
ar
X

iv
:1

40
1.

15
13

v1
  [

cs
.IT

]  
6 

Ja
n 

20
14

1

On the Stability of Random Multiple Access

with Feedback Exploitation and Queue Priority

Karim G. Seddik

Electronics Engineering Department, American Universityin Cairo

AUC Avenue, New Cairo 11835, Egypt.

email: kseddik@aucegypt.edu

Abstract

In this paper, we study the stability of two interacting queues under random multiple access in

which the queues leverage the feedback information. We derive the stability region under random

multiple access where one of the two queues exploits the feedback information and backs off under

negative acknowledgement (NACK) and the other, higher priority, queue will access the channel with

probability one. We characterize the stability region of this feedback-based random access protocol and

prove that this derived stability region encloses the stability region of the conventional random access

(RA) scheme that does not exploit the feedback information.
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I. INTRODUCTION

The stability of interacting queues has been extensively considered in literature. Several works

have considered the characterization of the stability region of interacting queues under random

access protocols. The stability region is characterized for the caseM = 2 andM = 3 interacting

queues as well as the case ofM > 3 with symmetric arrivals. The stability region for the general

case ofM > 3 with asymmetric arrivals is still an open problem and only inner achievable bounds

are known.

Recently, many papers have considered the problem of interacting queues in different contexts.

For example, [1] considers the problem of interacting queues in a TDMA system where a relay is

used to help the source nodes in forwarding their lost packets. In [2], the stability of interacting

queues under a random access protocol in the context ofCognitive Radio Network was derived.

In [3], the stability region of two interacting queues underrandom access protocol where the two

queues harvest energy was characterized. Other works can befound in [4], [5], where derivations

of the stability regions in the context of different cognitive radio networks were considered.

In this paper, we derive the stability region of a two-queue random access (RA) protocol with

priorities. The queues will apply the conventional RA protocol but in the case of packet loss

due to collision the two queues will exploit the feedback information to provide some level of

coordination. We set a priority to one of the two queues as follows. In the case of a negative

acknowledgement, the queue with the higher priority will attempt transmission in the following

time slot with probability one and the other queue will back off to allow for collision-free

transmission of the higher priority queue. Clearly, this will enhance the service rate for the

higher priority queue but more interestingly it will also improve the service rate for the other,

less priority queue as will be explained later. We derive an expression for the boundary of the

stability region and prove that the RA with priority scheme encloses the stability region of the

conventional RA scheme.

To the best of our knowledge, the problem of characterizing the stability region of the random

access protocol with feedback leveraging has not been considered before. We will characterize

the stable arrival rates region and prove that it contains that of the conventional random multiple

access scheme (with no feedback exploitation).

The rest of the paper is organized as follows. The system model is presented in Section II.
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Fig. 1: The system model.

The performance of the proposed scheme is investigated in Section III. The paper is concluded

in Section IV. We have moved most of the proofs to the appendices to preserve the flow of ideas

in the paper.

II. SYSTEM MODEL

The system model is shown in Fig. 1. We consider the case of twointeracting packet queues,

namelyQ1 andQ2. Q1 andQ2 have infinite buffers for storing fixed length packets. The channel

is slotted in time and any slot duration equals one packet transmission time. The arrival processes

at the two queues,Q1 andQ2, are modeled as Bernoulli arrival processes with meansλ1 and

λ2, respectively [3]. Under our system model assumptions, theaverage arrival rates areλ1 and

λ2 packets per time slot, and are bounded as0 < λi < 1, i = 1, 21. We can assume that the

packets arrive at the start of the time slot.

The channel is modeled as a collision channel, where packet loss results only in the case of

simultaneous transmissions from the two queues. If only onequeue attempts transmitting at a

given time slot, the packet is considered to be correctly received [3], [6]. In the random access

phase, the first queue accesses the channel with probabilityp1 whenever it has packets to send

and the second queue will access the channel with probability p2 whenever it has packets to

send. If at any time slot some queue is empty, it will not attempt any channel access.

