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Abstract—A scheme is proposed that combines probabilistic
signal shaping with bit-metric decoding. The transmitter gener-
ates symbols according to a distribution on the channel input
alphabet. The symbols are labeled by bit strings. At the receiver,
the channel output is decoded with respect to a bit-metric. An
achievable rate is derived using random coding arguments. For
the 8-ASK AWGN channel, numerical results show that at a
spectral efficiency of 2 bits/s/Hz, the new scheme outperforms
bit-interleaved coded modulation (BICM) without shaping and
BICM with bit shaping (i Fabregas and Martinez, 2010) by 0.87
dB and 0.15 dB, respectively, and is within 0.0094 dB of the
coded modulation capacity. The new scheme is implemented by
combining a distribution matcher with a systematic binary low-
density parity-check code. The measured finite-length gains are
very close to the gains predicted by the asymptotic theory.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM) combines high
order modulation with binary error correcting codes [1]. This
makes BICM attractive for practical application and BICM is
widely used in standards, e.g., in DVB-T2/S2/C2. At a BICM
receiver, bit-metric decoding is used [2, Sec. II]. We are not
considering BICM with iterative demapping-decoding (BICM-
ID, [3]) here.

For bit-metric decoding, the signal points of a channel input
constellation of size 2m are labeled by bit strings of length m.
The m bit levels are treated independently at the decoder. We
make this precise in Sec. II. Let B = (B1, B2, . . . , Bm)T

denote a column vector of m binary random variables Bi,
i = 1, 2, . . . ,m, representing the bit levels. Conditioned on the
channel input represented by B, let PY |B be the distribution
of the channel output Y . In [4], it was shown that a bit-metric
decoder achieves the rate

m∑
i=1

I(Bi;Y ) (1)

where I(Bi;Y ) denotes the mutual information of bit level
Bi and channel output Y . The proof in [4] assumes an ideal
interleaver, which lets the m bit levels see m independent
binary input channels. The authors in [2] showed that (1)
is achievable without an ideal interleaver for independent
and uniformly distributed Bi. We call this scheme uniform
BICM. In [5], the authors showed that (1) is achievable for
independent and arbitrarily distributed bit levels Bi. We call
this scheme bit shaped BICM (BS-BICM). It was illustrated
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Fig. 1. Power-rate curves for the 8-ASK AWGN channel. The points on the
curves that are marked by dots are discussed in Sec. III-E.

in [5] for the additive white Gaussian noise (AWGN) channel
that by properly choosing the bit level distributions, a shaping
gain over uniform BICM can be achieved. The authors of [6]
proposed an algorithm to calculate the maximum rate of bit
shaped BICM.

In Sec. II, we show that the rate[ m∑
i=1

I(Bi;Y )
]
−

{[ m∑
i=1

H(Bi)
]
−H(B)

}
(2)

is achievable by a bit-metric decoder and for any joint input
distribution PB . H denotes the entropy function. We call
our scheme signal shaping with bit-metric decoding (SS-
BMD). In Sec. III, we calculate the power-rate curves for the
AWGN channel with an equidistant 8-ASK input constellation.
The resulting power-rate curves are displayed in Fig. 1. We
find that at a spectral efficiency of 2 bits/s/Hz, SS-BMD
outperforms uniform BICM and BS-BICM by 0.87 dB and
0.15 dB, respectively, and it lies within 0.0094 dB of the coded
modulation (CM) capacity. We then present in Sec. V imple-
mentations of SS-BMD and BS-BICM where we combine a
distribution matcher with the DVB-S2 rate 3/4 code [7]. To the
best of our knowledge, no other implementation of BS-BICM
has been reported in literature so far. We emphasize that we are
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Fig. 2. The Binary Reflected Gray Code as defined in [12, Sec. II.B].

considering probabilistic shaping for BICM without iterative
demapping-decoding. Probabilistic shaping for BICM-ID has
been considered in [8], constellation shaping for BICM in [9]
and constellation shaping for BICM-ID in [10]. We compare
to an implementation of uniform BICM with the DVB-S2 rate
2/3 code. At 2 bits/s/Hz and end-to-end block error probability
of 10−2, SS-BMD outperforms uniform BICM and BS-BICM
by 0.83 dB and 0.13 dB, respectively. SS-BMD operates within
0.9 dB of the CM capacity and 0.99 dB of the Shannon
capacity. In [11], similar results were achieved by combining
probabilistic shaping with multilevel coding and multi stage
decoding.

