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Abstract

In this paper, we study the stability of two interacting gegwnder random multiple access in
which the queues leverage the feedback information. Wevaldhie stability region under random
multiple access where one of the two queues exploits thebfeddinformation and backs off under
negative acknowledgement (NACK) and the other, higherrjpyioqueue will access the channel with
probability one. We characterize the stability region a$ tteedback-based random access protocol and
prove that this derived stability region encloses the $tghbiegion of the conventional random access

(RA) scheme that does not exploit the feedback information.
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. INTRODUCTION

The stability of interacting queues has been extensivehgiciered in literature. Several works
have considered the characterization of the stabilityoregif interacting queues under random
access protocols. The stability region is characterizedhi® casel/ = 2 and M = 3 interacting
gueues as well as the caseldf > 3 with symmetric arrivals. The stability region for the gealer
case ofM > 3 with asymmetric arrivals is still an open problem and onlygnachievable bounds
are known.

Recently, many papers have considered the problem of aitegaqueues in different contexts.
For example, [1] considers the problem of interacting gsene& TDMA system where a relay is
used to help the source nodes in forwarding their lost packet[2], the stability of interacting
gueues under a random access protocol in the conteRQogriitive Radio Network was derived.
In [3], the stability region of two interacting queues undemdom access protocol where the two
gueues harvest energy was characterized. Other works dautet in [4], [5], where derivations
of the stability regions in the context of different cognétiradio networks were considered.

In this paper, we derive the stability region of a two-queaiedom access (RA) protocol with
priorities. The queues will apply the conventional RA paatbbut in the case of packet loss
due to collision the two queues will exploit the feedbackomfiation to provide some level of
coordination. We set a priority to one of the two queues aevd. In the case of a negative
acknowledgement, the queue with the higher priority wileatpt transmission in the following
time slot with probability one and the other queue will badk to allow for collision-free
transmission of the higher priority queue. Clearly, thidl wnhance the service rate for the
higher priority queue but more interestingly it will also pnove the service rate for the other,
less priority queue as will be explained later. We derive gpression for the boundary of the
stability region and prove that the RA with priority schemeleses the stability region of the
conventional RA scheme.

To the best of our knowledge, the problem of characterizmggstability region of the random
access protocol with feedback leveraging has not been aenesi before. We will characterize
the stable arrival rates region and prove that it contaiasahthe conventional random multiple
access scheme (with no feedback exploitation).

The rest of the paper is organized as follows. The system hisgeesented in Sectidnl Il.
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Fig. 1: The system model.
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The performance of the proposed scheme is investigatedatio8dlll The paper is concluded
in Sectior 1. We have moved most of the proofs to the appeasdio preserve the flow of ideas

in the paper.

II. SYSTEM MODEL

The system model is shown in Fig. 1. We consider the case ofrtteoacting packet queues,
namely@; and@,. ), and(@, have infinite buffers for storing fixed length packets. Tharohel
is slotted in time and any slot duration equals one packesinéssion time. The arrival processes
at the two queuesy); and ()., are modeled as Bernoulli arrival processes with megnand
A2, respectively [3]. Under our system model assumptionsatlegage arrival rates arg and
A2 packets per time slot, and are boundeddas A\; < 1, i = 1,21. We can assume that the
packets arrive at the start of the time slot.

The channel is modeled as a collision channel, where paokstresults only in the case of
simultaneous transmissions from the two queues. If only queeue attempts transmitting at a
given time slot, the packet is considered to be correctlgived [3], [6]. In the random access
phase, the first queue accesses the channel with probahilishenever it has packets to send
and the second queue will access the channel with probapiitvhenever it has packets to
send. If at any time slot some queue is empty, it will not agieany channel access.

In this paper, we will consider the use of the feedback infiion that is leveraged at the

gueues in the case of collision. In the conventional randaunitipte access system and in the

1The maximum service rate in our model is 1 packet/slot, stheeslot duration equals one packet transmission time, then

the arrival rates must be less than 1 otherwise the systehbevilinstable [3].



case of collision, the collided packets stay on the head efgilleues and retransmissions are
attempted employing the same random multiple access schantkis paper, we consider a
system where the feedback information is leveraged at tleei@giand a priority is set to the
first queue; in the next time slot after collision, queu&)(will back off and queue 1) will
retransmit its collided packet to allow for collision-fré&ansmission of),; after that the two
gueues return to the conventional random multiple accdsmnse. The priority set to queue 1 can
be due to some quality of service (QoS) requirement thatfisrdint from the QoS requirement
of queue 2. The interesting result is that although the faekibvill enhance the service of queue
1 by setting a higher priority to it, the service will be enbad as well for queue 2 as will be

explained later.