In this paper, we will consider the use of the feedback information that is leveraged at the

queues in the case of collision. In the conventional random multiple access system and in the

1The maximum service rate in our model is 1 packet/slot, sincethe slot duration equals one packet transmission time, then

the arrival rates must be less than 1 otherwise the system will be unstable [3].
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case of collision, the collided packets stay on the head of the queues and retransmissions are

attempted employing the same random multiple access scheme. In this paper, we consider a

system where the feedback information is leveraged at the queues and a priority is set to the

first queue; in the next time slot after collision, queue 2 (Q2) will back off and queue 1 (Q1) will

retransmit its collided packet to allow for collision-freetransmission ofQ1; after that the two

queues return to the conventional random multiple access scheme. The priority set to queue 1 can

be due to some quality of service (QoS) requirement that is different from the QoS requirement

of queue 2. The interesting result is that although the feedback will enhance the service of queue

1 by setting a higher priority to it, the service will be enhanced as well for queue 2 as will be

explained later.

III. T HE STABILITY REGION FOR THEFEEDBACK-BASED RANDOM ACCESSPROTOCOL

WITH PRIORITIES

In this section, we will characterize the stability region for the feedback-based random access

scheme. Stability can be loosely defined as having a certain quantity of interest kept bounded.

In our case, we are interested in the queue size being bounded. For an irreducible and aperiodic

Markov chain with countable number of states, the chain is stable if and only if it is positive

recurrent, which implies the existence of its stationary distribution. For a rigorous definition of

stability under more general scenarios see [6] and [7].

If the arrival and service processes of a queueing system arestrictly stationary, then one

can apply Loynes’s theorem to check for stability conditions [8]. This theorem states that if

the arrival process and the service process of a queueing system are strictly stationary, and the

average arrival rate is less than the average service rate, then the queue is stable, otherwise it is

unstable.

Characterizing the stability region will be a difficult problem due to the interaction of the two

queues and due to the fact that the service for one queue will depend on the state of the other

queue. We will consider the use of theDominant System concept that was proposed in [6] to

characterize the stability region of the conventional RA scheme. We will define two dominant

systems tailored to match our feedback-based random accessscheme and in each of the two

systems we will determine the boundaries of the stability region.
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Fig. 2: Queue 1,Q1, Markov chain model for Dominant System 1.

A. Dominant System 1

In any dominant system, we define a system that “stochastically dominates” our system, that

is the queues lengths in the dominant system are always larger than the queues lengths in our

system if both, the dominant system and our system, start from the same initial state and have

the same arrivals and encounter the same packet collisions.

For the first Dominant System, we assume that queue 2 will always have packets to transmit;

even if the queue was empty dummy packets will be transmittedfrom queue 2. Clearly this will

set a dominant system to our system since the transmission ofdummy packets can only result

in more collisions and packet losses. If for a given arrival rate pair (λ1, λ2) the first dominant

system is stable then clearly our system will be stable. Therefore, the stability region of the first

dominant system will provide an inner bound for our system stability region.

For queue 1, the Markov chain describing the evolution of thequeue is shown in Fig. 2. Note

that the Markov chain has two classes of states, namely,kF and kR and k = 0, 1, 2, · · · . The

subscriptF denotes first transmission states and the subscriptR denotes retransmission states.

Note that in the retransmission states, queue 1 packet will always be delivered since there is no

collisions in these states (queue 2 is backing off); in thesestates, either queue 1 length decreases

by 1 if no arrival occurs or the queue length will remain the same if an arrival occurs while

being in these retransmission states since the packet on thehead of the queue is successfully

transmitted with probability 1.
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The stability condition for queue 1 in Dominant System 1 is given in the following lemma,

which is proved in Appendix I.

Lemma 3.1: The arrival rates for queue 1 and queue 2 in Dominant System 1 must satisfy

the following two conditions, respectively,

λ1 <
p1

1 + p1p2

λ2 < p2(1− λ1 − λ1p2)

(1)

for the system to be stable.

B. Dominant System 2

In the second Dominant System, we assume that queue 1 always has packets to send (dummy

packets are sent if the queue decides to transmit while beingempty). Again, this will decouple

the interaction of the two queues since the service rate of queue 2 will be independent of the

state of queue 1.

The Markov chain for the evolution of queue 2 is shown in Fig. 3. Two classes of states are

defined in Fig. 3 and denoted by the subscriptsON andOFF. The ON states denote the states

where queue 2 can access the channel. The OFF states denote the back off states where queue 1

is retransmitting its collided packets. Note that the transitions from thekOFF state can be either

to thekON state, if no arrival occurs in the slot, or to the(k+1)ON state, if one arrival occurs in

the slot. The OFF states can never make a transition to a statewith a lower number of packets

since in the OFF states queue 2 is in the back off mode and no access is attempted.

