Abstract:
Traditional quantum error-correcting codes are designed for the depolarizing channel modeled by generalized Pauli errors occurring with equal probability. Amplitude dampi...Show MoreMetadata
Abstract:
Traditional quantum error-correcting codes are designed for the depolarizing channel modeled by generalized Pauli errors occurring with equal probability. Amplitude damping channels, in general, model the decay process of a multilevel atom or energy dissipation of a bosonic system at zero temperature. We discuss quantum error-correcting codes adapted to amplitude damping channels for higher dimensional systems (qudits). For multi-level atoms, we consider a natural kind of decay process, and for bosonic systems, we consider the qudit amplitude damping channel obtained by truncating the Fock basis of the bosonic modes to a certain maximum occupation number. We construct families of single-error-correcting quantum codes that can be used for both cases. Our codes have larger code dimensions than the previously known single-error-correcting codes of the same lengths.
Published in: 2014 IEEE International Symposium on Information Theory
Date of Conference: 29 June 2014 - 04 July 2014
Date Added to IEEE Xplore: 11 August 2014
Electronic ISBN:978-1-4799-5186-4