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Abstract—In this paper, we construct asymmetric quantum
error-correcting codes(AQCs) based on subclasses of Alternant
codes. Firstly, We propose a new subclass of Alternant codes
which can attain the classical Gilbert-Varshamov bound to
construct AQCs. It is shown that when dx = 2, Z-parts of the
AQCs can attain the classical Gilbert-Varshamov bound. Then we
construct AQCs based on a famous subclass of Alternant codes
called Goppa codes. As an illustrative example, we get three
[[55, 6, 19/4]], [[55, 10, 19/3]], [[55, 15, 19/2]] AQCs from the well
known [55, 16, 19] binary Goppa code. At last, we get asymp-
totically good binary expansions of asymmetric quantum GRS
codes, which are quantum generalizations of Retter’s classical
results. All the AQCs constructed in this paper are pure.

I. I NTRODUCTION

In many quantum mechanical systems the mechanisms for
the occurrence of bit flip and phase flip errors are quite
different. Recently, several papers argue that in most of the
known quantum computing models, the phase-flip errors (Z-
type errors) happen more frequently than the bit-flip errors(X-
type errors) and other types of errors. And the asymmetry is
large in general [7]. Motivated by this phenomena, asymmetric
quantum error-correcting codes (AQCs) are designed to adjust
this asymmetry, which may have more flexbility than general
quantum error-correcting codes (QECs).

Steane first stated the importance of AQCs in [20]. Some
recent progress is given in [1], [5], [7]. Sarvepalliet al.
constructed AQCs using a combination of BCH and finite
geometry LDPC codes in [18]. A more comprehensive charac-
terization of AQCs was given by Wanget al. which unified the
nonadditive AQCs as well [24]. Ezermanet al. [8] proposed
so-called CSS-like constructions based on pairs of nested
subfield linear codes. They also used nested codes (such as
BCH codes, circulant codes, etc.) overF4 to construct AQCs
in their earlier work [9]. The asymmetry was introduced into
topological quantum codes in [10].

Alternant codes are a very large family of linear error-
correcting codes. Many interesting and famous subclasses of
Alternant codes have been obtained, for instance, BCH codes,
Goppa codes, etc. There exist long Alternant codes meeting
the Gilbert-Varshamov bound. BCH codes and GRS codes

have been widely used to construct QECs [12] and AQCs
[16], [18]. However, other subclasses of Alternant codes have
received less attention. And there is an important problem that
whether existing asymptotically good quantum Alternant codes
could attain the quantum Gilbert-Varshamov bound. Inspired
by these, we carry out the construction of asymmetric quantum
Alternant codes.

II. PRELIMINARIES

Let p be a prime number andq a power ofp, i.e., q = pr

for somer > 0. Let Fq denote the finite field withq elements.
The finite fieldFqm is a field extension of degreem of the
field Fq. The trace mappingTr : Fqm → Fq is given by
Tr(a) = a+ aq + . . .+ aq

m−1

, for a ∈ Fqm .

A. Classical Codes

We review some basic results of GRS codes and Alternant
codes firstly.

The Reed-Solomon code of lengthn = qm − 1(denoted by
RS(n, δ)) is a cyclic code overFqm with roots1, α, . . . , αδ−2,
whereδ is an integer,2 ≤ δ ≤ n− 1, α is a primitive element
of Fqm . The parameters ofRS(n, δ) are [n, k, d]qm , where
k = n − δ + 1, d = δ. The parity check matrix ofRS(n, δ)
is given by

HRS(n,δ) =








1 1 · · · 1
1 α · · · αn−1

...
...

...
...

1 αδ−2 · · · α(n−1)(δ−2)








. (1)

GRS codes are obtained by a further generalization of RS
codes. Leta = (α1, α2, . . . , αn) where theαi are distinct
elements ofFqm , and letv = (v1, v2, . . . , vn) where thevi
are nonzero elements ofFqm . For any1 ≤ k ≤ n − 1, the
GRS codeGRSk(a,v) is defined by

GRSk(a,v) =
{
(v1F (α1), v2F (α2), . . . , vnF (αn)) |

F (x) ∈ Fqm [x], degF (x) < k
}
. (2)

The parameters ofGRSk(a,v) are [n, k, n − k + 1]qm . The
dual of a GRS code is also a GRS code, i.e.,GRSk(a,v)

⊥ =
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GRSn−k(a,y), where y = (y1, y2, . . . , yn) and yi · vi =
1/

∏

j 6=i(αi − αj), for 1 ≤ i ≤ n. The parity check matrix of
GRSk(a,v) is given by

HGRSk(a,v) =








y1 y2 · · · yn
α1y1 α2y2 · · · αnyn

...
...

