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Abstract—We determine the capacity of a discrete memoryless
communication channel with an energy harvesting transmitter
and its battery state information available at the transmitter and
the receiver. This capacity is an upper bound for the problem
where side information is available only at the transmitter. Since
channel output feedback does not increase the capacity in this
case, we equivalently study the resulting finite-state Markov chan-
nel with feedback. We express the capacity in terms of directed
information. Additionally, we provide sufficient conditions under
which the capacity expression is further simplified to include
the stationary distribution of the battery state. We also obtain
a single-letter expression for the capacity with battery state
information at both sides and an infinite-sized battery. Lastly, we
consider achievable schemes when side information is available
only at the transmitter for the case of an arbitrary finite-sized
battery. We numerically evaluate the capacity and achievable
rates with and without receiver side information.

I. INTRODUCTION

We consider a communication channel with an energy har-
vesting transmitter and its battery state information available
at the transmitter and the receiver as shown in Fig. 1. In this
channel, energy needed for communication is harvested by the
transmitter throughout the communication, and the energy of
each transmitted code symbol is constrained to the available
battery energy in that channel use. The capacity of this
channel with only transmitter side battery state information
has been determined in recent work for two extreme cases in
the Gaussian setting: When the battery size is unlimited, [1]
showed that the capacity is equal to the capacity of the same
system with an average power constraint equal to the average
recharge rate. When the battery size is zero, [2] showed that
the capacity is achieved by using Shannon strategies [3]. In
this paper, we determine the capacity of this channel for a
discrete memoryless setting with an arbitrary finite battery
size, when battery state information is available at both sides.
This constitutes an upper bound for the capacity when battery
state information is available only at the transmitter.

A communication channel with an energy harvesting trans-
mitter is an instance of a state-dependent channel with input
dependence and memory in the state process. We model energy
arrivals as multiples of a fixed quanta, and obtain a physical
layer which has a discrete alphabet based on this quanta. Con-
sequently, we obtain a finite-state Markov channel where the
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Fig. 1. The channel with an energy harvesting transmitter with a finite-sized
battery. The battery state information is available at both sides.

state process interacts with the channel input. We determine
the capacity of this finite-state Markov channel when battery
state information is available at both the transmitter and the
receiver. Since the battery state information is available at
the receiver, the information flows through both the physical
channel and the battery. That is, the channel uncertainty in this
case is due both to the error the physical channel introduces
and to the uncertainty in the energy arrival process. In view of
[4], in this case, the output feedback does not increase capac-
ity. Thus, we express the capacity as the maximum directed
information between the input and the physical channel output
and the battery state. Moreover, utilizing the results reported in
[5], we find sufficient conditions for which the optimal input
distribution is stationary and the capacity is expressed in a
simpler form in terms of stationary probabilities of the battery
states. We also find a single-letter capacity expression for the
infinite-sized battery case in which the finite-state results in
[4], [5] are no longer valid.

Next, we consider the case when battery state information
is available at the transmitter only. The capacity for this case
with a finite-sized battery is an open problem in general [6],
[7]. In the special case of noiseless binary channel and unit-
sized battery, we showed in [6] that the channel is equivalent
to an i.i.d. additive geometric-noise timing channel with causal
information of the noise available at the transmitter. This
equivalence enabled a single-letter capacity expression with
an auxiliary random variable. In this paper, we observe that
the approach in [6] is still suitable when battery size is larger
than one, and develop an achievable scheme based on the
timing channel in [6]. The key to this scheme is the fact that
the additive noise in the timing channel, which is causally
available to the transmitter, has memory and input dependence
in a suitable form, allowing us to determine a new class of



achievable schemes combining the method in [8] and Shannon
strategies in [3]. We calculate the achievable rate by using the
simulation-based method in [8]. We numerically evaluate and
compare the capacity and achievable rates with and without
battery state information at the receiver.

II. THE CHANNEL MODEL

We consider a channel with an energy harvesting transmitter.
The battery in the transmitter can store at most Emax units of
energy. Input symbols belong to the set {0, 1, . . . ,K}. Each
symbol k has k-unit energy cost. When channel input Xi is
transmitted in the ith channel use, the receiver gets Yi. The
stochastic relation p(y|x) between the input and the output is
determined by the underlying physical channel.

