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Abstract—Obata et al. proved that spatially-coupled (SC) evolution of({,r, g) MN codes is
MacKay-Neal (MN) codes achieve the capacity of BEC. However (t4+1) (0
the SC-MN codes codes have many variable nodes of degree two® = f(g(m ); 6)3 (2
and have higher error floors. In this paper, we prove that SC-M\ flmie) = (Il—l Exg—l)
codes with no variable nodes of degree two achieve the capgci ’ Lotz p
of BEC. gl@)=(1—(1—az1) (1—22)? 1= (1 —a1)" (1 —22)").

I. INTRODUCTION

Felstrom and Zigangirov introduced spatially-couple@)S B. Spatially-Coupled MacKay-Neal Codes

codes defined by sparse parity check matrix. SC codes ar@C-MN codes of coupling numbér and of coupling width .
based on constitution method for convolutional LDPC codésare defined by the Tanner graph constructed by the following
[1]. Lantmaier et al. confirmed that regular SC LDPC codd¥0cess. First, at each sectiore Z, placerM /I bit nodes
achieve MAP threshold of original LDPC block codes by type 1 and)M bits nodes of type 2. Bit nodes of type
BP decoding in at least certain accuratcy [2]. Kudekar et al|_ar_1d 2 are of degreé and g, respectively. Next, at each
proved that SC codes achieve MAP threshold by BP decodifgCtion € Z, place M check nodes of degree+ g. Then,
on binary erasure channel (BEG) [3] and binary symmetrﬁ?nneCt gdges uniformly at ra}ndom so that bit nodes of type
channel [[4]. 1 at section are connegted with check nodes at each section
Kasai et al. introduced SC MacKay-Neal (MN) codes, arid€ [i:---»i + w — 1] with 7M/w edges, and bit nodes of
showed that these codes with finite maximum degree achidvBe 2 at section are connected with check nodes at each
capacity of BEC by numerical experiment [5]. Obata et aﬁectlonz’ €liy...,i+w—1] W|th_gM/w edges. Bits at section
proved(l, 2, 2) SC-MN codes achieve capacify [6]. It has beeh ¢ [0: L — 1]) are shorten. Bits of type 1 and 2 at section
observed thatl, 2,2) SC-MN codes have many bit nodes of € [0, L —1] are punctured and transmitted, respectively. Rate

degree two. This leads to high error floors. of SC-MN codesRk"* is given by
In this paper, we deal witli, 3, 3) SC-MN codes whose bit NN P l+w—237 (1— (%)Hg) r
node degree is greater than two. We prove the codes achife = 7 7 =7 (L — o0).

the capacity of BEC. The codes achieve Shannon kfitit =

5 C. Vector Admissible System and Potential Function
— 5 foranyl > 3.

In this section, we define vector admissible systems and
Il. BACKGROUND potential functions.

A. MacKay-Neal Codes Definition 1. Definex £ [0,1]¢, andF : X x [0,1] — R and
(I,7,g) MN codes are multi-edge type (MET) LDPC codess : X — R as functionals satisfying:(0) = 0. Let D be a
defined by pair of multi-variables degree distributiqps») d x d positive diagonal matrix. Consider a general recursion

listed below. defined by

(t+1) ()y.
v(x;e) = garll + exg, x = flg(=™);e),
w(x) = zixs. where f : X x [0,1] - X andg : X — X are defined
;€) = f(z;e)D and G'(x) = g(x)D, where

. . . . y F'(x
In general, the recursion of density evolution of MET- LDP#,(:B;G) N (6}7(%)7.“ BF(ac))' Then the pair(f,g) defines

codes on BEC is given by 9z1, Oz
a vector admissible system if
ORI pi(1—x;1—¢ LD vi(y";e) 1. f,g are twice continuously differentiable,
J wi(1;1) B vj(1;1) 2. f(=z;¢) and g(x) are non-decreasing iz and ¢ with

, o respect to= [,
wherexg.t) is probability of erasure message sent along edges P

of type j at the t-th decoding round. Therefore, density We sayz < yif z; <y, forall 1 <i<d
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3. f(9(0);¢) = 0 and F(g(0);¢) = 0.
We sayz is a fixed point ifx = f(g(x);¢).

It can be seen that the density evolutigf, g) of (I,r,g)
MN codes given in[[2) is a vector admissible system by
choosingF'(z;¢),G(z) and D as below, since this system
(f,g) satisfies the condition in Definitidd 1.

