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Abstract: We consider the parameter estimation of Markov chain when
the unknown transition matrix belongs to an exponential family of transi-
tion matrices. Then, we show that the sample mean of the generator of the
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1. Introduction

Information geometry established by Amari and Nagaoka [4] is an elegant method
for statistical inference. This method provides us a very general approach to
statistical parameter estimation. Under this framework, we easily find that the
efficient estimator can be given with less calculation complexity for exponential
families and a curved exponential families under the independent and identical
distributed case. Therefore, we can expect a similar structure in the Markov
chains.

The preceding studies [9, 10, 11, 12, 13, 14, 15, 16] introduced the concept
of exponential families of transition matrices. However, in their definition, al-
though the maximum likelihood estimator has the asymptotic efficiency, i.e., at-
tains the Cramér-Rao bound asymptotically, the maximum likelihood estimator
is not necessarily calculated with less calculation complexity. That is, the maxi-
mum likelihood estimator has a complex form so that it requires long calculation
time in their model. Further, it is quite difficult to calculate the Cramér-Rao
bound even with the asymptotic first order coefficient because these papers fo-
cused only on the limit of the inverse of the Fisher information. From a practical
viewpoint, it is needed to calculate the asymptotic first order coefficient. So, it
is strongly required to resolve these two problems for the estimation of Marko-
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vian process, i.e., (1) to give an asymptotically efficient estimator with small
calculation and (2) to derive a formula for the asymptotic Cramér-Rao bound
with small calculation.

The purpose of this paper is giving the answers for these two problems. For
this purpose, we notice another type of exponential family of transition ma-
trices by Nakagawa and Kanaya [2] and Nagaoka [5]. They defined the Fisher
information matrix in their sense. On the other hand, for the estimation of the
probability distribution, the class of curved exponential families plays an impor-
tant role as a wider class of distribution families than the class of exponential
families. That is, when the unknown distribution belongs to a curved exponen-
tial family, the asymptotic efficient estimator can be treated in the information-
geometrical framework. Therefore, to deal with these problems in a wider class
of families of transition matrices, we introduce a curved exponential family of
transition matrices as a subset of an exponential family of transition matrices
in the sense of [2, 5]. Since any exponential family of transition matrices is a
curved exponential family, the class of curved exponential families is a larger
class of families of transition matrices than the class of exponential families. Es-
pecially, any smooth subset of transition matrices on a finite-size system forms
a curved exponential family of transition matrices. Our purpose is resolving the
above two problems for a curved exponential family as well as for an exponen-
tial family. Since any smooth parametric subfamily of transition matrices on a
finite-size system forms a curved exponential family, our treatment for curved
exponential families has a wide applicability for the estimation of Markovian
process. This is reason why we adopted the definition of an exponential family
by [2, 5].

Firstly, we show that, for an exponential family of transition matrices in the
sense of [2, 5], an estimator of a simple form asymptotically attains the Cramér-
Rao bound, which is given as the inverse of Fisher information matrix. That is,
the estimator for the expectation parameter is asymptotically efficient and is
written as the sample mean of n+ 1-observations. Since it requires only a small
amount of calculation, the problem (1) is resolved. Additionally, the problem (2)
is also resolved for an exponential family of transition matrices because Fisher
information matrix is computable.

To show the above items, we discuss the behavior of the sample mean of
n + 1 observations. Indeed, while the existing papers [7, 6] derived the form
of the asymptotic variance, this paper shows that the asymptotic variance can
be written by using the second derivative of the potential function of the gen-
erated exponential family. Using this relation, we show that the sample mean
asymptotically attains the Cramér-Rao bound for the expectation parameter.

Next, we define the Fisher information matrix for a curved exponential fam-
ily with a computable form. Then, using a transition matrix version of the
Pythagorean theorem, we give an asymptotically efficient estimator for a curved
exponential family, in which, the estimator is given as a function of the above
estimator in the larger exponential family. Since the asymptotic mean square er-
ror is the inverse of the Fisher information matrix, the problems (1) and (2) are
resolved jointly. In the above way, we resolve the problems that were unsolved in
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existing papers [9, 10, 11, 12, 13, 14, 15, 16]. Further, during this derivation, we
also obtain a notable evaluation for variance of sample mean as a by product,
which is summarized in Subsection 2.1.

For the above discussion, we need the description of an exponential family of
transition matrices. Since the information geometrical structure for probability
distributions plays important roles in several topics in information theory as
well as statistics, it is better to describe the information geometry of transition
matrices so that it can be easily applied to these topics. In fact, the authors
applied it to finite-length evaluations of the tail probability, the error proba-
bility in simple hypothesis testing, source coding, channel coding, and random
number generation in Markov chain as well as the estimation error of parametric
family of transition matrices [17, 18]. Thus, we revisit the exponential family
of transition matrices [2, 5] in a manner consistent with the above purpose by
using Bregmann divergence [21, 20]. In particular, the relative Rényi entropy
for transition matrices plays an important role in the finite-length analysis; we
define the relative entropy for transition matrices so that it is a special case of
the relative Rényi entropy, which is different from the definitions in the litera-
tures [2, 5]. Although some of results in this paper have been already stated in
[5] (without detailed proof), we restate those results and give proofs since the
logical order of arguments are different from [5] and we want to keep the paper
self-contained. In particular, although the paper [5] is written with differential
geometrical terminologies, e.g., Christoffel symbols, this paper is written only
with terminologies of convex functions and linear algebra.

The remaining of this paper is organized as follows. Section 2 gives the brief
summary of obtained results, which is crucial for understanding the structure
of this paper. In Section 3, we define the relative entropy and the relative Rényi
entropy between two transition matrices In Section 4, we revisit an exponen-
tial family of transition matrices and its properties. In Section 5, we focus on
the joint distribution when a transition matrix is given as an element of a
one-parameter exponential family and the input distribution is given as the
stationary distribution. Then, we characterize the quantities given in Sections
3 and 4 by using the joint distribution. In Section 6, we proceed to the n + 1
observation Markov process when the initial distribution is the stationary distri-
bution. Then, we show that the sample mean of the generator is an unbiased and
asymptotically efficient estimator under a one-parameter exponential family. In
Section 7, we proceed to the n+ 1 observation Markov process when the initial
distribution is a non-stationary distribution. We show a similar fact in this case.
Section 8 extends a part of these results to the multi-parameter case and the
case of a curved exponential family. In appendix, we address the relations with
existing results by Nakagawa and Kanaya [5], Nagaoka[5], and Natarajan [1].

2. Summary of results

Here, we prepare notations and definitions. For two given transition matrices
W and WY over X and Y, we define W ×WY (x, y|x′, y′) := W (x|x′)WY (y|y′),



M. Hayashi and S. Watanabe/Information Geometry Approach in Markov Chains 4

W×n(xn, xn−1, . . . , x1|x′) := W (xn|xn−1)W (xn−1|xn−2) · · ·W (x1|x′), andWn(x|x′) =
∑

xn−1,...,x1
W×n(x, xn−1, . . . , x1|x′). For a given distribution P on X and a

transition matrix V from X to Y, we define V × P (y, x) := V (y|x)P (x) and
V P (y) :=

∑

x V × P (y, x).
A non-negative matrix W is called irreducible when for each x, x′ ∈ X , there

exists a natural number n such that Wn(x|x′) > 0 [27]. An irreducible matrix
W is called ergodic when there are no input x′ and no integer n′ such that
Wn(x′|x′) = 0 unless n is divisible by n′ [27]. The irreducibility and the er-
godicity depend only on the support X 2

W := {(x, x′) ∈ X 2|W (x|x′) > 0} for a
non-negative matrix W over X . Hence, we say that X 2

W is irreducible and ergodic
when a non-negative matrix W is irreducible and ergodic, respectively. Indeed,
when a subset of X 2

W is irreducible and ergodic, the set X 2
W is also irreducible

and ergodic, respectively. It is known that the output distribution WnP con-
verges to the stationary distribution of W for a given ergodic transition matrix
W [7, 3, 27]. Although the main result is asymptotic estimation for an expo-
nential family and a curved exponential family, we also have additional results
as Subsections 2.1 and 2.2.

