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Abstract

Interference networks with no channel state information at the transmitter (CSIT) except for the knowledge of the

connectivity graph have been recently studied under the topological interference management (TIM) framework. In

this paper, we consider a similar problem with topological knowledge but in a distributed broadcast channel setting, i.e.

a network where transmitter cooperation is enabled. We show that the topological information can also be exploited in

this case to strictly improve the degrees of freedom (DoF) as long as the network is not fully connected, which is a

reasonable assumption in practice. Achievability schemes based on selective graph coloring, interference alignment,

and hypergraph covering, are proposed. Together with outer bounds built upon generator sequence, the concept of

compound channel settings, and the relation to index coding, we characterize the symmetric DoF for so-called regular

networks with constant number of interfering links, and identify the sufficient and/or necessary conditions for the

arbitrary network topologies to achieve a certain amount of symmetric DoF.

I. INTRODUCTION

The advancing interference management techniques have sharpened our understanding in the fundamental limits

(e.g., channel capacity) of wireless networks with interference. The degrees of freedom (DoF) characterization serves

as the first-order capacity approximation for wireless networks, by which the obtained insights can be transferred to

practical scenarios. The DoF indicates the system throughput scaling with the signal-to-noise ratio (SNR) in the

high SNR regime. Although the DoF as a figure of merit has limitations [2], it has proved useful in understanding

the fundamental limits of several cooperative communication protocols, such as interference alignment (IA) [3] and

network MIMO [4] among many others. A common feature behind much of the analysis of cooperation benefits in

either interference channels (IC) or broadcast channels (BC) has been the availability of instantaneous channel state

information at the transmitters (CSIT), with exceptions dealing with so-called limited feedback schemes. Nevertheless,

most efforts on limited [5]–[7], imperfect [7], [8], or delayed feedback settings [9]–[14], among others [15]–[18],

rely on the assumption that the transmitters are endowed with an instantaneous form of channel information whose

coherence time is similar to that of the actual fading channels, so that a good fraction or the totality of the DoF
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achieved with perfect CSIT can be obtained. Such an assumption is hard to realize in many practical scenarios,

such as cellular networks [19]. Conversely, it has been reported in [20]–[23] that a substantial DoF gain cannot

be realized in IC or BC scenario without CSIT. A closer examination of these pessimistic results however reveals

that many of the considered networks are fully connected, in that any transmitter interferes with any non-intended

receiver in the network.

Owing to the nodes’ random placement, the fact that power decays fast with distance, the existence of obstacles,

and local shadowing effects, we may argue that certain interference links are unavoidably much weaker than

others, suggesting the use of a partially-connected graph to model, at least approximately, the network topology.

An interesting question then arises as to whether the partial connectivity could be leveraged to allow the use of

some relaxed form of CSIT while still achieving a substantial DoF performance. In particular the exploitation

of topological information, simply indicating which of the interfering links are weak enough to be approximated

by zero interference and which links are too strong to do so, is of great practical interest. The evidence that the

topological information is beneficial can be traced back to [24], where some local topological information was

exploited to improve network performance by some coloring schemes such as “coded set scheduling”.

Most recently, this question was intensively addressed in [25]–[32], in the context of the interference channel and

X channel with topology information, and focusing on the symmetric DoF. These different topological interference

management (TIM) approaches arrive at a common conclusion that the symmetric DoF can be significantly improved

with the sole topology information, provided that the network is partially connected. In [26], the TIM problem is

bridged with the index coding problem [33]–[38], stating that the optimal solution to the latter is the outer bound of

the former, and the linear solution to the former is automatically transferrable to the latter. The ensuing extension in

[36] that attacks the TIM problem from an index coding perspective, covers a wider class of network topologies,

partly settling the problem for the sparse networks with each receiver interfered by at most two interfering links.

Given such promising results, a logical question is whether the TIM framework can somehow be exploited in

the context of an interference network where a message exchange mechanism between transmitters pre-exists. For

instance, in future LTE-A cellular networks, a backhaul routing mechanism ensures that base stations selected to

cooperate under the coordinated multi-point (CoMP) framework receive a copy of the messages to be transmitted.

With perfect instantaneous CSIT, the benefit of transmitter cooperation was investigated in fully connected IC [39]

and partially connected IC [40]. Still, the exchange of timely CSI is challenging due to the rapid obsolescence of

instantaneous CSI and the latency of backhaul signaling links. In this case, a broadcast channel over distributed

transmitters (a.k.a. network MIMO) ensues, with a lack of instantaneous CSIT. The problem raised by this paper

concerns the use of topology information in this setting. We follow the same strategy as [26], [27] in targeting

the symmetric DoF as a simple figure of merit. By resorting to interference avoidance and alignment techniques,

we characterize the achievable and/or optimal symmetric DoF of the distributed BC with topology information in

several scenarios of interest.

More specifically, our contributions are organized as follows:

• A graph theoretic perspective will be provided in Section III, in which we propose an interference avoidance
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approach built upon fractional selective graph coloring over the square of line graph of the original network

topology. In doing so, the optimal symmetric DoF of three-cell networks with all possible topologies is

determined, by a new outer bound on the basis of the concept of generator sequence.

• An interference alignment perspective will be also offered in Section IV by introducing an alignment-feasible

graph to show the feasibility of interference alignment between any two messages. The sufficient conditions for

arbitrary network topologies to achieve a certain amount of symmetric DoF are identified with this graph, by

which we also identify the achievable symmetric DoF of so-called regular networks (i.e., network topologies

with same number of interfering links at all transmitters/receivers). Further, the optimality for the Wyner-type

regular networks (i.e., with only one interfering link) is characterized with the aid of an outer bound based on

an application of compound settings. Lastly, the above alignment feasibility condition is generalized to arbitrary

number of messages, leading us to a construction of a hypergraph, by which achievable symmetric DoF of

arbitrary network topologies are consequently established via hypergraph covering.

• In Section IV, we also bridge our problem to index coding problems, letting the outer bounds of the latter

serve our problem as well, by which we identify the sufficient and necessary condition when time division is

symmetric DoF optimal.

Notation: Throughout this paper, we define K , {1, 2, . . . ,K}, and [n] , {1, 2, . . . , n} for any integer n. Let A,

A, and A represent a variable, a set, and a matrix/vector, respectively. In addition, Ac is the complementary set of

A, and |A| is the cardinality of the set A. Aij or [A]ij presents the ij-th entry of the matrix A, and Ai or [A]i is

the i-th row of A. AS , {Ai, i ∈ S}, AS , ∪i∈SAi, and AS denotes the submatrix of A with the rows out of S

removed. Define A\a , {x|x ∈ A, x 6= a} and A1\A2 , {x|x ∈ A1, x /∈ A2}. We use IM to denote an M ×M

identity matrix where the dimension is omitted whenever the confusion is not probable. 1(·) is the indicator function

with values 1 when the parameter is true and 0 otherwise. O(·) follows the standard Landau notation. Logarithms

are in base 2.

II. SYSTEM MODEL

A. Channel Model

We consider a K-cell partially connected cellular network, in which each transmitter (e.g. base station) is equipped

with one antenna and serves one single-antenna receiver (e.g., user). This cellular network can be modeled by a

partially connected interference channel. The received signal for Receiver j at time instant t can be modeled by

Yj(t) =
∑
i∈Tj

hji(t)Xi(t) + Zj(t) (1)

where hji(t) is the channel coefficient between Transmitter i and Receiver j at time instant t and the nonzero

channel coefficients drawn from a continuous distribution are independent and identically distributed (i.i.d.), the

transmitted signal Xi(t) is subject to the average power constraint, i.e., E
(
|Xi(t)|2

)
≤ P , with P being the average

transmit power, and Zj(t) is the additive white Gaussian noise with zero-mean and unit-variance and is independent

of transmitted signals and channel coefficients.
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We denote by Tk the transmit set containing the indices of transmitters that are connected to Receiver k, and by Rk
the receive set consisting of the indices of receivers that are connected to Transmitter k, for k ∈ K , {1, 2, . . . ,K}.

In practice, the partial connectivity may be modeled by taking those interference links that are “weak enough”

(due to distance and/or shadowing) to zero. For instance in [26], a reasonable model is suggested whereby a link

is disconnected if the received signal power falls below the effective noise floor. However, other models maybe

envisioned and the study of how robust the derived schemes are with respect to modeling errors is an open problem

beyond the scope of this paper.

Conforming with TIM framework, the actual channel realizations are not available at the transmitters, yet the

network topology (i.e., Tk,Rk,∀k) is known by all transmitters and receivers. A typical transmitter cooperation is

enabled in the form of message sharing, where every transmitter is endowed the messages desired by its connected

receivers, i.e., Transmitter k has access to a subset of messages WRk
, where Wj (j ∈ Rk) denotes the message

desired by Receiver j. We refer hereafter to TIM problem with transmitter cooperation as “TIM-CoMP” problem.

Each message may originate from multiple transmitters but is intended for one unique receiver. As such, the so-called

direct links in TIM settings are not required to be present here. We consider a block fading channel, where the

channel coefficients stay constant during a coherence time τc but vary to independent realizations in the next

coherence time. The coherence time is τc = 1 by default unless otherwise specified. For channel coefficients and

transmitted signals, the time index t is omitted during the coherence time for the sake of brevity. The network

topology is fixed throughout the communication.

While message sharing creates the opportunity of transmitter cooperation, it also imposes some challenges. For

the multiple-unicast TIM problem in partially connected IC or X networks [25]–[27], each message has a unique

source and a unique destination that are determined a priori such that the desired and interfering links are known.

By contrast, with transmitter cooperation, the message can be sent from any source that has access to this message.

Consequently, the approaches developed for IC and X networks cannot be directly applied here, as the desired and

interference links are not able to be predetermined.

For notational convenience, we define H , {hji,∀ i, j} as the ensemble of channel coefficients, and denote by G

the network topology known by all transmitters and receivers.

B. Definitions

Throughput this paper, we treat partially connected networks as bipartite graphs G = (U ,V, E), where the

transmitters and receivers are two sets of vertices, denoted by U and V , and the connectivities between transmitters

and receivers are represented as edges, e.g., eij ∈ E where i ∈ U and j ∈ V .

Definition 1 (Topology Matrix). For a network topology, the topology matrix B is defined as

[B]ji =

 1, eij ∈ E

0, otherwise
. (2)
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Definition 2 (Special Network Topologies). A (K, d)-regular network refers to the K-cell network where each

receiver will overhear the signals from the transmitter with the same index as well as the successive d− 1 ones, i.e.,

Tj = {j, j+ 1, . . . , j+ d− 1}, and any network whose topology graph is similar to this one. The network topologies

except regular networks are referred to as irregular networks. One typical example of irregular networks is the

triangular network, which refers to a category of cellular networks with Tj = {1, . . . , j} (i.e., topology matrix is

lower triangular) or Tj = {j, . . . ,K} (i.e., topology matrix is an upper triangular), as well as those whose topology

graphs are similar to either one.

A rate tuple (R1, . . . , RK) is said to be achievable to TIM-CoMP problems, if these exists a (2nR1 , . . . , 2nRK , n)

code scheme including the following elements:

• K message sets Wk , [1 : 2nRk ], from which the message Wk is uniformly chosen, ∀ k ∈ K;

• one encoding function for Transmitter i (∀ i ∈ K):

Xi(t) = fi,t (WRi
, G) , (3)

where only a subset of messages WRi is available at Transmitter i for encoding;

• one decoding function for Receiver j (∀ j ∈ K):

Ŵj = gj
(
Y nj , Hn, G

)
, (4)

such that the average decoding error probability is vanishing as the code length n tends to infinity. The capacity

region C is defined as the set of all achievable rate tuples.

In this work, we follow the strategy of [25]–[27], [29], [35], [36] and set the symmetric DoF (i.e., the DoF which

can be achieved by all users simultaneously) as our main figure of merit.

Definition 3 (Symmetric DoF).

dsym = lim sup
P→∞

sup
(Rsym,...,Rsym)∈C

Rsym

logP
(5)

where P is the average transmit power.

III. A GRAPH THEORETICAL PERSPECTIVE

As a baseline, an interference avoidance approach (also known as orthogonal access [28]) is first presented in

Theorem 1 for general topologies with the aid of graph coloring, followed by an outer bound in Theorem 2 built

upon the concept of generator, by which we are able to characterize the optimality for three-cell networks with

arbitrary topologies and triangular networks.

A. Interference Avoidance via Selective Graph Coloring

Before proceeding further, we introduce the following definition generalized from the standard graph coloring.

Some basic graph theoretic definitions are recalled in Appendix A.



6

Definition 4 (Fractional Selective Graph Coloring). Consider an undirected graph G = (V, E) with a vertex partition

V = {V1,V2, . . . ,Vp} where ∪pi=1Vi = V and Vi ∩ Vj = ∅, ∀ i 6= j. The portion Vi (i ∈ [p] , {1, 2, . . . , p}) is

called a cluster. A graph with the partition V is said to be selectively n : m-colorable, if

• each cluster Vi (∀ i) is assigned a set of m colors drawn from a palette of n colors, no matter which vertex in

the cluster receives;

• any two adjacent vertices have no colors in common.

Denote by sχf (G,V) the fractional selective chromatic number of the above selective coloring over the graph G

with the partition V, which is defined as

sχf (G,V) = lim
m→∞

sχm(G,V)

m
= inf

m

sχm(G,V)

m
(6)

where sχm(G,V) is the minimum n for the selective n : m-coloring associated with the partition V.

Remark 1. If m = 1, fractional selective graph coloring boils down to standard selective graph coloring

(a.k.a. partition coloring) [41], [42]. If |Vi| = 1 (∀ i ∈ [p]), then fractional selective graph coloring will be

reduced to standard fractional graph coloring.

Theorem 1 (Achievable DoF via Graph Coloring). For TIM-CoMP problems with arbitrary topologies, the symmetric

DoF

dsym =
1

sχf (G2e ,Ve)
(7)

can be achieved by interference avoidance (i.e., orthogonal access) built upon fractional selective graph coloring,

where

• Ge: the line graph of network topology G, where the vertices in Ge are edges of G;

• Ve: a vertex partition of Ge, and specifically vertices in Ge whose corresponding edges in G have a common

receiver form a cluster;

• G2e : the square of Ge, in which any two vertices in Ge with distance no more than 2 are joint with an edge;

• sχf : fractional selective chromatic number as defined in Definition 4.

Proof: See Appendix B.