Potential function

F(x;e) = %:cll + exg,

Gx)=ra;+gra+ (1 —21)" (1 —29) — 1, [
_1.0 1 1 1 1 1 1 1

D <r O)' 04 02 00 02 04 06 08 10
0 g

Definition 2 ([7, Def. 2]) We define the potential function,, '\ ool functioy(1: ¢) and D (w(e ) e(x1)) at the trivial fixed
U(z;¢) of a vector admissible syste(f, g) by points (solid) and non-trivial fixed points (dashed)(®f3,3) MN codes for

Ulx; ) 2 gx)Da’ — G(x) — Flg(a);e). B

The potential functiorV (z1, 22, €) of (I,r,g) MN codes is
given by of (f,g) with coupling numberZ and coupling widthw has

a unique fixed poin0.

U(xy,xo,€) = 1—6((1—(l—xl)r)(l—:zrg)g*l)g _ _
r 1 N We will show that the potential threshodd of (I, = 3,9 =
- 7(1 — (1= 21)"7 (1 - 22)) 3) MN codes isl — RMN =1 — 3/I for anyl > 3. This is
S —a) (1 -2 (14 T 9% ) sufficient to show thafl, 3, 3) SC-MN codes with sufficiently
11—z 1—z9/  largew andL achieve the capacity of BEC under BP decoding.

Definition 3 ([7, Def. 7]). Let F(c) 2 (xeX\{0) o= IIl. PROOF OFACHIEVING CAPACITY

f(g(x);e)} be a set of non-zero fixed points fere [0, 1]. In this section, we calculate the potential thresheldof
The potential threshold* is defined by (I, = 3,9 = 3) MN codes. To this end, we first investigate
N . . the set of fixed points¥(e).
¢ =supfe € 0, 1] [ minge (o Ulw; €) > O} The density evolution recursion ifl(2) can be rewritten as
Let €& be threshold of uncoupled system defined[in [7, Def. (t41) ()vre1 ()voriot
6]. For ¢ such thate® < ¢ < ¢*, we define energy gapE(e) vy =01 =-2) T (1 —ay7)7)
as (t+1) _ (1 ®rq _ (B)yg—1\g—1
AE(e) & max inf U(x;¢). " = (L= e )
¢elet]er(e) Fixed points(x1,z2;¢) of density evolution withz; = 0
We define the SC system of a vector admissible system.andx; = 1 are (0,0;¢) and(1,¢;¢€), respectively. We define
these fixed points as trivial fixed points and all other fixed
points as non-trivial fixed points. All non-trivial fixed pus

(21, 22(x1); e(x1)) can be parametrically described as

Definition 4 ([7, Def. 9]). For a vector admissible system
(f,g), we define the SC system of coupling humbeand
coupling widthw as

— 17 = H
o — {e, ZE{O,...7 -1}, e(z1) = xo(z1)

g—1

0, i¢{0,...,L—1}. (1= (1 —a1)r(1 = wa(21))977)

If we define(f, g) as the density evolution fdi, r, g) MN
codes in [[R), the SC system gives the density evolution
SC-MN codes with coupling numbet and coupling width
w.

with z; € (0,1).

fNext we shall investigate the value of the potential fumcti
at the fixed points. The value of the potential functions at
trivial fixed point (1, ¢, €) is respectively given by

Next theorem states that éf < €* then fixed points of SC T

vector system converge towar@sfor sufficiently largew. Ullee = 1- 1 ¢

Theorem 1([[7, Thm. 1]). Consider the constarit ;s 4, defined Figure[1 draws the potential function ¢f, 7, g) MN codes at
in [7, Lem. 11]. This constant value depends only(ghg). fixed pointsz € F(e). It appears that the potential function at
If e < e andw > (dKy4)/(2AE(€)), then the SC system non-trivial fixed points is always positive. We will proveigh



To be precise, the potential function @fr, g) MN codes for

non-trivial fixed points satisfies
potential function for trivial fixed poin{{3x* = 1— = = 52,
Ulw, w2(1), ez @ Erom Theoreni1l, fore < "2, the unique fixed point of
Our strategy of proof is as follows. First change the repréensity evolution for(, 3,3) SC-MN codes igD. O
sentation of[(4) into a polynomial form by changing variable The case with = 3 implies rate one codes over BEQ(
a few times. Then apply Sturm’s theorem for smallesand Some might think this is not interesting. Nevertheless, we
bound the polynomial for larget included the case with= 3 for comprehensiveness.

Proof: From [(#), potential function for non-trivial fixed
points is always positive. Therefore, from Definitibh 3 and

1)) >0 for x; €(0,1).

We defineU(z) = Ul(xz1,x2(z1), €(z1))|py=r1-1. Obvi-
ously, to prove[(4), it is sufficient to show/(z) > 0 for
€ (0,1).

