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Abstract—Eligible for student paper award. The peeling de-
coding for spatially coupled low-density parity-check (SC-LDPC)
codes is analyzed for a binary erasure channel. An analytical
calculation of the mean evolution of degree-one check nodes of
protograph-based SC-LDPC codes is given and an estimate for
the covariance evolution of degree-one check nodes is proposed
in the stable decoding phase where the decoding wave propagates
along the chain of coupled codes. Both results are verified
numerically. Protograph-based SC-LDPC codes turn out to have
a more robust behavior than unstructured random SC-LDPC
codes. Using the analytically calculated parameters, the finite-
length scaling laws for these constructions are given and verified
by numerical simulations.

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)
codes are known to achieve capacity over binary-input mem-
oryless symmetric (BMS) channels under belief propagation
(BP) decoding [1]. SC-LDPC code ensembles are constructed
by coupling L (l, r)-regular LDPC codes, each one of length
M bits, together with appropriate boundary conditions. When
M tends to infinity and L is large, SC-LDPC codes exhibit
a BP threshold arbitrarily close to the maximum-a-posteriori
(MAP) threshold of the (l, r)-regular ensemble [1], [2].

Several constructions for SC-LDPC codes have been pro-
posed but, in many cases, these constructions have been
chosen to simplify the analysis of performance rather than
to construct strong codes. For uncoupled LDPC ensembles, it
is well known that construction by means of protographs gives
important practical advantages with respect to the random
construction [3], [4]. However, protograph LDPC ensembles
are a class of multi-edge type LDPC codes that are hard
to analyze. Indeed, proofs for achieving capacity over BMS
channels [1] and finite-length performance analyses [5], [6]
have been proposed only for random SC-LDPC codes.

In this paper we show that finite-length protograph-based
codes provide better error rates than random constructions in
both the waterfall and the error floor regions. To this end,
we extended the finite-length analysis recently proposed in
[5], [6] for random SC-LDPC ensembles to the protograph
construction. Analysis of the finite-length performance of
LDPC codes in the waterfall region is typically addressed
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over the binary erasure channel (BEC) where scaling laws
relating the finite-length code performance and the LDPC code
parameters can be analytically computed [7]. For the BEC,
we consider a formulation related to belief propagation called
peeling decoding (PD) [3]. PD iteratively removes variable
nodes from the Tanner graph whose value is known, which
yields a sequence of graphs whose statistics define both the
asymptotic and finite-length properties of the code [8]. An
estimate of the PD error probability is obtained based on the
average evolution of the number of degree-one (deg1) check
nodes in the graph and the variance around this average [7].

In this paper, we show how to compute the average
evolution of deg1 check nodes for protograph-based SC-
LDPC codes under PD. In addition, for both the random and
protograph constructions, we propose an accurate method to
estimate the variance around the computed expected evolution.
Our analysis shows that the performance gain obtained by
the protograph SC-LDPC construction can be explained by
a robust expected graph evolution in which there exists a
high fraction of deg1 check nodes at those instants where
the decoding process is exposed to failures. The protograph
scaling law is obtained with a simple parameter correction in
the SC-LDPC scaling law proposed in [5], [6].

II. CONSTRUCTING SC-LDPC CODE ENSEMBLES

We consider classes of SC-LDPC code ensembles based
on the (l, r) regular LDPC ensembles. In this section, we
present the random construction proposed in [1], [5] and its
counterpart based on protographs. The random and protograph
ensembles are denoted by (l, r, L) and (l, r, L)P , respectively.

A. The (l, r, L) ensemble

Consider L uncoupled (l, r)-regular LDPC codes of code
length M , where r is the check degree and L is the variable
degree, r ≤ l. Each code has M variables and l

rM check
nodes. The codes occupy L consecutive positions. We generate
the SC-LDPC (l, r, L) ensemble by spreading l − 1 edges
per variable node along consecutive positions. Each variable
node at position u is connected to a check node at positions
u, u + 1, . . . , u + l − 1. At each position, the check node is
chosen at random. The code has M variable nodes placed at
positions 1, . . . , L and there are L+(l−1) positions with check
nodes of non-zero degree. The design rate tends to 1 − l/r,
the uncoupled code rate, when L→∞.
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B. The (l, r, L)P ensemble