II. ACHIEVABLE RATE FOR SS-BMD

Let PY |B be a discrete memoryless channel (DMC) with
input B = (B1, B2, . . . , Bm)T and output Y . The Bi are
binary random variables. A bit-metric decoder uses the metric

q(b, y) =

m∏
i=1

qi(bi, y) (3)

where qi(bi, y) is a function of

PBiY (bi, y) =
∑

a∈{0,1}m : ai=bi

PY |B(y|a)PB(a). (4)

If the Bi are independent, then our definition is equivalent to
[5, Eq. (9)]. If the Bi are also uniformly distributed, then our
definition is equivalent to [2, Eq. (6)].

Theorem 1. For a DMC PY |B with finite input and output
alphabets, the rate (2) is achievable by a bit-metric decoder.

Proof: The proof is given in the appendix.

III. 2m-ASK MODULATION FOR THE AWGN CHANNEL

The discrete time baseband AWGN channel is described by

Y = X + Z (5)

where X and Y are the input and output, respectively, and
where Z is zero mean and unit variance Gaussian noise. If
the input is subject to an average power constraint SNR, the
capacity of the AWGN channel is [13, Theo. 7.4.2]

C(SNR) =
1

2
log2(1 + SNR). (6)

In practice, the input is restricted to a finite set X of constel-
lation points. We consider amplitude shift keying (ASK) with
2m equidistant constellation points, i.e., we have

XASK = {2 · i− 2m − 1: i = 1, 2, . . . , 2m}. (7)

The points x ∈ XASK are labeled by a binary vector B =
(B1, . . . , Bm)T . See Fig. 2 for an example with m = 3.

We model the channel input as d · xB where the label B
is distributed according to the distribution PB and where d is
a non-negative real number that scales the constellation.

A. Coded modulation
The coded modulation (CM) capacity of the ASK constel-

lation is
CCM(SNR) = max

PB ,d
I(B;Y )

subject to d2 E[x2B] ≤ SNR.
(8)

The maximization is both over the distribution PB and the
constellation scaling d.

B. Bit Shaped BICM
In BICM, the labeling of the constellation strongly influ-

ences the achievable rate, see [12]. We denote by L the chosen
labeling. An achievable rate for bit shaped BICM is by [5,
Eq. (19)]

CLBICM(SNR) = max
PB ,d

m∑
i=1

I(Bi;Y )

subject to PB =

m∏
i=1

PBi

d2 E[x2B] ≤ SNR

(9)

The optimization is over the constellation scaling d and the bit
distributions PBi

. When all bit distributions PBi
are uniform,

we get the achievable rate of uniform BICM.

C. SS-BMD
Theorem 2. SS-BMD achieves the rate

CLSS-BMD(SNR)

= max
PB ,d

m∑
i=1

I(Bi;Y )−
[ m∑
i=1

H(Bi)−H(B)
]

subject to d2 E[x2B] ≤ SNR.

(10)

Proof: The theorem can be proven by adapting the proof
of Theo. 1 to the AWGN channel, similar to the approach
taken in [2, Sec. III].

D. Numerical Results
We evaluate achievable rates for 8-ASK near a spectral

efficiency of 2 bits/s/Hz. We choose the Gray labeling in
Fig. 2, since it is the best known labeling near 2 bits/s/Hz
for BICM [12, Fig. 2(b)]. We discretize the channel output y
into 29 = 512 intervals; this choice effectively achieves the
continuous CM capacity. We calculate the CM capacity by
line search over d; for each value of d, maximization over PB

is a convex optimization problem. We use CVX [14] to solve
the problem. For bit shaped BICM, we again do a line search
over d. For each value of d, maximization over PB1PB2PB3 is
a non-convex optimization problem [6]. We use the algorithm
from [6], [15] to solve the problem. Uniform BICM is straight-
forward. For SS-BMD, we use a heuristic. We evaluate the
SS-BMD achievable rate in the values d, PB that achieve the
CM capacity. In Fig. 1 we display the resulting power-rate
curves.
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Fig. 3. Transmitter and receiver of the SS-BMD system. Mux is short for multiplexer and Demux is short for demultiplexer.