By connecting the achievable symmetric DoF of TIM-CoMP problem to fractional selective chromatic number,

we are able to calculate the former by computing the latter with rich toolboxes developed in graph theory. The

connection will be illustrated by the following example whose network topology was studied in [27] (as shown in

Fig. 1) with no transmitter cooperation.

Example 1. For the network topology shown in Fig. 1(a), the optimal symmetric DoF value is pessimistically 1
3

without message sharing [26], [27], [36]. In contrast, if transmitter cooperation is allowed, the achievable symmetric

DoF can be remarkably improved to 2
5 even with orthogonal access according to Theorem 1.
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Without message sharing, the interference avoidance scheme consists in scheduling transmitters to avoid mutual

interference. For instance, by delivering W1, Transmitter 1 will cause interferences to Receivers 2 and 3, and

consequently Transmitters 2 and 3 should be deactivated, because W2 and W3 cannot be delivered to Receivers

2 and 3 free of interference. In contrast, with message sharing, the desired message W1 can be sent either from

Transmitter 1 or 4. Hence, scheduling can be done across links rather than across transmitters. For instance, if the

link Transmitter 4 → Receiver 1 (denoted by e41) is scheduled, the links adjacent to e41 (i.e., e11, e42, and e44) as

well as the links adjacent to e11, e42 and e44 (i.e., e12, e13, e22, e32, e34 and e54) should not be scheduled, because

activating Transmitter 1 will interfere Receiver 1, and Receivers 2 and 4 will overhear interferences from Transmitter

4 such that any delivery from Transmitter 1 or to Receivers 2 and 4 causes mutual interference. A possible link

scheduling is shown in Table I. It can be found that each message is able to be independently delivered twice during

five time slots, and hence symmetric DoF of 2
5 are achievable.

TABLE I: Link Scheduling

Slot Scheduled Links (eij : TX i → RX j) Delivered Messages

A e41, e55, e66 W1,W5,W6

B e12, e54, e66 W2,W4,W6

C e13, e54 W3,W4

D e41, e33 W1,W3

E e12, e55 W2,W5

Although the above link scheduling solution provides an achievable scheme for the topology in Fig. 1(a), the

generalization is best undertaken by reinterpreting the link scheduling into a graph coloring problem, such that

the rich graph theoretic toolboxes can be directly utilized to solve our problem. In what follows, we reinterpret

the link scheduling from a fractional selective graph coloring perspective. To ease presentation, we translate graph

edge-coloring into graph vertex-coloring of its line graph.

As shown in Fig. 1, we first transform the topology graph G (left) into its line graph Ge (right) and map the links

connected to each receiver in G to the vertices in Ge. For instance, the four links to Receiver 2 in G are mapped to

Vertices e12, e22, e32, e42 in Ge. Then, we group relevant vertices in Ge as clusters, e.g., Vertices e12, e22, e32, e42

in Ge corresponding to the links to Receiver 2 are grouped as one cluster. By now, a clustered-graph is generated

with Ve = {{e11, e41}, {e12, e22, e32, e42}, {e13, e33}, {e34, e44, e54}, {e35, e55}, {e36, e66}}. The selective graph

coloring can be performed as follows. For the sake of brevity, the color assignment is performed over the line

graph Ge in which any two vertices with distance less than 2 should receive different colors. This is equivalent to

assign colors to square of line graph G2e where any two adjacent vertices receive distinct colors. For instance, if

Vertex e41 in Ge receives a color indicated by ‘A’, then Vertices e55 and e66 can receive the same color, because the

distance between any two of them is no less than 2 in Ge and hence any two of them are nonadjacent in G2e . Try

any possible color assignment until we obtain a proper one, where each cluster receives m distinct colors out of

total n ones, such that any two vertices with distance less than 2 receive distinct colors. There may exist many
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proper color assignments.
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Fig. 1: An instance of TIM-CoMP problem (K = 6). (a) The network topology graph G, and (b) its line graph Ge. The

fractional selective coloring is performed to offer each cluster two out of in total five colors, where any two vertices that receives

the same color are set apart with distance no less than 2.

The fractional selective chromatic number sχf (G2e ,V) refers to the minimum of n
m among all proper color

assignments. In this example, we have m = 2 and n = 5. The vertices (i.e., links in G) with the same color can be

scheduled in the same time slot. Accordingly, each cluster receives two out of five colors means every message is

scheduled twice during five time slots, yielding the symmetric DoF of 2
5 . According to this connection between link

scheduling and graph coloring, the inverse of the fractional selective chromatic number, i.e., 1
sχf (G2

e ,V)
, can serve as

the achievable symmetric DoF of TIM-CoMP problems, although its computation is still NP-hard. �

B. Outer Bound via Generator Sequence

To see how tight this interference avoidance scheme is, we provide an outer bound based on the concept of

generator [27]. For simplicity of presentation, we introduce an index function fidx, which is defined as fidx : B 7→

{0, 1}K , to map the position indicated by B ⊆ K to a K × 1 binary vector with the corresponding position being 1,

and 0 otherwise, e.g., fidx({1, 3, 5}) = [1 0 1 0 1 0]T with K = 6. Thus, we have the following definition.

Definition 5 (Generator Sequence). Given S ⊆ K, a sequence {I0, I1, . . . , IS} is called a generator sequence, if

it is a partition of S (i.e., ∪Ss=0Is = S and Ii ∩ Ij = ∅, ∀ i 6= j), such that

BIs ⊆± rowspan {BI0 , IAs
} , ∀ s = 1, . . . , S (8)

where BI is the submatrix of B with rows of indices in I selected, As , {i|[BT]i · fidx(∪s−1r=0Ir) = |Ri\Sc|} with

[BT]i being the i-th row of BT (i.e., i-th column of B), and IAs denotes a submatrix of IK with the rows in As
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selected. A1 ⊆± rowspan{A2} is such that two matrices A1 ∈ Cm1×n and A2 ∈ Cm2×n satisfy A1 = CA2I
±,

where C ∈ Cm1×m2 can be any full rank matrix, I± is as same as the identity matrix up to the sign of elements.

This implies that the row of A1 can be represented by the rows of A2 with possible difference of signs of elements.

We refer to I0 as the initial generator with regard to S, and denote by J (S) all the possible initial generators.

Theorem 2 (Outer Bound via Generator Sequence). The symmetric DoF of the K-cell TIM-CoMP problem are

upper bounded by

dsym ≤ min
S⊆K

min
I0⊆J (S)

|I0|
|S|

(9)

where I0 is the initial generator, from which a sequence can be initiated and generated subsequently as defined in

Definition 5.

Proof: See Appendix C.

Roughly speaking, the key of this outer bound is to first properly select a subset of receivers of interest, from

which a smaller subset is carefully chosen then as an initial generator, such that statistically equivalent received

signals of others can be gradually generated. To obtain a relatively tight bound, it is preferred an initial generator

with a small cardinality to generate the rest of sequence with a large cardinality. Intuitively, irregular networks favor

this generator sequence outer bound. The more irregular the topology is, the tighter the outer bound is expected to be,

because it is likely to start with small initiator and generator a long sequence. This point will be confirmed by one

of the most irregular networks (triangular networks) in Corollary 2. In what follows, we illustrate the identification

of a generator sequence for the irregular network studied in Example 1.

Example 2. For the topology in Fig. 1(a), we have the transmit sets T1 = {1, 4}, T2 = {1, 2, 3, 4}, T3 = {1, 3}, T4 =

{3, 4, 5}, T5 = {3, 5}, T6 = {3, 6} and receive sets R1 = {1, 2, 3}, R2 = {2}, R3 = {2, 3, 4, 5, 6}, R4 =

{1, 2, 4}, R5 = {4, 5}, R6 = {6}. With the message sharing strategy mentioned earlier, the messages WRi
are

accessible at Transmitter i.

As symmetric DoF metric is considered, the DoF outer bound regarding any subset of messages serves as one

candidate in general. In what follows, we select a subset of receivers S = {1, 3, 4, 5}, from which {1, 4} are chosen

as an initial generator, such that statistical equivalent signals at Receivers 3 and 5 can be subsequently generated.

Before proceeding further, we define the following virtual signals

Ỹ n1 , h
n
1X

n
1 + hn4X

n
4 + Z̃n1 (10)

Ỹ n4 , h
n
3X

n
3 + hn4X

n
4 + hn5X

n
5 + Z̃n4 , (11)

where hnk (k = 1, . . . , 6) is assumed to be independent and identically distributed as hnji when there is a strong

link between Transmitter i and Receiver j, and the noise terms {Z̃n1 , Z̃n4 } are identically distributed as Znj with

zero-mean and unit-variance. Given the fact that the distribution of channel gain is symmetric around zero, it

follows that {Ỹ n1 , Ỹ n4 } are statistically equivalent to {Y n1 , Y n4 }, respectively. From both {Ỹ n1 , Ỹ n4 } and {Y n1 , Y n4 },

the corresponding messages {Ŵ1, Ŵ4} can be decoded with error probability tends to 0 as n→∞.
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Let us focus on the subset of messages WS , where Wi (i ∈ Sc = {2, 6}) are set to be deterministic. Note

that eliminating some messages or setting them to be deterministic does not hurt the maximum achievable rate of

remaining messages. Thus, the sum rate associated with the receivers in S can be upper bounded as

n
∑
i∈S

Ri = H(WS |Hn,G) (12)

= I(WS ; Ỹ n1,4|Hn,G) +H(WS |Ỹ n1,4,Hn,G) (13)

= I(WS ; Ỹ n1,4|Hn,G) +H(W1,4|Ỹ n1,4,Hn,G)

+H(WS\{1,4}|W1,4, Ỹ
n
1,4,Hn,G) (14)

≤ 2n logP +H(WS\{1,4}|W1,4, Ỹ
n
1,4,Hn,G) + n ·O(1) + nεn (15)

where the last inequality is obtained by Fano’s inequality, and nεn , 1 + nRP
(n)
e tends to zero as n→∞ by the

assumption that limn→∞ P
(n)
e = 0.

Since the transmitted signal Xn
i is encoded from the messages WRi

(∀ i), it suffices to reproduce Xn
4 and Xn

5

from W1,W4 and W4,W5, respectively, with W2,W6 switched off (i.e., being set to be deterministic). Thus, we

have

H(WS\{1,4}|W1,4, Ỹ
n
1,4,Hn,G) (16)

= H(W3,5|W1,4, X
n
4 , Ỹ

n
1,4,Hn,G) (17)

= H(W5|W1,4, X
n
4 , Ỹ

n
1,4,5,Hn,G) +H(W3|W1,4,5, X

n
4 , Ỹ

n
1,4,Hn,G) (18)

≤ H(W5|Ỹ n5 ,Hn) +H(W3|W1,4,5, X
n
4 , X

n
5 , Ỹ

n
1,4,Hn,G) (19)

≤ nεn +H(W3|W1,4,5, X
n
4 , X

n
5 , Ỹ

n
1,4,Hn,G) (20)

= nεn +H(W3|W1,4,5, X
n
4 , X

n
5 , Ỹ

n
1,3,4,Hn,G) (21)

≤ nεn +H(W3|Ỹ n3 ,Hn,G) (22)

≤ nεn (23)

where (17) is from the fact that Xn
4 is reproducible from W1,4, (18) is because of the chain rule of entropy and the

fact that Ỹ n5 = Ỹ n4 −hn4Xn
4 = hn3X

n
3 +hn5X

n
5 + Z̃n4 can be generated from Ỹ n4 and Xn

4 , (19) is due to a) removing

condition does not reduce entropy, and b) Xn
5 can be obtained given the messages W4,5, (21) comes from the

generator sequence where Ỹ n3 = Ỹ n1 − Ỹ n4 + hn5X
n
5 = hn1X

n
1 − hn3Xn

3 + Z̃n1 − Z̃n4 can be generated from Ỹ n1,4 and

Xn
5 , (22) is due to removing condition does not decrease entropy, and inequality (20) and the last inequalities are

due to Fano’s inequality, where Ỹ n5 and Ỹ n3 are statistically equivalent to Y n5 and Y n3 respectively, with bounded

difference of noise variance, such that both W5 and W3 can be decoded respectively with negligible errors. Hence,

we have

n
∑
i∈S

Ri ≤ 2n logP + n ·O(1) + nεn (24)
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which leads to one possible outer bound for symmetric DoF

dsym ≤
1

2
. (25)

To summarize, we first take {1, 4} as an initial generator, and generate two statistically equivalent signals

{Ỹ n1 , Ỹ n4 }. With the messages W1,W4, we reconstruct Xn
4 , and then generate Ỹ n5 from Ỹ n4 . Finally, Ỹ n3 can be

generated from {Ỹ n1 , Ỹ n4 } and Xn
5 encoded from W4,W5. As such, the generation sequence is {{1, 4}, {5}, {3}},

initiated from I0 = {1, 4}. With S = {1, 3, 4, 5}, according to Definition 5, we have

B =



1 1 1 0 0 0

0 1 0 0 0 0

0 1 1 1 1 1

1 1 0 1 0 0

0 0 0 1 1 0

0 0 0 0 0 1



T

, B{1,4} =



1 0

0 0

0 1

1 1

0 1

0 0



T

B5 =



0

0

1

0

1

0



T

B3 =



1

0

1

0

0

0



T

(26)

and A1 = {4}, A2 = {4, 5}, and A3 = {1, 3, 4, 5}. It is readily verified that B5 ⊆± rowspan{B{1,4}, IA1
} and

B3 ⊆± rowspan{B{1,4}, IA2
}.

One may notice that the above outer bound derivation has common properties as those in [27], the differences

however are two-fold: 1) due to transmitter cooperation (i.e., message sharing), the transmitted signal is encoded

from multiple messages, instead of the single message in the TIM setting, and 2) when we switch off some messages

(e.g., by setting them to be deterministic), we only eliminate them from the message set Ri of Xn
i , instead of

switching off Xn
i as did in [27]. �

C. The Optimality of Interference Avoidance

By interference avoidance and the above outer bound, we characterize the optimal symmetric DoF of some special

networks below.

Corollary 1 (Optimal DoF for Three-cell Networks). The optimal symmetric DoF of the three-cell TIM-CoMP

problem can be achieved by interference avoidance (i.e., orthogonal access).

Proof: See Appendix D.

Corollary 2 (Optimal DoF for Triangular Networks). For the K-cell triangular networks, the optimal symmetric

DoF value of the TIM-CoMP problem is 1
K .

Proof: See Appendix E.