2.1. Asymptotic behavior of sample mean

Assume that the random variable Xn obeys the Markov process with the irre-
ducible and ergodic transition matrix W (x|x′). In this paper, for an arbitrary

two-input function g(x, x′), we focus on the sample mean Sn := gn(Xn+1)
n where

gn(Xn+1) :=
∑n
i=1 g(Xi+1, Xi), and Xn+1 := (Xn+1, . . . , X1). This is because

a two-input function g(x, x′) is closely related to an exponential family of transi-
tion matrices. Indeed, the simple sample mean can be treated in this formulation
by choosing g(x, x′) as x or x′. Since the function g(x, x′) can be chosen arbi-
trary, the following discussion can handle the sample mean of the hidden Markov
process.

Then, the expectation E[Sn] and the variance V[Sn] are characterized as fol-
lows. We denote the normalized Perron-Frobenius eigenvector of W (x|x′) by PW
and define the limiting expectation E[g(X,X ′)] :=

∑

x,x′ g(x, x′)W (x|x′)PW (x′).

We denote the Perron-Frobenius eigenvalue of W (x|x′)eθg(x,x′) by λθ and de-
fine the cumulant generating function φ(θ) := logλθ. Then, when the transition
matrix W is irreducible and ergodic, the relation

E[Sn] → E[g(X,X ′)] (2.1)

is known. In Sections 6 and 7 of this paper, we show

nV[Sn] → d2φ

dθ2
(0) (2.2)

while existing papers [7, 6] characterized the asymptotic variance by using the
fundamental matrix. (See [17, Section 6].)
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In particular, when the initial distribution is the stationary distribution PW ,
we have E[Sn] = E[g(X,X ′)]. Then, in Section 6, using a constant C, we show
that

d2φ

dθ2
(0)(1 − C√

n
)2 ≤ nV[Sn] ≤ d2φ

dθ2
(0)(1 +

C√
n

)2 (2.3)

for the stationary case. The concrete form of C is also given in Section 6. This
analysis is obtained via evaluations of Fisher information given in Sections 5, 6,
and 7.

2.2. Cramér-Rao bound and asymptotically efficient estimator

Firstly, for simplicity, we summarize our obtained results for the one-parameter
case while this paper addresses a multi-parameter exponential family. In Section
4, for a given two-input function g(x, x′) and an irreducible and ergodic transi-
tion matrix W , we define the potential function φ(θ) and exponential family of
transition matrices {Wθ} with the generator g(x, x′). We also define its Fisher

information matrix d2φ
dθ2 (θ) and the expectation parameter η(θ) := dφ

dθ (θ). Then,
we focus on the distribution family of Markov chains generated by the family of
transition matrices {Wθ} with arbitrary initial distributions. We show that the
Fisher information of the expectation parameter under the distribution family

is asymptotically equal to nd
2φ
dθ2 (θ(η))−1 + o(n) even for the non-stationary case

in Section 7. Then, we show that the random variable Sn is the asymptotically

efficient estimator, i.e., the mean square error is d2φ
dθ2 (θ(η))/n+o(1/n). In Section

6, we give more detailed analysis for the stationary case. To derive the results
in Sections 6 and 7, we prepare evaluations of Fisher information in Section 5.

Now, we address the multi-parameter case. In Section 4, we also define a
multi-parameter exponential family W~θ of transition matrices, and show the
Pythagorean theorem. Then, we show the asymptotic efficiency of the sample
mean in the multi-parameter case in Subsections 8.1 and 8.2. We also show
that the set of all positive transition matrices on a finite-size system forms
an exponential family in Example 1. Further, we define a curved exponential
family of transition matrices, and give its asymptotically efficient estimator in
Subsection 8.3. Since any smooth parametric family of transition matrices on
a finite-size system forms a curved exponential family, this result has a wide
applicability. These results require the technical preparations given in Sections
3, 4, and 5.

2.3. Relative entropy and relative Rényi entropy

In this paper, given two transition matrices W and V , we define the relative
entropy D(W‖V ) and the relative Rényi entropy D1+s(W‖V ) in Section 3. In
Subsection 8.3, the relative entropyD(W‖V ) plays a crucial role in our estimator
in a curved exponential family. We also show that the Fisher information is given
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as the limits of the relative entropy and the relative Rényi entropy, which plays
important roles in the proof of the asymptotic efficiency of our estimator in
a curved exponential family in Subsection 8.3. Also, as discussed in [17], the
relative Rényi entropy D1+s(W‖V ) plays a central role in simple hypothesis
testing as well as the relative entropy D(W‖V ). Further, these information
quantities play an central role in random number generation, data compression,
and channel coding [18]. In Section 3, we also give their properties that are
useful in the above applications.

For these applications, we need to address the relative entropy D(W‖V ) and
the relative Rényi entropy D1+s(W‖V ) in a unified way. More precisely, the rel-
ative entropy D(W‖V ) is needed to be defined as the limit of the relative Rényi
entropy D1+s(W‖V ). Indeed, the existing paper [5] defined the relative entropy
D(W‖V ) in a different way. However, the definition by [5] cannot yield the def-
inition of the relative Rényi entropy in a unified way. Appendix A summarizes
the detailed relation between the results in this part and existing results.

3. Relative entropy and relative Rényi entropy

In this section, in order to investigate geometric structure for transition matrices,
we define the relative entropy and the relative Rényi entropy. For this purpose
we prepare the following lemma, which is shown after Lemma 5.2.

Lemma 3.1. Consider an irreducible transition matrix W over X and a real-
valued function g on X×X . Define φ(θ) as the logarithm of the Perron-Frobenius
eigenvalue of the matrix:

W θ(x|x′) := W (x|x′)eθg(x,x′). (3.1)

Then, the function φ(θ) is convex. Further, the following conditions are equiva-
lent.

(1) No real-valued function f on X satisfies that g(x, x′) = f(x) − f(x′) + c
for any (x, x′) ∈ X 2

W with a constant c ∈ R.

(2) The function φ(θ) is strictly convex, i.e., d2φ
dθ2 (θ) > 0 for any θ.

(3) d2φ
dθ2 (θ)|θ=0 > 0.

