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Abstract—Obata et al. proved that spatially-coupled (SC)
MacKay-Neal (MN) codes achieve the capacity of BEC. However,
the SC-MN codes codes have many variable nodes of degree two
and have higher error floors. In this paper, we prove that SC-MN
codes with no variable nodes of degree two achieve the capacity
of BEC.

I. I NTRODUCTION

Felström and Zigangirov introduced spatially-coupled (SC)
codes defined by sparse parity check matrix. SC codes are
based on constitution method for convolutional LDPC codes
[1]. Lantmaier et al. confirmed that regular SC LDPC codes
achieve MAP threshold of original LDPC block codes by
BP decoding in at least certain accuracy [2]. Kudekar et al.
proved that SC codes achieve MAP threshold by BP decoding
on binary erasure channel (BEC) [3] and binary symmetric
channel [4].

Kasai et al. introduced SC MacKay-Neal (MN) codes, and
showed that these codes with finite maximum degree achieve
capacity of BEC by numerical experiment [5]. Obata et al.
proved(l, 2, 2) SC-MN codes achieve capacity [6]. It has been
observed that(l, 2, 2) SC-MN codes have many bit nodes of
degree two. This leads to high error floors.

In this paper, we deal with(l, 3, 3) SC-MN codes whose bit
node degree is greater than two. We prove the codes achieve
the capacity of BEC. The codes achieve Shannon limitǫSha =
1− 3

l for any l ≥ 3.

II. BACKGROUND

A. MacKay-Neal Codes

(l, r, g) MN codes are multi-edge type (MET) LDPC codes
defined by pair of multi-variables degree distributions(µ, ν)
listed below.

ν(x; ǫ) =
r

l
xl
1 + ǫxg

2,

µ(x) = xr
1x

g
2.

In general, the recursion of density evolution of MET-LDPC
codes on BEC is given by

y
(t)
j = 1−

µj(1− x(t); 1− ǫ)

µj(1; 1)
, x

(t+1)
j =

νj(y
(t); ǫ)

νj(1; 1)
,

wherex(t)
j is probability of erasure message sent along edges

of type j at the t-th decoding round. Therefore, density

evolution of(l, r, g) MN codes is

x(t+1) = f
(

g(x(t)); ǫ
)

, (2)

f(x; ǫ) = (xl−1
1 , ǫxg−1

2 ),

g(x) = (1− (1 − x1)
r−1(1 − x2)

g, 1− (1− x1)
r(1− x2)

g−1).

B. Spatially-Coupled MacKay-Neal Codes

SC-MN codes of coupling numberL and of coupling width
w are defined by the Tanner graph constructed by the following
process. First, at each sectioni ∈ Z, placerM/l bit nodes
of type 1 andM bits nodes of type 2. Bit nodes of type
1 and 2 are of degreel and g, respectively. Next, at each
sectioni ∈ Z, placeM check nodes of degreer + g. Then,
connect edges uniformly at random so that bit nodes of type
1 at sectioni are connected with check nodes at each section
i ∈ [i, . . . , i + w − 1] with rM/w edges, and bit nodes of
type 2 at sectioni are connected with check nodes at each
sectioni ∈ [i, . . . , i+w−1] with gM/w edges. Bits at section
i /∈ [0, L − 1]) are shorten. Bits of type 1 and 2 at section
i ∈ [0, L−1] are punctured and transmitted, respectively. Rate
of SC-MN codesRMN is given by

RMN =
r

l
+

1 + w − 2
∑w

i=0(1− ( i
w )r+g)

L
=

r

l
(L → ∞).

C. Vector Admissible System and Potential Function

In this section, we define vector admissible systems and
potential functions.

Definition 1. DefineX , [0, 1]d, andF : X × [0, 1] → R and
G : X → R as functionals satisfyingG(0) = 0. Let D be a
d× d positive diagonal matrix. Consider a general recursion
defined by

x(t+1) = f(g(x(t)); ǫ),

where f : X × [0, 1] → X and g : X → X are defined
by F ′(x; ǫ) = f(x; ǫ)D and G′(x) = g(x)D, where
F ′(x; ǫ) , (∂F (x)

∂x1
, . . . , ∂F (x)

∂xn
). Then the pair(f , g) defines

a vector admissible system if
1. f , g are twice continuously differentiable,
2. f(x; ǫ) and g(x) are non-decreasing inx and ǫ with

respect to� 1,

1We sayx � y if xi ≤ yi for all 1 ≤ i ≤ d
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3. f(g(0); ǫ) = 0 andF (g(0); ǫ) = 0.