E. Discussion

The CM capacity of 8-ASK is an upper bound for any
8-ASK transmission scheme. At 2 bits/s/Hz, SS-BMD gets
within 0.0094 dB of CM capacity while for BS-BICM, the
gap to CM capacity is 0.16 dB. This is somewhat surprising,
since we would expect that SS-BMD loses in terms of rate
over BS-BICM because of the correlated bit levels. In fact, this
does happen, but SS-BMD gains in terms of SNR. The dots in
Fig. 1 illustrate this. The blue and the red dot are obtained by
evaluating the CM capacity and the SS-BMD rate in the same
distribution PB . The green dot is obtained by evaluating the
BS-BICM rate in the marginals PB1 ,PB2 ,PB3 of PB . Using
the marginals leads to a rate gain of 0.076 bits per channel use
compared to SS-BMD, however, it also leads to an SNR loss
of 0.67 dB, which moves it away from the CM capacity curve.
For all three dots, we used the same constellation scaling d.

IV. SS-BMD SYSTEM DESIGN

We design a system that lets us reap the shaping gap
between SS-BMD and uniform BICM. The distribution PB

that achieves CM capacity is symmetric around zero. The first
bit level of Gray labeling chooses the sign of the constellation
point, see Fig. 2. The labeling of the other bit levels is
symmetric around zero. This means that B1 is stochastically
independent of B2 · · ·Bm, i.e., we have

PB(b) = PB1(b1)PB2···Bm(b2 · · · bm), ∀b ∈ {0, 1}m. (11)

Furthermore, B1 is uniformly distributed. Systematic binary
encoders copy data bits to the codeword and append parity
bits. Thus, if the data bits have a non-uniform distribution,
this distribution is preserved by the encoder. However, the
parity bits are modulo 2 sums of data bits, so their distribution
is approximately uniform and it is reasonable to model the
parity bits to be independent and uniformly distributed [16,
Chap. 7], [17]. An SS-BMD system could mimic the capacity-
achieving distribution as follows. Use a distribution matcher on
data bits to generate B2 · · ·Bm according to PB2···Bm

. Encode
B2 · · ·Bm by a systematic encoder and use the parity bits and
possibly additional data bits for bit level 1. This is possible as

long as the coding rate of the code fulfills

k

n
≥ m− 1

m
. (12)

Ungerböck [18] made the observation that for reliable trans-
mission over the AWGN channel, it suffices to add one bit of
redundancy per real dimension. This observation was analyti-
cally confirmed in [19] and it was experimentally confirmed in
[11], for example. This suggests that condition (12) is feasible.

V. IMPLEMENTATION

We now implement the SS-BMD system that we outlined in
Sec. IV. Our target is to transmit 2 bits per channel use reliably
over the AWGN channel with the Gray labeled 8-ASK input
constellation, as described in Sec. III-D. We use the DVB-S2
LDPC codes [7] with block length n = 64800 and code rate
3/4 for SS-BMD and BS-BICM, and with code rate 2/3 for
uniform BICM. We next discuss the important parts of our
SS-BMD system. A complete flow chart is provided in Fig. 3.

A. Notation

For row vectors, we use the notation

V ji = (Vi+1, Vi+2, . . . , Vj). (13)

If it is clear from the context, we write V j instead of V j0 .
The vector V ji thus has j − i entries and we can write V j =
(V i0 , V

j
i ) for 0 < i < j.

We denote column vectors using a bold font. The labels of
n consecutive ASK-8 signal points are denoted by

Bn = (B1,B2, . . . ,Bn), Bi =

B1,i

B2,i

B3,i

 , i = 1, 2, . . . , n.