Using Lemma 3.1, given two distinct transition matrices W and V , we de-
fine the relative entropy D(W‖V ) and the relative Rényi entropy D1+s(W‖V )
as follows. For this purpose, we denote the logarithm of the Perron-Frobenius
eigenvalue of the matrix W (x|x′)1+sV (x|x′)−s by ϕ(1 + s) under the condition
given below. When X 2

W ⊂ X 2
V and X 2

W is irreducible, we define

D(W‖V ) :=
dϕ

ds
(1), D1+s(W‖V ) :=

ϕ(1 + s)

s
(3.2)

for s > 0. The relative Rényi entropy D1+s(W‖V ) with s ∈ (−1, 0) is defined by
(3.2) when X 2

W∩X 2
V is irreducible, which is a weaker assumption. When X 2

W∩X 2
V

is irreducible and the condition X 2
W ⊂ X 2

V does not hold, the relative entropy
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D(W‖V ) and the relative Rényi entropy D1+s(W‖V ) with s > 0 are regarded as
the infinity. Note that the limit lims→0D1+s(W‖W ′) equals D(W‖W ′). When

X 2
W ⊂ X 2

V and X 2
W is irreducible, the function log W (x|x′)

V (x|x′) satisfies the condition

for the function g in Lemma 3.1 because W and V are distinct. Hence, the
function s 7→ sD1+s(W‖V ) is strictly convex. So, the relative Rényi entropy
D1+s(W‖V ) is strictly monotone increasing with respect to s.

From the property of Perron-Frobenius eigenvalue, we immediately obtain
the following lemma.

Lemma 3.2. Given two transition matrices WX and VX (WY and VY ) on X
(Y), respectively, we have

D(WX‖VX) +D(WY ‖VY ) = D(WX ×WY ‖VX × VY )

D1+s(WX‖VX) +D1+s(WY ‖VY ) = D1+s(WX ×WY ‖VX × VY )

for s ∈ (−1, 0) ∪ (0,∞).

Theorem 3.3. Transition matrices W1, W2, and W satisfy

pD(W1‖W ) + (1 − p)D(W2‖W ) ≥ D(pW1 + (1 − p)W2‖W ) (3.3)

pD(W‖W1) + (1 − p)D(W‖W2) ≥ D(W‖pW1 + (1 − p)W2) (3.4)

for p ∈ (0, 1).

(3.3) can be directly shown from Lemma 4.5 given latter. The proof of (3.4)
will be given after (5.5).

4. Information geometry for transition matrices

4.1. Exponential family

In the following, we treat only irreducible transition matrices. Hence, an irre-
ducible transition matrix is simply called a transition matrix. We define an expo-
nential family for transition matrices. We focus on a transition matrix W (x|x′)
from X to X . Then, a set of real-valued functions {gj} on X × X is called lin-
early independent under the transition matrix W (x|x′) when any linear non-zero

combination of {gj} satisfies the condition in Lemma 3.1. For ~θ = (θ1, . . . , θd)
and linearly independent functions {gj}, we define the matrix W~θ(x|x′) from X
to X in the following way.

W ~θ(x|x′) := W (x|x′)e
∑d

j=1
θjgj(x,x

′). (4.1)

Using the Perron-Frobenius eigenvalue λ~θ of W ~θ, we define the potential func-

tion φ(~θ) := log λ~θ.

Note that, since the value
∑

xW ~θ(x|x′) generally depends on x′, we cannot

make a transition matrix by simply multiplying a constant with the matrix W ~θ.

To make a transition matrix from the matrix W ~θ, we recall that a non-negative
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matrix V from X to X is a transition matrix if and only if the vector (1, . . . , 1)T

is an eigenvector of the transpose V T . In order to resolve this problem, we focus
on the structure of the matrix W ~θ. We denote the Perron-Frobenius eigenvectors

of W ~θ and its transpose W
T
~θ by P

2
~θ and P

3
~θ. Then, similar to [2, (16)] [5, (2)],

we define the matrix W~θ(x|x′) as

W~θ(x|x′) := λ−1
~θ
P

3
~θ(x)W ~θ(x|x′)P

3
~θ(x

′)−1. (4.2)

The matrix W~θ(x|x′) is a transition matrix because the vector (1, . . . , 1)T is an
eigenvector of the transpose WT

~θ
. The stationary distribution of the given transi-

tion matrix W~θ is the Perron-Frobenius normalized eigenvector of the transition
matrix W~θ, which is given as

P
1
~θ(x) :=

P
3
~θ(x)P

2
~θ(x)

∑

x′′ P
3
~θ(x

′′)P
2
~θ(x

′′)
(4.3)

because

∑

x′

W~θ(x|x′)P
1
~θ(x

′) =
P

3
~θ(x)

λ~θ
∑

x′′ P
3
~θ(x

′′)P
2
~θ(x

′′)

∑

x′

W ~θ(x|x′)P
2
~θ(x

′)

=
P

3
~θ(x)P

2
~θ(x)

∑

x′′ P
3
~θ(x

′′)P
2
~θ(x

′′)
= P

1
~θ(x).

In the following, we call the family of transition matrices E := {W~θ} an exponen-
tial family of transition matrices generated byW with the generator {g1, . . . , gd}.

Since the generator {g1, . . . , gd} is linearly independent, due to Lemma 3.1,
∑

i,j cicj
∂2φ

∂θi∂θj = d2φ(~ct)
dt2 is strictly positive for an arbitrary non-zero vector

~c = (c1, . . . , cd). That is, the Hesse matrix H~θ[φ] = [ ∂2φ
∂θi∂θj ]i,j is non-negative.

Using the potential function φ(θ), we discuss several concepts for transition
matrices based on Lemma 3.1, formally. We call the parameter (θ1, . . . , θd) the

natural parameter, and the parameter ηj(~θ) := ∂φ
∂θj (~θ) the expectation parameter.

For ~η = (η1, . . . , ηd), we define θ1(~η), . . . , θd(~η) as ηj(θ
1(~η), . . . , θd(~η)) = ηj .

For a given transition matrix W , we define a linear subspace NW (X 2) of the
space G(X 2) of all two-input functions as the set of functions f(x) − f(x′) + c.
Then, we obtain the following lemma.

Lemma 4.1. The following are equivalent for the generator {gj} and the tran-
sition matrix W .

(1) The set of functions {gj} are linearly independent in the quotient space
G(X 2)/NW (X 2).

(2) The map ~θ → ~η(~θ) is one-to-one.

(3) The Hesse matrix H~θ[φ] is strictly positive for any ~θ, which implies the

strict convexity of the potential function φ(~θ).
(4) The Hesse matrix H~θ[φ]|~θ=0 is strictly positive.
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(5) The parametrization ~θ 7→W~θ is faithful for any ~θ.

Proof. Applying Lemma 3.1 to φ(~ct) for an arbitrary non-zero vector ~c =
(c1, . . . , cd), we obtain the equivalence among (1), (3), and (4). (3) ⇒ (2) is
trivial.

Now, we show (2) ⇒ (1) by showing the contraposition. If (1) does not
holds. There exists a non-zero vector ~c = (c1, . . . , cd) such that

∑

i cigi(x, x
′) =

f(x) − f(x′) + C. Hence, we have d2φ(~ct)
dt2 = 0. Hence, (2) does not hold.

Now, we show (1) ⇒ (5) by showing the contraposition. When W~θ′ = W~θ,
considering the logarithm, there exist a function f and a constant c such that
∑

j θ
′jgj(x, x′) −

∑

j θ
jgj(x, x

′) = f(x) − f(x′) + C for (x, x′) ∈ X 2
W .