IV. AN INTERFERENCE ALIGNMENT PERSPECTIVE

To gain further improvement, an interference alignment perspective is introduced with the alignment-feasible

graph defined in Definition 6, by which the sufficient conditions achieving a certain amount of symmetric DoF



12

is identified in Theorem 3. Further, by these condition, in Theorem 4 we identify the achievable symmetric DoF

of regular networks. To see the tightness of interference alignment, a new outer bound with the application of

compound settings are derived in Theorem 5, with which the optimal symmetric DoF of Wyner-type networks with

only one interfering link are characterized. The interference alignment feasibility condition is further generalized in

Definition 8, which leads us to the construction of a hypergraph and hence an achievability scheme via hypergraph

covering in Theorem 7.

A. Interference Alignment with Alignment-Feasible Graph

In what follows, we introduce new notions of alignment-feasible graph and alignment non-conflict matrix, which

indicate respectively the feasibility of interference alignment for any two messages, and the non-conflict of alignment

feasibility of two messages to a third one, namely whether those two messages are aligned or not has no influence

on the third one.

Definition 6 (Alignment-Feasible Graph). The alignment-feasible graph (AFG), denoted by GAFG, refers to a

graph with vertices representing the messages and with edges between any two messages indicating if they are

alignment-feasible. Two messages Wi and Wj are said to be alignment-feasible, denoted by i↔ j, if

Ti * Tj , and Tj * Ti. (27)

Remark 2. The condition in (27) implies the alignment feasibility, that is, it is feasible to align these two messages

Wi and Wj in the same subspace without causing mutual interference by choosing proper transmitting sources,

such that the transmitted signal of one message will not interfere the intended receiver of the other message. A

similar insight was also revealed in [35] in the context of index coding.

Definition 7 (Alignment Non-Conflict Matrix). Regarding a cycle i1 ↔ i2 ↔ · · · ↔ iK ↔ i1 in an alignment-

feasible graph, we construct a K×K binary matrix A, referred to as alignment non-conflict matrix, with element

Akj = 1 (j, k ∈ K), if

Tij ∩ T cij+1
* Tik , and Tij+1 ∩ T cij * Tik , (28)

and with Akj = 0 otherwise. Further, we reset Akj = 0 (∀ k), if

Tij
⋂
T cij+1

⋂
k:Akj=1

T cik = ∅, or Tij+1

⋂
T cij

⋂
k:Akj=1

T cik = ∅. (29)

Remark 3. The elements in Tij ∩ T cij+1
and Tij+1

∩ T cij represent the indices of potential transmitters (without loss

of generality, we assume Transmitters ij and ij+1) that carry Wij and Wij+1
, respectively. As such, the condition

in (28) indicates that both Transmitters ij and ij+1 are not connected to Receiver ik, and therefore the subspace

occupied by the aligned signals Xij (Wij ) and Xij+1
(Wij+1

) is absent at Receiver ik such that the total dimensions

of required subspace are reduced. In contrast, the condition in (29) indicates a conflict in which there do not exist

any common elements in Tij ∩ T cij+1
and Tij+1

∩ T cij satisfying (28) for all ik when Akj = 1. Hence, the number
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of ‘1’s in each row of A indicates the number of dimensions associated with the cycle in alignment-feasible graph

that can be absent to Receiver ik. The minimum value among all rows gives the number of reducible dimensions

(say q) for all receivers. As such, K − q indicates the number of dimensions required by all receivers for a feasible

interference alignment.

Given the above alignment-feasible condition and alignment non-conflict matrix, we are able to identify the

sufficient conditions to achieve a certain amount of symmetric DoF as follows.

Theorem 3 (Achievable DoF with Alignment-Feasible Graph). For a K-cell TIM-CoMP problem with arbitrary

topologies, the following symmetric DoF are achievable:

• dsym = 2
K , if there exists a Hamiltonian cycle or a perfect matching in GAFG;

• dsym = 2
K−q , if there exists a Hamiltonian cycle in GAFG, say i1 ↔ i2 ↔ · · · ↔ iK ↔ i1, associated with an

alignment non-conflict matrix A, such that

q , min
k

∑
j

Akj (30)

when τc ≥ K − q.

Proof: See Appendix F.

Let us consider again the network topology studied in Example 1 to show how Theorem 3 works with alignment-

feasible graph and alignment non-conflict matrix.

Example 3. We first detail an interference alignment scheme, followed by the interpretation with alignment-feasible

graph and alignment non-conflict matrix.

Recall that we have transmit and receive sets T1 = {1, 4}, T2 = {1, 2, 3, 4}, T3 = {1, 3}, T4 = {3, 4, 5}, T5 =

{3, 5}, T6 = {3, 6}, R1 = {1, 2, 3}, R2 = {2}, R3 = {2, 3, 4, 5, 6}, R4 = {1, 2, 4}, R5 = {4, 5}, R6 = {6}.

For notational convenience, we denote by a, b, c, d, e, f the messages desired by six receivers, with the subscript

distinguishing different symbols for the same receiver. We consider a multiple time-slotted protocol, in which a space

is spanned such that the symbols will be sent in certain subspaces. Given six random vectors V1,V2,V3,V4,V5,V6 ∈

C5×1, any five of which are linearly independent, the transmitters send signals with precoding

X1 = V2b1 + V3c2 + V4a1, X2 = V6b2 (31)

X3 = V4d2 + V5c1, X4 = V5a2 (32)

X5 = V1d1 + V3e2 + V6e1, X6 = V1f1 + V2f2 (33)

within five time slots, where Xi ∈ C5×1 is the vector of the concatenated transmit signals from Transmitter i, with

each element being the transmitted signal at each corresponding time slot.

We assume the coherence time τc ≥ 5, during which the channel coefficients keep constant. The received signal

at Receiver 2 for example within five time slots, with T2 = {1, 2, 3, 4}, can be written as

Y2 = h21X1 + h22X2 + h23X3 + h24X4 + Z2 (34)
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= h21V2b1 + h22V6b2︸ ︷︷ ︸
desired signal

+V3h21c2 + V4(h21a1 + h23d2) + V5(h23c1 + h24a2)︸ ︷︷ ︸
aligned interferences

+Z2. (35)

Recall that {Vi, i = 1, . . . , 6} are 5× 1 linearly independent vectors spanning five-dimensional space, by which

it follows that the interferences are aligned in the three-dimensional subspace spanned by V3, V4 and V5, leaving

two-dimensional interference-free subspace spanned by V2 and V6 to the desired symbols b1, b2. Note that the

subspace spanned by V1 is absent to Receiver 2. Hence, the desired messages of Receiver 2 can be successfully

recovered, almost surely. In doing so, all receivers can decode two messages within five slots, yielding the symmetric

DoF of 2
5 , which coincides with those achieved by fractional selective graph coloring.

𝑽𝟏 

𝑽𝟐 

𝑽𝟑 𝑽𝟒 

𝑽𝟓 

𝑋6 𝑓1  

𝑋5 𝑑1  

𝑋1 𝑏1  𝑋6 𝑓2  

𝑋5 𝑒2  

𝑋1 𝑐2  

𝑋1 𝑎1  

𝑋3 𝑑2  

𝑋4 𝑎2  𝑋3 𝑐1  

𝑽𝟔 𝑋2 𝑏2  

𝑋5 𝑒1  
1 

2 

3 4 

5 

6 𝑽1, 𝑽2 

𝑽3, 𝑽6 

𝑽1, 𝑽4 𝑽3, 𝑽5 

𝑽2, 𝑽6 

𝑽4, 𝑽5 

(𝑎) (𝑏) (𝑐) 

Fig. 2: (a) An instance of TIM-CoMP problem (K = 6), and (b) the alignment-feasible graph GAFG, in which there exists a

Hamiltonian cycles with edges in red. (c) An interference alignment scheme, where for example X5(d1) denotes a signal sent

from Transmitter 5 carrying a symbol d1 desired by Receiver 4. Overall, every message appears twice, and for each receiver

there exists at least one absent subspace (q = 1).

Let us see how Theorem 3 works. Based on the transmit sets and the definition of alignment-feasible graph,

we construct GAFG as shown in Fig. 2(b). The vertices correspond to messages, and any two messages are joint

with an edge if their transmit sets are not the subset of one another. Notably, there exist a Hamiltonian cycle

1↔ 3↔ 5↔ 2↔ 6↔ 4↔ 1, and the corresponding alignment non-conflict matrix

A =



0 0 1 1 1 0

0 0 1 1 1 0

0 0 0 1 1 0

0 0 0 0 1 0

0 1 1 0 0 1

0 0 0 1 0 0


(36)

where q = 1. As such, according to Theorem 3, we conclude that symmetric DoF of 2
5 are achievable. It is shown in

Fig. 2(c) an interference alignment solution. For each message, two symbols are sent, each of which are along with

one direction spanned by a 5× 1 vector Vi. Two adjacent messages in the Hamiltonian cycle in Fig. 2(b) are aligned

in one direction in Fig. 2(c), e.g., messages W1 and W3 are joint with an edge in GAFG, such that two symbols
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X4(a2) and X3(c1) are aligned in subspace spanned by V5. Due to T2 = {1, 2, 3, 4}, Receiver 2 will not hear

signals from Transmitters 5 and 6, such that the linear independence of V1 is not necessary. So, five-dimensional

subspace is sufficient for Receiver 2. The similar phenomenon can be observed at all receivers. As such, only five

vectors in {Vi, i = 1, . . . , 6} are required to be linearly independent, that is q = 1. The feasible solution in Fig. 2(c)

can be interpreted as vector assignment in Fig. 2(b), where the adjacent vertices in the Hamiltonian cycle are with

some vectors shared. �

There is a very interesting observation. The alignment-feasible condition in (27) also implies the feasibility of

selective graph coloring on G2e . The fact that two messages satisfy (27) means there exist two vertices in two clusters

i and j of G2e are not adjacent and hence can be assigned the same color. It follows that interference alignment is a

general form of interference avoidance, in agreement with the observation in [25]. Thus, interference alignment

provides at least the same performance as interference avoidance. Even better, one advantage of interference alignment

over interference avoidance is that, the number of dimensions of the subspace to make interference alignment

feasible could be less than the total number of colors (i.e., the total number of time slots to schedule links), as

some subspaces may be absent at some receivers (according to the alignment non-conflict matrix) so as to decrease

the number of required dimensions.

The advantage of interference alignment over interference avoidance becomes more evident when it comes to

regular networks. Specifically, by the above interference alignment approach, we could identify the achievable

symmetric DoF of regular networks as follows.

Theorem 4 (Achievable DoF for Regular Networks). For a (K, d)-regular network, the symmetric DoF

dsym(K, d) =

 2
d+1 , d ≤ K − 1

1
K , d = K

(37)

are achievable, when channel coherence time satisfies τc ≥ d+ 1.

Proof: See Appendix G.

Remark 4. For a regular network, the alignment-feasible graph GAFG is a complete graph, and there always exists

an alignment non-conflict matrix with q = K − d− 1 for any Hamiltonian cycle in GAFG.

In what follows, we present a detailed transmission scheme with interference alignment, followed by an interpretation

with the concepts of alignment-feasible graph and alignment non-conflict matrix. Remarkably, we also offer a

transmission scheme for fast fading channel (τc = 1) achieving the same symmetric DoF by using retransmission

(or so-called repetition coding).

Example 4. Let us consider a (5, 3)-regular network as shown in Fig. 3(a). By enabling transmitter cooperation,

the achievable symmetric DoF are improved from 2
5 (as reported in [25]) to 1

2 according to Theorem 4. In what

follows, we will show two interference alignment schemes to achieve this, with channel coherence time τc ≥ 4 and

τc = 1, respectively.
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According to the network topology, we have transmit and receive sets T1 = R1 = {1, 3, 4}, T2 = R2 =

{2, 4, 5}, T3 = R3 = {1, 3, 5}, T4 = R4 = {1, 2, 4}, T5 = R5 = {2, 3, 5}. Similarly, a, b, c, d, e are symbols desired

by five receivers. We consider a four time-slotted protocol, in which the symbols are sent as

X1 = V1c1 + V3d1, X2 = V2d2 + V4e1 (38)

X3 = V5a1 + V3e2, X4 = V4a2 + V1b2 (39)

X5 = V5b1 + V2c2 (40)

where V1,V2,V3,V4,V5 ∈ C4×1 and any four of thme are linearly independent, and Xi ∈ C4×1.

To illustrate the interference alignment, we describe the transmitted signals geometrically as shown in Fig. 3. In

this figure, we depict the subspace spanned by {Vi, i = 1, . . . , 5} as a four-dimensional space, where any four of

them suffice to represent this space. We also denote by Xi(Wj) the message Wj sent from Transmitter i. Let us

still take Receiver 1 for example. Because of T1 = {1, 3, 4}, the transmitted signals from the transmitters that do

not belong to T1 will not reach Receiver 1, and hence the vector V2 is absent to Receiver 1. In addition, we have

the interference-free signals in the directions of V4 and V5, and the aligned interferences carrying messages other

than a1, a2 in the subspace spanned by V1 and V3. Recall that vectors {V1,V3,V4,V5} are linearly independent,

almost surely, so that the interference alignment is feasible at Receiver 1, and it can also be checked to be feasible

at other receivers.

As shown in Fig. 3(b), the corresponding alignment-feasible graph is a complete graph. Given for example a

Hamiltonian cycle 1↔ 2↔ 3↔ 4↔ 5↔ 1, the associated alignment non-conflict matrix is

A =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0


(41)

which gives q = 1 and thus dsym = 2
K−q = 1

2 .

When it comes to the case with channel coherence time τc = 1, the above interference alignment scheme does not

work. The symmetric DoF by interference avoidance are 2
5 according the Theorem 1. However, it can be improved

to 1
2 as well by an new scheme combining interference alignment and repetition coding as below.

