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Abstract—Simultaneous detection and estimation is important
in many engineering applications. In particular, there are many
applications where it is important to perform signal detection
and Signal-to-Noise-Ratio (SNR) estimation jointly. Application
of existing frameworks in the literature that handle simultaneous
detection and estimation is not straightforward for this class of
application. This paper therefore aims at bridging the gap be-
tween an existing framework, specifically the work by Middleton
et al., and the mentioned application class by presenting a jointly
optimal detector and signal and noise power estimators. The
detector and estimators are given for the Gaussian observation
model with appropriate conjugate priors on the signal and noise
power. Simulation results affirm the superior performance of
the optimal solution compared to the separate detection and
estimation approaches.

I. INTRODUCTION

Traditional signal processing applications, such as radar,
sonar and communication systems, are often limited to sep-
arate applications of detection and estimation theory [1].
Parameters of interest are first estimated using pilot signals
during the training period; then the estimates are fed into the
detection process [2].

Many modern applications of detection and estimation the-
ory, however, require the combined effort of both detector and
estimator. A few examples are

• In object search, tracking, and classification using mobile
robots with limited resources, detection and estimation
are the two main competing tasks on an energy-limited
system. It is therefore important for the system to con-
sider both tasks jointly for the best utilization of the
robot’s resource [3], [4].

• Recently, it was shown in [5] that a scheduler can rely
on SNR estimates to elect between different detectors
to yield an energy-efficient detection system. The effi-
ciency of the detection system therefore depends on the
quality of the SNR estimates. Incorporating the estimator
design into the design of the detection system, instead

of considering them separately, is evidently necessary for
optimality.

• In voice activity detector (VAD) designs, the speech de-
tection performance depends heavily on the quality of the
noise and a priori Signal-to-Noise-Ratio (SNR) estimates
[6], [7]; therefore, it is important for an optimal design
of VAD to consider both the detection and estimation
operations jointly.

• Simultaneous detection and estimation can also be used
to greatly improve the performance of existing techniques
that treated the two operations separately. For example,
Abramson and Cohen proposed a novel method for
speech-enhancement that utilized simultaneous detection
and estimation [8]. While traditional speech-enhancement
systems that used spectral suppression [9], [10] only
performed speech estimation and had to sacrifice either
musical noise reduction or speech distortion in highly
non-stationary noise environments, Abramson and Co-
hen’s work allowed a systematic way to optimally trade-
off between the musical noise reduction and speech
distortion, hence significantly improving the performance
of their speech-enhancement system.

Some of the above-mentioned applications can be solved
readily using the existing literatures for optimal simultaneous
detection and estimation (OSDE), such as the framework of
Middleton et al. [11], [12] or Moustakides et al. [13]–[15].
However, for a certain class of applications where the estima-
tion of SNR, specifically signal and noise power, under signal
presence uncertainty is required, it is unclear how the existing
frameworks can be utilized (see Section II). The contribution
of this work therefore aims at bridging the gap between
the existing theoretical work, specifically by Middleton et al.
[11], and the referred application class by providing the joint
optimal detector and estimators for signal and noise power.

The roadmap for the rest of the paper is given as follows.
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Section II gives an overview of the prior work in the field of
simultaneous detection and estimation. Section III formulates
the problem based on the statistical decision framework of
Middleton et al. [11]. The benefit of this formulation is then
demonstrated in Section IV on the classical Gaussian obser-
vation model with appropriate conjugate priors on the signal
and noise power. The Gaussian model was chosen because it
has been proven to be sufficient for many application classes,
such as communications [1] and voice activity detection [7].
Finally, Section V gives empirical evidence to validate the
proposed method.

II. BACKGROUND

It is important to first distinguish between the bona fide
simultaneous detection and estimation formulations, where
the parameters to be estimated are continuous, and the
multiple-hypotheses formulations in [16]–[18]. In the multiple-
hypotheses formulations, the latent parameters are discrete
and finite. For instance, the parameters in [16], [17] are the
frequency indices; the framework in [18] only considered
parameters that live in discrete parameter spaces with finite
elements. The finite parameter space reduces the estimation
problem to the classification problem, where observations are
classified into one of the multiple hypotheses. Since detection
is merely a special case of classification, the whole problem of
”joint detection and classification” [18] is simply the classical
multiple-hypotheses testing problem.