Bit levels 2 and 3 together are denoted by S, i.e., we have

S =

[
B2

B3

]
, B =

[
B1

S

]
, Bn =

[
Bn1,0
Sn

]
. (14)



B. Adapt the Signal Point Distribution to the Code Rate

For the Gray labeling in Fig. 2, the distribution that achieves
the SS-BMD rate of 2 bits/s/Hz is P ∗B = P ∗B1

P ∗S with
P ∗B1

(0) = P ∗B1
(1) = 1/2 and

P ∗S(00) = 0.0579 (15)
P ∗S(01) = 0.1507 (16)
P ∗S(11) = 0.3237 (17)
P ∗S(10) = 0.4676. (18)

We use a rate 3/4 code, so according to our outline in Sec. IV,
we use “matched data” with joint distribution PS on bit levels
2 and 3. We use 1/4 of bit level 1 for uniformly distributed
data, and we use the remaining 3/4 of bit level 1 for parity
bits. This bit level assignment is visualized in Fig. 4. The
distribution P ∗B1

P ∗S results in

1

4
H(P ∗B1

) + H(P ∗S) = 0.25 + 1.6891 = 1.9391. (19)

We therefore need to choose a distribution for S that is close
to P ∗S , but whose entropy is equal to 1.75. We choose

PS = argmin
P

D(P‖P ∗S)

subject to H(P ) ≥ 1.75 (20)

where D(P‖P ∗S) denotes the informational divergence or
relative entropy of P and P ∗S [20, Sec. 2.3]. The optimization
problem (20) is convex and by solving the KKT conditions
[21, Sec. 5.5.3], we find the solution

PS(a) =
P ∗S(a)λ∑

b∈{0,1}2
P ∗S(b)λ

(21)

where λ is chosen such that H(PS) = 1.75. We find λ =
0.8672 and

PS(00) = 0.0722 (22)
PS(01) = 0.1654 (23)
PS(11) = 0.3209 (24)
PS(10) = 0.4415. (25)

Since we have fixed the distribution to PS , the SNR and the
achievable rate depend only on the constellation scaling d. We
choose d such the SS-BMD rate evaluates to 2 bits/s/Hz. We
observe a loss of 0.028 dB as compared to P ∗S .

C. Matcher Input and Output Lengths

At the system input, we have k = 2n
3 = 43200 data bits Dk

that are independent and uniformly distributed. For bit level 1,
we use n

12 = k
9 = 5400 data bits D

k
9 according to Fig. 4. For

bit levels 2 and 3, we map the remaining 8k/9 = 37800 data
bits Dk

k
9

to n
3 = 21600 symbols that are distributed according

to PS .

bit level 3 matched data bits B
n
3
3,0

bit level 2 matched data bits B
n
3
2,0

bit level 1 data bits D
n
12 parity bits C

n
4

Fig. 4. Visualization of the bit levels.
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We verify that this approach is in accordance with the
distribution PS . An ideal distribution matcher performs a one-
to-one mapping from the input to the output. Thus, information
is conserved and we have

n

3
·H(PS) = 21600 · 1.75 = 37800 =

8k

9
. (26)

D. Interleaver

Since the DVB-S2 codes are systematic and highly struc-
tured [7], the performance may depend on which coded bits are
used for which bit level. This is controlled by the interleaver
Π, see Fig. 3. Since we want to compare to uniform BICM,
we choose an interleaver that works well for uniform BICM
with the DVB-S2 rate 2/3 code. We adjust the SNR such that
the information word error probability

Piw = Pr{Dk 6= D̂k} (27)

is around Piw = 10−2. We try a random interleaver, the
consecutive-bit (CB) interleaver [22], the bit-reliability (BR)
interleaver [22], and an interleaver that is defined by the
following permutation of the codeword V n:

B
n
3
1,0 =V 64800

43200 (28)

B
n
3
2,0 =V 43200

21600 (29)

B
n
3
3,0 =V 21600

0 . (30)

For the DVB-S2 codes, the parity bits are appended to the
data bits. The interleaver defined in (28)–(30) copies the
parity bits to bit level 1. We therefore call it the parity-bit
(PB) interleaver. The simulation results for Piw ≈ 10−2 are
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shown in Fig. 5. The PB interleaver performs best, and we
therefore use it in our implementation. Note that we made
this choice based on simulation results for a specific LDPC
code, namely the rate 2/3 DVB-S2 code. We do not know if
the PB interleaver is the optimal choice and other codes may
lead to other choices.