Codes based on protographs were introduced by Thorpe
in [9]. Small Tanner graphs called protographs are used as
templates for a large code construction: the small protograph
is first copied multiple times and then edges between the same
type of sockets are permuted, avoiding those permutations
that create small girths. To obtain a spatially coupled LDPC
construction, L smaller protographs of a standard (l, r) LDPC
code are first coupled to create the SC-LDPC protograph
following similar rules as in the (l, r, L) case: each variable
node at position u is connected to a check node at positions
u, u + 1, . . . , u + l − 1. For instance, Fig. 1 illustrates the
construction of the coupled protograph that generates the
(3, 6, L = 3) ensemble. Once the coupled protograph is
created, a code sampled from the (l, r, L)P ensemble with
M bits per position is generated by permuting edges between
M/k copies of the coupled protograph, where k is the number
of bits per position in the coupled protograph. E.g., we have
k = 2 in the (3, 6) protograph in Fig. 1. The rate of the
(l, r, L)P ensemble can be computed from the protograph:

r(l,r,L)P = 1− k(L+ l − 1)

L
(1)

which also tends to the uncoupled rate when L→∞.

C. The (l, r, L)P degree distribution

In Section III, we compute the expected graph evolution
under PD protograph-based SC-LDPC ensembles. As shown in
[8], the graph degree distribution (DD) at any time during the
decoding process constitutes a sufficient statistic for analysis
and thus we can reduce the problem to analyzing the average
evolution of the degree distribution of the sequence of residual
graphs. The first step is to define a proper DD for the (l, r, L)P
ensemble, which is a particular class of multi-edge type LDPC
codes. Each edge of the coupled protograph constitutes a
different edge type, e.g. as in Fig. 1, and thus the highest
edge type index is m = lkL.

We use a multi-edge like notation as introduced in [3].
Denote a row vector with v and a matrix with M. 1 denotes
a vector consisting only of ones. 0∼i,j,k is a vector of
zeros except the entries i, j, k which are 1. We denote with
|d| =

∑n
i=1 di the sum of all entries of d. Suppose we

generate a sample from the (l, r, L)P ensemble. For a given
variable (check) node, we define its multi-edge type by a
vector d = (d1, . . . , dm), where dj ∈ {0, 1, . . .} represents the
number of edges of type j connected to the variable (check)
node. Let Łd (Rd) represent the number of variable (check)
nodes of multi-edge type d and let Φ be the set of multi-
edge types in the graph. As in the case of single-type LDPC
ensembles, the whole DD is represented in a compact way
using multinomials

Ł(x) =
∑
d∈Φ

Łdx
d, R(x) =

∑
d∈Φ

Rdx
d (2)

where xd =
∏m
i=1 x

di
i . The total number of variable nodes and

check nodes is given by Ł(1), R(1). For example, consider the

Fig. 1. Coupling of three (3, 6) protographs to create the
(l, r, L)P = (3, 6, 3)P protograph. The edges are numbered to refer
to the multi-edge type notation.

(l, r, L)P = (3, 6, 3) ensemble in Fig. 1. The multi-edge type
distribution of the ensemble is given by

Ł(x) = M
2 (x1x2x3 + x4x5x6 + x7x8x9

+ x10x11x12 + x13x14x15 + x16x17x18), (3)

R(x) = M
2 (x1x4 + x2x5x7x10

+ x3x6x8x11x13x16 + x9x12x14x17 + x15x18). (4)

Alternatively, we can specify the DD from an edge perspective:

Łxj (x) =
dŁ(x)

dxj
=
∑
d∈Φ

Łj,d x(d−0∼j) (5)

Rxj (x) =
dR(x)

dxj
=
∑
d∈Φ

Rj,dx
(d−0∼j) (6)

where Łj,d = djŁd (Rj,d = djRd) represents the number
of edges of type j for which the multi-edge type of the rest
of the sockets of the variable (check) node is d. Note that
Łxj (1) = Rxj (1) gives the number of edges of a certain edge
type. This notation is extended to allow multiple derivations,
e.g. Rxi,xj ,xk(x). For di, dj , dk ≤ 1 we obtain the number of
edges connected to nodes which have certain sockets.