At each channel use, the transmitter both harvests energy
and transmits a symbol. The order of harvesting and trans-
mission in a channel use is as follows: Si denotes the energy
available in the battery at channel use i. The transmitter ob-
serves the available battery energy Si and transmits a symbol
Xi. The energy of this symbol is constrained by the battery
energy: Xi ≤ Si. After sending the symbol, the transmitter
harvests energy. Energy arrivals (harvesting) is modeled as an
i.i.d. process with Ei ∈ {0, 1, . . . , |E|} and Pr[Ei = e] = qe
for e ∈ {0, 1, . . . , |E|}. Incoming energy Ei is first stored in
the battery, if there is space, before it is used for transmission.
Since the battery has finite size, energies may overflow and
get wasted. The battery state is updated as:

Si+1 = min{Si −Xi + Ei, Emax} (1)

In view of (1) and the physical channel model, the battery
level Si and the channel output Yi evolve according to the
following joint distribution:

p(si+1, yi|xi, si) = p(yi|xi)p(si+1|xi, si) (2)

We note that Si is a state for this channel that is available at
both the transmitter and the receiver. Therefore, information
flows through both the physical channel p(y|x) as well as
the battery state. The uncertainty is introduced due to both
physical channel and the energy arrival process. Note that even
when the channel is noiseless, uncertainty of the battery energy
at the transmitter side makes it challenging for the receiver to
decode the messages of the transmitter as the state has memory
and input dependence.

III. CAPACITY WITH BATTERY STATE INFORMATION
AVAILABLE AT BOTH SIDES

Let us define two variables Y1i , Si+1 and Y2i , Yi and
express the model in (2) in terms of the new definitions as:

p(y1i, y2i|xi, y1(i−1)) (3)

That is, y1(i−1) acts as a state, which is available at the
transmitter and the receiver. The model in (3) was previously
studied in [4, Section VIII]. Since the channel in (3) is con-
nected in the sense of [4, Definition 3], the channel capacity
is independent of the initial state and is characterized as in the
following theorem (see also [4, Appendix VIII]).
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Fig. 2. Virtual channel model with feedback. Presence of the feedback of Y2

does not affect the capacity.

Theorem 1 The channel capacity for (3) is:

C = lim
N→∞

max
p(xi|y1(i−1))

1

N

N∑
i=1

I(Xi;Y1i, Y2i|Y1(i−1)) (4)

Note that the expression in (4) is the maximum directed
information from the input X to the outputs Y1, Y2 for the
channel in (3). Computation of (4) is possible by, e.g., the
algorithm in [9], which is a combination of Blahut-Arimoto
algorithm and dynamic programming.

In view of [4, Theorem 19], feedback of the channel output
Y2 does not increase the capacity (see also [10]). We note that
the channel model (3) with the feedback of Y2, as shown in
Fig. 2, also matches with the model in [5]. It is shown in [5]
that under some technical conditions, the capacity is achieved
by stationary input distributions and it can be expressed in
terms of the stationary probability of the outputs Y1 and Y2.
Specifically, the channel transition probability must satisfy
strong irreducibility and strong aperiodicity conditions in [5].
Our goal is to extend the results in [5] for the channel in (3).
To this end, we first state the following lemma.

Lemma 1 Let {M1i} and {M2i} be strongly irreducible and
strongly aperiodic Markov chains with a common input Xi. If
M1i → Xi → M2i holds, joint Markov process {M1i,M2i}
is also strongly irreducible and strongly aperiodic.