Now, we show (5) ⇒ (1) by showing the contraposition. If a set of real-valued
functions {gj} on X × X is not linearly independent, there exist a function f

and a constant C such that
∑

j θ
′jgj(x, x′)−

∑

j θ
jgj(x, x

′) = f(x)− f(x′) +C.

In this case, choosing P
3
~θ′(x) = P

3
~θ(x)ef(x) and λ~θ′ = λ~θe

−C , P
3
~θ′ and λ~θ′ are

the Perron-Frobenius eigenvector and eigenvalue of the transition matrix W~θ′ .
Then, we have W~θ′ = W~θ.

Now, we introduce the notation WX ,W := {V |V is a transition matrix and

X 2
W = X 2

V }. Any elementW ′ ∈ WX ,W can be written asW ′(x|x′) = W (x|x′)eg(x,x′)

by using an element g ∈ G(X 2) because of log W ′(x|x′)
W (x|x′) ∈ G(X 2). Hence, if and

only if the set of two-input functions {gj} form a basis of the quotient space
G(X 2)/NW (X 2), the set WX ,W coincides with the exponential family generated
by W with the generator {gj}. This fact shows that WX ,W is an exponential
family.

In particular, when W is a positive transition matrix, the subspace NW (X 2)
does not depend on W and is abbreviated to N (X 2). In this case, WX ,W is
the set of positive transition matrices. Then, it does not depend on W , and is
abbreviated to WX .

We define the Fisher information matrix for the natural parameter by the

Hesse matrix H~θ[φ] := [ ∂2φ
∂θi∂θj (~θ)]i,j . The Fisher information matrix for the ex-

pectation parameter is given as H~θ[φ]−1. Further, for fixed values θk+1
o , . . . , θdo ,

we call the subset {W~θ ∈ E|~θ = (θ1, . . . , θk, θk+1
o , . . . , θdo)} an exponential sub-

family of E . The following are examples of an exponential family.

Example 1. Now, we assume that X = {0, 1, . . . ,m} and W is a positive
transition matrix, i.e., X 2

W = X 2. Define gi,j(x, x
′) = δx,iδx′,j for i = 1, . . . ,m

and j = 0, 1, . . . ,m. Then, the m2+m functions gi,j form a basis of the quotient
space G(X 2)/N (X 2). Therefore, the set of positive transition matrices forms an
exponential family with the above choice of gi,j.

Example 2. For a given subset S ⊂ X 2 for X = {0, 1, . . . ,m}, we choose a
transition matrix W whose support is S. Define the subset S̃ as {(i, j) ∈ S|i is
not minimum integer satisfying (i, j) ∈ S for a fixed j}. We define gi,j(x, x

′) =

δx,iδx′,j for (i, j) ∈ S̃. Then, the set WX ,W is an exponential family generated
by {gi,j}(i,j)∈S̃ . However, the set WX ,W is not an exponential subfamily of the
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set of positive transition matrices because it is not included in the set of positive
transition matrices.

Remark 1. The above-defined exponential families contain exponential families
of distributions as follows. For a given exponential family of distributions Pθ on
X with the generator f(x), we define the transition matrix W (x|x′) as P0(x) and
the generator g(x, x′) as f(x). Then, the exponential family Wθ(x|x′) is Pθ(x).
The given potential function and the given expectation parameter (defined in the
next subsection) are the same as those in the case with the exponential family
of distributions {Pθ}.
Remark 2. The papers [9, 10, 11, 12] called a family of transition matrices
{Wθ(x|x′)} an exponential family when Wθ(x|x′) has the form

Wθ(x|x′) = eC(x,x′)+θg(x,x′)−ψ(θ,x′). (4.4)

The papers [14, 15, 16] extended the above definition to the continuous-time
case. However, our exponential family is written as [5]

Wθ(x|x′) = eC(x,x′)+θg(x,x′)+ψ(θ,x)−ψ(θ,x′)−φ(θ). (4.5)

by choosing C(x, x′) and ψ(θ, x) as logW (x|x′) and logP
3
~θ(x), respectively. So,

the traditional definition (4.4) is different from ours. The advantage of our model
over their model is explained in Remark 3.

4.2. Mixture family

In the following, we assume that the functions {gj} satisfies the condition of

Lemma 4.1. For fixed values ηo,1, . . . , ηo,k, we call the subset {W~θ ∈ E|~η(~θ) =
(ηo,1, . . . , ηo,k, ηk+1, . . . , ηd)} a mixture subfamily of E . Given a transition matrix
W , real-valued functions gj on X 2, and real numbers bj, we say that the set
{V ∈ WX ,W |∑x,x′ gj(x, x

′)V (x|x′)PV (x′) = bj∀j} is a mixture family on X 2
W

generated by the constraints {gj = bj}. Note that a mixture family on X 2
W does

not necessarily contain W because its definition depends on the real numbers
bj. When W is a positive transition matrix, it is simply called a mixture family
generated by the constraints {gj = bj} because WX ,W is the set of positive
transition matrices. For a given transition matrix W and two mixture families
M1 and M2 on X 2

W , the intersection M1∩M2 is also a mixture family on X 2
W .

Lemma 4.2. The intersection of the mixture family on X 2
W generated by the

constraints {gj = bj}j=1,...,k and the exponential family WX ,W is the mixture

subfamily {W~θ ∈ WX ,W |~η(~θ) = (b1, . . . , bk, ηk+1, . . . , ηd)} of the exponential
family WX ,W .

Lemma 4.2 will be shown after Lemma 5.1 in Section 5. Here, we give exam-
ples for mixture families.
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Example 3. A transition matrix W on X ×Y is called non-hidden for X when
WX(x|x′) :=

∑

y∈Y W (x, y|x′, y′) does not depend on y′ ∈ Y. For a transition
matrix W on X ×Y, the set WX|X×Y,W := {V ∈ WX×Y,W |V is non-hidden for
X on X × Y} is a mixture family on (X × Y)2W . Hence, the set WX|X×Y,W ∩
WY|X×Y,W is also a mixture family on X 2

W .

Example 4. The set of bi-stochastic matrices on X = {0, 1, . . . ,m} forms a
mixture family as follows. For a permutation σ, we define the transition matrix
Wσ(x|x′) = δx,σx′ . Then, we focus on the set T of transpositions (i, j) and the
subset H of cyclic permutations with length 3 defined by H := {(0, i, j)|0 < i <

j ≤ m}. Then, |T ∪ H | = |T | + |H | = m(m+1)
2 + m(m−1)

2 = m2. As will be
shown in Appendix B, The set of bi-stochastic matrices on X = {0, 1, . . . ,m} is
parametrized as {W~η}~η∈E, where

W~η :=
∑

σ∈T∪H
ησWσ + (1 −

∑

σ∈T∪H
ησ)Wid (4.6)

E := {η ∈ R
m2 |W~η(x|x′) ≥ 0 for ∀x, x′ ∈ X}. (4.7)

We define the functions

gi(x, x
′) := δx,i − δx,0 for i = 1, . . . ,m (4.8)

ĝσ(x, x′) := Wσ(x|x′) −Wid(x|x′). (4.9)

As will be shown in Appendix B, the set {gi}mi=1 ∪ {ĝσ}σ∈T∪H is linearly inde-
pendent. Then, the matrix A = (aσ,σ′) given as follows is invertible:

aσ,σ′ :=
∑

x,x′

ĝσ′(x, x′)ĝσ(x, x′)
1

m+ 1
. (4.10)