III. EXPECTED GRAPH EVOLUTION

Consider transmission over the BEC and PD [8]. We start
the PD algorithm by removing the variable nodes and their
edges associated with non-erased symbols and any discon-
nected check nodes from the graph; following this, one deg1
check node and its linked variable node are removed from
the reduced graph per iteration. In [8], it was shown that
the sequence of graphs follows a typical path or expected
evolution. Based on the graph covariance evolution as a
function of the code length at those points where the expected
evolution of the fraction of deg1 check nodes presents a
local minimum (critical points), scaling laws (SLs) predict the
finite-length performance of code ensembles in the waterfall
region in [7]. In this section, we show how to compute the
graph expected evolution for the (l, r, L)P ensemble.

The PD is initialized by removing from the graph all bits
correctly received. Therefore, each variable node is removed
from the graph with probability (1−ε). Denote by Ł(x, t = 0)
and R(x, t = 0) the expected graph DD after this step. It can
be easily checked that

Ł(x, t = 0) =
∑
d∈Φ

εŁdx
d. (7)



Given a check node of multi-edge type d, define D(d) as
the set of multi-edge types which can be created from d after
the transmission 1. It is straightforward to show that

R(x, t = 0) =
∑
d

Rd

∑
d′∈D(d)

ε|d
′|(1− ε)|d|−|d

′|xd′ . (8)

We define the extended set of all possible multi-edge types
after transmission as Φ = Φ

⋃
dD(d). Let Łd(`) and Rd(`) be

the (random) DDs after ` iterations. We define the normalized
(random) DDs at normalized time τ as follows

τ
.
=

`

M
, rd(τ)

.
=
Rd(`)

M
, ld(τ)

.
=

Łd(`)

M
(9)

and by extension

l(x, τ) =
∑
d∈Φ

ld(τ)xd, r(x, τ) =
∑
d∈Φ

rd(τ)xd. (10)

As shown in [8], the mean values l̂d(τ) and r̂d(τ) of this
random process at time τ are given by the solution to the
following system of differential equations:

∂l̂d(τ)

∂τ
= E[Łd(`+ 1)− Łd(`)

∣∣∣v̂(x, `), r̂(x, `)] (11)

∂r̂d(τ)

∂τ
= E[Rd(`+ 1)−Rd(`)

∣∣∣v̂(x, `), r̂(x, `)]. (12)

Further, the solution is unique and, with probability
1−O(e−

√
M ), any particular realization of the normalized

DD in (9) deviates from its mean by a factor of less than
M−1/6 for the initial conditions r̂d(0) = E[Rd(` = 0)]/M
and l̂d(0) = E[Łd(` = 0)]/M , computed in (7) and (8). The
expectations in (12) and (11) are given in Section III-A. The
ensemble BP threshold is given by the maximum ε for which
the mean total fraction of deg1 check nodes, given by

ĉ1(τ)
.
=

m∑
i=1

r̂(0∼i, τ) (13)

is positive for any τ ∈ [0, εL], where r̂(x, τ) is the mean of
r(x, τ) in (10). Based on (13), we can say that ĉ1(τ) is the
mean of the random process c1(τ).

A. Expected graph evolution in a single PD step

We need to calculate the expectations in (12) and (11). For
the (l, r, L)P ensemble, there are no degrees higher than 1, i.e.
for all d ∈ Φ, we have dj ≤ 1. We start with the evolution of
the number of check nodes of a given multi-edge type d ∈ Φ.
At each iteration, the probability that a deg1 check node of
edge type j ∈ {1, . . . ,m} is directly removed is

P0∼j ,dir =
R(0∼j , `)∑m
i=1R(0∼i, `)

=
R(0∼j , `)

C1(`)
(14)

1For instance, after transmission of the (3, 6, 3)P ensemble in (3) and (4),
check nodes of multi-edge type d′ = 01, d′ = 02 and d′ = 0 can be
created from a check node of multi-edge type d = 01,2.

0 5 10 15 20 25

10−1

100

101

normalized iteration τ
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Fig. 2. Subplot (a) shows ĉ1(τ) for the (l, r, L)P = (3, 6, 50)P ensemble
for a varying ε. For ε = 0.45, the subplot includes actual decoding trajectories.
Subplot (b) shows ĉ1(τ) for the ensembles (l, r, L)P = (3, 6, 100)P (solid
line) and (l, r, L) (dashed line) and ε = 0.45.

where C1(`) is the total number of deg1 check nodes. Denote
by P−d,indir the probability that a check node of multi-edge type
d is lost because the node has lost one edge. We also obtain