We sayx is a fixed point ifx = f(g(x); ǫ).

It can be seen that the density evolution(f , g) of (l, r, g)
MN codes given in (2) is a vector admissible system by
choosingF

(

x; ǫ
)

, G(x) and D as below, since this system
(f , g) satisfies the condition in Definition 1.

F (x; ǫ) =
r

l
xl
1 + ǫxg

2,

G(x) = rx1 + gx2 + (1− x1)
r(1− x2)

g − 1,

D =

(

r 0
0 g

)

.

Definition 2 ([7, Def. 2]). We define the potential function
U(x; ǫ) of a vector admissible system(f , g) by

U(x; ǫ) , g(x)DxT −G(x)− F (g(x); ǫ).

The potential functionU(x1, x2, ǫ) of (l, r, g) MN codes is
given by

U(x1, x2, ǫ) = 1− ǫ
(

(1 − (1− x1)
r)(1− x2)

g−1
)g

−
r

l

(

1− (1− x1)
r−1(1− x2)

g
)l

− (1− x1)
r(1− x2)

g
(

1 +
rx1

1− x1
+

gx2

1− x2

)

.

Definition 3 ([7, Def. 7]). Let F(ǫ) , {x ∈ X \ {0} | x =
f(g(x); ǫ)} be a set of non-zero fixed points forǫ ∈ [0, 1].
The potential thresholdǫ∗ is defined by

ǫ∗ , sup{ǫ ∈ [0, 1] | minx∈F(ǫ)U(x; ǫ) > 0}.

Let ǫ∗s be threshold of uncoupled system defined in [7, Def.
6]. For ǫ such thatǫ∗s < ǫ < ǫ∗, we define energy gap∆E(ǫ)
as

∆E(ǫ) , max
ǫ′∈[ǫ,1]

inf
x∈F(ǫ′)

U(x; ǫ′).

We define the SC system of a vector admissible system.

Definition 4 ([7, Def. 9]). For a vector admissible system
(f , g), we define the SC system of coupling numberL and
coupling widthw as

x
(t+1)
i =

1

w

w−1
∑

k=0

f

(

1

w

w−1
∑

j=0

g(x
(t)
i+j−k); ǫi−k

)

,

ǫi =

{

ǫ, i ∈ {0, . . . , L− 1},

0, i /∈ {0, . . . , L− 1}.

If we define(f , g) as the density evolution for(l, r, g) MN
codes in (2), the SC system gives the density evolution of
SC-MN codes with coupling numberL and coupling width
w.

Next theorem states that ifǫ < ǫ∗ then fixed points of SC
vector system converge towards0 for sufficiently largew.

Theorem 1 ([7, Thm. 1]). Consider the constantKf ,g defined
in [7, Lem. 11]. This constant value depends only on(f , g).
If ǫ < ǫ∗ andw > (dKf ,g)/(2∆E(ǫ)), then the SC system
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Fig. 1. Potential functionU(1; ǫ) andU(x(x1); ǫ(x1)) at the trivial fixed
points (solid) and non-trivial fixed points (dashed) of(l, 3, 3) MN codes for
l = 3, . . . , 6

of (f , g) with coupling numberL and coupling widthw has
a unique fixed point0.

We will show that the potential thresholdǫ∗ of (l, r = 3, g =
3) MN codes is1 − RMN = 1 − 3/l for any l ≥ 3. This is
sufficient to show that(l, 3, 3) SC-MN codes with sufficiently
largew andL achieve the capacity of BEC under BP decoding.

III. PROOF OFACHIEVING CAPACITY

In this section, we calculate the potential thresholdǫ∗ of
(l, r = 3, g = 3) MN codes. To this end, we first investigate
the set of fixed pointsF(ǫ).

The density evolution recursion in (2) can be rewritten as

x
(t+1)
1 = (1− (1− x

(t)
1 )r−1(1 − x

(t)
2 )g)l−1,

x
(t+1)
2 = ǫ(1− (1− x

(t)
1 )r(1− x

(t)
2 )g−1)g−1.