...
...

αr−1
1 y1 αr−1

2 y2 · · · αr−1
n yn








(3)

wherer = n− k.
Both RS codes and GRS codes are MDS codes. The

Hamming weight enumerator of any MDS code[n, k, d]q
whered = n− k + 1 is completely determined by

Aw =

(
n

w

)

(q − 1)
w−d∑

j=0

(−1)j
(
w − 1

j

)

qw−d−j (4)

from [15].
Alternant codes are obtained as subfield subcodes of GRS

codes. For the notation given above, Alternant codeAr(a,y)
is defined asAr(a,y) = GRSk(a,v) | Fq. Therefore
Ar(a,y) has the same parity check matrix asGRSk(a,v).

B. Quantum Error-Correcting codes

Let C be the complex number field. For a positive integer
n, let Vn = (Cq)⊗n = Cqn be thenth tensor product ofCq.

Definition 2.1: A q-ary asymmetric quantum code of
lengthn, denoted by[[n, k, dz/dx]]q is a subspaceQ of Vn

over finite fieldFq with dimensionqk, which can detectdx−1
qubits ofX-errors and, at the same time,dz − 1 qubits ofZ-
errors.

Lemma 2.2 (AQCs Constructions[18], [24]): Let C1 and
C2 denote two classical linear codes with parameters
[n, k1, d1]q and[n, k2, d2]q such thatC⊥

2 ⊆ C1. Then there ex-
ists an[[n, k1+k2−n, dz/dx]]q AQC, wheredz = wt(C1\C⊥

2 )
anddx = wt(C2\C

⊥
1 ). If dz = d1 anddx = d2, then the code

is pure.
For a given pair(δx, δz) of real numbers and a familyQ =

{
[[n(i), k(i), d

(i)
z /d

(i)
x ]]

}∞

i=1
of asymptotic quantum codes with

lim inf
i→∞

d
(i)
x

n(i)
≥ δx, lim inf

i→∞

d
(i)
z

n(i)
≥ δz

denote the asymptotic quantity as

RQ(δx, δz) = lim sup
i→∞

k(i)

n(i)

One of the central asymptotic problems for quantum codes
is to find familiesQ of asymptotic quantum codes such that
for a fixed pair(δx, δz), the valueRQ(δx, δz) is as large as
possible. The best known nonconstructive lower bound on
RQ(δx, δz) can be obtained from [6]:

RQ(δx, δz) ≥ 1−H(δx)−H(δz) (5)

whereH(x) = −x log2 x− (1− x) log2(1 − x) is the binary
entropy function. It is the quantum Gilbert-Varshamov bound
for AQCs.

III. A SYMPTOTICALLY Z -PARTSGOOD ASYMMETRIC

QUANTUM ALTERNANT CODES

We takey = (y1, y2, . . . , yn) as the encoded codeword of
the RS code with parity check matrixHRS(n,δ). The elements
in the codeword must be all nonzero. Then all such codes
consist a subclass of Alternant codes, which we call Sub-
Alternant codes. The code in the subclass is denoted by
S−Ar(a,y).

In this section, we only consider the binary primitive
Alternant codes, i.e., we takeq = 2, n = 2m − 1, αi =
αi, 0 ≤ i ≤ n− 1, r = n− k. Then the parity check matrix
of the binary primitive Alternant codeAr(a,y) is given by

HAr(a,y) =








y1 y2 · · · yn
y1 y2α · · · ynα

(n−1)

...
...

...
...

y1 y2α
r−1 · · · ynα

(n−1)(r−1)








. (6)

It is easy to see thatHAr(a,y) = HRS(n,r+1) · diag(y) where
diag(y) is a diagonal matrix withy as the diagonal elements.