P−d,indir =

m∑
j=1

P0∼j ,dir

m∑
k=1

Łxj ,xk(1, `)

Łxj (1, `)
Rd(`)

Rxk(1, `)
(15)

where Łxj ,xk(1, `) is the number of variable nodes that have
sockets of type j and k. Similarly, every time a check node
of multi-edge type d is lost because we have removed one
edge, e.g. an edge of type j, we create a new check node of
multi-edge type d − 0∼j . Let P+

d,indir denote the probability
that we create a check node of multi-edge type d after the PD
iteration. This probability is given by

P+
d,indir =

∑
k:dk=0

P−(d+0∼k),indir. (16)

Putting all together, we obtain

E[Rd(`+ 1)−Rd(`)] = P+
d,indir − P

+
d,indir

E[R0∼j (`+ 1)−R0∼j (`)] = −P0∼j ,dir + P+
d,indir − P

+
d,indir

for j = 1, . . . ,m and |d| > 1. Finally, (11) is given by

E[Łd(`+ 1)− Łd(`)] = −
∑
j:dj=1

R(0∼j , `)

C1(`)

Łd(`)

Łxj (1, `)
. (17)

B. Mean evolution of degree-1 Check Nodes during PD

The analytical calculation of ĉ1(τ) for the protograph-based
ensemble (l, r, L)P = (3, 6, 50)P for a varying ε is shown



in Fig. 2(a). The BP threshold is ε(3,6,50)P ≈ 0.48815. As
explained in detail in [5], in the initial phase deg1 check
nodes are removed more or less uniformly along the chain.
In Fig. 2(a), this phase corresponds to the initial decreasing
branch. Now the second phase starts, which corresponds to
the “decoding” wave that moves at constant speed through
the graph [1]. In this phase we do not have one critical
time point at which the decoder is most likely to stop, but
the expected number of deg1 check nodes is essentially a
constant. Therefore, we call this phase the “steady-state”
phase. Denote by ĉ1(∗) the value during such phase. An
important observation is that ĉ1(∗) does not depend on the
chain length L, as we can see in Fig. 2(a) where the curve
for L = 100 and ε = 0.45 is included. As in [5], we have
observed that ĉ1(∗) is accurately estimated by a first-order
Taylor expansion around the threshold ε∗:

ĉ1(∗) ≈ γ∆ε (18)

where γ is a constant that depends on the underlying regular
(l, r) ensemble and the way the coupled code is constructed.
For the (3, 6, L)P ensemble, we obtain γP ≈ 5.25. In Fig.
2(b), we compare the ĉ1(τ) evolution for the ensembles
(3, 6, L = 100) (dashed line) and (3, 6, L = 100)P (solid
line) for ε = 0.45. While both ensembles have the same
threshold (ε∗ = 0.48815), ĉ1(∗) is significantly lower for the
random case, which means the decoding process of the random
ensemble is less robust against decoding failures. Indeed, the γ
parameter in (18) for the (3, 6, L) ensemble is γ ≈ 4.2 < γP .

IV. FINITE-LENGTH SCALING BEHAVIOR

As shown in [5], [6] for the (l, r, L) random ensemble,
the process c1(τ) during the steady-state phase converges
in M to a Gauss-Markov process with constant mean and
variance and exponentially decreasing time covariance, i.e.
CoV[c1(τ), c1(ζ)] ∝ exp(−θ|ζ − τ |), where θ = θ(l, r)
depends on the coupling pattern [6]. Based on this behavior,
the zero-crossing probability of the process c1(τ) during the
steady-state phase is estimated as follows:

P ∗ ≈ 1− exp

(
− (εL− τ∗)
µ0(M, ε, l, r)

)
(19)

where (εL− τ∗) is the duration of the steady-state phase and
µ0 is the average survival time of the c1(τ) process:

µ0(l, r,M, ε) ≈
√

2π

θ

∫ √
M∆ε
α

0

Φ(z)e
1
2 z

2

dz (20)

where Φ(z) is the c.d.f. of the Gaussian N (0, 1), α =
δ1(∗, ε)γ−1 and δ1(∗) is proportional to the variance of c1(τ).
Note that while both θ and δ1(∗) have the same value for
the (l, r, L) and (l, r, L)P ensembles (we will see later that
this assumption is accurate), the higher γ obtained for the
protograph case yields an exponential increase of µ0 in (20)
and, consequently, a drastic reduction in the error performance
estimate in (19).
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Fig. 3. Subplot (a) shows Monte Carlo and the proposed estimates to δ1(τ)
for the (3, 6, 100)P and (3, 6, 100) ensembles with M = 2000. Subplot
(b) shows the process covariance estimation at 2 time instants for the same
ensembles. All results are computed for ε = 0.45.