Differently from the above transmission protocol with four time slots, here we use ten time slots to send

X1 = V1c1 + V2c3 + V5d1 + V6d3 + V7a5 + V9d5, (42)

X2 = V3d2 + V4d4 + V7e1 + V8e3 + V2e5 + V10b5, (43)

X3 = V5e2 + V6e4 + V9a1 + V10a3 + V1c5 + V4a5, (44)

X4 = V1b2 + V2b4 + V7a2 + V8a4 + V3d5 + V5b5, (45)

X5 = V3c2 + V4c4 + V9b1 + V10b3 + V6e5 + V8c5 (46)
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Fig. 3: (a) topology graph of a (5, 3)-regular cellular network, (b) alignment-feasible graph as a complete graph with a

Hamiltonian cycle in red, and (c) an interference alignment scheme with Vi being a four-dimensional vector, where channel

coherence time τc ≥ 4.

where Vj can be chosen as the j-th column of identity matrix I10. Note that the symbols {a5, b5, c5, d5, e5} are

repeatedly sent twice. Let us look at the decoding at Receiver 1 for example, and the similar procedure holds for

other receivers as well. By the above transmission protocol, the signal at Receiver 1 becomes

y1 = H11X1 + H13X3 + H14X4 + Z1 (47)

= (c1H11 + c5H13 + b2H14)V1 + (c3H11 + b4H14)V2 (48)

+ d5H14V3 + a5H13V4 + (d1H11 + e2H13 + b5H14)V5 (49)

+ (d3H11 + e4H13)V6 + (a5H11 + a2H14)V7 (50)

+ a4H14V8 + (d5H11 + a1H13)V9 + a3H13V10 + Z1 (51)

where Hij = diag{hij(1), . . . , hij(10)} is a diagonal matrix. By setting Vj as the j-th column of I10, we have

y1(1) = c1h11(1) + c5h13(1) + b2h14(1), y1(2) = c3h11(2) + b4h14(2), (52)

y1(3) = d5h14(3), y1(4) = a5h13(4), y1(5) = d1h11(5) + e2h13(5) + b5h14(5), (53)

y1(6) = d3h11(6) + e4h13(6), y1(7) = a5h11(7) + a2h14(7), (54)

y1(8) = a4h14(8), y1(9) = d5h11(9) + a1h13(9), y1(10) = a3h13(10) (55)

with noise terms omitted.

Clearly, the interested symbols {a1, a2, . . . , a5} can be recovered from {y1(3), y1(4), y1(7), y1(8), y1(9), y1(10)}.

Based on the similar analysis and network symmetry, we conclude that 5 symbols per user are delivered within 10

time slots, which gives symmetric DoF 1
2 .

It is convenient to look at the transmission/decoding from an interference alignment perspective, as shown in

Fig. 4(b), although interference alignment here is reduced to interference avoidance. By symbol extension with
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Fig. 4: (a) topology graph of a (5, 3)-regular cellular network, (b) an interference alignment scheme with Vi being i-th column

of I10, with channel coherence time τc = 1.

ten time slots, the transmitter signals span a ten-dimensional subspace. For Receiver 1, the transmitted signals

X4(d5), X3(a5), X4(a4), and X3(a3) lie in the subspaces spanned by V3,V4,V8, and V10, respectively, and are

free of interference, such that the symbols {d5, a5, a4, a3} can be recovered almost surely. There are two subspaces

spanned by V7 and V9 respectively, where the desired signals X2(a2) and X3(a1) are contaminated respectively

by interfering signals X1(a5) and X1(d5). With the already recovered symbols a5 and d5, the interferences are

reconstructed and subtracted at the receiver, so that the desired symbols {a2, a1} can be recovered almost surely. As

such, all desired symbols {a1, a2, a3, a4, a5} can be recovered within ten time slots, yielding 1
2 DoF. This applies

to all other receivers and symmetric DoF of 1
2 is achievable even in a fast fading channel.

This demonstrates that interference alignment together with repetition coding can be beneficial over interference

avoidance even in fast fading channel (τc = 1). This scheme is inspired by the interference alignment approach in

[25], and the repetition coding approach in [27]. �

B. Outer Bound via Compound Settings

For the regular networks, the outer bound via generator sequence becomes loose. This urges us to find another

bounding techniques. By generalizing and extending the idea in [13], [25], we obtain in what follows a new outer

bound with the aid of compound settings.

Theorem 5 (Outer Bound via Compound Settings). The symmetric DoF of K-cell TIM-CoMP problems are upper

bounded by the solution of the following optimization problem:

min
S⊆K

K − |S ′|
2K − |S ′| − |S|

(56)
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s.t. S ′ = {i|Ri ⊆ S} (57)

∪j∈S Tj = K (58)

where [BT]i is the i-th row of BT (i.e., i-th column of B).

Proof: See Appendix H.

In general, with transmitter cooperation, the interference channel form a virtual broadcast channel, such that it

enables us to obtain a not-too-loose outer bound by mimicking the compound channel setting with quite limited

knowledge of channel uncertainty [13], [43]. For each receiver, we introduce a number of compound receivers, each

of which is statistically equivalent to the original one and requires the same message. So, with TIM setting, it looks

as if the transmitter in this virtual BC has only knowledge of linearly independent channel realizations, which put

us in a finite-state compound BC setting [13]. The corresponding outer bound can therefore serve as a outer bound

of our problem, because above procedure does not reduce capacity. Nevertheless, the particularity of our problem

calls for some specific treatments. Due to partial connectivity, to enable linear independence of channel realizations

of compound receivers (i.e., states), it needs at most |Tj | − 1 compound receivers for Receiver j. The message

mapping relation, which reflect the network topology, further reduces the required states, because the presence of a

certain set of messages makes some transmitters transparent in compound BC settings, such that |Tj | can be further

reduced. Intuitively, regular or semi-regular (i.e., nearly regular) networks would prefer this compound setting outer

bound, because it makes the numbers of required states with linear independence more balanced across receivers.

In what follows, we derive an outer bound with compound settings for a regular topology. A more general version

will be presented in Appendix H.

Example 5. We take the (5,3)-regular cellular network studied in Example 4 into account. By Fano’s inequality, we

have

n(R1 − εn) ≤ I(W1, Y
n
1 |Hn,G) (59)

= h(Y n1 |Hn,G)− h(Y n1 |W1,Hn,G) (60)

≤ n logP − h(Y n1 |W1,Hn,G) + n ·O(1). (61)

Assuming there are two compound receivers demanding the same message W1, we have two compound signals

Y ′1 , Y
′′
1 , which are also the linear combinations of X1, X3, X4 as Y1, yet with independent channel coefficients. Thus,

these three received signals are linearly independent with regard to X1, X3, X4, almost surely, and are statistically

equivalent, which results in the same achievable rate R1. Similarly, we have

n(R1 − εn) ≤ n logP − h(Y ′n1 |W1,Hn,G) + n ·O(1) (62)

n(R1 − εn) ≤ n logP − h(Y ′′n1 |W1,Hn,G) + n ·O(1). (63)

For Receiver 2, we consider the statistically equivalent received signals Y2 by itself and Y ′2 by a compound receiver,
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and have

n(R2 − εn) ≤ n logP − h(Y n2 |W2,Hn,G) + n ·O(1) (64)

n(R2 − εn) ≤ n logP − h(Y ′n2 |W2,Hn,G) + n ·O(1). (65)

Combining all above inequalities, we have

n(3R1 + 2R2 − εn) (66)

≤ 5n logP − h(Y n1 , Y
′n
1 , Y ′′n1 , Y n2 , Y

′n
2 |W1,W2,Hn,G) + n ·O(1) (67)

= 5n logP − h({Xn
i + Z̄ni , i = 1, . . . , 5}|W1,W2,Hn,G) + n ·O(1) (68)

= 5n logP − n(R3 +R4 +R5) + n ·O(1) (69)

where Y1, Y ′1 , Y
′′
1 , Y2, Y

′
2 are linearly independent with regard to {Xi, i = 1, 2, 3, 4, 5}, by which the noisy versions

of {Xi, i = 1, 2, 3, 4, 5}, i.e., Xn
i + Z̄ni with Z̄i being bounded noise term, can be recovered, almost surely; the last

equality due to

n(R3 +R4 +R5) = H(W3,W4,W5) (70)

= H(W3,W4,W5)−H(W3,W4,W5|{Xn
i , i = 1, . . . , 5},W1,W2,Hn,G) (71)

= I(W3,W4,W5; {Xn
i , i = 1, . . . , 5}|W1,W2,Hn,G) (72)

= I(W3,W4,W5; {Xn
i + Z̄ni , i = 1, . . . , 5}|W1,W2,Hn,G) + n ·O(1) (73)

= h({Xn
i + Z̄ni , i = 1, . . . , 5}|W1,W2,Hn,G) + n ·O(1). (74)

where the second term in (71) is zero because {Xn
i , i = 1, . . . , 5} are encoded from W1:5 and the encoding

process (or mapping) is invertible, such that the knowledge/uncertainty of {Xn
i , i = 1, . . . , 5} is equivalent to the

knowledge/uncertainty of W1:5. By now, according to the definition of symmetric DoF, it follows that

dsym ≤
5

8
. (75)

In contrast, by generator bound, the best possible outer bound is dsym ≤ 4
5 , which is looser. On the other hand, if

this compound setting bound applies to the irregular network in Example 1, then the best possible outer bound will

be dsym ≤ 4
7 , which is looser than that by generator bound. This confirms that compound setting bound is more

suitable to regular networks, while generator sequence bound is more preferable to irregular networks. �

C. The optimality of Interference Alignment

By the above outer bound, we are able to characterize the optimal symmetric DoF of a subset of regular networks.

Corollary 3 (Optimal DoF of Cyclic Wyner-type Networks). For a (K, 2)-regular network, e.g., a cyclic Wyner-type

network, the optimal symmetric DoF are

dsym(K, 2) =

 1
2 , K = 2

2
3 , K ≥ 3

(76)
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if the coherence time τc ≥ 3 when K ≥ 3.

Proof: See Appendix I.

D. Interference Alignment with Proper Partition and Hypergraph Covering

The alignment feasibility condition in Defenitions 6 and 7 can also be generalized to more than two messages, as

shown in the following definitions.

Definition 8 (Proper Partition). A partition K = {P1,P2, . . . ,Pκ} with size κ, where ∪κi=1Pi = K and Pi∩Pj = ∅

∀ i 6= j, is called a proper partition, if for every portion Pi = {i1, i2, . . . , ipi} with pi , |Pi| (i ∈ [κ]), we have

Tik
⋂ ⋃

ij∈Pi\ik

Tij

c

6= ∅, ∀ ik ∈ Pi. (77)

Definition 9 (Alignment Non-Conflict Matrix). For a proper partition {P1, . . . ,Pκ}, we construct a K × κ binary

matrix A, with Aij = 1 (j ∈ [κ], i ∈ K), if

Tjt
⋂ ⋃

js∈Pj\jt

Tjs

c

* Ti, ∀ jt ∈ Pj (78)

and with Aij = 0 otherwise. Further, we reset Aij = 0, if there exist jt ∈ Pj and i ∈ K, such that

Tjt
⋂ ⋃

js∈Pj\jt

Tjs

c ⋂
i:Aij=1

T ci = ∅. (79)

The elements in each portion of proper partition imply that the corresponding messages are able to align in the

same subspace, whereas the alignment non-conflict matrix identifies if this subspace is absent to some receivers.

As such, relying on these definitions, the sufficient conditions to achieve a certain amount of symmetric DoF are

presented as follows.

Theorem 6 (Achievable DoF with Proper Partition). For a K-cell cellular network with arbitrary topologies, the

following symmetric DoF are achievable:

• dsym = 1
κ , if there exists a proper partition with size κ;

• dsym = 1
κ−q with τc ≥ κ− q, if there exists a proper partition with size κ, say {P1, . . . ,Pκ}, associated with

an K × κ alignment non-conflict matrix A, such that

q , min
i

∑
j

Aij . (80)

Proof: See Appendix J.

The same observation of alignment-feasible graphs can be obtained here. A proper portion in (77) implies the

feasibility of a proper selective graph coloring in G2e . Any two (or more) vertices in clusters jS (S ⊆ K) in Ge
(corresponding to edges in G connecting Transmitter is to Receiver js (∀ s ∈ S)) that receive the same color

are scheduled in a single time slot without causing interference, implying that the transmitted signals in the form
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of {Xis(Wjs), s ∈ S} are alignment-feasible in the same subspace. Due to the fact that the required number of

subspace can be less (according to alignment non-conflict matrix in Definition 9), interference alignment based on

proper partition performs no worse than interference avoidance.

Example 6. An example regarding proper partition is shown in Fig. 5. Given the transmit sets T1 = {1, 4},

T2 = {2, 3}, T3 = {2, 3}, T4 = {1, 2, 4}, T5 = {3, 5, 6}, and T6 = {4, 5, 6}, we have a proper partition

{{1, 3, 5}, {2, 4, 6}} with κ = 2, such that {X1(d), X3(b), X5(f)} and {X2(c), X4(a), X6(e)} are aligned in

a subspace respectively. As shown in Fig. 5(b), an interference alignment can be constructed to deliver one symbol

per user within two time slots. Thus, symmetric DoF 1
2 is achievable. In this example, q = 0. �

Fig. 5: (a) An instance of TIM-CoMP problem (K = 6) with a proper partition {{1, 3, 5}, {2, 4, 6}}. (b) An interference

alignment scheme, where the messages whose transmitted signals are aligned in the same subspace belong to one portion.

From the previous theorems, we observe that the messages connected by an edge in GAFG or belonged to the

same portion of a proper partition are able to be scheduled at the same time slot or be aligned at the same direction.

Inspired by this observation, we construct a hypergraph and translate our problem into a covering problem of this

hypergraph.

Theorem 7 (Achievable DoF via Hypergraph Covering). For the TIM-CoMP problem with arbitrary topologies, the

symmetric DoF

dsym =
1

τf (HG)
(81)

are achievable, where τf (HG) is the fractional covering number of the hypergraph HG = (K,X ) with the vertex set

K representing messages and the hyperedge set X including all satisfactory subsets Xi , {i1, i2, . . . , i|Xi|} ⊆ K

such that

Tik
⋂ ⋃

ij∈Xi\ik

Tij

c

6= ∅, ∀ ik ∈ Xi. (82)

Proof: See Appendix K.
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Note that the relation of the vertices of a hyperedge is similar to that of the portion of a proper partition as in

(77), indicating that the messages that belong to any hyperedge are alignment feasible. The characterization of the

fractional hypergraph covering number τf (HG) can also be performed by the following integer linear programming

relaxation

τf (HG) = min
∑
i∈K

ρi (83)

s.t.
∑

i∈K:j∈Xi

ρi ≥ 1, ∀ j ∈ K (84)

ρi ∈ [0, 1], ∀ i ∈ K (85)

where ρi is an indicator variable associated with the hyperedge Xi ∈ X with value between 0 and 1 indicating the

weight assigned to Xi accounts for the total weight, the first constraint ensures that every vertex in K is covered at

least once, and the last constraint specifies a fractional ρi, which is the relaxation of integers {0, 1}. Although the

optimization of this linear program is NP-hard, the connection of our problem and hypergraph covering bridges the

TIM-CoMP problem and the hypergraph covering problem, such that the progress on one problem is automatically

transferrable to the other one.