Definition 3.1: For anyy = (y1, y2, . . . , yn) ∈ RS(n, δ)
whose every position is nonzero element, i.e.,HRS(n,δ)y

T =
0, andyi 6= 0 for all 1 ≤ i ≤ n. ThenS−Ar(a,y) is defined
as:

S−Ar(a,y) = {c ∈ F
n
2 |HAr(a,y)c

T = 0}

whereHRS(n,δ) is the parity check matrix in (1) andHAr(a,y)

is the one in (6).
We have the following asymptotic behavior of these Sub-

Alternant codes.
Lemma 3.2: Let δ/2 < r < min{δ, n/2}, there exist long

codesS−Ar(a,y) meeting the Gilbert-Varshamov bound.
Proof: Consider any binary wordc = (c1, c2, . . . , cn) of

weight t. For c to be a codeword ofS−Ar(a,y), it must
satisfyHAr(a,y)c

T = 0. Then

HRS(n,r+1)(y1c1, y2c2, . . . , yncn)
T = 0.

Let the nonzero elements inc be{ci1 , ci2 , . . . , cit} where1 ≤
i1 < i2 < · · · < it ≤ n. Then we have

HRS(n,r+1)(. . . , yi1ci1 , . . . , yitcit , . . .)
T = 0,

where “. . .” denote the zero elements if necessary. This implies
that HRS(n,r+1)(. . . , yi1 , . . . , yit , . . .)

T = 0 becausec is
binary. If we let

B
′

w = (2m − 1)

w−(r+1)
∑

j=0

(−1)j
(
w − 1

j

)

2m(w−(r+1)−j),

then the Hamming weight enumerator of the RS code with
parity check matrixHRS(n,r+1) is Bw =

(
n
w

)
B

′

w. Then the
number of(. . . , yi1 , . . . , yit , . . .) is at mostB

′

t.
According to Definition 3.1 andr < δ, we have

HRS(n,r+1)(y1, y2, . . . , yn)
T = 0. Then

HRS(n,r+1)(. . . , yj1 , . . . , yj(n−t)
, . . .)T = 0,



where (. . . , yj1 , . . . , yj(n−t)
, . . .)T = (y1, y2, . . . , yn)

T −
(. . . , yi1 , . . . , yit , . . .)

T , 1 ≤ j1 < j2 < . . . < yj(n−t)
≤ n,

“ . . .” denote the zero elements if necessary. Then the number
of (. . . , yj1 , . . . , yj(n−t)

, . . .) is at mostB
′

n−t. Therefore the
number ofy = (y1, y2, . . . , yn) is at mostB

′

tB
′

n−t. Notice
that

B
′

w ≤ (2m − 1)w−r,

then
B

′

tB
′

n−t ≤ (2m − 1)n−2r.

Therefore for all codewords of weightt < ω, the number of
vectorsy that include such codewords in the corresponding
Alternant codeS-A(a,y) is at most

ω−1∑

t=r+1

B
′

tB
′

n−t

(
n

t

)

≤ (2m − 1)n−2r
ω−1∑

t=r+1

(
n

t

)

.

On the other hand, the total number of such Alternant codes
equal to the number of choices fory, which is

An = (2m − 1)

n−δ∑

j=0

(−1)j
(
n− 1

j

)

2m(n−δ−j)

≥ (2m − 1)2m(n−δ)(1−
n− 1

2m
)

> (2m − 1)n−δ.

So if

(2m − 1)n−2r
ω−1∑

t=r+1

(
n

t

)

< (2m − 1)n−δ

which can be simplified

ω−1∑

t=r+1

(
n

t

)

< (2m − 1)2r−δ,

there exists a[2m,≥ 2m −m(2r − δ),≥ ω] code. Using the
estimates of binomial coefficients in [15, Ch.10. Corollary9]
and taking the limit asn → ∞, we can write this condition
as

H(
d

n
) + o(1) <

m(2r − δ)

n
+ o(1). (7)

Let τ = 2r − δ, ǫ = o(1) and choose the values of
parameters properly, then there exists a Sub-Alternant code
with mτ/n = H(d/n) + ǫ. And by a property of Alternant
codes, the rateR of this code satisfies

R ≥ 1−
mτ

n

> 1−H(
d

n
)− ǫ. (8)

Hence the above Sub-Alternant code is asymptotically close
to the Gilbert-Varshamov bound.

From Definition 3.1 and Lemma 3.2, we have the following
result directly.

Theorem 3.3: There exists a family of AQCs with param-
eters

[[n,≥ n−mr − 1,≥ r + 1/2]]

where3 ≤ n ≤ 2m + 1, 1 < r < δ < n.
As n → ∞ and δ/2 < r < min{δ, n/2}, there exist a

family Q of asymptoticallyZ-type good AQCs such that

RQ = 1−H(δz)− ǫ,

δx =
2

n
→ 0,

0 < δz <
1

2
.