A. Variance evolution

As shown in [7], the PD covariance evolution, i.e.,
the time evolution of moments of the form δd,d′(τ)

.
=

CoVar[rd(τ), rd′(τ)] can be predicted by solving an extended
system of differential equations. Further, rd(τ) ∀d ∈ Φ
converges (in M ) to a multivariate Gaussian distribution with
mean r̂d(τ) and a covariance matrix given by the moments
δd,d′/M . In particular, we are interested in

δ1(τ) =

m∑
i=1

m∑
b=1

δ0∼i,0∼b(τ) (21)

since Var[c1(τ)] = δ1(τ)/M . In Fig. 3(a), we plot a Monte
Carlo estimate to δ1(τ) for the (3, 6, 100)P and (3, 6, 100)
ensembles with M = 2000. For both ensembles, Var[c1(τ)]
in the steady-state phase remains approximately constant and
we denote this constant value by δ1(∗). In addition, there is
no significant mismatch observed between δ1(∗) and δ1(∗)P .

B. A simple estimate of δ1(∗)
Instead of solving the covariance evolution for the (l, r, L)P

ensemble analytically, which requires to numerically integrate
a system of O(L2) differential equations [6], we present a
method to accurately estimate δ1(∗)P using only the expected
graph evolution. This method can also be applied to the
random (l, r, L) ensemble. Assume the graph has followed
the exact mean evolution path up to an iteration `− 1. In the
next iteration, the graph evolution is assumed to be random.
Let ∆1(`) = C1(`) − Ĉ1(` − 1) be the random evolution in
the number of deg1 check nodes after we perform the next



PD iteration, where by assumption only C1(`) is a random
variable. Note that ∆1(`) ∈ {−l, . . . , l − 1}. We propose to
approximate δ1(τ = `/M) with the variance of ∆1(`), i.e.,

δ1(τ) ≈ Var[∆1(τ)] =
(
E[∆1(τ)2]− E[∆1(τ)]2

)
. (22)

Computing the probability of all possible outcomes of ∆1(τ)
is done by similar techniques to those applied in Section III-A.
In Fig. 3 (a), the variance estimate in (22) is plotted along
with the Monte Carlo estimate to δ1(τ). As observed, we
achieve an accurate estimate during the steady-state phase that
can be efficiently computed for both ensembles. We are still
exploring the reasons why our proposal provides such a good
estimate in the case of SC-LDPC codes, in contrast to the
uncoupled LDPC case. We conjecture that the fact that ĉ1(τ)
has a constant evolution during the steady-state phase plays
a major role to explain our result. The curvature of the mean
evolution curve, which is zero in our case, at the critical points
has been related to the variance parameter during the analysis
of finite-length uncoupled LDPC codes [10].

C. Process covariance at two time instants
As errors happen more or less uniformly through the steady-

state phase, we finally need to estimate the process covariance
with time, i.e. φ1(τ, ζ)

.
= E[c1(τ)c1(ζ)]− ĉ1(τ)ĉ1(ζ). We take

an empirical approach to determine this quantity. In Fig. 3(b),
we plot the Monte Carlo estimate of Mφ1(τ, ζ) for ζ = 26 and
ζ = 28 for the random and the protograph ensembles using
2000 decoding trajectories for ε = 0.45 and M = 2000. As
observed, during the steady-state period, the covariance decay
is exponential with |ζ − τ |:

φ1(τ, ζ) ≈ δ1(∗)
M

e−θ|ζ−τ | (23)

and we get the same decay rate θ ≈ 0.6 for both cases.

V. PERFORMANCE COMPARISON

In Fig. 4, we show performance results for the (3, 6, 100)
and (3, 6, 100)P ensembles. Solid lines represent actual error
rates computed by Monte Carlo simulations while dashed
lines correspond to the performance estimate given by the
scaling law in (19) and (20). For the same rate and code
length, the protograph-based codes have error rates one order
of magnitude below the random case.