Essentially, the above hypergraph covering aided approach relies on the one-to-one alignment. As known in TIM

problems, subspace alignment is a generalized version of one-to-one alignment and the former usually performs

better than the latter. In what follows, we show that, with message sharing, subspace alignment boils down to

one-to-one alignment with proper message and subspace splitting.

Example 7. Consider a network topology shown in Fig. 6(a). Without message sharing, the optimal symmetric DoF

value is 1
3 , which is achieved by a subspace alignment scheme. Every transmitter sends message in a one-dimensional

subspace out of in total three-dimensional space. At receiver 1, the interference from Transmitter 4 lies in the

subspace spanned by the interference caused by Transmitters 2 and 3. As such, the desired message of Receiver 1

can be recovered almost surely. At Receivers 2, 3, and 4, the interference occupies one-dimensional subspace, leaving

two-dimensional interference-free subspace to desired messages. Thus, the symmetric DoF of 1
3 are achievable.

In contrast, with message sharing and proper message splitting, a one-to-one alignment scheme can achieve

symmetric DoF of 2
5 . Intuitively, every transmitter sends two messages occupying a two-dimensional subspace

in a five-dimensional space. Denote by Vi the subspace occupied by Transmitter i, where dim(Vi) = 2 and

dim(∪4i=1Vi) = 5. At Receiver 1, the interfering subspaces associated with Transmitters 2 and 3 are overlapped with

one-dimensional subspace, i.e., dim(V2 ∪V3) = 3 and dim(V2 ∩V3) = 1. In addition, the interfering symbols from

Transmitter 4 lie in the subspace spanned by the interference from Transmitters 2 and 3, i.e., V4 ∈ span{V2,V3}.

It would seem subspace alignment is required. In fact, it can be done by a one-to-one alignment scheme by splitting

subspace into, e.g.,

V1 = [v1 v2], V2 = [v3 v4], V3 = [v3 v5], V4 = [v4 v5] (86)
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where {vi, i = 1, . . . , 5} are 5× 1 linearly independent vectors, and by splitting messages and sending

X1 = V1

a1
a2

 , X2 = V2

b2
c1

 , X3 = V3

d1
c2

 , X4 = V4

d2
b1

 (87)

from four transmitters within five time slots, respectively. The concept of interference alignment is illustrated in

Fig. 6(b).

Fig. 6: (a) An instance of TIM-CoMP problem (K = 4). (b) An one-to-one interference alignment scheme.

For TIM problem where both the source and destination of one message are determined a priori, subspace

alignment is necessary to align the interference from Transmitter 4 to the subspace spanned by interferences from

Transmitters 2 and 3. In contrast, for TIM-CoMP problems, the source of one message can be any transmitter that

it is connected, such that by proper message splitting and subspace splitting, it is possible to replace subspace

alignment by one-to-one alignment.

Let us look at the above subspace and one-to-one alignment schemes from a hypergraph covering perspective.

According to the condition of hyperedges in (87), we have following hyperedges

{1}, {2}, {3}, {4}, {5}, {2, 3}, {3, 4}, {4, 5} (88)

A proper fractional hypergraph covering is to choose the following hyperedges

{1}, {1}, {2, 3}, {3, 4}, {4, 5} (89)

which gives fractional hypergraph covering number of 5
2 and thus yields the symmetric DoF of 2

5 . �

V. RELATION TO INDEX CODING PROBLEMS

Knowing that the TIM problem was nicely bridged to the index coding problem [26], one may wonder if there

exist relations between our problem and index coding. Indeed, our problem can also be related to the index coding
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problem. Before presenting this relation, we first define the index coding problem and its demand graph similarly to

those in [26], [44].

Definition 10 (Index Coding). A multiple unicast index coding problem, denoted as IC(k|Sk), is comprised of a

transmitter who wants to send K messages Wk, k ∈ K to their respective receivers over a noiseless link, and K

receivers, each of which has prior knowledge of WSk with Sk ⊆ K\k. Its demand graph is a directed bipartite

graph Gd = (W,K, E) with vertices of Message Wk ∈ W and Receiver k (k ∈ K), and there exists a directed

forward edge i→ j from Message Wi to Receiver j if Wi is demanded by Receiver j and a backward edge k ← j

from Receiver j to Message Wk if Receiver j has the knowledge of Wk as side information.

Theorem 8 (Outer Bound via Index Coding). For the TIM-CoMP problem, given the topological information

{Tk,Rk,∀ k ∈ K}, the DoF region is outer bounded by the capacity region of a multiple unicast index coding

problem IC(k|Sk), where

Sk ,
⋃
j∈T c

k

Rj . (90)

Proof: See Appendix L.

The above theorem implies that the outer bounds of the multiple unicast index coding problem in literature are

still applicable to our problem, but with the modified side information sets. While the DoF region of TIM problem

is outer bounded by the capacity region of the index coding problem IC(k|T ck ), our problem with transmitter

cooperation is outer bounded by IC(k| ∪j∈T c
k
Rj). In general, this bound is loose, because the side information

might be over-endowed to the receivers. Nevertheless, we obtain in the following corollary that this outer bound is

tight to identify the necessary and sufficient condition of the optimality of TDMA.

Corollary 4. For the K-cell TIM-CoMP problem, the symmetric DoF value dsym = 1
K is optimal, if and only if

the demand graph of the index coding problem IC(k|
⋃
j∈T c

k
Rj) is acyclic, and more specifically, if and only if

GAFG is an empty graph.

Proof: See Appendix M.

Remark 5. For the triangular network, the alignment-feasible graph is empty and thus the symmetric DoF value

is 1
K , which coincides with Corollary 2. Note that this triangular network is the minimum graph with empty

alignment-feasible graph.

In what follows, an example is presented to illustrate this corollary.

Example 8. We consider in Fig. 7(a) a four-cell network with transmit sets T1 = T2 = {1, 2}, T3 = T4 = {1, 2, 3, 4}

and receive sets R1 = R2 = {1, 2, 3, 4},R3 = R4 = {3, 4}. By providing Receivers 1 and 2 with W3,4, we connect

the missing links as shown in Fig. 7(b) without reducing the capacity region. Allowing full CSIT, the problem now

is equivalent to the index coding problem (as in Fig. 7(c)) where messages W1,2,3,4 are sent from one transmitter
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to Receiver j (j = 1, 2, 3, 4) who demands Wj , and both Receivers 1 and 2 have the side information W3,4. This

index coding problem has no cycles in its demand graph as shown in Fig. 7(d), such that the optimal symmetric

DoF value is 1
K . It is also readily verified that the alignment-feasible graph is also empty, because Ti ⊆ Tj or

Tj ⊆ Ti for any i 6= j ∈ {1, 2, 3, 4}. �

RX1	
  

RX2	
  

RX3	
  

RX4	
  

Fig. 7: (a) An instance of TIM-CoMP problem (K = 4). By providing the side information W3,4 to Receivers 1 and 2, the

network becomes fully connected as shown in (b). Thus, the DoF region is outer bounded by the capacity region of an index

coding problem with side information as in (c), whose corresponding directed demand graph is shown in (d). There exist no

directed cycles in this directed graph in (d).

VI. DISCUSSION

The topological interference management problem with transmitter cooperation (i.e., TIM-CoMP problem), where

a subset of messages is routed to transmitters before transmission and the transmitters only know the network

topology, has been considered in this paper. This is the first time in our knowledge that this problem is studied

and a number of preliminary results have been obtained which lay down groundwork and illustrate the potential.

Particularly, interference management techniques under this TIM-CoMP setting are unveiled from graph theoretic

and interference alignment perspectives, which exploit the benefits of both topological knowledge and transmitter

cooperation. The achievable symmetric DoF are identified for a class of network topologies. The outer bounds build

upon the concepts of generator sequence and compound settings to show the optimality of symmetric DoF for some

special networks. The relation to index coding problem has been also investigated, with which the necessary and

sufficient condition of the optimality of TDMA is also identified.

Yet, fundamental limits of transmitter cooperation in TIM-CoMP settings are not fully understood. The optimality

was only proven for some special topologies, while it demands more innovative achievability and outer bounding

techniques to identify the optimality for a wider class of networks. As a low-complexity achievable scheme,

orthogonal access has been shown optimal for some special cases, and its optimality for general topologies is an

interesting open problem. The complexity of fractional selective graph coloring prohibits the enumeration of all
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non-isomorphic topologies even for four-cell case, such that a potential indirect solution might be identifying the

sufficient condition when orthogonal access is optimal on the network topology. Although there is no evidence

so far showing subspace alignment outperforms one-to-one alignment, whether these two alignment strategies are

equivalent or not is also an interesting problem.

Additionally, the benefit of full message sharing, where the desired message of one receiver is present at all

transmitters even if some of them are disconnected to this receiver, is still unclear, although none of the findings

shows gains in this regard. Further, the TIM-CoMP problems are similar to TIM problems in X networks, in which

each receiver demands a message from the transmitters to which it is connected such that every message at any

transmitter is useful. Nevertheless, in TIM-CoMP settings, to achieve a certain symmetric DoF, some messages

are never transmitted even if they are present at the transmitters. A natural question then arises as to how much

message sharing is really necessary. This question is also of practical interest, as the buffering and offloading of

users’ data at base stations could be significantly reduced.

Last but not the least, the current relation to index coding problems is a bit loose in general, as the side information

is overly endowed at receivers. A tighter relation between TIM-CoMP and index coding problems is still unclear,

interesting and challenging. In addition, for TIM-CoMP problem, the necessity of nonlinear schemes is still an open

problem due to the lack of tight outer bounds.

APPENDIX

A. Definitions in Graph Theory

Throughput this paper, the graphs are simple and finite. Unless otherwise specified, the graphs are undirected. A

few basic definitions pertaining to graph theory [45]–[47] are now recalled.

The distance between two vertices in a graph is the minimum number of edges connecting them. A line graph

of G = (V, E) is another graph, denoted by Ge = (Ve, Ee), that represents the adjacencies of the edges in G. In

particular, each vertex vei ∈ Ve corresponds to the edge ei ∈ E in G, and two vertices vei, vej ∈ Ee are adjacent if

and only if two edges ei, ej ∈ E are shared with a common endpoint in G. A subgraph of G = (V, E) containing a

subset of vertices S (S ⊆ V) is said to be an induced subgraph, denoted by G[S], if for any pair of vertices u and

v in S, uv is an edge of G[S] if and only if uv is an edge of G.

A (K, d)-regular bipartite graph G = (U ,V, E) is such that |U| = |V| = K and |Tk| = |Rk| = d, ∀ k. A

Hamiltonian cycle for a graph is a cycle that visits all vertices exactly once. A matching of the graph is a set of

edges with no common vertices between any two edges. A perfect matching is a matching contains all vertices. The

complete graph is a graph that any two vertices are joint with an edge.

A graph G is said to be n : m-colorable if each vertex in G can be assigned a set of of m colors in which the

colors are drawn from a palette of n colors, such that any adjacent vertices have no colors in common. When

m = 1, n : m-colorable is also called n-colorable. Denote by χm(G) the minimum required number of n, such that

the fractional chromatic number χf (G) can be defined as

χf (G) = lim
m→∞

χm(G)

m
= inf

m

χm(G)

m
. (91)
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Given a graph G = (V, E) with a partition of vertices V = {V1,V2, · · · ,Vp} where Vi ∩Vj = ∅ and ∪pi=1Vi = V ,

a selection of vertices V ′ ⊆ V is such that |V ′ ∩ Vi| = 1, ∀ i ∈ {1, 2, . . . , p}. For an integer k ≥ 1, G is selectively

k-colorable if the induced subgraph by V ′, i.e., G[V ′], is k-colorable.

As a reference graph, the regular bipartite graph Gr = (Ur,Vr, Er) with topology matrix Br is characterized by

[Br]ji =

 1, 0 ≤ i− j ≤ d− 1

0, otherwise
, (92)

which implies Tj = {j, j + 1, . . . , j + d− 1}. Two bipartite graphs are said to be similar, denoted as G ' Gr, if

their topology matrices B and Br satisfy B = P TBrQ, where P and Q are permutation matrices. Accordingly, it

implies that U and V in G can be obtained by reordering the vertices of Ur and Vr in Gr with U = Ur and V = Vr.

A hypergraph HG = (S,X ) associated with G is composed of the vertex set S ⊆ K being a finite set, and the

hyperedge set X being a family of subsets of S , where Xi , {xi1 , xi2 , . . . , xi|Xi|
} ⊆ S is called a hyperedge, i.e.,

Xi ∈ X . A covering of a hypergraph HG is a collection of hyperedges X1,X2, . . . ,Xτ such that S ⊆ ∪τj=1Xj , and

the least number of τ is called hypergraph covering number, denoted by τ(HG). A t-fold covering is a multiset

{X1, . . . ,Xτ} such that each s ∈ S is in at least t of the Xi’s, and correspondingly τt(HG) is referred to as the

t-fold covering number. Accordingly, the hypergraph fractional covering number is defined to be

τf (HG) , lim
t→∞

τt(HG)

t
= inf

t

τt(HG)

t
. (93)

B. Proof of Theorem 1

To prove this achievability, we first build a connection between interference avoidance of TIM-CoMP problems

and link scheduling problems, and then solve the link scheduling problems through graph coloring.

With transmitter cooperation enabled, it requires to schedule links rather than transmitters to avoid mutual

interference. Without transmitter cooperation, the message Wj can only be sent from Transmitter j for all j, whose

activation will cause interferences to Receiver k (k ∈ Rj), and consequently inactivate Transmitter k (k ∈ Rj),

because Wk cannot be delivered from Transmitter k to Receiver k free of interference. The interference avoidance in

this case is a matter of activating or inactivating transmitters. In contrast, with transmitter cooperation (i.e., message

sharing), the message Wj can be sent from any Transmitter i with i ∈ Tj , and thus, it is not sufficient to schedule

transmitters only. In fact, the link - rather than the transmitter - scheduling is of interest, because both the scheduling

of the transmitters and the receivers does matter.1 For instance, if the link eij (i.e., from Transmitter i to Receiver

j) is scheduled, the links adjacent to eij (i.e., eik1 and ek2j with k1 ∈ Ri\j and k2 ∈ Tj\i) as well as the links

adjacent to eik1 and ek2j should not be scheduled, because activating Transmitter k2 will interfere Receiver j and

Receiver k1 will overhear interferences from Transmitter i, such that any delivery from Transmitter k2 or to Receiver

k1 causes mutual interferences.