Fixed points(x1, x2; ǫ) of density evolution withx1 = 0
andx1 = 1 are (0, 0; ǫ) and (1, ǫ; ǫ), respectively. We define
these fixed points as trivial fixed points and all other fixed
points as non-trivial fixed points. All non-trivial fixed points
(x1, x2(x1); ǫ(x1)) can be parametrically described as

x2(x1) =1−

(

1− x
1

l−1

1

(1− x1)r−1

)
1
g

,

ǫ(x1) =
x2(x1)

(

1− (1− x1)r(1− x2(x1))g−1
)g−1 ,

with x1 ∈ (0, 1).
Next, we shall investigate the value of the potential function

at the fixed points. The value of the potential functions at
trivial fixed point (1, ǫ, ǫ) is respectively given by

U(1, ǫ, ǫ) = 1−
r

l
− ǫ.

Figure 1 draws the potential function of(l, r, g) MN codes at
fixed pointsx ∈ F(ǫ). It appears that the potential function at
non-trivial fixed points is always positive. We will prove this.



To be precise, the potential function of(l, r, g) MN codes for
non-trivial fixed points satisfies

U(x1, x2(x1), ǫ(x1)) > 0 for x1 ∈ (0, 1). (4)

Our strategy of proof is as follows. First change the repre-
sentation of (4) into a polynomial form by changing variables
a few times. Then apply Sturm’s theorem for smallerl and
bound the polynomial for largerl.

We defineU(z) := U(x1, x2(x1), ǫ(x1))|x1=zl−1 . Obvi-
ously, to prove (4), it is sufficient to showU(z) > 0 for
z ∈ (0, 1).

U(z) = −
3zl

l
+ (1 − z)(1− 4zl−1)

+ (1− z)1/3(1− zl−1)−2/3 − 2(1− z)2/3(1− zl−1)5/3.

We use next lemma to eliminate fractional power inU(z). The
proof is given in Section IV-A.

Lemma 1. DefineH(u, z) as follows.

H(u, z) =
(

u+
3zl

l
− (1 − z)(1− 4zl−1)

)3

+ 6(1− z)(1− zl−1)
(

u+
3zl

l
− (1− z)(1− 4zl−1)

)

− (1 − z)(1− zl−1)−2 + 8(1− z)2(1− zl−1)5.

Then,H(0, z) < 0 for z ∈ (0, 1) impliesU(z) > 0 for z ∈
(0, 1).

Define I(z) :=
l3(1− zl−1)2

(1 − z)z2
H(0, z). Obviously, to prove

H(0, z) < 0 for z ∈ (0, 1), it is sufficient to proveI(z) < 0
for z ∈ (0, 1). We see thatI(z) for l ≥ 3 is a polynomial as
follows.

I(z) =− l3 + 27
l−2
∑

i=0

[z3l−2+i(1− zl−1)]

− 27l2z−2+2l(1 − 4zl−1)(1− zl−1)2

− 9lz−4+l(1− zl−1)2
{

(−3 + z)z2

+ 16(−1 + z)z2l − 8(−1 + z)z1+l
}

− l3(1− z)z−9+l
{

8z6l − 56z1+5l + 2z6(3 + 7z)

+ 8z2+4l(13 + 8z)− 8z3+3l(13 + 22z)

+ 4z4+2l(21 + 43z)− z5+l(41 + 73z)
}

. (5)

We proveI(z) < 0 for 3 ≤ l < 165 and l ≥ 165 in the
following lemmas. The proofs are given in Section IV-B and
Section IV-C, respectively.

Lemma 2. For 3 ≤ l < 165, I(z) < 0 for z ∈ (0, 1).

Lemma 3. For l ≥ 165, I(z) < 0 for z ∈ (0, 1).

Theorem 2. For any l ≥ 3 and ǫ < ǫSha = 1− 3
l , the unique

fixed point of density evolution of(l, 3, 3) SC-MN codes of
coupling numberL and coupling widthw is 0 for sufficiently
large w andL.

Proof: From (4), potential function for non-trivial fixed
points is always positive. Therefore, from Definition 3 and
potential function for trivial fixed point (3),ǫ∗ = 1− r

l = ǫSha.
From Theorem 1, forǫ < ǫSha, the unique fixed point of
density evolution for(l, 3, 3) SC-MN codes is0.

The case withl = 3 implies rate one codes over BEC(0).
Some might think this is not interesting. Nevertheless, we
included the case withl = 3 for comprehensiveness.

IV. PROOF OF LEMMAS

A. Proof of Lemma 1

Partial derivative ofH(u, z) with respect tou gives

∂H(u, z)

∂u
=3
(

u+
3zl

l
− (1− z)(1− 4zl−1)

)2

+ 6(1− z)(1− zl−1) ≥ 0.