Proof: Since M1i → Xi →M2i holds, we have:

p(m1i,m2i|xi,m1(i−1),m2(i−1))

= p(m1i|xi,m1(i−1))p(m2i|xi,m2(i−1)) (5)

In view of (5), any path from the joint state (m1,m2) to
(m̃1, m̃2) requires {M1i} to travel from m1 to m̃1 and {M2i}
from m2 to m̃2, respectively. Therefore, all possible paths
from (m1,m2) to (m̃1, m̃2) is a Cartesian product of all
paths from m1 to m̃1 in {M1i} and from m2 to m̃2 in
{M2i}. Whenever {M1i} and {M2i} are individually strongly
irreducible, there exists a path from any m1 to m̃1 in {M1i}
and from m2 to m̃2 in {M2i} and therefore, there exits a path
from any (m1,m2) to (m̃1, m̃2) in {M1i,M2i}, which proves
that {M1i,M2i} is also strongly irreducible. Similarly, due
to the Cartesian product property, lengths of paths from any
(m1,m2) to (m̃1, m̃2) are common multiples of lengths of
paths from m1 to m̃1 in {M1i} and lengths of paths from m2

to m̃2 in {M2i}. Therefore, all possible lengths of paths from
(m1,m2) to itself must have greatest common divisor 1 and
{M1i,M2i} is strongly aperiodic as otherwise either {M1i}
or {M2i} is not strongly aperiodic. �



Lemma 1 states that two strongly irreducible and strongly
aperiodic Markov chains driven by a single input is jointly
strongly irreducible and strongly aperiodic if they are condi-
tionally independent given the input. Note that this conditional
independence is satisfied by the energy harvesting model in
(2)-(3). We are now ready to prove the following theorem.

Theorem 2 Assume that the channel p(y1i|xi, y1(i−1)) is
strongly irreducible and strongly aperiodic and let the channel
Qk = p(y1i, y2i|xi, y1(i−1) = k) have a rank |X | transition
matrix for any given y1(i−1) = k. Moreover, assume that
Y1i → Xi → Y2i holds with p(y2i|xi) > 0 for all y2i and
xi. Then, the capacity of the channel in (3) is:

C = max
p(x|ỹ1)

|Y1|∑
k=1

πkI(X;Y1, Y2|Ỹ1 = k) (6)

where Ỹ1 denotes the one-unit delayed feedback of Y1.

Proof: In view of Lemma 1, the hypothesis in [5, Theorem 6]
are satisfied for the channel p(y1i, y2i|xi, y1(i−1), y2(i−1)). In
particular, by [5, Lemma 6], the rank condition we stated in the
theorem implies that the technical condition in the hypothesis
in [5, Theorem 6] is satisfied. Therefore, the capacity C is:

max
p(x|ỹ1,ỹ2)

∑
k1

∑
k2

πk1,k2I(X;Y1, Y2|Ỹ1 = k1, Ỹ2 = k2) (7)

= max
p(x|ỹ1,ỹ2)

∑
k1

πk1

∑
k2

πk2|k1
I(X;Y1, Y2|Ỹ1 = k1) (8)

where (8) follows from the fact that the channel in (3) does
not have dependence on Ỹ2. In (8), the input distributions are
selected based on the past channel outputs, i.e., p(x|ỹ1 =
k1, ỹ2 = k2). Now, consider the marginal distribution of X
given Ỹ1 = k1:

p(x|ỹ1 = k1) =

|Y2|∑
k2=1

p(x|ỹ1 = k1, ỹ2 = k2)πk2|k1
(9)

By Jensen’s inequality and the concavity of mutual informa-
tion we have:∑

k2

πk2|k1
I(X;Y1, Y2|Ỹ1 = k1)|p(x|ỹ1=k1,ỹ2=k2)

≤ I(X;Y1, Y2|Ỹ1 = k1)|p(x|ỹ1=k1) (10)

To complete the proof, it remains to show that this ad-
justment does not change πk1 , i.e., the marginal stationary
distribution of Y1. This fact follows from the Markov chain
Y1i → Xi → Y2i. �

We remark that the condition p(yi|xi) > 0 in Theorem 2
can be relaxed. Even if we allow p(y|x) = 0 for some
x, y, Theorem 2 can be established following the lines in [4,
Appendix VIII] and applying it in [5]. On the other hand,
this condition holds for practical channel models, such as the
binary symmetric channel with non-zero or non-one cross-over
probability, and modulo additive noise channels with noise
support set equal to the input alphabet.