IV. PROOF OF LEMMAS

A. Proof of Lemma&l]l

!
U(e) = =25 4 (1= 2)(1 - 421 o | |
l Partial derivative off (u, z) with respect tou gives
+ (1 _ 2)1/3(1 _ Zl71)72/3 _ 2(1 _ 2)2/3(1 _ Zl71)5/3' l
LHéu’ Z) :3(U + 3TZ — (1 — Z)(l — 4Zl_1))2 (6)
We use next lemma to eliminate fractional powetitx). The v 6(1 L— -1y >
proof is given in Sectiof TV-A. +6(1-2)(1-277) 20.
Lemma 1. Define H (u, z) as follows. Substitutingu = U(z) into H (u, z) gives
32! 1-1y)3
H(u,z) = (u+T—(1—z)(1—4z ) H(U(z),2)
_ (1 _ 2)1/3(1 _ Zl71)72/3 _ 2(1 _ 2)2/3(1 _ Zl71)5/3 3
+6(1 —2)(1 — 2~ )(u+3TZ—(1—z)(1—4zl71)) ( )
F6(1 = 2)(1 =2 {(1 =)0 =2
—(1=2)(1 =272 481 — 2)%(1 — 2'71)°, —2(1 - 2)23(1 - 2 1)P/3)
Then,H(0,2) < 0 for z € (0,1) impliesU(z) > 0 for z € —(1=2)1 =272 481 — 2)%(1 — 2'71)°
(O, 1). . . :(1 _ Z)(l _ Zl71)72 _ 8(1 _ 2)2(1 _ Zl71)5
Define I(z) := PA-=") H (0, 2). Obviously, to prove = 6(1—2)(1—=""H{(1 - R
(1-2)z% o —2(1 - 2)3(1 - 1))
H(0,2z) < 0 for z € (0,1), it is sufficient to provel(z) < 0
for » € (0,1). We see that(z) for [ > 3 is a polynomial as ~ + 6(1 — 2)(1 — 2" "1){(1 — 2)/3(1 — 2/=1)=/3
follows. 21— 2)2/3(1 H-1 5/3}
1—2 _ _
I(z) = =P 427y [ =) — (=A== = 2T
i=0 =0. (7)
— 271221 — 4 (1 = 22 . . . .
44 1.2 9 From [8), H(u, z) monotonically increasing with respect to
— 9Lz (1= 2H{(-3 4 2)2 u. From [1), (u, 2) = (U(z),z) is a root of H(u,z) = 0.
+16(—1+4 2)z% — 8(—1+2)z'*} Therefore H(0,z) < 0 for z € (0,1) implies U(z) > 0 for
— (1= 2)27 8 — 562145 4 22034 72) 2 € (0,1). O

+ 8227413 + 82) — 823T31(13 + 222)
+42*724(21 4 43z2) — 251 (41 4 732) }. (5)

We provel(z) < 0 for 3 < [ < 165 and! > 165 in the
following lemmas. The proofs are given in Sect[on 1V-B al %
Section 1V-C, respectively.

Lemma 2. For 3 <1 < 165, I(z) < 0 for z € (0,1).
Lemma 3. For [ > 165, I(z) < 0 for z € (0,1).

B. Proof of Lemma&l2

FromI(0) = —I? andI(1) = —[3, we see that = 0,1 are
not multiple roots of equatiofi(z) = 0. Let I (2), ..., In(2)
e Sturm sequences &fx). Let V(z) be the number of sign
changes in the sequence. Tallle | lists sign changes of Sturm
sequence; (z),...,In(z) of I(z) in @) for I = 3,...,11.
V(z) is the number of sign changes in the sequence. We see
thatV’(0) = V/(1). We observed that' (0) = V(1) forl < 165
Theorem 2. For anyl > 3 ande < ¢%h® =1 — % the unique but not listed all due to the space limit. From Theofdm 3, this
fixed point of density evolution df,3,3) SC-MN codes of implies that the number of distinct roots of equatib) = 0
coupling numbetZ and coupling widthw is 0 for sufficiently in (0,1] is V(0) — V(1) = 0. Therefore,[(z) < 0,z € (0,1)
large w and L. for 3,...,164. O



TABLE |

SIGN CHANGES OFSTURM SEQUENCEI{ (2), .. ., I, (2) OF I(x) IN (§) FORI = 3,...,11. V(z) IS THE NUMBER OF SIGN CHANGES IN THE SEQUENCE