Then, using the inverse matrix B = A−1, we can define the functions {gσ}σ∈T∪H
as the dual basis in the following way:

gσ′ :=
∑

σ∈T∪H
bσ,σ′ ĝσ, (4.11)

which implies that
∑

x,x′

gσ′(x, x′)ĝσ(x, x′)
1

m+ 1
= δσ,σ′ . (4.12)

Hence, the set of functions {gi}mi=1 ∪ {gσ}σ∈T∪H is linearly independent. We
can employ the mixture parameter under the above set of functions. Since the
stationary distribution of W~η is the uniform distribution and

∑

gi(x, x
′)W~η(x|x′) 1

m+ 1
= 0 for i = 1, . . . ,m, (4.13)

∑

gσ(x, x′)W~η(x|x′) 1

m+ 1
= ησ for σ ∈ T ∪H, (4.14)

the transition matrix W~η(x|x′) is the expectation parameter (0, . . . , 0, ησ). That
is, the set of bi-stochastic matrices on X is the mixture family generated by the
constraints {gj = 0}j=1,...,m.
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4.3. Relation with relative entropy and relative Rényi entropies

The relative entropy and the relative Rényi entropies are characterized by using
the potential function φ(~θ) as follows.

Lemma 4.3. Two transition matrices W~θ and W~θ′ satisfies

D(W~θ‖W~θ′) =
d

∑

j=1

(θj − θ′
j
)
∂φ

∂θj
(~θ) − φ(~θ) + φ(~θ′) (4.15)

D1+s(W~θ‖W~θ′) =
φ((1 + s)~θ − s~θ′) − (1 + s)φ(~θ) + sφ(~θ′)

s
. (4.16)

Proof. Let ϕ(1 + s) be the logarithm of the Perron-Frobenius eigenvalue of the

matrix W~θ(x|x′)1+sW~θ′(x|x′)−s. Then, we have ϕ(1 + s) = φ((1 + s)~θ − s~θ′) −
(1 + s)φ(~θ) + sφ(~θ′). Hence, we obtain (4.16). Taking the limit s→ 0, we obtain
(4.15).

The Fisher information matrix H~θ[φ] can be characterized by the limits of
the relative entropy and relative Rényi entropy as follows. That is, taking the
limits in (4.15) and (4.16) in Lemma 4.3, we can show the following lemma.

Lemma 4.4. For ~c = (c1, . . . , cd), we have

lim
t→0

2

t2
D(W~θ‖W~θ+~ct) = lim

t→0

2

t2
D(W~θ+~ct‖W~θ) =

∑

i,j

H~θ[φ]i,jc
icj (4.17)

lim
t→0

2

t2
D1+s(W~θ‖W~θ+~ct) = lim

t→0

2

t2
D1+s(W~θ+~ct‖W~θ) = (1 + s)

∑

i,j

H~θ[φ]i,jc
icj .

(4.18)

The right hand side of (4.15) can be regarded as the Bregmann divergence

[21]1 of the strictly convex function φ(~θ). In the following, we derive several
properties of the relative entropy by using Bregmann divergence. That is, the
following properties follow only from the strong convexity of φ(~θ) and the prop-
erties of Bregmann divergence.

Using [20, (40)], we have another expression of D(W~θ‖W~θ′) as

D(W~θ(~η)‖W~θ(~η′)) =
∑

j

θ(~η′)j(η′j − ηj) − ν(~η′) + ν(~η), (4.19)

1Amari-Nagaoka [4] also defined the same quantity as the Bregmann divergence with
the name “canonical divergence.” They showed that the canonical divergence satisfies the
Pythagorean theorem and (4.19) via the concept of the dually flat. Recently, Amari [20]

showed these properties by a calculation of the convex function φ(~θ), which does not require
Christoffel symbols calculation. Since the derivations by [20] more directly explain the rela-

tion between the convex function φ(~θ) and these properties, we refer the paper [20] for these
properties.
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where ν(~η) is defined as Legendre transform of φ(~θ) as

ν(~η) := max
~θ

∑

i

θiηi − φ(~θ) =
∑

i

θi(~η)ηi − φ(~θ(~η)).

Since ν(~η) is convex as well as φ(~θ), we have the following lemma.

Lemma 4.5. (1) For a fixed ~θ, the maps ~θ′ 7→ D(W~θ‖W~θ′) and D1+s(W~θ‖W~θ′)

are convex for s > 0. (2) For a fixed ~θ′, the map ~η 7→ D(W~θ(~η)‖W~θ′) is convex.

4.4. Pythagorean theorem

It is known that Bregmann divergence satisfies the Pythagorean theorem for [20,
(34)]. Applying this fact, we have the following proposition as the Pythagorean
theorem.

Proposition 4.6. (Nagaoka [5, (23)]) We focus on two points ~θ′ = (θ′1, . . . , θ′d)

and ~θ′′ = (θ′′1, . . . , θ′′d). We choose the exponential subfamily of E whose natural

parameters θk+1, . . . , θd are fixed to θ′′k+1
, . . . , θ′′d, and the mixture subfamily of

E whose expectation parameters η1, . . . , ηk are fixed to η(~θ′)1, . . . , η(~θ′)k. Let ~̃θ =
(θ̃1, . . . , θ̃d) be the natural parameter of the intersection of these two subfamilies

of E. That is, θ̃j = θ′′j for j = k + 1, . . . , d and ηj(~̃θ) = ηj(~θ
′) for k = 1, . . . , k.

Then, we have

D(W~θ′‖W~θ′′) = D(W~θ′‖W~̃θ
) +D(W~̃θ

‖W~θ′′). (4.20)

Indeed, Nagaoka [5] showed (4.20) in a more general form by showing the
dually flat structure [4] via Christoffel symbols calculation. Using (4.20) and
Lemma 4.2, we obtain the following corollary.

Corollary 4.7. Given a transition matrix V and a mixture family M on X 2
V

with constraints {gj = bj}kj=1, we define V ∗ := argminW∈MD(W‖V ).
(1) Any transition matrixW ∈ M satisfies D(W‖V ) = D(W‖V ∗)+D(V ∗‖V ).
(2) The transition matrix V ∗ is the intersection of the mixture family M on

X 2
V and the exponential family generated by V and the generator {gj}kj=1.

Proof. First, we notice that the exponential family WX ,V contains V and in-

cludes M. Choose an element Ṽ in the intersection of the mixture family M on
X 2
V and the exponential family EV generated by V and the generator {gj}kj=1.

We apply (4.20) to the mixture family M and the exponential family EV . Then,
any transition matrix W ∈ M satisfies that D(W‖V ) = D(W‖Ṽ ) + D(Ṽ ‖V ).
Since D(W‖Ṽ ) > 0 except for W = Ṽ , we have minW∈MD(W‖V ) = D(Ṽ ‖V ),
which implies that V ∗ = Ṽ , i.e., (2). Hence, we obtain (1).

Similarly, we have another version of the above corollary.
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Corollary 4.8. Given a transition matrix W and an exponential family E ⊂
WX ,W with the generator {gj}, we define W∗ := argminV ∈E D(W‖V ). Assume
that

∑

x,x′ gj(x, x
′)W∗(x|x′)PW∗

(x′) = bj.
(1) Any transition matrix V ∈ E satisfies D(W‖V ) = D(W‖W∗)+D(W∗‖V ).
(2) The transition matrix W∗ is the intersection of the exponential family E

and the mixture family on X 2
W with the constraints {gj = bj}.