[1l. THE STABILITY REGION FOR THEFEEDBACK-BASED RANDOM ACCESSPROTOCOL

WITH PRIORITIES

In this section, we will characterize the stability regiam the feedback-based random access
scheme. Stability can be loosely defined as having a certaamty of interest kept bounded.
In our case, we are interested in the queue size being bouRdean irreducible and aperiodic
Markov chain with countable number of states, the chainablstif and only if it is positive
recurrent, which implies the existence of its stationastradbution. For a rigorous definition of
stability under more general scenarios see [6] and [7].

If the arrival and service processes of a queueing systenstaly stationary, then one
can apply Loynes’s theorem to check for stability condisidB]. This theorem states that if
the arrival process and the service process of a queueingnsyae strictly stationary, and the
average arrival rate is less than the average service hatie,the queue is stable, otherwise it is
unstable.

Characterizing the stability region will be a difficult plen due to the interaction of the two
gueues and due to the fact that the service for one queue ey on the state of the other
gueue. We will consider the use of timminant System concept that was proposed in [6] to
characterize the stability region of the conventional RAesne. We will define two dominant
systems tailored to match our feedback-based random aschesne and in each of the two

systems we will determine the boundaries of the stabiligiame.
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Fig. 2: Queue 1(),, Markov chain model for Dominant System 1.

A. Dominant System 1

In any dominant system, we define a system that “stochastidaiminates” our system, that
is the queues lengths in the dominant system are alwaysr ldrge the queues lengths in our
system if both, the dominant system and our system, start flee same initial state and have
the same arrivals and encounter the same packet collisions.

For the first Dominant System, we assume that queue 2 willysvave packets to transmit;
even if the queue was empty dummy packets will be transmitted queue 2. Clearly this will
set a dominant system to our system since the transmissidorofmy packets can only result
in more collisions and packet losses. If for a given arriakrpair q, A2) the first dominant
system is stable then clearly our system will be stable. dfbee, the stability region of the first
dominant system will provide an inner bound for our systeafbitity region.

For queue 1, the Markov chain describing the evolution ofgheue is shown in Fid. 2. Note
that the Markov chain has two classes of states, namglyand kr andk = 0,1,2,---. The
subscriptF' denotes first transmission states and the subs@&¥igenotes retransmission states.
Note that in the retransmission states, queue 1 packet willys be delivered since there is no
collisions in these states (queue 2 is backing off); in ttetates, either queue 1 length decreases
by 1 if no arrival occurs or the queue length will remain thensaif an arrival occurs while
being in these retransmission states since the packet ohetlie of the queue is successfully

transmitted with probability 1.



The stability condition for queue 1 in Dominant System 1 igegiin the following lemma,
which is proved in Appendik I.
Lemma 3.1. The arrival rates for queue 1 and queue 2 in Dominant Systenust satisfy

the following two conditions, respectively,
D1
L+ pip2 (1)

Ay < pa(l — Ay — Aip2)

)\1<

for the system to be stable.

B. Dominant System 2

In the second Dominant System, we assume that queue 1 alwaysalkkets to send (dummy
packets are sent if the queue decides to transmit while keximgty). Again, this will decouple
the interaction of the two queues since the service rate etig2 will be independent of the
state of queue 1.

The Markov chain for the evolution of queue 2 is shown in EigT®o classes of states are
defined in Fig[B and denoted by the subscriptd and OFF. The ON states denote the states
where queue 2 can access the channel. The OFF states denbteckhoff states where queue 1
is retransmitting its collided packets. Note that the ti@orss from thekorr State can be either
to the kon State, if no arrival occurs in the slot, or to tfle+ 1)y State, if one arrival occurs in
the slot. The OFF states can never make a transition to awsititea lower number of packets
since in the OFF states queue 2 is in the back off mode and ress¢s attempted.

The stability condition for queue 2 in Dominant System 2 igegiin the following lemma,
which is proved in Appendixdl (the analysis in Appendix Il liMbe based on the theory of
homogeneous quasi birth-and-death (QBD) Markov chains [9]

Lemma 3.2: The arrival rates for queue 1 and queue 2 in Dominant Systenug satisfy
the following two conditions, respectively,

p1(l —p1 — Aap1)
(1 _pl)
1 _
Ay < ]92( pl)
1+ pipo

A <
2)

for the system to be stable.
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Fig. 3: Queue 2(),, Markov chain model for Dominant System 2.