Proof: Let I = [1 1 · · · 1]
︸ ︷︷ ︸

n

andC1 = [n, n− 1, 2] with I

as its parity check matrix. For anyC2 = S−Ar(a,y) and let
r < δ, we have

HA(a,y) · I
T = HRS(n,r+1) · diag(y) · I

T

= HRS(n,r+1) · y
T

= 0.

ThereforeC⊥
1 ⊆ C2. By Lemma 2.2 there exists a family of

AQCs with parameters

[[n,≥ n−mr − 1,≥ r + 1/2]]q

where3 ≤ n ≤ qm + 1, 1 < r < δ < n.
The asymptotic result follows from Lemma 3.2 immediately.

It shows that whendx = 2, Z-parts of our new AQCs
can attain the classical Gilbert-Varshamov bound, not justthe
quantum version.

IV. AQCS FROM NESTEDGOPPACODES

In 1970s, V. D. Goppa introduced a class of linear codes
called Goppa codes orΓ(L,G) codes which form an important
subclass of Alternant codes and asymptotically meet the
Gilbert-Varshamov bound [15].

Definition 4.1: Let G(z) be a monic polynomial with coef-
ficients fromFqm , L = {α1, α2, . . . , αn} ⊆ Fqm [z] such that
∀i, G(αi) 6= 0. The Goppa codeΓ(L,G) of lengthn overFq,
is the set of codewordsc = (c1, c2, . . . , cn) ∈ Fn

q such that
n∑

i=1

ci
z − αi

= 0 mod G(z) (9)

G(z) is called the Goppa polynomial,L is the location set.
We have the following nested Goppa codes which are

similar to nested cyclic codes.
Lemma 4.2: Let G(z), F (z) be Goppa polynomials of

q-ary Goppa codesΓ(L,G) and Γ(L, F ) respectively. If
F (z)|G(z), thenΓ(L,G) ⊆ Γ(L, F ).

Proof: Let G(z) ∈ Fqm [z] be a monic polynomial of
degreer1. Then we can decompose the Goppa polynomial
G(z) into distinct irreducible polynomialsGu(z) over Fqm

as: G(z) =
∏s

u=1{Gu(z)}du, wheredu and s are integers
that satisfy

∑s
u=1 du(degGu(z)) = r1, degGu(z) ≥ 1. Since

the polynomialsGu(z), u = 1, 2, . . . , s are relatively prime,
the defining set (9) forΓ(L,G) can be rewritten as:

n∑

i=1

ci
z − αi

= 0 mod {Gu(z)}
du, (10)



TABLE I
GOOD BINARY AQCS CONSTRUCTED FROM NESTEDGOPPA CODES USINGMAGMA

No. Field Γ(L,G) G(z) Γ(L, F )⊥ F (z) [[n, k, dz/dx]]