There exist multiple frameworks in the literature to address
the bona fide simultaneous detection and estimation prob-
lem. The most widely used one is probably the frequentist
framework due to its simple implementation. Specifically, the
frequentist framework assumes no prior knowledge on the
distribution of the unknown parameters. Maximum-likelihood
(ML) estimators are used to provide estimates for the pa-
rameters in the likelihood-ratio test of the detector, yielding
the celebrated generalized likelihood-ratio test (GLRT) [1],
[19]. Obviously, GLRT is suboptimal if prior distributions of
parameters are known.

The Bayesian framework takes advantage of the prior dis-
tributions, of both the unknown hypotheses H0, H1 and the
unknown parameters θ0, θ1, to minimize the Bayes risk of the
joint detection and estimation operations. Middleton et al. [11],
[12] were the first to lay the foundation for this framework.
Recently, Moustakides et al. [13], [14] relaxed the prior
distribution assumption on the hypotheses H0, H1 to propose
a Neyman-Pearson-like formulation; the unknown parameters
are still viewed as random with known distributions. In either

the pure-Bayesian (Middleton) or the Neyman-Pearson-like
formulation (Moustakides), the common observation model
was given as follows.

H0 : Y ∼ f0(y|θ0),Θ0 ∼ p0(θ0)

H1 : Y ∼ f1(y|θ1),Θ1 ∼ p1(θ1)
(1)

where Y is the observation vector. Note that bold fonts are
used to distinguish vector against scalar quantities.

While the theoretical observation model in (1) is readily
suitable for some problems [15], [16], a more physically
amenable observation model for many problems can be given
as follows.

H0 :Y = N

H1 :Y = N + X
(2)

where X is the signal vector with a scalar variance (power) S
and N is the noise vector with a scalar variance (power) V .
In addition, S and V are viewed as random parameters with
known prior distribution, pS(s) and pV (v). One way to put
the observation model (2) into the form of (1) is to treat θ1

as a vector of two components s, v and θ0 as v.

In the next section, the problem of simultaneous detection
and estimation of signal and noise power will be formulated
and solved optimally. It is noteworthy to mention that this
approach is different from most prior work that are heuristic-
based. In particular, SNR estimation is commonly achieved
by a noise tracker and an a priori SNR estimator, where each
component is individually designed [6], [8]. Techniques for
noise tracking include soft decision for MMSE criterion [6],
signal-presence-probability controlled recursive average [20]–
[22], and minimum statistic [23]. Techniques for a priori SNR
estimation include ML [6], [9] and decision-directed (DD) [7],
[9].

III. FORMULATION

This section formulates the simultaneous detection and SNR
estimation problem based on the framework of Middleton et
al. [11]. This allows the use of prior probabilities from both
hypotheses and parameters in order to calculate the Bayes risk
or expected cost associated with the combined detection and
estimation operations.

R(δ, ŝ, v̂) = E
[ 1,1∑
i=0
j=0

Cij(S, V, ŝ(Y), v̂(Y))πiδ(γj |Y))
]

(3)



where the cost functions Cij are assumed to have quadratic
forms as follows.

C11(S, V, ŝ(Y), v̂(Y)) =
[
(S − ŝ(Y))2 + (V − v̂(Y))2

]
b11

+ a11

C01(V, ŝ(Y), v̂(Y)) =
[
(0− ŝ(Y))2 + (V − v̂(Y))2

]
b01

+ a01

C10(S, V, v̂(Y)) =
[
(S − 0)2 + (V − v̂(Y))2

]
b10

+ a10

C00(V, v̂(Y)) = (V − v̂(Y))2b00 + a00

with the signal power estimate ŝ(Y) being 0 when the detector
decides a noise-only vector; the noise power estimate v̂(Y) is
always provided. The prior probabilities of each hypothesis are
denoted by π0 = P (H0) and π1 = P (H1). δ is the decision
rule that governs the distribution of the decisions random vari-
able that takes on value γ1, γ0 given the observation vector Y.
Finally, for a decision γj and a true hypothesis Hi, aij is the
detection cost parameter; bij is the conversion parameter that
maps estimation error into detection error, hence specifying the
trade-off between detection and estimation cost. The choice
of these parameters directly affects the resulting joint detector
and estimator, as will be seen later in this section.

It is worth mentioning that the conversion parameter bij
should be chosen to take into account the scaling of data.
Scaled data leads to scaled estimation error, which needs
readjustment in accordance with the detection error.