We use the PB interleaver also for BS-BICM and SS-BMD.
To preserve the bit level assignment of the data bits as shown
in Fig. 4, we apply the inverse of Π to the data bits before
encoding them, specifically, we apply Π−1data, which is given by

V 21600
0 = B

n
3
3,0 (31)

V 43200
21600 = B

n
3
2,0 (32)

V 48600
43200 = D

k
9 . (33)

Since the PR interleaver copies the parity bits C
n
4 to bit level

1, the chain Π−1data, rate 3/4 DVB-S2 encoder and Π realizes
the bit level assignment in Fig. 4.

E. Decoder

We consider one channel use. The bit label B gets mapped
to the signal point X = xB at the input of the AWGN channel
(5). The output Y = X +Z is quantized by a 5 bit quantizer,
and the soft-demapper uses the quantizer output Q to calculate
the soft information for each bit level i = 1, 2, 3. The soft
information is

Ii = Li + πi (34)

where Li and πi are the log-likelihood ratio and the a-
priori information, respectively. The log-likelihood ratios are
calculated as

Li = ln
PQ|Bi

(Q|0)

PQ|Bi
(Q|1)

(35)

where

PQ|Bi
(Q|a) =

∑
b∈{0,1}3 : bi=a

PQB1S(Qb)

PBi(a)
(36)

with the marginals PB1
and

PB2
(a) =

∑
b∈{0,1}

PS(ab) (37)

PB3
(a) =

∑
b∈{0,1}

PS(ba). (38)

The a-priori information for bit level i is

πi = ln
PBi

(0)

PBi
(1)

. (39)

F. Numerical Results

For SS-BMD and BS-BICM, we use an arithmetic distri-
bution matcher with controllable overflow [23]. For a detailed
discussion of the arithmetic matcher, we refer the reader to
the extended version of this paper, which is in preparation.
The results for SS-BMD, BS-BICM and uniform BICM are
displayed in Fig. 6. We observe that the SNR gains of SS-
BMD and BS-BICM over uniform BICM fit well to the
asymptotic gains promised by the power-rate curves in Fig. 1.
This suggests that we could effectively remove the entire
shaping gap by using SS-BMD.

VI. CONCLUSIONS

In this work, we showed that the CM capacity of the AWGN
channel can effectively be achieved by a bit-metric decoder
without iterative demapping-decoding. Our simulation results
show that by combining Gray labeling, a distribution matcher
and a binary code with a systematic encoder, the shaping gap
can be removed. The remaining gap to capacity is because
of the imperfections of the employed code. We observed that
the interleaver has a strong impact on the performance. This
suggests that interleaver and code should be designed together
taking the varying reliabilities of the bit levels into account.
To achieve very low error probabilities, LDPC codes with low
error floor should be combined with zero error distribution
matchers. The design of such distribution matchers is part
of our current research. The techniques developed in this
work may be useful in other scenarios, such as peak power
constraints, fading channels, multiple antennas, and multiple
users.
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APPENDIX

We prove the theorem by random coding arguments. We use
letter typicality as defined in [24, Chap. 1]. T nε (PBY ) is the
set of sequences bn, yn that are jointly ε-typical with respect
to PBY . The set of conditionally typical sequences is defined
as

T nε (PBY |yn) := {bn : (bn, yn) ∈ T nε (PBY )}. (40)

Codebook Construction: Choose 2nR codewords of length
n by choosing the n · 2nR symbols according to PB . Denote
the resulting codebook by C.

Encoding: Given message w ∈ [1 : 2nR], transmit bn(w).
Decoding: For ε1 > ε ≥ 0, we define the bit metric

qi(b
n
i , y

n) =

{
1, bni ∈ T nε1 (PBiY |yn)

0, otherwise.
(41)

The corresponding decoding metric is

q(bn, yn) =
m∏
i=1

qi(b
n
i , y

n). (42)

We define the set B̂(yn) := {bn ∈ C : q(bn, yn) = 1}.The
decoder output is{

bn, if B(yn) = {bn}
error, otherwise.