1 F
26 [55, 16, 19](OPC) z9 + 1 [55, 49, 3](OPC) (z − 1)6 ·G(z) [[55, 10, 19/3]]

2 F
26 [56, 16, 20](OPC) ETC [56, 50, 3](OPC) DETC [[56, 10, 20/3]]

3 F
26 [54, 16, 18](OPC) PTC [54, 48, 3](OPC) DPTC [[54, 10, 18/3]]

4 F
26 [55, 16, 19](OPC) z9 + 1 [55, 45, 4](BKLC) (z − 1)2 ·G(z) [[55, 6, 19/4]]

5 F
26 [55, 15, 20](OPC) EPC [55, 46, 3(4)] DEPC [[55, 6, 20/3]]

6 F
26 [56, 16, 20](OPC) ETC [56, 46, 4](BKLC) DETC [[56, 6, 20/4]]

7 F
26 [54, 15, 19](OPC) STC [54, 45, 3(4)] DSTC [[54, 6, 19/3]]

8 F
26 [54, 16, 18](OPC) PTC [54, 44, 4](BKLC) DPTC [[54, 6, 18/4]]

9 F
28 [239, 123, 35](OPC) z17 + 1 [239, 229, 4](BKLC) (z − 1)60 ·G(z) [[239, 113, 35/4]]

10 F
28 [239, 122, 36](OPC) EPC [239, 230, 3(4)] DEPC [[239, 113, 36/3]]

11 F
28 [240, 123, 36](OPC) ETC [240, 230, 4](BKLC) DETC [[240, 113, 36/4]]

12 F
28 [238, 122, 35](OPC) STC [238, 229, 3(4)] DSTC [[238, 113, 35/3]]

13 F
28 [238, 123, 34](OPC) PTC [238, 228, 4](BKLC) DPTC [[238, 113, 34/4]]

14 F
28 [239, 123, 35](OPC) z17 + 1 [239, 218, 6](BKLC) (G(z))5 [[239, 102, 35/6]]

15 F
28 [239, 122, 36](OPC) EPC [239, 219, 5(6)] DEPC [[239, 102, 36/5]]

16 F
28 [240, 123, 36](OPC) ETC [238, 217, 6](BKLC) DETC [[238, 102, 34/6]]

17 F
28 [238, 122, 35](OPC) STC [240, 219, 6](BKLC) DSTC [[240, 102, 36/6]]

18 F
28 [238, 123, 34](OPC) PTC [238, 218, 5(6)] DPTC [[238, 102, 35/5]]

19 F
28 [239, 123, 35](OPC) z17 + 1 [239, 208, 8](BKLC) (z − 1)30 ·G(z) [[239, 92, 35/8]]

20 F
28 [239, 122, 36](OPC) EPC [239, 209, 7(8)] DEPC [[239, 92, 36/7]]

21 F
28 [240, 123, 36](OPC) ETC [240, 209, 8](BKLC) DETC [[240, 92, 36/8]]

22 F
28 [238, 122, 35](OPC) STC [238, 208, 7(8)] DSTC [[238, 92, 35/7]]

23 F
28 [238, 123, 34](OPC) PTC [238, 207, 8](BKLC) DPTC [[238, 92, 34/8]]

for u = 1, 2, . . . , s. (9) and (10) are equivalent forΓ(L,G).
SinceF (z)|G(z), then:

F (z) =
∏

v∈{u1,...,ut}

{Gv(z)}
fv

where t and fv are integers, and{u1, u2, . . . , ut} ⊆ {1,
2, . . . , s}, 0 ≤ fv ≤ dv, v ∈ {u1, u2, . . . , ut}.

It is easy to see that, for everyc = (c1, c2, . . . , cn) ∈
Γ(L,G) which satisfies (10) also satisfies

n∑

i=1

ci
z − αi

= 0 mod {Gv(z)}
fv ,

for v = u1, u2, . . . , ut.
Then, there isc = (c1, c2, . . . , cn) ∈ Γ(L, F ). Therefore

Γ(L,G) ⊆ Γ(L, F )
From Lemma 4.2, we know that the nested Goppa codes are

widespread. People have found that certain Goppa codes have
good properties and some of these codes have the best known
minimum distance of any known codes with the same length
and rate. It induces us to identify these codes and investigate
their nested relationship. And we use Magma to compute the
dual distance of nested Goppa codes to some computationally
reasonable length. Some good AQCs are given in TABLE I.
The shorthands in the tables are explained as follows. If a code
is both BKLC and BDLC, or achieves the upper bound, we
call it OPC(optimal code). “EPC” stands for expurgated code,
“ETC” stands for extended code, “STC” stands for shortened
code and “PTC” stands for punctured code. “DEPC” stands
for the dual of expurgated code, others are the same. “d =
3(4)”, for example, means the minimum distance is 3, and

the corresponding BKLC’s distance is 4. “Dim” stands for
dimension of the code. “LB” stands for lower bound of the
code. Firstly we give an explicit example below.

Example 4.3: Loeloeian and Conan gave aΓ(L,G) =
[55, 16, 19] binary Goppa code in [13] which is a BKLC (Best
known linear code), a BDLC (Best dimension linear code) and
a BLLC (Best length linear code) overF2 in the databases of
Magma and [11]. The Goppa polynomial ofΓ(L,G) is given
by

G(z) = (z − α9)(z − α12)(z − α30)(z − α34)(z − α42)

·(z − α43)(z − α50)(z − α54)

whereα is a primitive element ofF26 . Take Γ(L, F ) with
Goppa polynomialF (z) = (z − α9)2 ·G(z), thenΓ(L, F ) ⊆
Γ(L,G). Using Magma, we know thatΓ(L, F )⊥ = [55, 45, 4].
Then we get an[[55, 6, 19/4]] AQC. If F (z) = (z − α9)6 ·
G(z), thenΓ(L, F )⊥ = [55, 49, 3], we get an[[55, 10, 19/3]]
AQC. From Theorem 4.4 below, we get an[[55, 15, 19/2]]
AQC. From the databases, we know that[55, 45, 4], [55, 49, 3]
and [55, 54, 2] are all BKLCs. [55, 49, 3] and [55, 54, 2]
are BDLCs and BLLCs as well. Therefore[[55, 10, 19/3]]
and [[55, 15, 19/2]] are BDAQCs(Best dimension asymmetric
quantum code).