Note that the intersection of the two stability regions dibsd in Lemma_3J1 and Lemma
[3.2 for a given access vectpr= [p; po]? (grey area in Figl]4) can be interpreted as follows.
Define a new Dominant System (Dominant System 3) in whichyeggeue has always a packet
to transmit. In this case, the transmission state of queuanlbe represented by the two-state
Markov chain model shown in Fig 5(a); note that in this caseugul will be either in the
“Transmission” state denoted by or in the “Retransmission” state denoted Byin Fig.[5(a).
Fig.[5(b) shows the Markov chain model for queue 2. Queue Rhaile two states denoted by
ON when queue 1 is in the F state and OFF when queue 1 igth@te (when queue 1 is in
the R state queue 2 will be in the back off, OFF state). It is strdayivard to show that the

steady state distributions for the two Markov chains showFig.[8 are given by

1
i g g
FETONT T P1D2
3)
TR = Topr = P1p2 ‘
1+ pipe

The service rate for queue 1 in Dominant Systemu3,is given by

D1
1+ pips’

,Ulllzpl(l_pZ)ﬂ'F‘Fﬂ'R: (4)

where queue 1 is served with probabiliiy(1 — p,) in the F' state and with probability 1 in the
R state.
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Fig. 4: The union of the stability regions for the two domihagstems for fixed access

probabilitiesp; and ps.

The service rate for queue 2 in Dominant Systemu3,is given by

p2(1 —p1) (5)

b =po(1 — +0 x = ,
g = pa P1)ToN TOFF 1+ pips
where queue 2 is served with probability(1 — p;) in the ON state and with probability O in

the OFF state.

C. The Sability Region of the Random Access Protocol with Priorities

In this section, we derive the expression for the stabilgyion of the random access scheme
with feedback exploitation where a priority is set to onelsf two queues. The following Lemma
characterizes the stability region for fixed random acceebabilities,p; and p,, for queue 1
and queue 2, respectively.

Lemma 3.3: For a fixed random access probability vectoe= [p; p,]?, the stability region

R(p) of the random access with priorities is the union of the twgiars described by

Ay < po(1 = A1 — Aip2) (6)
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(b) The two-state Markov chain model for queue 2 transmissiate in

Dominant System 3.

Fig. 5: Dominant System 3 Markov chain model.

when
P1
M < 7
P + p1p2 (7)
and
1—p1— A\
A < ]91( D1 2p1) (8)
(1—p1)
when
pa(l —p1)
Ao < =~ —7 9
? 1+ pip2 ®)

for the system to be stable.

Proof: The result in Lemma& 3|3 can be proved using the tool of stachdeminance
presented in [6]. The indistinguishability argument at siability region boundary states that if
the original system is unstable then its queues will satuaaid they will always have packets
to transmit; therefore at the boundaries of the stabiligiar of the original system, the original
system will be indistinguishable from the dominant syster #hus has the same stability region
boundaries [6]. ]
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The next theorem characterizes the entire stability refpothe random access protocol with
priorities.
Theorem 3.4:. The boundary of the stability regiork, of the random access protocol with

priorities, which is defined as the union of thp) regions for the differenp = [p; po]* as

R= U R (10)
p€[0,1]2
can be characterized as
1—2\ <1
=9 e (12)
S v )\1 > 3

Proof: First, we will derive the boundary of the stability regionfided in lemma_3l1,

which can be found as

A5(A1) =max,, ,, pa(1 — A1 — Aipo)
n (12)
L+ pips

Ignoring the constraints in the last optimization problend adifferentiating the cost function in

subject to 0 < p; <1, 0<p <1, A\ <

the last expression with resEect #9 and equating the derivative to 0 we can get the optimal

value forp,, denoted bys, a
. 1=\

Note that for\; > % we havep; < 1. Also, forp; =1 andp; = 12—;11, the maximum value for

(13)

. . . pl - 2)\1 - . pl . . -
the first queue arrival rate s =1 > A1 (i.e., the last constraingy; < T IS satisfied

with p; = 1), which means that foh; > % the value forp, that maximizes\, for a given )\,

is given byp} = 12‘;11, with all the constraints i (12) not being violated.
For \; < % following similar steps to the\; > % case, we can easily prove that the value
for p, that maximizes)\, is giving by p; = 1; clearly the values op, = 1 andpj = 1 can be
easily checked to satisfy the constraints[inl (12) for< %
Substituting the optimal values fgr, for the different ranges oh; we can easily get the
boundary of the stability region spanned by the expressidernmal 3.1l to be given by

1-2\ M <

(1-X1)2
4\

(14)
)\1 >

Wl Wi

%it is straightforward to prove that the cost function is cave in p..
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Fig. 6: The stability regions for the Random Access, RandaroeAs with Priorities, and Time

Division schemes.