(43)

Analysis: Suppose message w was encoded. The two error
events are

E1 := {Bn(w) /∈ B̂(Y n)} (44)

E2 := {∃w̃ 6= w : Bn(w̃) ∈ B̂(Y n)}. (45)

First error event: The random experiment for E1 has the
distribution PnBY . We have

Pr(E1) = 1− Pr[q(Bn, Y n) = 1]

= 1− Pr

[
m⋂
i=1

{Bni ∈ T nε1 (PBiY |Y n)}

]
(a)
≤ 1− Pr

[
(Bn, Y n) ∈ T nε1 (PBY )

] (b)
n→∞→ 0 (46)

where (a) follows because joint typicality implies marginal
typicality [24, Sec. 1.5]. The limit (b) follows by [24,
Theo. 1.1].

Second error event: The random experiment for E2 has the
distribution PnBP

n
Y . The probabilities of Y n ∈ T nε (PY ) and

Bn ∈ T nε (PB) approach 1 as n→∞, by [24, Theo. 1.1]. It
therefore suffices to analyze for yn ∈ T nε (PY ) the probability

Pr[E2|Y n = yn,Bn ∈ T nε (PB)]. (47)

By [24, Theo. 1.2], we have

|T nε1 (PBiY |yn)| ≤ 2nH(Bi|Y )(1+ε1). (48)

The size of B̂(yn) is thus bounded as

|B̂(yn)| ≤ 2n
∑m

i=1 H(Bi|Y )(1+ε1). (49)

By [24, Eq. (1.10) & (1.12)], we have

Pr[Bn = bn|Bn ∈ T nε (PB)] ≤ 2−nH(B)(1−ε)

1− δε(n)
(50)

where δε(n)
n→∞→ 0. We assume n is large enough such that

δε(n) ≤ 1/2. The bound (50) then becomes

Pr[Bn = bn|Bn ∈ T nε (PB)] ≤ 2 · 2−nH(B)(1−ε) (51)

We have

Pr[E2|Y n = yn,Bn ∈ T nε (PB)]

≤ (2nR − 1)
∑

bn∈B̂(yn)

Pr[Bn = bn|Bn ∈ T nε (PB)]

(a)
≤ 2nR

∑
bn∈B̂(yn)

2 · 2−nH(B)(1−ε)

(b)
≤ 2nR2n

∑m
i=1 H(Bi|Y )(1+ε1) · 2 · 2−nH(B)(1−ε) (52)

where (a) follows by (51) and where we used (49) in (b). The
term in (52) goes to zero for n→∞ if

R+
[ m∑
i=1

H(Bi|Y )(1 + ε1)
]
−H(B)(1− ε) < 0. (53)

Using
∑m
i=1 H(Bi|Y ) ≤ m and H(B) ≤ m, we have

R <

m∑
i=1

[
H(Bi)−H(Bi|Y )

]
−
{[ m∑

i=1

H(Bi)
]
−H(B)

}
−m(ε1 + ε)

⇔ R <

m∑
i=1

I(Bi;Y )

−
{[ m∑

i=1

H(Bi)
]
−H(B)

}
−m(ε1 + ε) (54)

for any 0 < ε < ε1. Thus, for any rate R less than (2), it
follows by (46) and (54) that the probability of decoding error
can be made as small as desired by choosing n large enough.
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[23] S. Baur and G. Böcherer, “Arithmetic distribution matching,” Jan. 2014.
[Online]. Available: http://www.georg-boecherer.de/adm

[24] G. Kramer, Topics in Multi-User Information Theory. now publishers
inc, 2008.

http://cvxr.com/cvx
http://www.georg-boecherer.de/bacm
http://www.georg-boecherer.de/capacityAchievingShaping.pdf
http://www.georg-boecherer.de/capacityAchievingShaping.pdf
http://www.georg-boecherer.de/adm

	I Introduction
	II Achievable Rate for SS-BMD
	III 2m-ASK Modulation for the AWGN Channel
	III-A Coded modulation
	III-B Bit Shaped BICM
	III-C SS-BMD
	III-D Numerical Results
	III-E Discussion

	IV SS-BMD System Design
	V Implementation
	V-A Notation
	V-B Adapt the Signal Point Distribution to the Code Rate
	V-C Matcher Input and Output Lengths
	V-D Interleaver
	V-E Decoder
	V-F Numerical Results

	VI Conclusions
	VII Acknowledgment
	Appendix
	References