I | m | V(2) | z | sgn[lo(2)],sgn[l1(2)],...,sgn[ln(2)]
313 5 |0 | —F++—F——++
5 | 1|~
T[20] 10 [0 | —F—F——FF—F++—F—
10 | 1| ——F———t——ft————p——p——
B [27| 12 |0 | O0t——FF—Frt—Ft———F
12 | 1| bbb —
6 [33] 16 | 0| —0F———FF—F++—FF——FFF—FF——F+—F——
16 | 1| ——Ft————t—tt———— b=t ———f
7 | 39| 18 | O | —O0t———Ft——tt—Fttt—tFtt——tt——Ft———tFt—ttt—
18 | 1| ——4t———tt——t ottt ———tt——t ==ttt ——tt—
8 [#5| 22 | 0| O0t——Ftr—F———F——— T F -
22 | 1| ——t
9 (51 24 | 0| —O0+——F++—F+——F+—FT+trr—Ft+t—F——F—F—F—F———+
24 | 1| ——4t———tt——tt—t——t bttt =ttt b=t —— b
1057 28 [0 | —0t——Ft——F—FFtt—Ft————FF———FF—FtF———tF—F——— Tt~ T—
28 | 1| —— 4ttt oo — o m— o m — e — o — o —
11 [63] 30 [0 | —0+——FF—F++—Fr—F—F -ttt
30 | 1| ——tF———t——t

C. Proof of Lemmal3
We first claim that forz € (0,1),

We obtain an upper bound dfz) for z € (0,1) as follows.

-2
)
I( ) ( _ l3 + 27zz3l 2+l(1 _ Zl—l)

al +b

—— € (0,1), then i=0
al +b+1 (0,1) + 108122—3+3l(1 _ 21—1)2
1
. al+b
q(z) =21 —-2) < P (8) P L1 — 2 1)2(322 41622 4 822H)
14b 3001 _ ») o9+ [5G, 1451 3+31
it al + € (0,1), then +1°{(1 - 2)z [5627 77 4+ 8277 (13 + 222)
(a+2)+b—2 + 2541 + 732))}
20 —2 2
re)= A < () @9 2 22,
(a+2)l+b-2 < - 1B 427 10812
* z; +1085(5 =)
Differentiating ¢(z) gives 9] — 9 9] — 9 9] _ 9
+91(3(5—)" +16(5—=)" +8(5—)")
dg(z) st 34 51— 6 Al —4
o =7 (al +b—(al +b+1)z). 5( 56 176 104 41 73
z + 3 + )
. . 6/l—7 4 —4 4-5 2-3 20-2
Since al‘ﬁjlle ((g(l)), we see that: = b gives the )
maximum value of(z). (c) 4321 5 1 1
S oByti-1)+ +9z(3—+16—+8—)
al +b Nal+b 1 1 9 8 4
q(z) < ( ) < , 59 176 104 73 41
“\al+b+1 al+b+1 " al+b+1 +50° (291 o1 E_FW_FW)
Differentiatingr(z) gives _ 3y 0775346 % —
<—=1"+ 11395 12 5 I=:1(1).
dz—(z) = 20H=1 ) — 2N ((al 4+ b) — ((a + 2)1 + b — 2)2' ). We used next inequalities valid fér> 165 in (c).
z
20—2\2 5 20—2\2 1
( ) S a0 ( ) S )
; al+b al+b et 3i—4 ) Sl—6 E
Since 55— € (0,1), we see that = (m) 6l—7> 291 M—d> 191
gives the maximum value of(z). Thus, next inequality holds. - 5 - =
191 9l
()<( al +b )ﬁfl( 2 —2 )2 A-5>—, 2A-3>
T2 B a——— B e————
“\a+2)i+b-2 (a+2)+b—2 9l
20 -2 > T

- ( 20 — 2 )2
(a+2)l+b-2/ "
In (a), we eliminate negative terms except fal®. Next, in
(b), we apply[(B) and{9) to each term bf (5) by using 165.

The roots OfI( ) — 0 are( and 3387673i\/ 1162797705442

—0.53984, +164.49. Thus we conclude that fdr> 165 and

ze(O,l),I()<I(l) 0. O



V. CONCLUSION AND FUTURE WORK

In this paper, we proved thdf, 3,3) SC-MN codes with
I > 3 achieve capacity on the BEC under BP decoding for
sufficiently largel andw. This codes do not have bit nodes
of degree two and have low error floors. We proved that the
potential threshold and Shannon limit éf« = 3, g = 3) MN
codes on the BEC are the same.
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APPENDIX
STURM’'S THEOREM

Theorem 3 ([8]). For a polynomial f(z) over R, we define
Sturm sequenceg;(z) (¢ = 0,...,m) as f(z), f'(z) and
polynomials obtained by applying Euclid’s algorithm fdx)

and f'(z).

fo(z) = [flo),
Al@) = fl(a),
fﬂ—l(‘r) = Qn(x)fn(x)_fn-i-l(w) (n=1,...,m—1),

fm—1(x) = gm(x)fm ().
For real numbere, let V(c) be the number of sign changes
in fo(e), f1(c),..., fm(c). If neithera € R norb € R is a

multiple root of f(x) = 0, then the number of distinct roots
of f(x) in (a,b] is V(a) — V(b).
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