Finally, following a similar approach to that consideredehi is straightforward to show that
the boundary derived in_(14) is the boundary of the stabibtyions defined in lemmnia_3.2, which
completes the proof. [ |

In Fig.[8, we have plotted the regio®®(p), for p; andp, ranging from O to 1 with a step
of 0.01, along with the derived stability region boundaryegi in the previous theorem. Fig. 6
also shows the stability region of the random access schetmase boundary is given by the
following relation [6]

VALV =1 (15)

In Fig.[8, we also show the boundary of the stability regiontfee time division (TD) based

scheme (genie-aided), which serves as the stability regipmer bound, given

3Time Division (TD) corresponds to full coordination betwethe two queues and requires knowledge of the queues arrival

rates a priori before dividing the resources (time slotshis tase).
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It is clear, and straightforward to analytically prove fraime closed-form stability region
boundary expressions, that the stability region for the RAesne with priorities encloses the
stability region of the RA scheme. This can explained asovadl. For a given arrival rate
at the first queue);, the RA with priority scheme will provide a better servicderdo that
gueue if compared to the RA scheme and this means that quetledevempty with a higher
probability and this means that queue 2 will have a higheviserrate as well under the RA
with priority scheme as compared to the RA scheme. So sedtipgority to the first queue in
the retransmission will also result in a service rate improent for the second queue; this is
because the RA with priority scheme has some form of cootidimdbetween the two queues
in the retransmission stage. Allowing for collision fregramsmission from the first queue will
decrease the amount of expected collisions between thentiasions of the two queues and this

will result in better service rates for the two queues.

I[V. CONCLUSIONS

In this paper, we consider the problem of deriving the sitgbregion for random access
protocol with feedback exploitation. We consider the casevo interacting queue with priority
set to one of the two queues. The two queues will access thenehérough a conventional
random access protocol and in the case of collision the higherity queue will access the
channel in the next slot with probability 1 while the otherege will back off. We derive the
stability region for the random access with priorities pomtl and prove that it contains the
stability region for the conventional random access pmtdd/e show that not only the service
rate for the higher priority queue is enhanced but also tineicgerate for the other queue is

improved if compared to the conventional random accespoht

APPENDIX |

PROOF OFLEMMA [3.1

In this Appendix, we provide a proof for Lemrha B.1. We startdayculating the steady state
distribution for the Markov chain shown in Figl 2.
First, it is clear that, = 0 since the queue can never be in a retransmission state véiilg b

empty. Writing the balance equation arouhgl we have

€1 = Mp1pemo + (1 — Ay) pipam. (17)
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Then around)r, we have

(Aip1p2 + Ai(1 = pi))mo = (1= A1) er + (1 = A) pi(1 — p2) 1. (18)

Substituting fore; from (17) into [18), and after some manipulations, we can get

A1 (1 —p1+ Apip2)
T = 0. 19
' D1 (1 - )\1) (1 - )\1]?2) ° ( )

Substituting from[(19) into[(17), we get

A1p2
p— . 20
€1 1 A1p27T0 ( )
Writing the balance equation aroung, we have
I=Apr(L=pa) = (I =M) (I —p1))m =
(21)
)\171'0 + )\161 + (1 — )\1) €9 + (1 — )\1)]31 (1 — pg) 9.
Around 2z, we have
€2 = Mp1pami + (1 — Ay) pipamo. (22)

To get the relation betweem, andw,, we can substitute for the values af m, ande; from
equations[(17)[(18) and_(R2), respectively in equatiol);(@fter some tedious manipulation, we
get
A1 (1= p1+ Aipipo2)
Ty = . 23
= A gy @3)

Substituting from[(2B3) into[(22), we get

- A1p2 o
= 1.
1= Aipo

Note that the Markov chain is repeating from stage 2 till timel.eFor k& > 2, we have the

€9 (24)

following relations.
AL (1= p1+ Aipip2)

T = Te_1. 25

T A (1= Ape) ™ (23)
A1D2

= 1. 26

€k 1_ )\lp27Tk 1 ( )

The last relation can be used to prove the following relabetweenc, ande;_;.