Define the following conditional risks, similarly to what was
done in [8]

r11(y, ŝ, v̂) =

∫ ∫
C11(s, v, ŝ(y), v̂(y))f1(y|s, v)pS,V (s, v)

ds dv

r01(y, ŝ, v̂) =

∫
C01(v, ŝ(y), v̂(y))f0(y|v)pV (v)dv

r10(y, v̂) =

∫ ∫
C10(s, v, v̂(y))f1(y|s, v)pS,V (s, v)ds dv

r00(y, v̂) =

∫
C00(v, v̂(y))f0(y|v)pV (v)dv

(4)
where f1(y|s, v) and f0(y|v) are observation distributions
under H1 and H0, respectively. In general, the signal and noise
power can be statistically dependent as denoted by pS,V (s, v).
Hence (3) can be rewritten explicitly as follows

R(δ, ŝ, v̂) =

∫
δ(γ1|y)

[
π1r11(y, ŝ, v̂) + π0r01(y, v̂)

]
dy+∫

δ(γ0|y)
[
π1r10(y, v̂) + π0r00(y, ŝ, v̂)

]
dy

and the objective is to minimize it with respect to the decision
rule and the estimators. Namely,

min
δ,ŝ,v̂

R(δ, ŝ, v̂)

The solution for the above minimization problem is straight-
forward 1 and intuitive, therefore only results are given while
derivations are left out due to page limitation. For simplicity,
the following shorthand notations are used.

〈f(s, v)〉S,V =

∫ ∫
f(s, v)pS,V (s, v)dsdv

〈f(v)〉V =

∫
f(v)pV (v)dv

for any function f such that the integral is well-defined.
The optimal signal-power estimate is given by the following

expression.

ŝopt =
Λ1

Λ1 + 1
ŝH1 (5)

where

Λ1 =
b11π1〈f1(y|s, v)〉S,V
b01π0〈f0(y|v)〉V

is the generalized likelihood ratio [11] when the detector’s
decision is γ1 and

ŝH1 =
〈sf1(y|s, v)〉S,V
〈f1(y|s, v)〉S,V

(6)

is the signal power estimate assuming that H1 is true. It
is interesting to note that Equation (5) has an intuitive in-
terpretation: The optimal signal power estimator is simply
the estimator assuming H1 is true weighted by the posterior
probability that H1 is true, i.e. Λ1

Λ1+1 .
Unlike the single-equation signal-power estimate in (5), the

optimal noise-power estimate is given by the following two
equations, depending on the decision of the detector.

v̂optγ1 =
Λ1

Λ1 + 1
v̂H1 +

1

Λ1 + 1
v̂H0 (7)

v̂optγ0 =
Λ0

Λ0 + 1
v̂H1 +

1

Λ0 + 1
v̂H0 (8)

where

Λ0 =
b10π1〈f1(y|s, v)〉S,V
b00π0〈f0(y|v)〉V

is the generalized likelihood ratio [11] when the detector’s
decision is γ0 and

v̂H1 =
〈vf1(y|s, v)〉S,V
〈f1(y|s, v)〉S,V

v̂H0 =
〈vf0(y|v)〉V
〈f0(y|v)〉V

(9)

1Using the two-step minimization procedure from [11]



are the noise power estimates assuming either H1 or H0

was true, respectively. Similar to the optimal signal-power
estimator, the optimal noise-power estimators in (7) and (8)
also have intuitive interpretations: they are the weighted sum
of the noise-power estimators under H1 and H0, with the
weighting coefficients being the posterior probabilities. (7) is
used when the detector’s decision is γ1 while (8) is used when
the detector’s decision is γ0.

Based on the optimal signal power estimator in (5) and
noise power estimators in (7) and (8), it can be shown that
the optimal detector is

δopt(γ1|y) =

1 if
r10(y,v̂optγ0

)−r11(y,ŝopt,v̂optγ1
)

r01(y,ŝopt,v̂optγ1
)−r00(y,v̂optγ0

)
≥ π0

π1

0 else

Furthermore, if b10 = a10 = b11, a11 = 0 and b01 = a01 =

b00, a00 = 0, then the right hand side of (10) can be compactly
expressed as follows.

〈f1(y|s, v)〉S,V
〈f0(y|v)〉V

[
1− ŝopt +

2ŝoptŝH1

(ŝopt + 1)

]b11

b00
≷
π0

π1
(10)

which is still fundamentally a generalized likelihood ratio. The
extra weighting term exists to account for a joint detection and
estimation operation. As a sanity check, if no estimation is
required, i.e. ŝopt = 0, the detection rule in (10) degenerates
into the well-known generalized likelihood ratio test.

