw

∣∣∣ Ti−1 = 0
]

=
∫ 1

0

∫

[0,s]+u mod 1

∫ (
− ln

∫

[0,s]+u mod 1

fY |W (y|w)

fY (y)
dw

)

· fY |W (y|w0) dy · s−1 dw0 · du

= − ln s +
∫ 1

0

∫ (∫

[0,s]+u mod 1
fY |W (y|w) · s−1 dw

)

(
− ln

∫
[0,s]+u mod 1 fY |W (y|w) · s−1 dw

fY (y)

)
dy · du

= − ln s − I (Ui ; Yi |M, Si−1 = s).

Hence

ψ ′
s (0) = d

dρ
ψs (ρ)

∣∣∣∣
ρ=0

= E[− ln Si/s|Si−1 = s]
≤ −I (Ui ; Yi |M, Si−1 = s)

= −H (Yi) + H (Yi |Ui , M = m, Si−1 = s).

Since H (Yi |Ui = u, M, Si−1 = s) is continuous in u, and
entropy is strictly concave, to show H (Yi |Ui , M, Si−1 = s) <
H (Yi), it suffices to show that Yi does not have the same
distribution conditioned on Ui = u for different u. Assume
the contrary, i.e., that there exists some s < 1 such that Yi has
the same distribution conditioned on Ui = u and Si−1 = s for
all u. Note that if Vi ∼ U[0, 1],

P {Yi = y|Ui = u} = s−1
∫

[0,s]+u mod 1
pY |W (y|w) dw.

Differentiating the expression with respect to u, we have

pY |W (y|w) = pY |W (y|w + s mod 1)

for all y and w. By pY |W (y|w) = pY |X (y|F−1
X (w)) and the

assumption that the channel has no redundant input symbols,
we have

F−1
X (w) = F−1

X (w + s mod 1)

for all y and w. This implies F−1
X (w) is either constant

or periodic, which leads to a contradiction since F−1
X (w)

is nondecreasing and is not constant. Therefore we know
that H (Yi |Ui , M, Si−1 = s) < H (Yi) for s < 1. Since
H (Yi |Ui , M, Si−1 = s) is continuous in s ∈ [0, Send] assum-
ing Vi ∼ U[0, 1], the expression is bounded above and away
from H (Yi), and thus we have ψ ′

s (0) ≤ ζ for all s ≤ Send,
where ζ < 0 is a constant.

Without loss of generality, assume the message transmitted
is m = 1, then the message interval at time i is [Ui , Ui +Si−1]
mod 1, and the symbol selected by the maximal information
gain scheme is a function Xi = x∗ (Si−1, Ui ) of Si−1 and Ui .
Therefore

ψs (ρ)

= E
[

S−ρ
i /S−ρ

i−1

∣∣∣ Si−1 = s
]

=
∫ 1

0
E

[
S−ρ

i /S−ρ
i−1

∣∣∣ Si−1 = s, Ui = u, Xi = x∗ (s, u)
]

du

=
∫ 1

0
ψs,u,x∗(s,u) (ρ) du,

where ψs,u,x (ρ) = E
[

S−ρ
i /S−ρ

i−1

∣∣∣ Si−1 = s, Ui = u, Xi = x
]

is the moment generating function when the message interval
is [u, u + s] mod 1 and the transmitted symbol is x .

It is easy to show that ψ ′
s,u,x (ρ), when treated as a func-

tion of (s, u,ρ), is continuous and strictly increasing in ρ.
Restricted on s ≤ Send and ρ ≤ 1, the domain of the function
is [0, Send] × [0, 1] × [0, 1] which is compact, and therefore
the function is uniformly continuous in this domain. We can
find ρ̄x > 0 such that ψ ′

s,u,x (ρ) − ψ ′
s,u,x (0) ≤ −ζ/2 for any
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s ≤ Send, u ∈ [0, 1] and ρ ≤ ρ̄x . Let ρ̄ = minx ρ̄x . For any
s ≤ Send and ρ ≤ ρ̄,

ψs,u,x (ρ) = 1 +
∫ ρ

0
ψ ′

s,u,x (r) dr

≤ 1 + ρ
(
ψ ′

s,u,x (0) − ζ/2
)
,

and

ψs (ρ) =
∫ 1

0
ψs,u,x∗(s,u) (ρ) du

≤
∫ 1

0

(
1 + ρ

(
ψ ′

s,u,x∗(s,u) (0) − ζ/2
))

du

= 1 + ρ
(
ψ ′

s (0) − ζ/2
)

≤ 1 + ρζ/2.

Let

τ (s) =
{

min
(
ρ̄, γ (1 − Send)

−1) when s < Send

γ (1 − s)−1 when s ≥ Send

be a nondecreasing function, where γ is from Lemma 2. Then

' ≤ sup
s∈(0,1)

ψs (τ (s))

≤ max
(

1 + min
(
ρ̄, γ (1 − Send)

−1
)

· ζ/2, 'end

)

< 1.

This completest the proof of Lemma 3.
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