(6)

Substitutingu = U(z) into H(u, z) gives

H(U(z), z)

=
(

(1− z)1/3(1− zl−1)−2/3 − 2(1− z)2/3(1− zl−1)5/3
)3

+ 6(1− z)(1− zl−1)
{

(1 − z)1/3(1 − zl−1)−2/3

− 2(1− z)2/3(1− zl−1)5/3
}

− (1 − z)(1− zl−1)−2 + 8(1− z)2(1− zl−1)5

=(1− z)(1− zl−1)−2 − 8(1− z)2(1− zl−1)5

− 6(1− z)(1− zl−1)
{

(1 − z)1/3(1 − zl−1)−2/3

− 2(1− z)2/3(1− zl−1)5/3
}

+ 6(1− z)(1− zl−1)
{

(1 − z)1/3(1 − zl−1)−2/3

− 2(1− z)2/3(1− zl−1)5/3
}

− (1 − z)(1− zl−1)−2 + 8(1− z)2(1− zl−1)5

=0. (7)

From (6),H(u, z) monotonically increasing with respect to
u. From (7), (u, z) = (U(z), z) is a root ofH(u, z) = 0.
ThereforeH(0, z) < 0 for z ∈ (0, 1) implies U(z) > 0 for
z ∈ (0, 1).

B. Proof of Lemma 2

From I(0) = −l3 andI(1) = −l3, we see thatz = 0, 1 are
not multiple roots of equationI(z) = 0. Let I1(z), . . . , Im(z)
be Sturm sequences ofI(x). Let V (z) be the number of sign
changes in the sequence. Table I lists sign changes of Sturm
sequenceI1(z), . . . , Im(z) of I(x) in (5) for l = 3, . . . , 11.
V (z) is the number of sign changes in the sequence. We see
thatV (0) = V (1). We observed thatV (0) = V (1) for l < 165
but not listed all due to the space limit. From Theorem 3, this
implies that the number of distinct roots of equationI(z) = 0
in (0, 1] is V (0)− V (1) = 0. Therefore,I(z) < 0, z ∈ (0, 1)
for 3, . . . , 164.



TABLE I
SIGN CHANGES OFSTURM SEQUENCEI1(z), . . . , Im(z) OF I(x) IN (5) FOR l = 3, . . . , 11. V (z) IS THE NUMBER OF SIGN CHANGES IN THE SEQUENCE.

l m V (z) z sgn[I0(z)], sgn[I1(z)], . . . , sgn[Im(z)]
3 13 5 0 −−+++−−−+−−−++

5 1 −−+++++−−+−−−+
4 20 10 0 −−+−−+−−−++−+++−−+−−−

10 1 −−+−−−+−−++−−−−+−−+−−

5 27 12 0 −0+−−−++−−+++−++−−−++−−−+−−−

12 1 −−++−−−++−++++−−+++−−++−−++−

6 33 16 0 −0+−−−++−+++−−++−−+++−++−−++−−+−−−

16 1 −−++−−−−+−++−−−−++−−−++−+−−−+−+++−

7 39 18 0 −0+−−−++−−++−++++−+++−−++−−++−−−+++−+++−

18 1 −−++−−−++−−+−+++++−−−++−−++−−++−+++−−++−

8 45 22 0 −0+−−−+++−+−−−+−−−++−−++−−−++−−+−++++−−+−−−++−

22 1 −−++−−−+++−+−−+−−−−−++−−++−−−++−+−−−+−−+++−++−

9 51 24 0 −0+−−−++−−++−−+−+++++−+++−−++−−−+−−++−−−+−−+−−−−+++−

24 1 −−++−−−++−−++−+−−+++++−−+++−−+++−++−+++−++−−+++−+++−

10 57 28 0 −0+−−−++−−−+−+++−+−−−−++−−−++−+++−−−++−+−−−++−++−++++−+++−

28 1 −−++−−−+++−−+−++−−+−−−−−++−+++−−+++−−−+−+−−−++−++−−−+−−++−

11 63 30 0 −0+−−−++−+++−−++−+−−++++−−+++−−−+−−++++−++−++++−+−+++−++++−++++−

30 1 −−++−−−−+−−−+−−+−+++−+++++−−+−−−+++−−−−+−−+−+++−+++−++−−−+−++++−

C. Proof of Lemma 3

We first claim that forz ∈ (0, 1),

If
al + b

al + b+ 1
∈ (0, 1), then

q(z) := zal+b(1− z) ≤
1

al+ b + 1
, (8)

If
al + b

(a+ 2)l+ b− 2
∈ (0, 1), then

r(z) := zal+b(1− zl−1)2 ≤
( 2l − 2

(a+ 2)l + b− 2

)2

(9)

Differentiatingq(z) gives

dq(z)

dz
= zal+b−1(al + b− (al + b+ 1)z).