The stability condition for queue 2 in Dominant System 2 is given in the following lemma,

which is proved in Appendix II (the analysis in Appendix II will be based on the theory of

homogeneous quasi birth-and-death (QBD) Markov chains [9]).

Lemma 3.2: The arrival rates for queue 1 and queue 2 in Dominant System 2 must satisfy

the following two conditions, respectively,

λ1 <
p1(1− p1 − λ2p1)

(1− p1)

λ2 <
p2(1− p1)

1 + p1p2

(2)

for the system to be stable.
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Fig. 3: Queue 2,Q2, Markov chain model for Dominant System 2.

Note that the intersection of the two stability regions described in Lemma 3.1 and Lemma

3.2 for a given access vectorp = [p1 p2]
T (grey area in Fig. 4) can be interpreted as follows.

Define a new Dominant System (Dominant System 3) in which every queue has always a packet

to transmit. In this case, the transmission state of queue 1 can be represented by the two-state

Markov chain model shown in Fig 5(a); note that in this case queue 1 will be either in the

“Transmission” state denoted byF or in the “Retransmission” state denoted byR in Fig. 5(a).

Fig. 5(b) shows the Markov chain model for queue 2. Queue 2 will have two states denoted by

ON when queue 1 is in the F state and OFF when queue 1 is theR state (when queue 1 is in

the R state queue 2 will be in the back off, OFF state). It is straightforward to show that the

steady state distributions for the two Markov chains shown in Fig. 5 are given by

πF = πON =
1

1 + p1p2

πR = πOFF =
p1p2

1 + p1p2
.

(3)

The service rate for queue 1 in Dominant System 3,µ′′

1, is given by

µ′′

1 = p1(1− p2)πF + πR =
p1

1 + p1p2
, (4)

where queue 1 is served with probabilityp1(1− p2) in theF state and with probability 1 in the

R state.
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Fig. 4: The union of the stability regions for the two dominant systems for fixed access

probabilitiesp1 andp2.

The service rate for queue 2 in Dominant System 3,µ′′

2, is given by

µ′′

2 = p2(1− p1)πON + 0× πOFF =
p2(1− p1)

1 + p1p2
, (5)

where queue 2 is served with probabilityp2(1 − p1) in the ON state and with probability 0 in

the OFF state.

C. The Stability Region of the Random Access Protocol with Priorities

In this section, we derive the expression for the stability region of the random access scheme

with feedback exploitation where a priority is set to one of the two queues. The following Lemma

characterizes the stability region for fixed random access probabilities,p1 and p2, for queue 1

and queue 2, respectively.

Lemma 3.3: For a fixed random access probability vectorp = [p1 p2]
T , the stability region

R(p) of the random access with priorities is the union of the two regions described by

λ2 < p2(1− λ1 − λ1p2) (6)
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Fig. 5: Dominant System 3 Markov chain model.

when

λ1 <
p1

1 + p1p2
(7)

and

λ1 <
p1(1− p1 − λ2p1)

(1− p1)
(8)

when

λ2 <
p2(1− p1)

1 + p1p2
. (9)

for the system to be stable.

Proof: The result in Lemma 3.3 can be proved using the tool of stochastic dominance

presented in [6]. The indistinguishability argument at thestability region boundary states that if

the original system is unstable then its queues will saturate and they will always have packets

to transmit; therefore at the boundaries of the stability region of the original system, the original

system will be indistinguishable from the dominant system and thus has the same stability region

boundaries [6].
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The next theorem characterizes the entire stability regionfor the random access protocol with

priorities.

Theorem 3.4: The boundary of the stability region,R, of the random access protocol with

priorities, which is defined as the union of theR(p) regions for the differentp = [p1 p2]
T as

R =
⋃

p∈[0,1]2

R(p) (10)

can be characterized as

λ2 =







1− 2λ1 λ1 ≤
1
3

(1−λ1)2

4λ1

λ1 >
1
3
.