Corollary 1 If the battery state is strongly irreducible and
strongly aperiodic, the capacity with battery state information
at the transmitter and receiver, CSI , is:

CSI = max
p(x|s̃)

B∑
i=1

πiI(X;Y, S|S̃ = i) (11)

where S̃ is the current battery state and S is the next battery
state.

We note the similarity of the capacity expression in (11) and
that of Goldsmith-Varaiya expression in [11] for the capacity
of fading channels with side information. Even though the
channel state has input dependence, in (11) the stationary
probability of the state averages out the mutual information
as in Goldsmith-Varaiya expression. A recent work [12] re-
ported a similar capacity expression for this channel with side
information at both sides. We note that the expression in (11)
is different from that in [12, Theorem 1]. Specifically, the
expression in [12, Theorem 1] does not involve battery state
as an output in the mutual information and yields lower values.

We also remark that the strongly irreducible condition is
satisfied in the current energy harvesting model under some
further physical conditions. In order to enable edge formation
between all state pairs (see [5, Definition 2]), we need to add
non-zero energy leakage probability to the battery dynamics
which may or may not depend on the particular energy state.
We also need that the energy arrivals can take values in the
set {0, 1, . . . , Emax} with non-zero probability.

A. Capacity with Side Information and Infinite-Sized Battery

We now determine the capacity with side information and
infinite-sized battery. Note that the results we have derived so
far in Theorems 1 and 2 are not applicable in this case as
they follow from results in [4], [5] which hold only when the
cardinality of the state is finite.

Theorem 3 The capacity of the energy harvesting channel
with battery state information at the transmitter and receiver
and with an infinite-sized battery at the transmitter is

C = max
p(x),E[X]≤Pavg

I(X;Y, Ŝ) (12)

where Pavg is the average energy recharge rate E[Ei] and the
channel between X and Ŝ is an additive noise channel and
the noise is the energy arrival variable E:

Ŝ = X − E (13)

and Ŝ → X → Y .

Proof: The receiver can form i.i.d. realizations of the channel
p(ŝ, y|x) by taking the difference Ŝi = Si+1 − Si at each
channel use. Hence, the capacity of the channel p(ŝ, y|x) with
input constraint E[X] ≤ Pavg is achievable by using the best-
effort-transmit or save-and-transmit schemes in [1].

The converse is as follows: Let the received sequence in
n+1 channel uses be Y n+1, Sn+1 and we discard Yn+1 which



causes no loss of optimality as n goes to infinity:

(n+ 1)R−H(W |Y n, Sn+1) = I(W ;Y n, Sn+1) (14)

= H(Y n, Sn+1)−H(Y n, Sn+1|W ) (15)

= H(S1) +

n∑
i=1

H(Yi, Si+1|Y i−1, Si)

−
n∑

i=1

H(Yi, Si+1|W,Y i−1, Si) (16)

≤
n∑

i=1

H(Yi, Si+1|Si)−
n∑

i=1

H(Yi, Si+1|Xi,W, Y
i−1, Si)

(17)

=

n∑
i=1

H(Yi, Si+1 − Si|Si)−
n∑

i=1

H(Yi|Xi)

−
n∑

i=1

H(Si+1 − Si|Xi) (18)

≤
n∑

i=1

H(Yi, Ŝi)−
n∑

i=1

H(Yi|Xi)−
n∑

i=1

H(Ŝi|Xi) (19)

=

n∑
i=1

I(Xi;Yi, Ŝi) (20)

≤ n max
p(x),E[X]≤Pavg

I(X;Y, Ŝ) (21)

where (17) follows from the facts that conditioning reduces
entropy and that initial battery level is finite and known
to both sides and hence H(S1) = 0, (18) follows from
Yi → Xi → Ŝi and also from the fact that Yi, Ŝi are in-
dependent of W,Y i−1, Si−1 given Xi, i.e., W,Y i−1, Si−1 →
Xi → Yi, Ŝi. Finally, (19) follows from conditioning reduces
entropy and (21) is due to the fact that the energy for the
input sequence Xi is maintained by the energy arrivals Ei

and hence 1
n

∑n
i=1E[Xi] ≤ Pavg . By Fano’s inequality,

H(W |Y n, Sn+1) goes to zero as n → ∞ and hence com-
pleting the proof. �

Theorem 3 implies that in the infinite-sized battery case, the
transmitter does not need to use the battery state information
in the encoding and a single-letter code suffices to achieve the
capacity. However, note that the receiver uses the battery state
information to obtain the output Ŝi.