Example 5. We choose transition matrices VX and VY on X and Y, re-
spectively. We also choose a transition matrix W on X × Y whose support
is (X × Y)2VX×VY

. When a set of two-input functions {gX|i} forms a basis of
G(X 2)/NVX

(X 2), the exponential family generated by VX ×VY with the genera-
tor {gX|i} is {V ′

X×VY |V ′
X ∈ WX ,VX

}. When a set of two-input functions {gY |j}
forms a basis of G(Y2)/NVY

(Y2), the exponential family generated by VX × VY
with the generator {gX|i} ∪ {gY |j} is {V ′

X × V ′
Y |V ′

Y ∈ EX ,VX
, V ′
Y ∈ EY,VY

}.
Hence, when a transition matrix W belongs to a mixture family with the con-
straints {gX|i = ai}∪{gY |j = bj}, the intersection between the exponential family
and the mixture family consists of one points, which is denoted by W ′

X ×W ′
Y .

Applying (4.20), we obtain

D(W‖VX × VY ) = D(W‖W ′
X ×W ′

Y ) +D(W ′
X ×W ′

Y ‖VX × VY ). (4.21)

In particular, when W is non-hidden for X (for the definition, see Example 3.),
WX satisfies the same constraint {gX|i = ai} because the stationary distribu-
tion PWX

is the marginal distribution of the stationary distribution PW . Hence,
W ′
X = WX . Thus, W ′

X can be regarded as a marginalization of a transition
matrix W that is not necessarily non-hidden.

5. Stationary two-observation case

5.1. Relative entropies and expectation

In the previous section, we formally defined several information quantities from
the convex function φ(~θ) in the multi-parameter case. In this section, we con-
sider the relation with the structure of probabilities in the one-parameter case.
That is, we will see how the information quantities reflect the conventional in-
formation quantities. For this purpose, we assume that the input distribution is
the stationary distribution of the given transition matrix.

Since the stationary distribution of the given transition matrix Wθ is P
1

θ

given in (4.1), we can define the joint distribution

Wθ × P
1

θ(x, x
′) := Wθ(x|x′)P

1

θ(x
′) =

P
3

θ(x)W θ(x|x′)P 2

θ(x
′)

λθ
∑

x′′ P
3
~θ(x

′′)P
2
~θ(x

′′)
(5.1)

on X ×X . Now, we focus on the probability distribution family {Wθ×P
1

θ}, and

denote the expectation and the variance under the distribution Wθ × P
1

θ by Eθ

and Vθ. These are simplified to E and V when θ = 0.
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Lemma 5.1. ([5, Theorem 4], [2, (28)]) For θ ∈ R, we have

η(θ) =
dφ

dθ
(θ) = Eθ[g(X,X ′)] =

∑

x,x′

P
1

θ(x)Wθ(x|x′)g(x, x′). (5.2)

The lemma shows the reason why we call the parameter η the expectation
parameter.

Proof. From the definition of Wθ, we have

d

dθ
logWθ(x|x′) = − d

dθ
logλθ +

d

dθ
log

P
3

θ(x)

P
3

θ(x
′)

+ g(x, x′). (5.3)

Taking the average of the both hand sides with respect to the distribution

Wθ × P
1

θ, we have 0 = − d
dθ log λθ +

∑

x,x′ P
1

θ(x)Wθ(x|x′)g(x, x′).

Lemma 5.1 shows Lemma 4.2 as follows.

Proof of Lemma 4.2: In this proof, we consider the multi-parameter case.
Replacing the derivative by the partial derivative in Lemma 5.1, we have

ηj(~θ) =
∂φ

∂θj
(~θ) =

∑

x,x′

P
1
~θ(x)W~θ(x|x′)gj(x, x′). (5.4)

Choose the generator {g1, . . . , gk} of the mixture family on X 2
W . There exist two-

input functions gk+1, ..., gl such that the set of two-input functions {g1, . . . , gl}
form a basis of G(X 2)/NW (X 2). Hence, due to (5.4), we see that the intersection
of the mixture family on X 2

W generated by the constraints {gj = bj}j=1,...,k and

the exponential family WX ,W is the mixture subfamily {W~θ ∈ WX ,W |~η(~θ) =
(b1, . . . , bk, ηk+1, . . . , ηd)} of the exponential family WX ,W .

✷

Now, we introduce the conditional relative entropy for transition matrices W
and V from X to Y and a distribution P on X as follows.

D(W‖V |P ) := D(W × P‖V × P ),

where the relative entropy between two distributions P and P ′ is defined in the

conventional way as D(P‖P ′) :=
∑

x P (x) log P (x)
P ′(x) . Hence, the relative entropy
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defined in the previous section is characterized as follows [5, (24)].

D(Wθ‖Wθ′) = (θ − θ′)
dφ

dθ
(θ) − φ(θ) + φ(θ′)

=
∑

x,x′

P
1

θ(x
′)Wθ(x|x′) log

W θ(x|x′)
W θ′(x|x′)

− φ(θ) + φ(θ′)

=
∑

x,x′

P
1

θ(x
′)Wθ(x|x′) log

Wθ(x|x′)
Wθ′(x|x′)

− log
P

3

θ(x)

P
3

θ′(x)
+ log

P
3

θ(x
′)

P
3

θ′(x
′)

(a)
=

∑

x,x′

P
1

θ(x
′)Wθ(x|x′) log

Wθ(x|x′)
Wθ′(x|x′)

= D(Wθ‖Wθ′ |P
1

θ), (5.5)

where (a) follows from the fact that P
1

θ(x) =
∑

x′ Wθ(x|x′)P
1

θ(x
′).

Proof of (3.4): Since the map W ′ 7→ −∑

x,x′ P
1

θ(x
′)Wθ(x|x′) logW ′(x|x′) is

convex for a given θ, (5.5) guarantees (3.4).
✷

5.2. Fisher information and variance

Using the Fisher information J1
θ of the family {P 1

θ}θ of stationary distribu-

tions, we discuss the Fisher information J2
θ of the family {Wθ × P

1

θ}θ of joint
distributions in the following lemma.

Lemma 5.2. The Fisher information J2
θ can be written as

J2
θ =

d2φ

dθ2
(θ) + J1

θ . (5.6)

Lemma 5.3. The second derivative d2φ
dθ2 (θ) is calculated as

d2φ

dθ2
(θ) = Vθ

[

g(X,X ′) − dφ

dθ
(θ) +

d

dθ
logP

3

θ(X) − d

dθ
logP

3

θ(X
′)
]

. (5.7)

In particular, when θ = 0,

d2φ

dθ2
(0) = V0[g(X,X ′)] + 2

∑

x,x′

W (x|x′)g(x, x′)
dP

2

θ(x
′)

dθ

∣

∣

∣

θ=0
. (5.8)

Proofs of Lemmas 5.2 and 5.3 are given in Appendix C. Further, the quantity
d2φ
dθ2 (0) has another form [17, Theorem 6.6]. Using Lemma 5.3, we can show
Lemma 3.1 as follows.

Proof of Lemma 3.1: Due to (5.7), the non-negativity of variance implies
that φ(θ) is convex. Since Condition (2) trivially implies Condition (3), it is
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enough to show that Condition (1) implies Condition (2) and Condition (3)
implies Condition (1).