1In fact, transmitter scheduling can also be regarded as link scheduling, yet only the direct links (i.e., the links from Transmitter j to Receiver

j) are candidates of link scheduling.
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Such a link scheduling problem is usually solved through graph edge-coloring, while the nature of our problem calls

for a more specific graph coloring solution. Let us represent the cellular network as a bipartite graph G = (U ,V, E),

where the sets U and V denote transmitters and receivers, respectively. The links are assigned with distinct colors

if they should be scheduled at different time slots. Suppose the edge eij ∈ E receives a color. Analogously, the

edges eik1 and ek2j with k1 ∈ Ri\j and k2 ∈ Tj\i should not be assigned the same color. Moreover, the edges

adjacent to eik1 and ek2j should not receive the same color either. In a word, the edges within two-hop should be

assigned with distinct colors. In addition, as we aim at symmetric DoF, the total number of scheduled times of the

links connecting a common receiver is of interest. Thus, the number of colors received by one message should be

counted by the cluster of edges that have a common vertex in V .

As such, our problem calls for a distance-2 fractional clustered-graph edge-coloring scheme, which consists of

the following ingredients:

• Distance-2 fractional coloring: Both the adjacent links and the adjacency of the adjacent links (resp. edges less

than two hops) should be scheduled in difference time slots (resp. assigned with different colors).

• Clustered-graph coloring: Only the total number of messages delivered via links with the common receiver

(resp. colors assigned to the edges with the same vertex) matters. Thus, the number of assigned colors should

be counted by the clusters of edges.

Further, we translate the above edge-coloring of network topology G into vertex-coloring of its line graph Ge.

Accordingly, we group the vertices in Ge for which the corresponding edges in G have a vertex vj ∈ V in common

as a cluster, such that the number of colors is counted by clusters in Ge. The above two-hop condition is therefore

translated to a distance-2 constraint, where two vertices in Ge with distance less than 2 should receive different

colors, and equivalently two adjacent vertices in the square of its line graph, i.e., G2e , should be assigned distinct

colors. Thus, the above link scheduling problem is transferable to a distance-2 selective vertex coloring problem on

its line graph Ge, and thus to a selective vertex coloring problem over G2e , in which the vertices are clustered into

Ve = {V1, . . . ,VK} with Vk = {ejk, j ∈ Tk}. Specifically, a proper selective coloring of G2e over Ve is a proper

color assignment such that each cluster Vi receives m colors out of in total n colors and any two adjacent vertices

in G2e receive distinct colors. As such, G2e is selectively n : m colorable over Ve, indicating that the links in each

cluster can be scheduled m times within overall n time slots without causing mutual interference. Consequently,

according to Definition 4, the achievable symmetric DoF can be given by

dsym = sup
m

m

sχm(G2e ,Ve)
=

1

sχf (G2e ,Ve)
(94)

where sχf is the fractional selective chromatic number as in Definition 4.

C. Proof of Theorem 2

According to the definition of symmetric DoF, the outer bound of symmetric DoF obtained for any subset of

receivers should serve as the outer bound in general. In other words, the general outer bound is the minimum value

of all possible outer bounds for any subset of receivers.
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Let us take a subset of receivers S ⊆ K with received signals YS into account. For those receivers who are

not considered, we switch off their desired messages from the transmitted signal, i.e., the constituent messages

in transmitted signal Xn
i is now comprised of message Wj where j ∈ Ri\Sc. Define X̃T ,

[
h1X1 . . . hKXK

]
,

where hi (i ∈ K) is independent and identically distributed as the nonzero hji, and a set of virtual signals in the

compact form

ỸI , BIX̃ + Z̃I (95)

ȲI , BII
±X̃ + Z̃I (96)

for a set of receivers in I , where BI is the submatrix of B with the rows out of I removed, I± is the same as the

identity matrix up to the sign of elements, and ỸI , ȲI , Z̃I are vectors compacted by ỸI , ȲI , and Z̃I , respectively.

Note that ỸI and ȲI are statistically equivalent to YI , because the distribution of channel gain is symmetric around

zero. We assume there exists a generator sequence {I0, I1, . . . , IS} with ∪Ss=0Is = S and Ii ∩ Ij = ∅ ∀ i 6= j,

such that

BIs ⊆± rowspan {BI0 , IAs} , ∀ s = 1, . . . , S. (97)

This implies that there exist Cs ∈ C|Is|×|I0| and Ds ∈ C|Is|×|As|, such that

BIs = (CsBI0 + DsIAs)I±. (98)

Multiplying I±X̃ at both sides yields

BIsI
±X̃ = CsBI0X̃ + DsIAsX̃ (99)

⇒ ȲIs = CsỸI0 + DsIAsX̃ + Z̃Is −CsZ̃I0 (100)

= CsỸI0 + DsX̃As + Z̃Is −CsZ̃I0 (101)

= CsỸI0 + DsX̃As − Z̄s (102)

with Z̄s , CsZI0 −ZIs being the entropy-bounded noise term [27]. Thus, according to the mapping fidx : B 7→

{0, 1}K and the definition of As, we have

H(WIs |Ỹ n
I0 ,∪

s−1
r=0WIr ,Hn,G) = H(WIs |Ỹ n

I0 ,∪
s−1
r=0WIr , XAs

,Hn,G) (103)

= H(WIs |Ỹ n
I0 , Ȳ

n
Is + Z̄n

s ,∪s−1r=0WIr , XAs
,Hn,G) (104)

≤ H(WIs |Ȳ n
Is + Z̄n

s ,Hn,G) (105)

= H(WIs |Ỹ n
Is + Z̄n

s ,Hn,G) (106)

≤ nεn + n ·O(1) (107)

where (103) is due to the fact that Xn
i is encoded only from WRi\Sc , (104) comes from (102) where X̃As can

be constructed from XAs
, (105) is because removing conditioning does not reduce entropy, (106) is due to the

argument that Ỹ and Ȳ are statistically equivalent, and the last inequality is obtained by following the fact that
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H(W |Y n + Z̄n) ≤ nεn + n ·O(1), if H(W |Y n + Zn) ≤ nεn [27], since Z̄s is bounded noise term. Further, we

have

n
∑
i∈S

Ri = H(WS |Hn,G) (108)

= I(WS ; Ỹ n
I0 |H

n,G) +H(WS |Ỹ n
I0 ,H

n,G) (109)

= I(WS ; Ỹ n
I0 |H

n,G) +H(WI0 |Ỹ n
I0 ,H

n,G) +H(WS\I0 |Ỹ
n
I0 ,WI0 ,H

n,G) (110)

≤ n|I0| logP + n ·O(1) + nεn +

S∑
s=1

H(WIs |Ỹ n
I0 ,∪

s−1
r=0WIr ,Hn,G) (111)

≤ n|I0| logP + n ·O(1) + nεn. (112)

By the definition of symmetric DoF, we have

dsym ≤ lim
P→∞

Rsym

logP
=
|I0|
|S|

. (113)

Among all possible subsets of S and initial generator I0, the symmetric DoF should be outer-bounded by the

minimum of them. Thus, we have

dsym ≤ min
S⊆K

min
I0⊆J (S)

|I0|
|S|

. (114)

D. Proof of Corollary 1

Enumerating all the possible topologies of three-cell networks, we verify the optimality of symmetric DoF by

comparing the achievability in Theorem 1 and the outer bound in Theorem 2. It is readily verified that all but two

topologies have enhanced symmetric DoF, compared to the case without transmitter cooperation [24], [26], [27]. As

shown in Fig. 8, message sharing improves the symmetric DoF from 1
2 to 2

3 for the topology (i) and from 1
3 to 1

2

for the topology (m).

For the achievability, two graph coloring realizations are illustrated in Fig. 9 concerning the topologies of (i) and

(m). Specifically, every cluster receives two out of three colors in total in (i), and one out of two colors in (m),

where the conditions of distance-2 fractional selective graph coloring are satisfied, yielding achievable symmetric

DoF dsym = 2
3 and dsym = 1

2 , respectively. For other topologies, the achievability can be similarly obtained.

Regarding the converse, we apply the outer bound via generator sequence here. Again, we take those two topologies

for example. For topology-(i), we have a generator sequence {{1, 2}, {3}} with I0 = {1, 2} and I1 = {3}. By

generating the virtual signals Ỹ n1 = hn1X
n
1 + hn3X

n
3 + Z̃n1 and Ỹ n2 = hn1X

n
1 + hn2X

n
2 + Z̃n2 , which are statistically

equivalent to Y n1 and Y n2 respectively, we obtain Ỹ n3 = Ỹ n1 − Ỹ n2 = hn3X
n
3 − hn2Xn

2 + Z̃n1 − Z̃n2 that is statistically

equivalent to Y n3 with a bounded noise difference [27]. Thus, according to Theorem 2, we have dsym ≤ |I0||S| = 2
3 .

Similarly for topology-(m), we have a generator sequence {{2}, {1}} with I0 = {2} and I1 = {1}. Note that

we ignore the received signal at Receiver 3, and therefore eliminate the message W3 from the message sets of

the respective transmitted signals. Thus, the message sets of Transmitters 1, 2, and 3 become {W1,W2}, {W2},

and {W1,W2}, respectively. Following the generator sequence approach, we initiate the generator sequence by a
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Fig. 8: The three-cell TIM-CoMP problem, where all non-isomorphic topologies are enumerated. The symmetric DoF

improvement over the noncooperation case is due to topologies (i) and (m).

virtual signal Ỹ n2 = hn1X
n
1 + hn2X

n
2 + hn3X

n
3 + Z̃n2 , and successively generate Ỹ n1 = Ỹ n2 − hn2Xn

2 , where X2 can

be encoded from the message W2. Hence, the symmetric DoF outer bound is dsym ≤ |I0||S| = 1
2 .

Being aware of the coincidence of the achievability and the outer bounds, we conclude that the interference

avoidance achieves the optimal symmetric DoF. The optimality verification of other topologies can be similarly done.

E. Proof of Corollary 2

For the converse proof, since the lower and upper triangular matrices are similar, it suffices to consider the lower

triangular matrix B without loss of generality, where Tj = {1, . . . , j} for all j ∈ K. Thus, the message sets to

Xj with transmitter cooperation are comprised of W{j,··· ,K}. It is readily verified that {{K}, {K − 1}, . . . , {1}}

forms a generator sequence with I0 = {K} and S = K. Thus, we have the outer bound dsym ≤ |I0||S| = 1
K , which

is achievable by time division. This completes the proof.

F. Proof of Theorem 3

1) dsym = 2
K is achievable: First, we consider the case when there exists a Hamiltonian cycle, say without loss

of generality 1 ↔ 2 ↔ · · · ↔ K ↔ 1, in the alignment-feasible graph (GAFG). According to the definition of
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Fig. 9: Fractional selective graph coloring of the topologies (i) and (m). It requires three colors to ensure every cluster receive

two in (i), and two colors are sufficient to offer every cluster one color in (m).

GAFG, it follows that, there exist z1j and z2j+1, such that

z1j ∈ Tj ∩ T cj+1, and z2j+1 ∈ Tj+1 ∩ T cj (115)

with z1j , z
2
j ∈ Tj and z1j−1, z

2
j+1 /∈ Tj , for j ∈ K. Thus, we send along the direction Vj ∈ CK×1 two signals

Xz1j
(W 1

j ) and Xz2j+1
(W 2

j+1) from Transmitter z1j and Transmitter z2j+1, respectively, for j ∈ K.
On one hand, if the channel coefficients are constant during the communication, the received signals at Receiver

j during K time slots can be given as a compact form by

Yj =

K∑
s=1

Vs

(
hj,z1s

Xz1s
(W 1

s )1(z
1
s ∈ Tj) + hj,z2s+1

Xz2s+1
(W 2

s+1)1(z
2
s+1 ∈ Tj)

)
(116)

= Vjhj,z1j
Xz1j

(W 1
j ) + Vj−1hj,z2j

Xz2j
(W 2

j )︸ ︷︷ ︸
desired signal

+

K∑
s=1,s6=j−1,j

Vs

(
hj,z1s

Xz1s
(W 1

s )1(z
1
s ∈ Tj) + hj,z2s+1

Xz2s+1
(W 2

s+1)1(z
2
s+1 ∈ Tj)

)
︸ ︷︷ ︸

aligned interferences

(117)

where 1(·) is the indicator function with value 1 if the parameter is true and 0 otherwise. It is readily verified that

two symbols W 1
j and W 2

j can be retrieved almost surely, yielding symmetric DoF of 2
K . On the other hand, if the

channel is time-varying, we can simply choose Vj as the j-th column of IK , and the same symmetric DoF can be

achieved. In this case, interference alignment boils down to interference avoidance.

Second, we consider a perfect matching in GAFG where K is even, say 1↔ 2, . . . ,K − 1↔ K. Similarly, there

exist zj and zj+1, such that

zj ∈ Tj ∩ T cj+1, and zj+1 ∈ Tj+1 ∩ T cj , j = 1, 3, . . . ,K − 1 (118)

with zj ∈ Tj and zj+1 /∈ Tj . Thus, during in total K
2 time slots, we send two signals Xzj (Wj) and Xzj+1(Wj+1)

from Transmitter zj and Transmitter zj+1, respectively, with the same precoder Vj ∈ CK
2 ×1. The received signals
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at Receiver j during K
2 time slots can be similarly written as

Yj =

K
2∑

s=1

Vs

(
hj,zsXzs(Ws)1(zs ∈ Tj) + hj,zs+1Xzs+1(Ws+1)1(zs+1 ∈ Tj)

)
(119)

= Vjhj,zjXzj (Wj)︸ ︷︷ ︸
desired signal

+

K
2∑

s=1,s6=j

Vs

(
hj,zsXzs(Ws)1(zs ∈ Tj) + hj,zs+1Xzs+1(Ws+1)1(zs+1 ∈ Tj)

)
︸ ︷︷ ︸

aligned interferences

(120)

with which the message Wj is recovered, yielding 2
K DoF per user. This completes the proof.