IV. GAUSSIAN OBSERVATIONS WITH APPROPRIATE

CONJUGATE PRIORS ON SIGNAL AND NOISE POWER

Expressions (5), (7), (8), and (10) all involve integrating
some functions of the likelihoods multiplied by priors on the
signal and noise power. Therefore with appropriate conjugate
priors, the analytical expressions for (5), (7), (8), and (10) can
be obtained. In particular, if the observation vectors are i.i.d.,
zero-mean Gaussian, and the signal and noise are assumed to
be independent under H1, i.e.

H0 :Y ∼ 1
√

2πv
N

exp
−
∑N
i=1 y

2
i

2v

H1 :Y ∼ 1√
2π(s+ v)

N
exp
−
∑N
i=1 y

2
i

2(s+ v)

Under H0, it is well-known that the conjugate prior for
a Gaussian distribution with random variance is the inverse-
Gamma distribution [24], [25]. Hence, it is assumed that

pV (v) =
βα0

0

Γ(α0)

1

vα0+1
exp

(
− β0

v

)
where α0 > 0 and β0 > 0 are the shape and scale parameters
under H0. On the other hand, a natural conjugate prior under

H1 can be found to be

pS,V (s, v) =
βα1−1

1

C11Γ(α1 − 1)

1

(s+ v)α1+1
exp

(
− β1

s+ v

)
(11)

where α1 > 1 and β1 > 0 are the shape and scale parameters
under H1 and

Cmn =

∫ φ2

φ1

2| sinm θ cosn θ|dθ m, n ∈ N+ (12)

is the normalizing constant that, in the case of C11, ensures
(11) is a distribution; hence it depends on the support of
(11), which is application-dependent. φ1 and φ2 are additional
degrees of freedom that, once given, can be used to compute
Cmn. The proof that (11) is indeed a distribution follows from
a straightforward change of variables.

The same change of variables also leads to the following
results. Under H0,

〈f0(y|v)〉V =
βα0

0√
2π

N
Γ(α0)

Γ(α0 +N/2)

(
2β0+

∑N
i=1 y

2
i

2 )α0+N/2

〈vf0(y|v)〉V =
βα0

0√
2π

N
Γ(α0)

Γ(α0 +N/2− 1)

(
2β0+

∑N
i=1 y

2
i

2 )α0+N/2−1

and under H1,

〈f1(y|s, v)〉S,V =
βα1−1

1√
2π

N
Γ(α1 − 1)

Γ(α1 +N/2− 1)

(
2β1+

∑N
i=1 y

2
i

2 )α1+N/2−1

〈vf1(y|s, v)〉S,V =
C31/C11β

α1−1
1√

2π
N

Γ(α1 − 1)

Γ(α1 +N/2− 2)

(
2β1+

∑N
i=1 y

2
i

2 )α1+N/2−2

〈sf1(y|s, v)〉S,V =
C13/C11β

α1−1
1√

2π
N

Γ(α1 − 1)

Γ(α1 +N/2− 2)

(
2β1+

∑N
i=1 y

2
i

2 )α1+N/2−2

These expressions are handy for computing (5), (7), (8), and
(10).

V. SIMULATION

To demonstrate the utility of the derived detector and
estimators, a set of simulations was carried out. For each sim-
ulation, 20,000 independent observation vectors, each of size
128, were randomly generated using a zero-mean Gaussian
distribution with hypothesis-dependent power. The hypothesis
H1 and H0 are equally likely and the power under H0 and
H1 are generated using the inverse gamma distribution. The
generic cost constants were set as follows b00 = b11 = b01 =

b10 = a01 = a10 = 1 and a00 = a11 = 0 for simplicity.
Finally, φ1 is set to 0 and φ2 to π/8 to impose the prior
knowledge that signal power is usually much higher than noise
power.

The proposed simultaneous approach was compared against
the separate approach. The separate detection and estimation



Fig. 1. Performance comparison of detectors and estimators designed by the
two approaches. In these simulations, the shape parameters are assumed to be
the same α0 = α1 = α, and the signal power scale is fixed β1 = 9.1 while
the noise power scale varies.

approach optimizes the detector and estimator separately. In
summary, the detector’s test statistic is given by the general-
ized likelihood ratio

Λ =
〈f1(y|s, v)〉S,V
〈f0(y|v)〉V

H1

≷
H0

π0

π1

and the estimators are simply ŝH1 , v̂H1 , and v̂H0 .
Figure 1 shows that, for all three criteria, the optimal joint

design approach outperforms the separate approach.

VI. CONCLUSION

An optimal detector and signal and noise power estimators
was jointly derived for the Gaussian observation model with
appropriate conjugate priors on the signal and noise power.
Future work will apply the developed techniques to improve
widely used algorithms, such as Sohn’s VAD [6].
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