(11)

Proof: First, we will derive the boundary of the stability region defined in lemma 3.1,

which can be found as

λ∗

2(λ1) =maxp1,p2 p2(1− λ1 − λ1p2)

subject to 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, λ1 <
p1

1 + p1p2
.

(12)

Ignoring the constraints in the last optimization problem and differentiating the cost function in

the last expression with respect top2 and equating the derivative to 0 we can get the optimal

value forp2, denoted byp∗2, as2

p∗2 =
1− λ1

2λ1
. (13)

Note that forλ1 ≥
1
3
, we havep∗2 ≤ 1. Also, for p1 = 1 andp∗2 =

1−λ1

2λ1

, the maximum value for

the first queue arrival rate is p1
1+p1p2

= 2λ1

1+λ1

> λ1 (i.e., the last constraint,λ1 <
p1

1+p1p2
is satisfied

with p1 = 1), which means that forλ1 ≥
1
3
, the value forp2 that maximizesλ2 for a givenλ1

is given byp∗2 =
1−λ1

2λ1

, with all the constraints in (12) not being violated.

For λ1 < 1
3
, following similar steps to theλ1 ≥ 1

3
case, we can easily prove that the value

for p2 that maximizesλ2 is giving by p∗2 = 1; clearly the values ofp1 = 1 and p∗2 = 1 can be

easily checked to satisfy the constraints in (12) forλ1 <
1
3
.

Substituting the optimal values forp2 for the different ranges ofλ1 we can easily get the

boundary of the stability region spanned by the expression in lemma 3.1 to be given by

λ2 =







1− 2λ1 λ1 ≤
1
3

(1−λ1)2

4λ1

λ1 >
1
3
.

(14)

2it is straightforward to prove that the cost function is concave inp2.
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Fig. 6: The stability regions for the Random Access, Random Access with Priorities, and Time
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Finally, following a similar approach to that considered here it is straightforward to show that

the boundary derived in (14) is the boundary of the stabilityregions defined in lemma 3.2, which

completes the proof.

In Fig. 6, we have plotted the regionsR(p), for p1 and p2 ranging from 0 to 1 with a step

of 0.01, along with the derived stability region boundary given in the previous theorem. Fig. 6

also shows the stability region of the random access scheme,whose boundary is given by the

following relation [6]
√

λ1 +
√

λ2 = 1. (15)

In Fig. 6, we also show the boundary of the stability region for the time division (TD) based

scheme (genie-aided), which serves as the stability regionupper bound, given by3

λ1 + λ2 = 1. (16)

3Time Division (TD) corresponds to full coordination between the two queues and requires knowledge of the queues arrival

rates a priori before dividing the resources (time slots in this case).
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It is clear, and straightforward to analytically prove fromthe closed-form stability region

boundary expressions, that the stability region for the RA scheme with priorities encloses the

stability region of the RA scheme. This can explained as follows. For a given arrival rate

at the first queue,λ1, the RA with priority scheme will provide a better service rate to that

queue if compared to the RA scheme and this means that queue 1 will be empty with a higher

probability and this means that queue 2 will have a higher service rate as well under the RA

with priority scheme as compared to the RA scheme. So settinga priority to the first queue in

the retransmission will also result in a service rate improvement for the second queue; this is

because the RA with priority scheme has some form of coordination between the two queues

in the retransmission stage. Allowing for collision free retransmission from the first queue will

decrease the amount of expected collisions between the transmissions of the two queues and this

will result in better service rates for the two queues.

IV. CONCLUSIONS

In this paper, we consider the problem of deriving the stability region for random access

protocol with feedback exploitation. We consider the case of two interacting queue with priority

set to one of the two queues. The two queues will access the channel through a conventional

random access protocol and in the case of collision the higher priority queue will access the

channel in the next slot with probability 1 while the other queue will back off. We derive the

stability region for the random access with priorities protocol and prove that it contains the

stability region for the conventional random access protocol. We show that not only the service

rate for the higher priority queue is enhanced but also the service rate for the other queue is

improved if compared to the conventional random access protocol.

APPENDIX I

PROOF OFLEMMA 3.1

In this Appendix, we provide a proof for Lemma 3.1. We start bycalculating the steady state

distribution for the Markov chain shown in Fig. 2.