In [3], Bezzateev and Shekhunova described a subclass
of Goppa codes with minimal distance equal to the design
distance. We find that their codes can be used to construct
AQCs with dx = 2.

Theorem 4.4: Let the polynomialG(z) = zt+A ∈ F2m [z],
wheret|(2m − 1), i.e., 2m − 1 = t · l andA is a tth power
in F2m\{0}. N = {α ∈ F2m : G(α) 6= 0}. DenoteS =



TABLE II
BINARY AQCS CONSTRUCTED FROMGOPPA CODES WITHdx = 2

m t S n G(z) Dim LB [[n, k, dz/dx]] Refs.

6 3 0 60 z3 + 1 43 43 [[60, 42, 6/2]]

7 0 56 z7 + 1 17 15 [[56, 16, 14/2]] [23]
9 1 55 z9 + 1 16 1 [[55, 15, 19/2]] [19], [23]
– – 56 ETC 16 – [[56, 15, 20/2]]

– – 54 PTC 16 – [[54, 15, 18/2]]

8 3 0 252 z3 + 1 229 229 [[252, 228, 6/2]]

5 1 251 z5 + 1 211 211 [[251, 210, 11/2]]

– – 252 ETC 211 – [[252, 210, 12/2]]

– – 250 PTC 211 – [[250, 210, 10/2]]

15 0 240 z15 + 1 124 121 [[240, 123, 30/2]] [23]
17 1 239 z17 + 1 123 103 [[239, 122, 35/2]] [19], [23]
– – 240 ETC 123 – [[240, 122, 36/2]]

– – 238 PTC 123 – [[238, 122, 34/2]]

51 0 204 z51 + 1 2 -203 [[204, 1, 102/2]]

9 73 1 439 z73 + 1 58 -218 [[439, 57, 147/2]] [4]
– – 440 ETC 58 – [[440, 57, 148/2]]

– – 438 PTC 58 – [[438, 57, 146/2]]

10 31 0 992 z31 + 1 687 683 [[992, 686, 62/2]] [23]
33 1 991 z33 + 1 686 661 [[991, 685, 67/2]] [19], [23]
– – 992 ETC 686 – [[992, 685, 68/2]]

– – 990 PTC 686 – [[990, 685, 66/2]]

93 1 931 z93 + 1 105 1 [[931, 104, 187/2]]

– – 932 ETC 105 – [[932, 104, 188/2]]

– – 930 PTC 105 – [[930, 104, 186/2]]

11 89 1 1959 z89 + 1 980 980 [[1959, 979, 179/2]]

– – 1960 ETC 979 – [[1960, 979, 180/2]]

– – 1958 PTC 979 – [[1958, 979, 178/2]]

12 63 0 4032 z63 + 1 3282 3277 [[4032, 3281, 126/2]] [23]
65 1 4031 z65 + 1 3281 3251 [[4031, 3280, 131/2]] [19], [23]
– – 4032 ETC 3281 – [[4032, 3280, 132/2]]

– – 4030 PTC 3281 – [[4030, 3280, 130/2]]

195 0 3900 z195 + 1 1759 1561 [[3900, 1758, 390/2]]

273 1 3823 z273 + 1 1311 547 [[3823, 1310, 547/2]] [4]
– – 3824 ETC 1311 – [[3824, 1310, 548/2]]

– – 3822 PTC 1311 – [[3822, 1310, 546/2]]

315 0 3780 z315 + 1 474 1 [[3780, 473, 630/2]]

455 0 3640 z455 + 1 197 -1819 [[3640, 196, 910/2]]

585 1 3511 z585 + 1 196 -3509 [[3511, 195, 1171/2]]

– – 3512 ETC 196 – [[3512, 195, 1172/2]]

– – 3510 PTC 196 – [[3510, 195, 1170/2]]

819 0 3276 z819 + 1 2 -6551 [[3276, 1, 1638/2]]

∑l−1
µ=1 1/(α

µt + 1), α is a primitive element ofF2m . ThenS
must be1 or 0.