A (1 —=p1+ Aipip2)
€ = €f_1- 27
S A (= apy) @7

The steady state distribution can now be written as follows.

. 60:0.
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A1 (1—p1+A1p1p2)

_ K =
o T = p'To, k> 1 andp = AL

This steady state distribution can be easily checked tefgdhe balance equation at any general
state (details are omitted since it is a rather straightéodyyet very tedious, procedure).
To get the value of the steady state probabilities, we appéy following normalization

requirement.

S )
k=0
— T + Z(ﬂ'k + ek) = Ty (1 )\1p2 ) f:pk
1 —Aipa

k=1 =0

(28)

_ At(I—pi+Aipip2) :
Where,o = m as deﬂnEd above.

Note that for the steady state distribution to exist, i.ehawer, to be non zero, then we must
havep < 1, which is the stability condition for queue 1 in this domibagstem. Therefore, the

stability condition can be stated as

b
<l 52N <——. 29
p 1 1+ pipa (29)
From the normalization condition i (28), we can get the gabfim, as
p1— Au(1 + pipo)
Ty = 30
0 =) (30)

In Dominant System 1, queue 2 will be served only in the std&®ted by the subscrigt
in Fig.[2 since in the retransmission states, denoted by uhscsipt R in Fig.[2, queue 2 will

be in the back off mode. Hence, the service ratg,for queue 2 in Dominant System 1 is given

by

o = p2(1 — A)mo + pa(l — p1)A\imo + sz(l — P1)T
k=t (31)

= pa(1 — p1A)mo + ZPQ(l — P1) Tk,
=1

where in the0r state, and with the arrival at the beginning of the slot aggion, queue 2 is
served with a rate of,(1 — \;)my with no arrival at the beginning of the slot since queue 1

will not attempt any random access since it is empty, agid — p;) \;mo with arrival at the slot
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beginning; for the other first transmission states, queuell2oe served if it decides to access
the medium, which occurs with probabilipy, and queue 1 decides not to access the medium,
which occurs with probability1 — p;). After some manipulation, we can write the expression

for py as
Ho = p2(1 — A1 — )\1172)- (32)

For the stability of queue 2, we must have

Ay < pig = pa(1 — Ap — Aipa). (33)

APPENDIX I

PROOF OFLEMMA [3.2

In this Appendix, we provide a proof for Lemrha B.2. We startdayculating the steady state
distribution for the Markov chain shown in Figl 3. The statsition matrix,®, of the Markov

chain shown in Figl13 can be written as

B Ay 0 0
Ay, A, Ay O
d=| 0 A, A A, --- (34)
0 0 A, A

where
B_ (1 —=2A2) + A1 —p1)p2 O
0 0o/’
1—X)(1 — 0
a0 0}
0 0
A — Aapa(L —p1) + (L= A2)(1 —p2) 1— A
1 — )
(1 — Xo)p1p2 0
A A
A, — 2 2
AopiD2 A2

The steady state distribution vector is givenoy= [} €, 7} €, 75 €, ---]7 andv = v,
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(1= o)+ Aa(T=pi)pa Mnf1-p)+(1-0)(1-p) JapaL=py) + (1=l - )

Fig. 7: The queue 2 Markov chain with added transition betwgr and 1oy to make the

state transition matrix a block-tridiagonal matrix.

The state transition matrig is a block-tridiagonal matrix; therefore the Markov chaimown
in Fig.[3 is a homogeneous quasi birth-and-death (QBD) Madtmin [9]. Note that to make
the state transition matrix a block-tridiagonal matrix wevé added a transition from thgr
state to the oy state as shown in Figl 7 and this will preserve the structfitbeostate transitions
between the different stages in the Markov chain. Note tHdirgy this transition will not affect
the stationary state distribution of the Markov chain ad aglthe balance equations singe= 0
even with the added transition since the Markov chain willareenter the)orr staté.

Define the vectow}, = [r}, €,]7. Note thatv) = [r} 0]”. The steady state distribution of the

Markov chain shown in Fid.13 satisfies the following equati®h
v, =RMN), k>1, (35)
where the2 x 2 matrix R is given by the solution to the following equation.