First, it is clear thatǫ0 = 0 since the queue can never be in a retransmission state while being

empty. Writing the balance equation around1R, we have

ǫ1 = λ1p1p2π0 + (1− λ1) p1p2π1. (17)
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Then around0F , we have

(λ1p1p2 + λ1(1− p1))π0 = (1− λ1) ǫ1 + (1− λ1) p1(1− p2)π1. (18)

Substituting forǫ1 from (17) into (18), and after some manipulations, we can get

π1 =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
π0. (19)

Substituting from (19) into (17), we get

ǫ1 =
λ1p2

1− λ1p2
π0. (20)

Writing the balance equation around1F , we have

(1− λ1p1 (1− p2)− (1− λ1) (1− p1)) π1 =

λ1π0 + λ1ǫ1 + (1− λ1) ǫ2 + (1− λ1) p1 (1− p2)π2.

(21)

Around 2R, we have

ǫ2 = λ1p1p2π1 + (1− λ1) p1p2π2. (22)

To get the relation betweenπ1 and π2, we can substitute for the values ofǫ1, π0 and ǫ2 from

equations (17), (18) and (22), respectively in equation (21); after some tedious manipulation, we

get

π2 =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
π1. (23)

Substituting from (23) into (22), we get

ǫ2 =
λ1p2

1− λ1p2
π1. (24)

Note that the Markov chain is repeating from stage 2 till the end. For k ≥ 2, we have the

following relations.

πk =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
πk−1. (25)

ǫk =
λ1p2

1− λ1p2
πk−1. (26)

The last relation can be used to prove the following relationbetweenǫk and ǫk−1.

ǫk =
λ1 (1− p1 + λ1p1p2)

p1 (1− λ1) (1− λ1p2)
ǫk−1. (27)

The steady state distribution can now be written as follows.

• ǫ0 = 0.
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• πk = ρkπ0, k ≥ 1 andρ = λ1(1−p1+λ1p1p2)
p1(1−λ1)(1−λ1p2)

.

• ǫ1 =
λ1p2

1−λ1p2
π0.

• ǫk = ρk−1ǫ1, k ≥ 2.

This steady state distribution can be easily checked to satisfy the balance equation at any general

state (details are omitted since it is a rather straightforward, yet very tedious, procedure).

To get the value of the steady state probabilities, we apply the following normalization

requirement.
∞
∑

k=0

(πk + ǫk) = 1

→ π0 +

∞
∑

k=1

(πk + ǫk) = π0

(

1 +
λ1p2

1− λ1p2

) ∞
∑

k=0

ρk = 1,

(28)

whereρ = λ1(1−p1+λ1p1p2)
p1(1−λ1)(1−λ1p2)

as defined above.

Note that for the steady state distribution to exist, i.e. tohaveπ0 to be non zero, then we must

haveρ < 1, which is the stability condition for queue 1 in this dominant system. Therefore, the

stability condition can be stated as

ρ < 1 → λ1 <
p1

1 + p1p2
. (29)

From the normalization condition in (28), we can get the value of π0 as

π0 =
p1 − λ1(1 + p1p2)

p1(1− λ1)
. (30)

In Dominant System 1, queue 2 will be served only in the statesdenoted by the subscriptF

in Fig. 2 since in the retransmission states, denoted by the subscriptR in Fig. 2, queue 2 will

be in the back off mode. Hence, the service rate,µ2, for queue 2 in Dominant System 1 is given

by

µ2 = p2(1− λ1)π0 + p2(1− p1)λ1π0 +
∞
∑

k=1

p2(1− p1)πk

= p2(1− p1λ1)π0 +
∞
∑

k=1

p2(1− p1)πk,

(31)

where in the0F state, and with the arrival at the beginning of the slot assumption, queue 2 is

served with a rate ofp2(1 − λ1)π0 with no arrival at the beginning of the slot since queue 1

will not attempt any random access since it is empty, andp2(1− p1)λ1π0 with arrival at the slot
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beginning; for the other first transmission states, queue 2 will be served if it decides to access

the medium, which occurs with probabilityp2, and queue 1 decides not to access the medium,

which occurs with probability(1 − p1). After some manipulation, we can write the expression

for µ2 as

µ2 = p2(1− λ1 − λ1p2). (32)

For the stability of queue 2, we must have

λ2 < µ2 = p2(1− λ1 − λ1p2). (33)

APPENDIX II

PROOF OFLEMMA 3.2

In this Appendix, we provide a proof for Lemma 3.2. We start bycalculating the steady state

distribution for the Markov chain shown in Fig. 3. The state transition matrix,Φ, of the Markov

chain shown in Fig. 3 can be written as

Φ =





















B A0 0 0 · · ·

A2 A1 A0 0 · · ·

0 A2 A1 A0 · · ·

0 0 A2 A1 · · ·

...
...