Assume Condition (1). Then, the random variable g(X,X ′)− dφ
dθ (θ)+ d

dθ logP
3

θ(X)−
d
dθ logP

3

θ(X
′) is not a constant on X 2

W . Hence, the variance in (5.7) is strictly
greater than zero, which implies Condition (2).

Conversely, we assume that Condition (1) does not hold, i.e., g(x, x′) = f(x)−
f(x′)+C for any (x, x′) ∈ X 2

W with a constant C ∈ R. Then, we can find that the

Perron-Frobenius eigenvalue of W θ(x|x′) = W (x|x′)eθf(x)−θf(x′)+θC is λθ = eθC

and its right eigenvector is P
2

θ. Thus, we have d2φ(θ)
dθ2 = 0, i.e., Condition (3)

does not hold. Hence, Condition (3) implies Condition (1).
✷

6. Stationary n + 1-observation case

6.1. Information quantities

Similar to the previous section, this section also discusses the one-parameter case

with the stationary initial distribution P
1

θ. Now, we consider the distribution

W×n
θ × P

1

θ on Xn, which is defined as

W×n
θ × P

1

θ(xn, . . . , x1) := Wθ(xn+1|xn) · · ·Wθ(x2|x1)P
1

θ(x1). (6.1)

We also define the random variable gn(Xn+1) :=
∑n
k=1 g(Xk+1, Xk) forXn+1 :=

(Xn+1, . . . , X1). In this section, we denote the expectation and the variance un-

der the distribution Wn
θ × P

1

θ by Eθ and Vθ. Then, the cumulant generating
function φn(θ) := logE0[exp(θgn(Xn+1))] satisfies

dφn
dθ

(θ) =Eθ[g
n(Xn+1)] = nη(θ). (6.2)

Now, we calculate information quantities. Similar to Lemma 5.2, the Fisher
information can be calculated as follows.

Lemma 6.1. The Fisher information Jn+1
θ of the family {W×n

θ ×P
1

θ}θ can be
written as

Jn+1
θ = n

d2φ

dθ2
(θ) + J1

θ . (6.3)

The proof can be done in the same way as Lemma 5.2. The conditional rela-
tive entropy is characterized by the Bregman divergence defined by the convex
function φ(θ) as follows.

D(W×n
θ ‖W×n

θ′ |P 1

θ) := D(W×n
θ × P

1

θ‖W×n
θ′ × P

1

θ)

=n((θ − θ′)
dφ

dθ
(θ) − φ(θ) + φ(θ′)) = nD(Wθ‖Wθ′). (6.4)
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6.2. Asymptotically efficient estimator

The relation (6.2) implies that gn(Xn+1)
n is an unbiased estimator for the param-

eter η. The variance of gn(Xn+1) is evaluated as follows.

Lemma 6.2. The inequalities

n
d2φ

dθ2
(θ)(1 − 2

√

√

√

√

V̂θ

nd
2φ
dθ2 (θ)

)2 ≤ Vθ[g
n(Xn+1)] ≤ n

d2φ

dθ2
(θ)(1 + 2

√

√

√

√

V̂θ

nd
2φ
dθ2 (θ)

)2

(6.5)

hold, where V̂θ := Vθ[
d
dθ logP

3

θ(X)] =
∑

x P
1

θ(x)( ddθ logP
3

θ(x))2.

Hence, we obtain

Vθ[
gn(Xn+1)

n
] =

Vθ[g
n(Xn+1)]

n2
=

d2φ
dθ2 (θ)

n
+O(

1

n
√
n

). (6.6)

The Fisher information J̃n+1
η(θ) for the expectation parameter η of the family

{W×n
θ × P

1

θ}θ is

J̃n+1
η(θ) =

Jn+1
θ

(dη(θ)dθ )2
= (n

d2φ

dθ2
(θ) + J1

θ )(
d2φ

dθ2
(θ))−2 =

n(1 +
J1
θ

n d2φ

dθ2
(θ)

)

(d
2φ
dθ2 (θ))

.

That is, the lower bound of the variance of the unbiased estimator given by

Cramér-Rao inequality is d2φ
dθ2 (θ)/n(1 +

J1
θ

n d2φ

dθ2
(θ)

). Hence, any unbiased estimator

Zn for the expectation parameter η satisfies

Vθ[Zn] ≥
d2φ
dθ2 (θ)

n(1 +
J1
θ

n d2φ

dθ2
(θ)

)
=

d2φ
dθ2 (θ)

n
− J1

θ

n2
+ o(

1

n2
). (6.7)

The relation (6.6) shows that the unbiased estimator gn(Xn+1)
n realizes the op-

timal performance with the order 1
n .

Proof of Lemma 6.2: The combination of (C.1) and (C.2) implies that d2φ
dθ2 (θ)

is the variance of [− dφ
dθ (θ) + d

dθ logP
3

θ(X)− d
dθ logP

3

θ(X
′) + g(X,X ′)] under the

distribution Wθ × P
1

θ in the two-observation case. In the n + 1-observation

case, using Lemma 6.1, we can similarly show that nd
2φ
dθ2 (θ) is the variance of

[−ndφdθ (θ)+ d
dθ logP

3

θ(Xn+1)− d
dθ logP

3

θ(X1)+gn(Xn+1)] under the distribution

Wn
θ × P

1

θ.
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Now, we define the 2-norm of the random variable f(Xn+1) as ‖f‖2 :=
√
∑

xn+1 Wn
θ × Pθ(xn+1)f(xn+1)2. Then, we have

√

n
d2φ

dθ2
(θ) = ‖gn(Xn+1) − n

dφ

dθ
(θ) +

d

dθ
logP

3

θ(Xn+1) − d

dθ
logP

3

θ(X1)‖2

≤‖gn(Xn+1) − n
dφ

dθ
(θ)‖2 + ‖ d

dθ
logP

3

θ(Xn+1)‖2 + ‖ d
dθ

logP
3

θ(X1)‖2

=
√

Vθ[g(Xn+1)] + 2

√

V̂θ,

which implies (
√

nd
2φ
dθ2 (θ) − 2

√

V̂θ)
2 ≤ Vθ[g(Xn+1)]. Then, we obtain the first

inequality because nd
2φ
dθ2 (θ)(1− 2

√

V̂θ

n d2φ

dθ2
(θ)

)2 = (
√

nd
2φ
dθ2 (θ)− 2

√

V̂θ)
2. Similarly,

since ‖gn(Xn+1)−ndφdθ (θ) + d
dθ logP

3

θ(Xn+1)− d
dθ logP

3

θ(X1)‖2 ≥ ‖gn(Xn+1)−
ndφdθ (θ)‖2 − ‖ d

dθ logP
3

θ(Xn+1)‖2 − ‖ d
dθ logP

3

θ(X1)‖2, we obtain the second in-

equality because d2φ
dθ2 (θ)(1 + 2

√

V̂θ

n d2φ

dθ2
(θ)

)2 = (
√

nd
2φ
dθ2 (θ) + 2V̂θ)

2.