2) dsym = 2
K−q is achievable: The achievability is similar to the previous case, but the duration of transmission

is shortened. Without loss of generality, we assume the Hamiltonian cycle 1↔ 2↔ · · · ↔ K ↔ 1 for the brevity

of presentation. According to the definition of alignment-feasible graph, there exist z1s and z2s+1, such that

z1s ∈ Ts ∩ T cs+1, and z2s+1 ∈ Ts+1 ∩ T cs (121)

with z1s ∈ Ts and z2s+1 /∈ Ts, for s ∈ K. Assuming

k0 ∈ arg min
k

∑
j

Akj , (122)

we have
∑
jAk0j = q and thus

f−1idx(AT

k0) = {j1, . . . , jq} , Jq (123)

where f−1idx : {0, 1}K 7→ B is the inverse function of fidx.

According to the definition of alignment non-conflict matrix, if Ak0j = 1, then

Tij
⋂
T cij+1

⋂
k:Akj=1

T ck0 6= ∅, and Tij+1

⋂
T cij

⋂
k:Akj=1

T ck0 6= ∅, (124)

meaning that there is non-conflict to make Wij and Wij+1
aligned with the occupied subspace absent to Receiver

k0. It follows that, there exist z1jt and z2jt+1 (jt ∈ Jq), such that

z1jt ∈ Tjt ∩ T
c
jt+1 ∩ T ck0 , and z2jt+1 ∈ Tjt+1 ∩ T cjt ∩ T

c
k0 (125)

with z1jt , z
2
jt+1 /∈ Tk0 . We send Xz1s

(W 1
s ) and Xz2s+1

(W 2
s+1) at Transmitter z1s and Transmitter z2s+1, respectively,

along with the subspace spanned by Vs ∈ C(K−q)×1. Given channel coherence time τc ≥ K − q, the received signal

at Receiver k0 can be written as

Yk0 =

K∑
s=1

Vs

(
hk0,z1s

Xz1s
(W 1

s )1(z
1
s ∈ Tk0) + hk0,z

2
s+1

Xz2s+1
(W 2

s+1)1(z
2
s+1 ∈ Tk0)

)

=

K∑
s=1,s/∈Jq

Vs

(
hk0,z1s

Xz1s
(W 1

s )1(z
1
s ∈ Tk0) + hk0,z

2
s+1

Xz2s+1
(W 2

s+1)1(z
2
s+1 ∈ Tk0)

)
(126)

= Vk0hk0,z
1
k0

Xz1
k0

(W 1
k0
) + Vk0−1hk0,z

2
k0

Xz2
k0

(W 2
k0
)
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+

K∑
s=1,s/∈Jq,
s 6=k0−1,k0

Vs

(
hk0,z1s

Xz1s
(W 1

s )1(z
1
s ∈ Tk0) + hk0,z

2
s+1

Xz2s+1
(W 2

s+1)1(z
2
s+1 ∈ Tk0)

)
(127)

It follows that the desired messages by Receiver k0 can be recovered in a K − q dimensional space with two

interference-free subspace and K−q−2 dimensional subspace with interferences aligned. According to the definition

of q, we conclude that the overall K − q dimensional space is sufficient to support other receivers with
∑
jAkj ≥ q.

As such, the symmetric DoF 2
K−q are achievable.

G. Proof of Theorem 4

According to the definition of (K, d)-regular networks, we have |Tj | = d, ∀ j ∈ K. As we know, when d = K,

the network is fully connected and therefore the optimal symmetric DoF value is 1
K by time division. So, in what

follows, we will consider the general achievability proof when d ≤ K − 1.

Since the cellular network graph is assumed to be similar to the reference one by reordering the transmitters and/or

receivers, we directly consider the referred network topology, because they are equivalent in terms of symmetric

DoF with transmitter cooperation. For the referred network topology, the transmit set of Receiver j is given by

Tj = {j, j + 1, . . . , j + d− 1}, (128)

where all the receiver indices are modulo K, e.g., j −K = j and 0 = K. Thus, at Transmitter i we send symbols

with careful design

Xi = Vi+1Xi(W
1
i ) + Vi+2Xi(W

2
i−d+1),∀ i = 1, . . . ,K

where {Vi, i = 1, . . . ,K} are (d+ 1)× 1 random vectors, and linearly independent among any (d+ 1) vectors,

almost surely, Xi(Wj) is the signal transmitted from Transmitter i carrying on message Wj , and W 1
j , W 2

j are two

realizations (symbols) of message Wj . The signals at Receiver j during d + 1 time slots, with coherence time

τc ≥ d+ 1, can be compacted as

Yj =
∑
i∈Tj

hjiXi + Zj

=

j+d−1∑
i=j

hji(Vi+1Xi(W
1
i ) + Vi+2Xi(W

2
i−d+1)) + Zj

= hj,jVj+1Xj(W
1
j ) + hj,j+d−1Vj+d+1Xj+d−1(W 2

j )

+

j+d−1∑
i=j+1

hjiVi+1Xi(W
1
i ) +

j+d−2∑
i=j

hjiVi+2Xi(W
2
i−d+1) + Zj

= hj,jVj+1Xj(W
1
j ) + hj,j+d−1Vj+d+1Xj+d−1(W 2

j )︸ ︷︷ ︸
desired signal

+

j+d−2∑
i=j

Vi+2(hj,i+1Xi+1(W 1
i+1) + hj,iXi(W

2
i−d+1))︸ ︷︷ ︸

aligned interferences

+Zj .
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It is readily shown that the interferences occupy d− 1 dimensional subspace out of the total d + 1 dimensional

space, leaving 2-dimensional interference-free subspace spanned by {Vj+1,Vj+d+1} to the desired signals, such

that the desired messages for Receiver j, W 1
j and W 2

j , can be successfully recovered. This philosophy applies to all

other receivers. During d+ 1 time slots, every receiver can decode two messages, yielding symmetric DoF of 2
d+1 .
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Fig. 10: Interference alignment for the general (K, d) regular cellular networks.

Geometrically, the interference alignment can be shown in Fig. 10, and also interpreted as follows. Transmitted

signals Xj−1(W 1
j−1) and Xj−2(W 2

j−d−1) are aligned in the same subspace spanned by vector Vj , which is absent

to Receiver k (k ∈ {j, . . . , j+K−3}). Note that t , K−d−1 and j− t = j+d+1 modulo K. By deduction, the

subspace spanned by {Vj+d+2, . . . ,Vj} are absent to Receiver j (i.e., the shadow in Fig. 10), leaving d+ 1 linearly

independent vectors {Vj+1, . . . ,Vj+d+1} to span the space. As such, the signal carrying Xj(W
1
j ) is aligned with

Xj−1(W 2
j−d) in the subspace spanned by Vj+1, and Xj+d−1(W 2

j ) is aligned with Xj+d(W
1
j+d) in the subspace

spanned by Vj+d+1. Note that the signals from Transmitter j− 1 and j+d cannot be heard by Receiver j according

to the network topology, such that W 1
j and W 2

j are free of interference, and retrievable from overall d+1 dimensional

subspace.

It is worth noting that, although the message Wj is shared among the transmitters i (∀ i ∈ Tj), its two realizations

W 1
j and W 2

j are only utilized in this scheme by Transmitter j and Transmitter (j − d+ 1), respectively.

H. Proof of Theorem 5

In what follows, we present an outer bound with the aid of compound settings. As illustrated in Example 5, it is

necessary to determine the least required compound receivers such that the noisy versions of Xi can be recovered.

Thus, we first look into this problem, given that a subset of messages is known a priori.

Consider a set of receivers S ⊆ K satisfying ∪j∈STj = K. The received signals Yj (j ∈ S) at Receiver j is a

linear combination of {Xi, i ∈ Tj} polluted by noise. To recover the noisy versions of {Xi, i ∈ K}, it requires at
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most K − |S| extra linearly independent equations, which can be provided by compound receivers that are assume

to be possessing the same topology as the original receivers and demanding the same messages. In the rest of the

proof, we do not distinguish the original from the compound receivers explicitly.

In fact, in the present of a set of messages WS , the required number of compound receivers can be further

reduced. According to transmitter cooperation, the transmitted signal Xn
i is encoded with the messages WRi

. Being

aware of WRi
, we are able to reconstruct the transmitted signals Xn

S′ , where

S ′ = {i|Ri ⊆ S}. (129)

In other words, the knowledge of WS is equivalent to that of Xn
S′ . With Xn

S′ , we can remove their contributions

from the received signals. Denote by Yj,i and Ỹj,i the received signals of the i-th compound receiver of Receiver j

before and after removing the contribution of XS′ , respectively, i.e.,

Yj,i =
∑
k∈Ti

hj,i,kXk + Zj,i (130)

Ỹj,i =
∑

k∈Ti\S′
hj,i,kXk + Zj,i. (131)

where hj,i,k is drawn from the same distribution and independent of hj,k(t). Let T ′j be the set of the least required

compound receivers associated with Receiver j. Thus, we collect all the compound signals and compact them as

ỸT ′S = HT ′SXK\S′ + ZT ′S (132)

where HT ′S ∈ C
∑

j∈S |T
′
j |×(K−|S

′|) is the reduced channel matrix with the columns indexed by S ′ removed. It

suffices to recover XK\S′ from ỸT ′S as long as
∑
j∈S |T ′j | ≥ K − |S ′|. We conclude that the required number of

compound receivers can be reduced to K − |S ′| − |S|, given the knowledge of WS .

Secondly, we proceed to present the outer bound of achievable rates of compound receivers. For the i-th compound

receiver of Receiver j, by Fano’s inequality, we have

n(Rj,i − εn) ≤ I(Wj , Y
n
j,i|Hn,G) (133)

= h(Y nj,i|Hn,G)− h(Y nj,i|Wj ,Hn,G) (134)

≤ n logP − h(Y nj,i|Wj ,Hn,G) + n ·O(1) (135)

where Rj,i denotes the achievable rate of the i-th compound receiver, and is the same as Rj . Let
∑
j∈S |T ′j | = K−|S ′|.

By adding all achievable rates of all compound receivers, we have

n

∑
j∈S

∑
i∈T ′j

Rj,i − εn

 (136)

≤ n
∑
j∈S
|T ′j | logP − h({Y nj,i, j ∈ S, i ∈ T ′j }|WS ,Hn,G) + n ·O(1) (137)

= n
∑
j∈S
|T ′j | logP − h({Y nj,i, j ∈ S, i ∈ T ′j }|WS , Xn

S′ ,Hn,G) + n ·O(1) (138)
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= n
∑
j∈S
|T ′j | logP − h(Ỹ n

T ′S
|WS , Xn

S′ ,Hn,G) + n ·O(1) (139)

= n
∑
j∈S
|T ′j | logP − h(Xn

K\S′ + H−1T ′S
Zn
T ′S
|WS , Xn

S′ ,Hn,G) + n ·O(1) (140)

= n
∑
j∈S
|T ′j | logP − h(Xn

K\S′ + Z̄nK\S′ |WS , X
n
S′ ,Hn,G) + n ·O(1) (141)

= n
∑
j∈S
|T ′j | logP − n

∑
j∈Sc

Rj + n ·O(1) (142)

where (138) is due to the fact that the knowledge of WS is equivalent to the knowledge of XS′ given topological

information, (139) is because translation does not change the differential entropy, (140) is obtained because HT ′S is

a square matrix and has full rank almost surely, in (141), Z̄nK\S′ is the bounded noise terms, and the last inequality

is from the decodable condition similar to that in (74). By the definition of the symmetric DoF, it follows that

dsym ≤
∑
j∈S |T ′j |∑

j∈S |T ′j |+ |Sc|
(143)

=
K − |S ′|

2K − |S ′| − |S|
. (144)

Among all the possible S, we have the outer bound of symmetric DoF

dsym ≤ min
S⊆K

K − |S ′|
2K − |S ′| − |S|

(145)

where S and S ′ are subject to two constraints: ∪j∈STj = K and S ′ = {i|Ri ⊆ S}.

I. Proof of Corollary 3

When K = 2, the network is fully connected and dsym = 1
2 is optimal. So, in the rest of the proof, we focus on

K ≥ 3. From the graph theoretic perspective, any two (K, 2)-regular networks are similar, because they are in fact

the same cycle with rearranged vertices. Hence, it suffices to consider one typical topology of the (K, 2)-regular

networks, e.g., a K-cell cyclic Wyner network, for the convenience of presentation. The received signal at Receiver

j of the K-cell cyclic Wyner model can be given as

Yj = hj,j−1Xj−1 + hj,jXj + Zj (146)

where the indices are modulo K, and Wi,Wi+1 are the only accessible messages to Transmitter i. In what follows,

we will present first the converse, followed by the achievability proof.

1) Converse: We consider two cases when K is even or odd.

• K is even: Let S = {1, 3, . . . ,K − 1} and S ′ = ∅. Consider the received signals YS and the signals of their

respective compound receivers ỸS . Following the proof of the general case, we have

2n
∑
j∈S

Rj ≤ nK logP − h(Y nS , Ỹ
n
S |WS ,Hn,G) (147)

= nK logP − n(R2 +R4 + · · ·+RK) + n ·O(1) (148)
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where the noisy version {Xn
i + Z̄ni , i ∈ K} can be recovered from K linearly independent equations. Thus,

with |S| = K
2 and |S ′| = 0, it follows that

dsym ≤
K

K +K/2
=

2

3
. (149)

• K is odd: Let S = {1, 3, . . . ,K − 2,K} and S ′ = {K}. Consider here the received signals YS and the signals

of their respective compound receivers ỸS\{K−2,K}. Similarly, we have

2n
∑

j∈S\{K−2,K}

Rj + nRK−2 + nRK (150)

≤ (K − 1) logP − h(Y nS , Ỹ
n
S\{K−2,K}|WS ,H

n,G) (151)

= n(K − 1) logP − h(Y nS , Ỹ
n
S\{K−2,K}|WS , X

n
K ,Hn,G) (152)

= n(K − 1) logP − n(R2 +R4 + · · ·+RK−1) (153)

where Xn
K is reproducible with W1 and Wk, and the noisy version {Xn

i + Z̄ni , i ∈ K\K} can be recovered

from K − 1 linearly independent equations. Thus, with |S| = K+1
2 and |S ′| = 1, it follows that

dsym ≤
K − 1

K − 1 + K−1
2

=
2

3
. (154)

To sum up, we have dsym ≤ 2
3 whenever K is even or odd.