...
...

. . .





















(34)

where

B =





(1− λ2) + λ2(1− p1)p2 0

0 0



 ,

A0 =





(1− λ2)(1− p1)p2 0

0 0



 ,

A1 =





λ2p2(1− p1) + (1− λ2)(1− p2) 1− λ2

(1− λ2)p1p2 0



 ,

A2 =





λ2 λ2

λ2p1p2 λ2



 .

The steady state distribution vector is given byv = [π′

0 ǫ
′

0 π
′

1 ǫ
′

1 π
′

2 ǫ
′

2 · · · ]T andv = Φv.
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ǫ
′

0
= 0

π
′

0 π
′

1 π
′

2

ǫ
′

2ǫ
′

1

λ 2

λ2

λ2p2(1− p1) + (1− λ2)(1− p2) λ2p2(1− p1) + (1− λ2)(1− p2)
(1

−
λ 2

)p
1
p
2

1
−
λ 2

λ2(1− p2)

(1− λ2)(1− p1)p2(1− λ2)(1− p1)p2

λ 2p 1
p 2

1
−
λ 2

(1
−
λ 2

)p
1
p
2λ2

λ 2p
1
p 2

(1− λ2) + λ2(1− p1)p2

Fig. 7: The queue 2 Markov chain with added transition between 0OFF and1ON to make the

state transition matrix a block-tridiagonal matrix.

The state transition matrixΦ is a block-tridiagonal matrix; therefore the Markov chain shown

in Fig. 3 is a homogeneous quasi birth-and-death (QBD) Markov chain [9]. Note that to make

the state transition matrix a block-tridiagonal matrix we have added a transition from the0OFF

state to the1ON state as shown in Fig. 7 and this will preserve the structure of the state transitions

between the different stages in the Markov chain. Note that adding this transition will not affect

the stationary state distribution of the Markov chain as well as the balance equations sinceǫ′0 = 0

even with the added transition since the Markov chain will never enter the0OFF state4.

Define the vectorv′

k = [π′

k ǫ′k]
T . Note thatv′

0 = [π′

0 0]
T . The steady state distribution of the

Markov chain shown in Fig. 3 satisfies the following equation[9]

v′

k = Rkv′

0, k ≥ 1, (35)

where the2× 2 matrix R is given by the solution to the following equation.

A0 +R(A1 − I2) +R2A2 = 02×2, (36)

4The analysis presented here could have been used for analyzing the Markov chain shown in Fig. 2; however, the structure

of this Markov chain allowed for the use of a simpler approachthat was adopted in Appendix I
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whereI2 is the2× 2 identity matrix and02×2 is the all zeros2× 2 matrix.

To get the stationary distribution, we have to find the matrix

R =





r11 r12

r21 r22



 .

Note that forv′

1 = Rv′

0, wherev′

0 = [π′

0 0]
T andv′

1 = [π′

1 ǫ
′

1]
T . Therefore, we have

r11 =
π′

1

π′

0

andr21 =
ǫ′1
π′

0

. (37)

Writing the balance equation around the0ON in Fig. 3, we have

(λ2p1p2 + λ2(1− p2))π
′

0 = (1− λ2)(1− p1)p2π
′

1

→ π′

1 =
λ2(1− p2 + p1p2)

(1− λ2)(1− p1)p2
π′

0.
(38)

Therefore, we have

r11 =
λ2(1− p2 + p1p2)

(1− λ2)(1− p1)p2
. (39)

Writing the balance equation around1OFF, we have

ǫ′1 = λ2p1p2π
′

0 + (1− λ2)p1p2π
′

1 → ǫ′1 =
λ2p1

1− p1
π′

0. (40)

Therefore, we have

r21 =
λ2p1

1− p1
. (41)

To get the values ofr12 and r22, we consider the transition across the border shown in Fig.