IV. ACHIEVABLE SCHEMES WITH BATTERY STATE
INFORMATION AVAILABLE AT THE TRANSMITTER ONLY

The capacity of the energy harvesting channel when side
information is available at the transmitter only with a finite-
sized battery is an open problem in general [6], [7]. In this
section, we identify achievable schemes for this case.

A. Achievable Schemes by Shannon Strategies

We first note that a natural achievable scheme for the energy
harvesting channel with only transmitter side information is
obtained by Shannon strategies [3] as emphasized in [6], [7].
The channel model in (3) fits well with the finite-state channel

model with input controlled state in [8]. Let Ui denote the
Shannon strategy. For an i.i.d. Ui, we have

p(yi, ui, si+1|si) = p(yi, si+1|ui, si)p(ui) (22)

where

p(yi, si+1|ui, si) = p(si+1|ui, si)p(yi|ui(si)) (23)

where p(yi|ui(si)) is due to the physical channel and
p(si+1|ui, si) can be expressed in terms of the energy arrival
process statistics and the battery size Emax. Then, with p(ui)
fixed, the rate Rp(ui) = limn→∞

1
nI(U

n;Y n) is achiev-
able [6], [7]. The rate Rp(ui|ui−1) can be calculated by the
simulation-based method in [8]. We can then get the best
achievable rate by optimizing over the probability p(ui). This
method can be applied for a Markovian ui of any order [7].

B. Timing-Channel Based Achievable Schemes

Assume that the input is binary and the channel is noiseless,
i.e., p(yi|xi) = δ(yi − xi). Moreover, energy arrival is binary
with Pr[Ei = 1] = q. In this case, encoding and decoding can
be performed over the number of channel uses between two
1s and we obtain the following timing channel (see [6]):

Tn = Vn + Zn (24)

where Tn is the number of channel uses between two 1s in
the received signal, Vn is the number of channel uses the
transmitter chooses to wait to transmit a 1 after the first energy
availability, and Zn is the number of channel uses until the
battery has at least one unit energy. The transmitter has causal
information of the noise Zn before deciding Vn. Unlike the
case with unit-sized battery as in [6], the noise process Zn is
not i.i.d. when battery size is larger than one.

In order to fit the model to those considered in [8], we need
to include, as an additional state, the available energy in the
battery Bn when Zn is observed. Therefore, the state of this
channel is the augmented random variables (Zn, Bn). Let Un

denote an auxiliary i.i.d. random sequence. Then, we have:

p(zn+1, bn+1, tn, un|zn, bn)
= δ(tn − f(un, zn, bn))p(zn+1, bn+1, un|zn, bn)

(25)

where f(un, zn, bn) is a function that determines the Shannon
strategy. Moreover, we have:

p(zn+1, bn+1, un|zn, bn) = p(zn+1, bn+1|un, zn, bn)p(un)
(26)

Here, p(zn+1, bn+1|un, zn, bn) is determined by the energy
arrival process statistics only. Specifically, if energy arrives
during the waiting time Vn = f(Un, Zn, Bn), next noise level
is Zn+1 = 0 and Bn+1 is found depending on the battery size.

In view of (25), the following rate is achievable and it can
be evaluated by the method in [8]:

R = lim
n→∞

1
nI(U

n;Tn)
1
n

∑n
i=1E[Ti]

(27)
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Fig. 3. The capacity with battery state information at the receiver side and
achievable rates with side information at the transmitter only in the noiseless
binary channel. The plot is with respect to the energy arrival probability q.

We note that this achievable scheme is possibly sub-optimal
as it does not update the strategy after the observation of a
new energy arrival allocated in the battery. This constitutes a
possible direction for improving the achievable scheme.