2) Achievability: Although the general achievability proof has been presented with general d, we make it concrete

here for d = 2. During three time slots, we send at Transmitter i

Xi = Vi−1Xi(W
1
i+1) + ViXi(W

2
i ) (155)

where {Vi, i = 1, . . . , n} are 3× 1 vectors satisfy that any three of them are linearly independent, almost surely. At

Receiver j, we have

Yj = hj,j−1Xj−1 + hj,jXj + Zj (156)

= hj,j−1(Vj−2Xj−1(W 1
j ) + Vj−1Xj−1(W 2

j−1))

+ hj,j(Vj−1Xj(W
1
j+1) + VjXj(W

2
j )) + Zj (157)

= hj,j−1Vj−2Xj−1(W 1
j ) + hj,jVjXj(W

2
j )︸ ︷︷ ︸

desired signal

+ Vj−1(hj,j−1Xj−1(W 2
j−1) + hj,jXj(W

1
j+1))︸ ︷︷ ︸

aligned interferences

+Zj . (158)

The interferences carrying messages Wj−1 and Wj+1 are aligned together in the direction of Vj−1, leaving two-

dimensional interference-free subspace for desired signals carrying on message realizations W 1
j and W 2

j . Therefore,

two messages are delivered during three time slots, yielding 2
3 DoF per user, which coincides with the outer bound.

This completes the proof of optimality.
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J. Proof of Theorem 6

1) dsym = 1
κ is achievable: According to the definition of proper partition, for a portion Pi = {i1, . . . , ipi}, we

assume with k = 1, . . . , pi that

zik ∈ Tik
⋂ ⋃

ij∈Pi\ik

Tij

c

, ∀ ik ∈ Pi. (159)

with zik ∈ Tik and zik /∈ Tij , ∀ j 6= k. Thus we send {Xzik
(Wik), k = 1, . . . , pi} at Transmitter zik via the same

precoder Vi ∈ Cκ×1, yielding the receiver signal at Receiver ik in a block fading channel (e.g., τc ≥ κ) as

Yik =

κ∑
j=1

Vj

(
pj∑
s=1

hik,zjsXzjs
(Wjs)1(zjs ∈ Tik)

)
(160)

= Vihik,zikXzik
(Wik) + Vi

 pi∑
s=1,s 6=k

hik,zisXzis
(Wis)1(zis ∈ Tik)


+

κ∑
j=1,j 6=i

Vj

(
pj∑
s=1

hik,zjsXzjs
(Wjs)1(zjs ∈ Tik)

)
(161)

= Vihik,zikXzik
(Wik)︸ ︷︷ ︸

desired signal

+

κ∑
j=1,j 6=i

Vj

(
pj∑
s=1

hik,zjsXzjs
(Wjs)1(zjs ∈ Tik)

)
︸ ︷︷ ︸

aligned interferences

(162)

with which the desired signal can be retrieved with high probability during κ time slots. This applies to all messages

and offers 1
κ DoF per user. For the time-varying channel (i.e., τc = 1), by setting Vi to be the i-th column of Iκ,

the same symmetric DoF are still achievable. This confirms our argument that interference alignment is a general

form of interference avoidance.

2) dsym = 1
κ−q is achievable: The achievability is similar to the previous case, but the required number of

subspace dimension is reduced. By assuming similarly

m ∈ arg min
i

∑
j

Aij , (163)

we have
∑
jAmj = q and f−1idx(AT

m) = Jq.

According to the definition of proper partition, there exists zik with i ∈ {1, . . . , κ} such that

zik ∈ Tik
⋂ ⋃

ij∈Pi\ik

Tij

c

, ∀ ik ∈ Pi (164)

with zik ∈ Tik ,∀ i, and according to the alignment non-conflict matrix, if Amj = 1, then

Tjt
⋂ ⋃

js∈Pj\jt

Tjs

c ⋂
i:Amj=1

T cmk
6= ∅, ∀ jt ∈ Pj ,∀ mk ∈ Pm, (165)

meaning that this is non-conflicting to make the messages in portion Pj aligned with the spanned subspace absent

to all the receivers in Pm. It follows that, there exists zjt with j ∈ Jq , such that

zjt ∈ Tjt
⋂ ⋃

js∈Pj\jt

Tjs

c⋂
T cmk

, ∀ mk ∈ Pm, jt ∈ Pj (166)
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with zjt /∈ Tmk
, ∀ mk ∈ Pm, jt ∈ Pj . With channel coherence time τc ≥ κ − q, the channel coefficients keep

constant throughout the communication. As such, the received signal at Transmitter mk with mk ∈ Pm can be

given as

Ymk
=

κ∑
l=1

Vl

(
pl∑
s=1

hmk,zls
Xzls

(Wls)1(zls ∈ Tmk
)

)
(167)

=

κ∑
l=1,l/∈Jq

Vl

(
pl∑
s=1

hmk,zls
Xzls

(Wls)1(zls ∈ Tmk
)

)
(168)

= Vmhmk,zmk
Xzmk

(Wmk
)1(zmk

∈ Tmk
)

+ Vm

 pm∑
s=1,s6=k

hmk,zms
Xzms

(Wms
)1(zms

∈ Tmk
)


+

κ∑
l=1,l 6=m,l/∈Jq

Vl

(
pl∑
s=1

hmk,zls
Xzls

(Wls)1(zls ∈ Tmk
)

)
(169)

= Vmhmk,zmk
Xzmk

(Wmk
)

+

κ∑
l=1,l 6=m,l/∈Jq

Vl

(
pl∑
s=1

hmk,zls
Xzls

(Wls)1(zls ∈ Tmk
)

)
(170)

where Vl ∈ C(κ−q)×1 is sufficient to recover desired message Wmk
, yielding 1

κ−q DoF. According to the definition

of q, this κ− q dimensional space suffices to support all other receivers. Thus, symmetric DoF of 1
κ−q are achievable,

almost surely.

K. Proof of Theorem 7

In this theorem, we represent the achievable symmetric DoF of the TIM-CoMP problem by a graph-theoretic

parameter, i.e., fractional covering number. To this end, we will bridge our problem to the hypergraph fractional

covering problem, which is in general a set covering problem.

First of all, we construct such a hypergraph HG according to the network topology. From the definition of proper

partition, it follows that if a set Xi , {i1, i2, . . . , i|Xi|} ⊆ K satisfies

Tik
⋂ ⋃

ij∈Xi\ik

Tij

c

6= ∅, ∀ ik ∈ Xi, (171)

then any two messages in WXi
are mutually alignment-feasible. The messages {Wik , ik ∈ Xi} can be sent from the

transmitters {zik , ik ∈ Xi}, respectively, in the form of Xzik
(Wik) with the same precoding vector Vi (Alternatively,

the links from Transmitter zik to Receiver ik (k = 1, . . . , |Xi|) can be scheduled at the same time slot), where

zik ∈ Tik
⋂ ⋃

ij∈Xi\ik

Tij

c

. (172)

As such, only one transmitted signal Xzik
(Wik) is active in subspace spanned by Vi at Receiver ik, and hence Wik

is recoverable from this subspace. The presence of the subspace spanned by Vi carrying on messages with indices
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in Xi guarantees the successful delivery of the messages in WXi
. Thus, the set Xi can serve as a hyperedge of HG .

Any set of elements in K that satisfies the condition (171) serves as a hyperedge. As a result, the hypergraph HG
is constructed with vertex set K and hyperedge set being enumeration of all possible sets of elements that satisfy

condition (171).

Our problem to find the symmetric DoF is equivalent to the covering problem of this hypergraph to find the

minimum number of hyperedges {Xi, i = 1, 2, . . . , τt} such that each j ∈ K appears at least t of the Xi’s. According

to the definition of hypergraph covering in Appendix A, the minimum number of hyperedges that meets the covering

problem can be represented by the t-fold covering number. With hyperedge cover of τt(HG) times, each vertex in K

is covered at least t times, meaning that within a τt(HG) dimensional subspace spanned by Vi ∈ Cτt×1, i = 1, . . . , τt,

each Wj , j ∈ K can be delivered t times free of interference. As a consequence, the achievable symmetric DoF can

be represented by

dsym = sup
t

t

τt(HG)
=

1

τf (HG)
, (173)

where τf (HG) is the hypergraph fractional covering number as defined in Appendix A.

L. Proof of Theorem 8

The proof follows the channel enhancement approach in [26] with slight modification by taking transmitter

cooperation (i.e., message sharing) into account. We brief the steps of the channel enhancement as follows.

• Denote by C1 the capacity region of the TIM-CoMP problem, where Transmitter i is endowed with the messages

desired by its connected receivers, i.e., WRi
, for all i ∈ K.

• ∀ k, j ∈ K, if j ∈ Tk, we specify

hkj =

√
SNR

Pj
(174)

which will not impact on the reliability of the capacity-achieving coding scheme.

• ∀ k, j ∈ K, if j /∈ Tk, we provide WRj
to Receiver k as side information, and connect the missing link by

setting the channel coefficient as a non-zero value

hkj =

√
SNR

Pj
, (175)

where the newly enabled interferences from Transmitter j can be eliminated given the side information WRj .

• Allowing full transmitter cooperation and full CSIT, the channel turns out an MISO channel to each receiver,

where all received signals are statistically equivalent. Denote by C2 the capacity region of current channel. The

capacity region is not diminished, i.e., C1 ⊆ C2.

• With the network equivalence theorem [48], the MISO channel can be replaced by a noise-free link with finite

capacity, as the bottleneck link of index coding problem with capacity region C3.

It is noticed that all the above steps do not reduce the capacity region, i.e., C1 ⊆ C2 ⊆ C3, such that the capacity

region of the index coding problem with side information ∪j∈T c
k
WRj can serve as an outer bound of our problem.
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M. Proof of Corollary 4

First, we prove the sufficient condition that, if the demand graph of index coding problem IC(k|Sk) with

Sk = ∪j∈T c
k
Rj is acyclic or GAFG is an empty graph, then the optimal symmetric DoF value is 1

K . To this end,

we only need to prove the following chain:

GAFG = ∅ ⇒ acyclic demand graph IC(k|Sk) ⇒ 1

K
is optimal.

Being aware of the fact that the symmetric DoF 1
K can be trivially achieved by time division, we only have

to prove 1
K is also an outer bound. From Corollary 7 in [26], the necessary and sufficient condition to achieve

symmetric capacity of 1
K per message is that the message demand graph is acyclic. Thus, if the demand graph is

acyclic, then the TIM-CoMP problem is upper bounded by 1
K . That is, the second part of the chain is true. By this,

the sufficiency can be proved if the first part of the chain is also true. We construct the proof of this statement by

contraposition, i.e.,

if the demand graph of the index coding problem IC(k|Sk) is not acyclic,

then GAFG 6= ∅, i.e., ∃ i, j, such that Ti * Tj and Tj * Ti.

To prove this contraposition, we first consider there exists a cycle involving only two messages, e.g., Wm and Wn,

in the demand graph. Thus, we have m ∈ Sn = ∪j∈T c
n
Rj and n ∈ Sm = ∪j∈T c

m
Rj , while m /∈ Sm = ∪j∈T c

m
Rj

and n /∈ Sn = ∪j∈T c
n
Rj , such that there exist j1 ∈ T cn and j2 ∈ T cm where m ∈ Rj1 and n ∈ Rj2 whereas m /∈ Rj2

and n /∈ Rj1 . This leads to Rj1 * Rj2 and Rj2 * Rj1 . Equivalently, there exist t1 ∈ Rj1 and t2 ∈ Rj2 , such

that Tt1 * Tt2 and Tt2 * Tt1 , because both conditions imply the same alignment feasibility, where Xj1(Wt1) and

Xj2(Wt2) can be aligned in the same subspace. Consequently, two messages Wt1 and Wt2 are alignment-feasible,

and therefore connected in GAFG. Thus, GAFG 6= ∅ is proven.

Furthermore, we consider the smallest cycle involving more than two messages, i.e., i1 → i2 → · · · → is → i1

with directed edge from Message im to Receiver im then via Message im+1 to Receiver im+1 and so on, for

m = 1, 2, . . . , s, with modulo applied to the indices. Given the smallest cycle in the directed demand graph, we have

im+1 ∈ Sim = ∪j∈T c
im
Rj , (176)

im+1 /∈ Sin = ∪j∈T c
in
Rj , ∀ n ∈ {1, 2, . . . , s}, n 6= m. (177)

From (176), it is readily verified that there must exist jm ∈ T cim , such that im+1 ∈ Rjm . By set n = m− 1 and

n = m+ 1 respectively in (177), we have

∀ jm−1 ∈ T cim−1
, im+1 /∈ Rjm−1

, (178)

∀ jm+1 ∈ T cim+1
, im+1 /∈ Rjm+1

. (179)

It follows that T cim * T cim−1
and T cim * T cim+1

for all m, and in turn

Tim−1
* Tim , and Tim+1

* Tim , ∀ m. (180)
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Otherwise, it results in contradictions with im+1 ∈ Rjm . Recalling that i1 → i2 → · · · → is → i1 forms a cycle,

we conclude that Tim * Tim+1
and Tim+1

* Tim for all m ∈ {1, 2, . . . , s}, and therefore messages Wim and Wim+1

are joint with an edge. Thus, we conclude that, if there exist a cycle in demand graph, then GAFG 6= ∅.

Consequently, its contraposition is equivalently proven: if GAFG = ∅, then the corresponding demand graph is

acyclic. Thus, the first part of the chain is true, and in turn the necessity is proven.

Second, we prove the necessary condition that, if the optimal symmetric DoF value is 1
K , then the demand graph

is acyclic and GAFG is an empty graph. We achieve this goal by constructing a proof by contraposition, i.e., if

GAFG is not empty, or the demand graph of index coding problem IC(k|Sk) is cyclic, then the symmetric DoF

value 1
K is sub-optimal. To this end, we only need to prove the following chain

Cyclic demand graph IC(k|Sk) ⇒ GAFG 6= ∅ ⇒
1

K
is suboptimal.

As proved above, if GAFG = ∅, then the demand graph of IC(k|Sk) is acyclic. By contraposition, if the demand

graph is cyclic, then GAFG 6= ∅. That is, the first part of the chain is true. Let us focus on the second part of the

chain. Assume there exists an edge eij in GAFG, which implies that Wi and Wj are alignment feasible, i.e., Ti * Tj
and Ti * Tj . According to the definition of proper partition, we have a partition with size K − 1 where Wi and Wj

belong to one portion and the rest K − 2 messages form K − 2 portions, respectively, such that dsym = 1
K−1 is

achievable. Thus, the statement of the second part of the chain is automatically implied. Had proven the chain, the

necessity is obtained.

Given the necessity and sufficiency, the proof is completed.
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