8. For the Markov chain to be positive recurrent then the probability of going across the border

in both directions must be the same [10]; hence, we have

(1− λ2)(1− p1)p2π
′

2 = (λ2p1p2 + λ2(1− p2))π
′

1 + λ2ǫ
′

1. (42)

But we havev′

2 = Rv′

1, from which we haveπ′

2 = r11π
′

1 + r12ǫ
′

1; using (39) and (42), we can

easily show that

r12 =
λ2

(1− λ2)(1− p1)p2
. (43)

Finally, the balance equation around2OFF can be written as

ǫ′2 = λ2p1p2π
′

1 + (1− λ2)p1p2π
′

2 = r21π
′

1 + r22ǫ
′

2. (41)
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1
OFF

1
ON

2
OFF

2
ON

π
′

1 π
′

2

ǫ
′

2ǫ
′

1

λ 2

λ2p2(1− p1) + (1− λ2)(1− p2) λ2p2(1− p1) + (1− λ2)(1− p2)

(1
−
λ 2

)p 1
p 2

1−
λ 2

λ2(1− p2)

(1− λ2)(1− p1)p2

λ 2
p 1
p 2

1−
λ 2

(1
−
λ 2

)p 1
p 2

Border

Fig. 8: The segment of the Markov chain used to calculate the values ofr12 andr22.

Substituting forπ′

2 from (42), we can easily show that

r22 =
λ2p1

1− p1
. (42)

Now the matrixR is given by

R =





λ2(1−p2+p1p2)
(1−λ2)(1−p1)p2

λ2

(1−λ2)(1−p1)p2

λ2p1
1−p1

λ2p1
1−p1



 , (43)

which can be easily checked to satisfy the balance equation given by (36).

To get the stationary distribution of the Markov chain shownin Fig. 3, we apply the following

normalization requirement.
∞
∑

k=0

(π′

k + ǫ′k) = 1 → [1 1]

(

∞
∑

k=0

Rk

)

v′

0 = 1. (44)

For the summation
(
∑

∞

k=0R
k
)

to converge we must have the spectral radius of the matrixR,

sp(R), to be less than one [9]5. From (43), we can easily getsp(R) to be given by

sp(R) =
λ2

(

1− p2 − λ2p1p2 + 2p1p2 +
√

1− 2p2 + p22 + 4p1p2 − 2λ2p1p2 − 2λ2p1p
2
2 + λ2

2p
2
1p

2
2

)

2p2 (1− λ2 − p1 + λ2p1)
.

(45)

5The spectral radius of a matrix is the maximum over the magnitudes of its eigenvalues.
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The requirement thatsp(R) < 1 can be used in the last expression to get the stability condition

of the second queue arrival rateλ2 as

λ2 <
p2(1− p1)

1 + p1p2
. (46)

Going back to the normalization requirement in (44), we have

[1 1]

(

∞
∑

k=0

Rk

)

v′

0 = [1 1] (I2 −R)−1





π′

0

0



 = 1. (47)

From the last expression, we can easily prove thatπ′

0 is given by

π′

0 =
p2 − λ2 − p1p2 − λ2p1p2

(1− λ2)(1− p1)p2
. (48)

Note that the requirement thatπ′

0 > 0, i.e. a non-zero empty queue probability, is satisfied if

λ2 <
p2(1−p1)
1+p1p2

, which is the queue stability condition.

The service rate,µ′

1, for queue 1 in Dominant System 2 can now be expressed as

µ′

1 = p1(1− λ2)π
′

0 + p1(1− p2)λ2π
′

0 + p1(1− p2)

∞
∑

k=2

π′

k +

∞
∑

k=2

ǫ′k

= p1(1− λ2p2)π
′

0 + [p1(1− p2) 1]

(

∞
∑

k=1

Rk

)





π′

0

0





= p1(1− λ2p2)π
′

0 + [p1(1− p2) 1] R (I2 −R)−1





π′

0

0





=
p1(1− p1 − λ2p1)

(1− p1)
,

(49)

where in the OFF states, queue 1 is served with probability 1 since queue 2 will be in the back

off mode. For the stability of queue 1 in Dominant System 2 we must have

λ1 < µ′

1 =
p1(1− p1 − λ2p1)

(1− p1)
, (50)

which completes the proof.
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