As discussed in [5], [6], the scaling law proposed for SC-
LDPC codes has a decreasing (in M ) shift with respect to the
actual performance. Nonetheless, it captures the right scaling
between code performance, code parameters and the gap to
the threshold. In light of the results in Fig. 3(a) and Fig.
3(b), the performance gain obtained is essentially explained
by the height of the mean evolution ĉ1(τ) during the steady-
state phase. This performance gain can be simply predicted
by evaluating the effect of γ in (19) and (20). Conversely, the
increase in the number M of bits per position that the (l, r, L)
ensemble would require to achieve the (l, r, L)P performance
can be computed using (20). For instance, for the (3, 6, L)
ensemble, we have γP/γ ≈ 1.25, which by (20) implies that
we have to multiply M by 1.57 in the random ensemble
to match the (3, 6, L)P performance. In Fig. 4, we include

0.455 0.46 0.465 0.47 0.475 0.48 0.485 0.49
10−3

10−2

10−1

100

erasure probability ε

W
or

d
E

rr
or

R
at

e

Random M = 1024

Proto. M = 1024

Random M = 2048

Proto. M = 2048

Random M = 800

Proto M = 512

Fig. 4. Word error rate on the BEC for the (l, r, L) = (3, 6, 100) and
(l, r, L)P = (3, 6, 100)P ensembles.

the simulation performance curve for the (3, 6, 100) ensemble
with M = 800 ≈ 1.57 · 512, as we show it essentially fits the
(3, 6, 100) performance with M = 512.

VI. CONCLUSION & OUTLOOK

We have shown that protograph ensembles significantly
improve performance in the waterfall region. The scaling
law for protograph-ensembles can be used to help the code
design process. Using these tools, we plan to compare SC-
LDPC ensembles based on the same (l, r)-regular LDPC code
using different protograph-based matrices. We also suggest to
analyze why the covariance estimate works so well.

REFERENCES

[1] S. Kudekar, T. Richardson, and R. Urbanke, “Spatially Coupled Ensem-
bles Universally Achieve Capacity Under Belief Propagation,” in IEEE
Int. Symp. Inf. Theory (ISIT), 2012, pp. 453–457.

[2] M. Lentmaier, A. Sridharan, D. Costello, and K. Zigangirov, “Iterative
Decoding Threshold Analysis for LDPC Convolutional Codes,” IEEE
Trans. Inf. Theory, vol. 56, no. 10, pp. 5274 –5289, Oct. 2010.

[3] T. J. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, Mar. 2008.

[4] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacity-
approaching Protograph Codes,” IEEE J. Sel. Areas Commun., vol. 27,
no. 6, pp. 876–888, Aug. 2009.

[5] P. M. Olmos and R. Urbanke, “A Closed Form Scaling Law for Spatially
Coupled LDPC Codes Over The BEC,” in IEEE Inf. Theory Workshop
(ITW), 2013.

[6] ——, “A Scaling Law to Predict the Finite-length Performance of
Spatially-Coupled LDPC Codes,” In preparation for submission to IEEE
Trans. on Inf. Theory. Please contact Pablo M. Olmos for
a copy of the draft, 2013.

[7] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-
length Scaling for Iteratively Decoded LDPC Ensembles,” IEEE Trans.
Inf. Theory, vol. 55, no. 2, pp. 473 –498, Feb. 2009.

[8] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Efficient
Erasure Correcting Codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
569 –584, Feb. 2001.

[9] J. Thorpe, “Low Density Parity Check (LDPC) Codes Constructed from
Protographs,” JPL IPN Progress Report 42-154, Tech. Rep., 2003.

[10] J. Ezri, A. Montanari, S. Oh, and R. Urbanke, “The Slope Scaling
Parameter for General Channels, Decoders, and Ensembles,” in IEEE
Int. Symp. Inf. Theory (ISIT), July 2008, pp. 1443 –1447.


	I Introduction
	II Constructing SC-LDPC Code Ensembles
	II-A The (l,r,L) ensemble
	II-B The (l,r,L)¶ ensemble
	II-C The (l,r,L)¶ degree distribution

	III Expected Graph Evolution
	III-A Expected graph evolution in a single PD step
	III-B Mean evolution of degree-1 Check Nodes during PD

	IV Finite-length scaling behavior
	IV-A Variance evolution
	IV-B A simple estimate of 1()
	IV-C Process covariance at two time instants

	V Performance comparison
	VI Conclusion & Outlook
	References