Ap+R(A; — L) + R*A = 0,9, (36)

“The analysis presented here could have been used for amgly® Markov chain shown in Fif] 2; however, the structure

of this Markov chain allowed for the use of a simpler appro#wit was adopted in Appendix |
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wherel, is the2 x 2 identity matrix and0,, is the all zero x 2 matrix.

To get the stationary distribution, we have to find the matrix

1 Ti2

R =
T21 Ta2
Note that forv] = Rv{,, wherev], = [}, 0]7 andv/ = [r} €|]7. Therefore, we have

7T/

’
1 = L and T91 = 6—% (37)

/
To o

Writing the balance equation around the in Fig.[3, we have

(Aap1p2 + Aa(1 — pa)) 7y = (1 — A2) (1 — py1)parmy

o Ao(1 = pa2 + pip2) o (38)
=) —ppe °
Therefore, we have
Ao(1 — pa + p1p2)
ry] = . 39
G W SRS (39)
Writing the balance equation aroundgrr, we have
r / / r )\2])1 /
€1 = Xop1pemy + (1 — Xo)pipamy — € = T, Ty (40)
- VM1
Therefore, we have
A
To1 =— 2P1 . (41)
1—pm

To get the values of, andr,,, we consider the transition across the border shown in Fig.
[8. For the Markov chain to be positive recurrent then the g@hbdlty of going across the border

in both directions must be the same [10]; hence, we have

(1 = X2)(1 — p1)pamh, = (Map1pa + Xa(1 — p2)) 7] + Aael. (42)

But we havev), = Rv}, from which we haver) = ;7] + r12¢]; using [39) and[(42), we can
easily show that

A2
(1 - )\2)(1 - p1>p2.

Finally, the balance equation aroufger can be written as

ri2 =

(43)

€y = Aop1pamy + (1 — Xo)p1pamy = ro1my + o€y, (41)
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|
6& Border 6/2

Aopa(L=p1) + (1= Ag)(1 = pa) Aapa(1 = p1) + (1= Ao)(1 = pa)

Fig. 8: The segment of the Markov chain used to calculate gheeg ofr;, andrys.

Substituting forr), from (42), we can easily show that

A
T2 = 7 = (42)
- N
Now the matrixR is given by
A2 (1—p2+p1p2) A2
R = (1=22)(1=p1)p2  (1-X2)(1—p1)p2 (43)
Aop1. Aop1. ’
1-p1 1-p1

which can be easily checked to satisfy the balance equati@m dpy [36).
To get the stationary distribution of the Markov chain shawifrig.[3, we apply the following

normalization requirement.

o0

> (m+e)=1-[11] (Z R’f) v = 1. (44)
k=0

k=0
For the summatior(zz":0 R¥) to converge we must have the spectral radius of the m&rix

sp(R), to be less than one [@]From [43), we can easily gep(R) to be given by

A <1 — po— Xap1pa + 2p1p2 + /1 — 2pa + pE + Apipa — 2Xapipa — 2Xopip3 + A%ﬁﬁ%)

PR) = 2py (1 = Ay — p1 + Aopr)
(45)

The spectral radius of a matrix is the maximum over the magai of its eigenvalues.
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The requirement thagp(R) < 1 can be used in the last expression to get the stability condit
of the second queue arrival ralg as

1 _
Ay < p2( P1)

. 46
1+ pip2 (46)
Going back to the normalization requirement[inl(44), we have
[11] (E Rk) vi=LL-R)| " | =1 (47)
k=0 0

From the last expression, we can easily prove tHais given by

, D2 — A2 — pipa — Aapip2
Ty = . 48
T =)= pps (48)
Note that the requirement thaf, > 0, i.e. a non-zero empty queue probability, is satisfied if
Ay < ’% which is the queue stability condition.

The service ratey), for queue 1 in Dominant System 2 can now be expressed as

[e.e] o

,u'l = pl(l — )\2)71'6 +p1(1 — pg))\g’ﬂ'(l) +p1(1 — pg) Z 71'//€ + Z 6;6
k=2 k=2
/ = k ﬂ-(,)
= p1(1 — Aep2)mg + [p1(1 — p2) 1] ZR .
h=1 (49)

/

/ —1| To

=pi(1 = Xop2)my + [p1(1 —p2) 1] R(I; — R) .

pi(l —p1 — Aapr)

(1—p1) ’
where in the OFF states, queue 1 is served with probabilitpdesqueue 2 will be in the back
off mode. For the stability of queue 1 in Dominant System 2 westthave

1—p— A
A<y = ol <1p_1p1> ) (50)

which completes the proof.
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