V. NUMERICAL RESULTS

In this section, we evaluate the capacity and achievable rates
with and without receiver side information. In the timing-based
achievable scheme, we use an extended version of the auxiliary
selection in [6] as follows. Let U ∈ {0, 1, . . . , N − 1},

V =

{
U − Z + 1, U ≥ Z
(U − Z mod M) + 1, U < Z

(28)

where M < N . Note that this particular scheme does not use
Bn information available at the transmitter. We choose M and
p(u) in the simulation and calculate the achievable rate.

In Fig. 3, we plot the achievable rates by the best i.i.d. [6],
[7] and the best first order Markovian [7] Shannon strategies
and the timing-based achievable scheme when the channel is
noiseless binary, Emax = 2 and the battery state information
is available only at the transmitter. We also plot the capacity
with battery state information at both sides for Emax = 2 and
Emax = ∞. Note that when Emax = ∞, the availability of
the battery state information at the receiver does not increase
the capacity for the noiseless channel. We observe that the
timing-based achievable scheme performs better than zeroth
and first order Markovian Shannon strategies.

In Fig. 4, we plot the achievable rates and the capacity
without and with receiver side information, respectively, in a
binary symmetric channel with crossover probability pe for
Emax = 2 and q = 0.5 with respect to pe. We also plot the
capacity for Emax =∞.

VI. CONCLUSION

We determined the capacity of an energy harvesting chan-
nel with an energy harvesting transmitter and battery state
information available at the transmitter and receiver sides.
This is an instance of a finite-state channel and the channel
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output feedback does not increase the capacity. We stated
the capacity as maximum directed mutual information from
the input to the output and the battery state. We identified
sufficient conditions for the channel to have stationary input
distributions as optimal distributions. We also derived a single-
letter capacity expression for this channel with battery state
information at both sides and infinite-sized battery at the
transmitter. Next, we extended the achievable scheme in [6] to
a noiseless channel with Emax > 1. We provided a simulation-
based method to evaluate the achievable rates using [8].

REFERENCES

[1] O. Ozel and S. Ulukus. Achieving AWGN capacity under stochastic
energy harvesting. IEEE Trans. on Inform. Theory, 58(10):6471–6483,
Oct. 2012.

[2] O. Ozel and S. Ulukus. AWGN channel under time-varying amplitude
constraints with causal information at the transmitter. In Asilomar Conf.,
Nov. 2011.

[3] C. E. Shannon. Channels with side information at the transmitter. IBM
journal of Research and Development, 2(4):289–293, 1958.

[4] H. Permuter, T. Weissman, and A. Goldsmith. Finite state channels with
time-invariant deterministic feedback. IEEE Trans. on Inform. Theory,
55(2):644–662, February 2009.

[5] J. Chen and T. Berger. The capacity of finite-state Markov channels
with feedback. IEEE Trans. on Inform. Theory, 51(3):780–798, March
2005.

[6] K. Tutuncuoglu, O. Ozel, A. Yener, and S. Ulukus. Binary energy
harvesting channel with finite energy storage. In IEEE ISIT, July 2013.

[7] W. Mao and B. Hassibi. On the capacity of a communication system
with energy harvesting and a limited battery. In IEEE ISIT, July 2013.

[8] D. M. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavcic, and W. Zeng.
Simulation-based computation of information rates for channels with
memory. IEEE Trans. on Inform. Theory, 52(8):3498–3508, August
2006.

[9] I. Naiss and H. Permuter. Extension of the Blahut-Arimoto algorithm
for maximizing directed information. IEEE Trans. on Inform. Theory,
59(1):204–223, January 2013.

[10] S. Tatikonda and S. Mitter. Capacity of channels with feedback. IEEE
Trans. on Inform. Theory, 55(1):323–349, January 2009.

[11] A. Goldsmith and P. Varaiya. Capacity of fading channels with channel
side information. IEEE Trans. on Inform. Theory, 43(6):1986–1992,
November 1997.

[12] P.K. Deekshith, V. Sharma, and R. Rajesh. AWGN channel capacity of
energy harvesting transmitters with a finite energy buffer. Available at
arXiv:1307.4505.