Since al+b
al+b+1 ∈ (0, 1), we see thatz = al+b

al+b+1 gives the
maximum value ofq(z).

q(z) ≤
( al + b

al+ b + 1

)al+b 1

al + b+ 1
<

1

al + b+ 1
.

Differentiatingr(z) gives

dr(z)

dz
= zal+b−1(1− zl−1)((al + b)− ((a+ 2)l + b− 2)zl−1).

Since al+b
(a+2)l+b−2 ∈ (0, 1), we see thatz =

(

al+b
(a+2)l+b−2

)
1

l−1

gives the maximum value ofr(z). Thus, next inequality holds.

r(z) ≤
( al + b

(a+ 2)l+ b− 2

)

al+b
l−1
( 2l− 2

(a+ 2)l+ b− 2

)2

<
( 2l− 2

(a+ 2)l+ b− 2

)2

.

In (a), we eliminate negative terms except for−l3. Next, in
(b), we apply (8) and (9) to each term of (5) by usingl ≥ 165.

We obtain an upper bound ofI(z) for z ∈ (0, 1) as follows.

I(z)
(a)
< − l3 + 27

l−2
∑

i=0

z3l−2+i(1− zl−1)

+ 108l2z−3+3l(1− zl−1)2

+ 9lz−4+l(1− zl−1)2(3z2 + 16z2l + 8z2+l)

+ l3{(1− z)z−9+l[56z1+5l + 8z3+3l(13 + 22z)

+ z5+l(41 + 73z)]}

(b)
< − l3 + 27

l−2
∑

i=0

[1] + 108l2
(2l − 2

5l − 5

)2

+ 9l
(

3
(2l − 2

3l − 4

)2
+ 16

(2l− 2

5l− 6

)2
+ 8
(2l− 2

4l− 4

)2
)

+ l3
( 56

6l − 7
+

176

4l− 4
+

104

4l− 5
+

41

2l − 3
+

73

2l − 2

)

(c)
< − l3 + 27(l− 1) +

432l2

25
+ 9l

(

3
5

9
+ 16

1

5
+ 8

1

4

)

+ 5l3
( 59

29l
+

176

19l
+

104

19l
+

73

9l
+

41

9l

)

<− l3 +
6775346

41325
l2 +

444

5
l =: I(l).

We used next inequalities valid forl ≥ 165 in (c).

(2l− 2

3l− 4

)2

≤
5

9
,

(2l− 2

5l− 6

)2

≤
1

5
,

6l− 7 ≥
29l

5
, 4l− 4 ≥

19l

5
,

4l− 5 ≥
19l

5
, 2l− 3 ≥

9l

5
,

2l − 2 ≥
9l

5
.

The roots ofI(l) = 0 are 0 and 3387673±
√
11627977054429
41325 ≃

−0.53984,+164.49. Thus, we conclude that forl ≥ 165 and
z ∈ (0, 1), I(z) < I(l) < 0.



V. CONCLUSION AND FUTURE WORK

In this paper, we proved that(l, 3, 3) SC-MN codes with
l ≥ 3 achieve capacity on the BEC under BP decoding for
sufficiently largeL andw. This codes do not have bit nodes
of degree two and have low error floors. We proved that the
potential threshold and Shannon limit of (l, r = 3, g = 3) MN
codes on the BEC are the same.
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APPENDIX

STURM’ S THEOREM

Theorem 3 ([8]). For a polynomialf(x) over R, we define
Sturm sequencesfi(x) (i = 0, . . . ,m) as f(x), f ′(x) and
polynomials obtained by applying Euclid’s algorithm tof(x)
and f ′(x).

f0(x) = f(x),

f1(x) = f ′(x),

fn−1(x) = qn(x)fn(x) − fn+1(x) (n = 1, . . . ,m− 1),

fm−1(x) = qm(x)fm(x).

For real numberc, let V (c) be the number of sign changes
in f0(c), f1(c), . . . , fm(c). If neither a ∈ R nor b ∈ R is a
multiple root off(x) = 0, then the number of distinct roots
of f(x) in (a, b] is V (a)− V (b).
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