(1) If S = 1, then for a Goppa codeΓ(L,G) with Goppa
polynomialG(z) = G(z) andL = N , there exists an
AQC with parameters

[[2m − t,≥ 2m − t−mt− 1, 2t+ 1/2]],

this code can be extended to

[[2m − t+ 1,≥ 2m − t−mt− 1, 2t+ 2/2]],

and can be punctured to

[[2m − t− 1,≥ 2m − t−mt− 1, 2t/2]].

(2) If S = 0, for puncturedΓ(L,G) with G(z) = G(z)
andL = N − {0}, there exists a punctured AQC with
parameters

[[2m − t− 1,≥ 2m − t−mt− 1,≥ 2t/2]].

Proof: We follow the proof process of Theorem 2.1 given
by Bezzateev & Shekhunova in [3]. For simplicity, we take
A = 1. For S =

∑l−1
µ=1 1/(α

µt + 1), then S = 1 or 0 as
S = S2.

(1) If S = 1. We takeG(z) = G(z) = zt + 1, L =
N = {α1, α2, . . . , αn}. For 1 ≤ µ ≤ l − 1, we consider
binary vectorsaµ = (aµ1 , a

µ
2 , . . . , a

µ
n) with Hamming weightt

and such that its nonzero components are on positions which
correspond to the following subset ofL:

{(αl)i · βµ, i = 0, 1, . . . , t− 1}

α is a primitive element ofF2m andβµ = αµ. Then
n∑

j=1

aµj
1

x− αj

=
1

βt
µ + 1

xt−1 mod xt + 1

for 1 ≤ µ ≤ l− 1.
Let the last binary vectoral = (al1, a

l
2, . . . , a

l
n) have only

one nonzero component on the position which correspond to
{0}. Then for this vector

n∑

j=1

alj
1

x− αj

= xt−1 mod xt + 1.

Now let us consider the sum of vectorsa1, a2, . . . , al
n∑

j=1

l∑

µ=1

aµj
1

x− αj

= (
1

βt
1 + 1

+ · · ·+
1

βt
l−1 + 1

+ 1)

·xt−1 mod xt + 1.

So asS =
∑l−1

µ=1
1

βt
µ+1 =

∑l−1
µ=1

1
αµt+1 = 1, then

n∑

j=1

l∑

µ=1

aµj
1

x− αj

= 0 mod xt + 1.

Thus vectora = a1 + a2 + · · · + al = (1, 1, . . . , 1) is a
codeword of the Goppa polynomialG(z) = zt+1 andL = N
and its Hamming weight is equal to2m − t. Therefore there
exists an AQC with parameters

[[2m − t,≥ 2m − t−mt− 1, 2t+ 1/2]],

this code can be extended into

[[2m − t+ 1,≥ 2m − t−mt− 1, 2t+ 2/2]],

and can be punctured into

[[2m − t− 1,≥ 2m − t−mt− 1, 2t/2]].

(2) If S = 0, we takeΓ(L,G) with G(z) = G(z) and
L = N − {0}, the proof is similar to (1) above. And we can
omit the last binary vectoral = (al1, a

l
2, . . . , a

l
n) as S = 0.

Then there exists a punctured AQC with parameters

[[2m − t− 1,≥ 2m − t−mt− 1,≥ 2t/2]].



From the proof of Theorem 4.4, we know that classical
codes corresponding toX-parts of AQCs are all[n, n− 1, 2]
optimal codes. Therefore the error correction abilities ofthe
corresponding Goppa codes are all transformed intoZ-parts of
AQCs with only one information bit loss each. Maatouket al.
[14] found that the classical codes described in Theorem 4.4
achieved better than the GV bound when the field size is small.
For some “typical” cases, the estimation of the dimension
is much better than the lower bound [4], [19], [21], and
sometimes the estimation is the true dimension [22], [23].
AQCs derived from Theorem 4.4 are given in TABLE II. When
the field size is large we only give partial AQCs with loose
lower bound(LB).

V. A SYMPTOTICALLY GOOD BINARY EXPANSION OF

QUANTUM GRS CODES

In [17], Retter showed that most binary expansions of GRS
codes are asymptotically good.

Theorem 5.1 ([17, Theorem 1]):For any smallǫ > 0,
there exists ann such that the binary expansions of most GRS
codes of any length greater thann satisfy

H(
d

n
) > 1−

k

n
− ǫ

From [2], we have the following result.
Corollary 5.2: Let C1 and C2 be codes overF2m and

C⊥
2 ⊆ C1. Let αi, i = 1, ...,m, be self-dual basis ofF2m

overF2, i.e.,
Tr(αiαj) = δij .

Let D1 andD⊥
2 be codes obtained by the symbolwise binary

expansion of codesC1 andC⊥
2 in the basisαi. ThenD⊥

2 ⊆ D1

andD⊥
2 is the binary dual ofC2.

Let N = 2m−1, N/2 ≤ K1 ≤ K2 ≤ N−1 be integers, for
a GRS codeGRSK1(a,v) of lengthN . It follows immediately
that GRSK1(a,v)

⊥ = GRSN−K1(a,y) ⊆ GRSK1(a,y) ⊆
GRSK2(a,y), whereyi·vi = 1/

∏

j 6=i(αj−αi) = αi, 1 ≤ i ≤
N . Then there exists a corresponding AQC with parameters:

[[N,K1 +K2 −N,N −K1 + 1/N −K2 + 1]]2m . (11)

DenoteC1 = GRSK1(a,v) and C2 = GRSK2(a,y) of
lengthN . ThenC⊥

2 ⊆ C1. The binary expansions ofC1 and
C2 with respect to a self-dual basis giveD⊥

2 ⊆ D1 of binary
codes with parametersn = mN , k1 = mK1, k2 = mK2.

From Theorem 5.1, we can choose suitabley to make sure
D2 is asymptotically good. Becauseyi · vi = 1/

∏

j 6=i(αj −
αi) = αi, 1 ≤ i ≤ N , then differenty gives differentv. Since
the binary expansions of most GRS codes are asymptotically
good whenn is large, there always exist the correspondingv

which also give asymptotically goodD1.
Summing up, we have the following theorem.
Theorem 5.3: For a pair of(α1, α2) real numbers satisfy-

ing 0 < α1 ≤ α2 < 1/2, there exists a familyQ of AQCs
which can attain the asymmetric quantum Gilbert-Varshamov
bound with

RQ = 1− α1 − α2,
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Fig. 1. Comparison of different versions of binary GV bound.

δx ≥ H−1(α1),

δz ≥ H−1(α2).

Proof: For the asymmetric quantum GRS codes (11), it
follows from the CSS constructions Lemma 2.2 and Theorem
5.1 that there exist a familyQ of AQCs with parameters

[[n, k1 + k2 − n, dz/dx]]2

wheren = mN, k1 = mK1, k2 = mK2, dx ≥ d1, anddz ≥
d2, the corresponding classical codes areD1 = [n, k1, d1]2
andD2 = [n, k2, d2]2 which satisfy

k1
n

= 1− α1,
k2
n

= 1− α2,

δ1 =
d1
n

≥ H−1(α1),

δ2 =
d2
n

≥ H−1(α2).

Then we have

RQ =
k1
n

+
k2
n

− 1 = 1− α1 − α2,

δx =
dx
n

≥ δ1 ≥ H−1(α1),

δz =
dz
n

≥ δ2 ≥ H−1(α2).

Theorem 5.3 is also available for QECs. The comparison of
classical GV bound and two versions of quantum GV bound
is given in Fig. 1.

VI. CONCLUSION AND DISCUSSION

In this paper, we have constructed several classes of pure
asymmetric quantum Alternant codes (AQACs) based on their
nested relationships. As a special case,Z-parts of our AQACs
can attain the classical Gilbert-Varshamov bound whendx =
2. We have identified the nested Goppa codes and computed
the dual distance of some special Goppa codes. Whendx =
2, a famous subclass of Goppa codes with fixed minimum



distance are converted to AQCs with only one information bit
loss each. Some AQACs with good parameters are listed. At
last, Retter’s classical results about the asymptoticallygood
binary expansions of GRS codes have been generalized to the
quantum situation.

The asymptotic problem for general AQACs and symmetric
quantum Alternant codes is still unsolved. How to construct
quantum codes using binary Alternant codes especially binary
Goppa codes is an interesting problem which need further
exploring.
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