✷

7. Non-stationary n + 1-observation case

Similar to the previous section, this section also discusses the one-parameter
case. Now, we consider the non-stationary case. Since the convergence to the
stationary distribution is required, we assume that the transition matrices Wθ

are ergodic as well as irreducible. Then, we fix an arbitrary initial distribu-
tions Pθ on X such that the Pθ is distribution is smoothly parameterized by the
parameter θ. In this section, we assume that Wθ is the exponential family gener-
ated by the generator g(x, x′) and the random variable Xn+1 := (Xn+1, . . . , X1)
is subject to W×n

θ × Pθ with the unknown parameter θ. Then, we denote the
expectation and the variance under the distribution W×n

θ × Pθ by Eθ and Vθ.
In this general case, the relation (6.4) does not hold. In stead of these relations,
as is shown in [17, Lemma 5.4], we have

lim
n→∞

1

n
D(W×n

θ × Pθ‖W×n
θ′ × Pθ′) =D(Wθ‖Wθ′), (7.1)

lim
n→∞

1

n
D1+s(W

×n
θ × Pθ‖W×n

θ′ × Pθ′) =D1+s(Wθ‖Wθ′). (7.2)

For a function h on R, we define the random variable g̃n(Xn+1) := gn(Xn+1)+
h(X1). When we use the random variable g̃n(Xn+1)/n as an estimator of the
parameter η(θ), the error is measured by the mean square error:

MSEθ[g̃
n(Xn+1)] := Eθ[(

g̃n(Xn+1)

n
− η(θ))2]. (7.3)
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Then, we have Eθ[g̃
n(Xn+1)] = Eθ[g

n(Xn+1)] + Eθ[h(X1)]. In the following
discussion, we employ the norm ‖f(Xn+1)‖2 :=

√

Eθ[f(Xn+1)2] for a function
f on R

n+1. Using the triangle inequality for this norm, we have
√

Vθ[gn(Xn+1)] −
√

Vθ[h(X1)] ≤
√

Vθ[g̃n(Xn+1)]

≤
√

Vθ[gn(Xn+1)] +
√

Vθ[h(X1)], (7.4)
√

Eθ[(
gn(Xn+1)

n
− Eθ[

gn(Xn+1)

n
])2] −

√

Eθ[(
h(X1)

n
+ Eθ[

gn(Xn+1)

n
] − η(θ))2]

≤
√

Eθ[(
g̃n(Xn+1)

n
− η(θ))2]

≤
√

Eθ[(
gn(Xn+1)

n
− Eθ[

gn(Xn+1)

n
])2] +

√

Eθ[(
h(X1)

n
+ Eθ[

gn(Xn+1)

n
] − η(θ))2].

(7.5)

It is known that the expectation of gn(Xn+1) and the variance of gn(Xn+1)√
n

converge to those under the stationary distribution [7, 3]. Hence, due to (6.2)
and (6.6), we have

lim
n→∞

Eθ[
g̃n(Xn+1)

n
] = lim

n→∞
Eθ[

gn(Xn+1)

n
] = η(θ) =

dφ

dθ
(θ), (7.6)

lim
n→∞

nMSEθ[
g̃n(Xn+1)

n
]
(a)
= lim

n→∞
Vθ[

g̃n(Xn+1)√
n

]

(b)
= lim
n→∞

Vθ[
gn(Xn+1)√

n
] =

d2φ

dθ2
(θ), (7.7)

where (a) and (b) follow from (7.5) and (7.4), respectively. The relation (7.6)

shows that the estimator g̃n(Xn+1)
n is asymptotically unbiased for the parameter

η. The mean square error is d2φ
dθ2 (θ) 1

n + o( 1
n ), which implies (2.2). Further, it

is shown that the random variable
√
n( g

n(Xn+1)
n − η(0)) asymptotically obeys

the Gaussian distribution with the variance d2φ
dθ2 (0) at θ = 0 [17, Corollary 6.2].

Replacing W0 by Wθ, we find that the random variable
√
n( g

n(Xn+1)
n − η(θ))

asymptotically obeys the Gaussian distribution with the variance d2φ
dθ2 (θ).

Next, for the family {W×n
θ × Pθ}θ, we consider the Fisher information Jnθ

for the natural parameter θ and the Fisher information J̃nθ for the expectation
parameter η.

Lemma 7.1. The limit of the Fisher information Jnθ for the natural parameter
θ is characterized as

lim
n→∞

Jnθ
n

=
d2φ

dθ2
(θ). (7.8)

Hence, the limit of the Fisher information J̃nθ for the expectation parameter η

is characterized as limn→∞
J̃n
θ

n = d2φ
dθ2 (θ)−1.
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Lemma 7.1 implies that the lower bound of the Cramér-Rao inequality is
d2φ
dθ2 (θ(η)) 1

n + o( 1
n ). Therefore, the estimator g̃n(Xn+1)

n attains the lower bound

by the Cramér-Rao inequality with the order 1
n . That is, the estimator g̃n(Xn+1)

n
is asymptotically efficient.

Proof of Lemma 7.1: Similar to (C.2), we have

Jnθ =Eθ[(−n
dφ

dθ
(θ) +

d

dθ
logP

3

θ(Xn+1) − d

dθ
logP

3

θ(X1) + gn(Xn+1))2] + J1
θ

=‖ − n
dφ

dθ
(θ) +

d

dθ
logP

3

θ(Xn+1) − d

dθ
logP

3

θ(X1) + gn(Xn+1)‖22 + J1
θ .

(7.9)

Since (7.6) and (7.7) yield that 1
n‖gn(Xn+1) − ndφdθ (θ)‖22 → d2φ

dθ2 (θ), we have

1√
n
‖ − n

dφ

dθ
(θ) +

d

dθ
logP

3

θ(Xn+1) − d

dθ
logP

3

θ(X1) + gn(Xn+1)‖2

≤ 1√
n

(‖gn(Xn+1) − n
dφ

dθ
(θ)‖2 + ‖ d

dθ
logP

3

θ(Xn+1)‖2 + ‖ d
dθ

logP
3

θ(X1)‖2)

≤ 1√
n
‖gn(Xn+1) − n

dφ

dθ
(θ)‖2 +

2√
n

max
x

| d
dθ

logP
3

θ(x)| →
√

d2φ

dθ2
(θ). (7.10)

The combination of (7.9) and (7.10) yields that limn→∞
Jn
θ

n ≤ d2φ
dθ2 (θ). Similarly,

the opposite inequality can be shown by replacing the role of (7.10) by the
following inequality.

1√
n
‖ − n

dφ

dθ
(θ) +

d

dθ
logP

3

θ(Xn+1) − d

dθ
logP

3

θ(X1) + gn(Xn+1)‖2

≥ 1√
n
‖gn(Xn+1) − n

dφ

dθ
(θ)‖2 −

2√
n

max
x

| d
dθ

logP
3

θ(x)| →
√

d2φ

dθ2
(θ).

Hence, we obtain (7.8). Since dθ
dη (θ) = d2φ

dθ2 (θ)−1, (7.8) implies limn→∞
J̃n
θ

n =
d2φ
dθ2 (θ)−1.

✷

8. Estimation with multi-parameter case

8.1. Estimation with multi-parameter exponential family: stationary

case

Assume that W~θ is a multi-parameter exponential family of transition matrices

with ~θ = (θ1, . . . , θd) with the generator {gj}. Then, we assume that the ini-

tial distribution is the stationary distribution P
1
~θ on X of W~θ and the random
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variable Xn+1 := (Xn+1, . . . , X1) is subject to W×n
~θ

× P
1
~θ with the unknown

parameter ~θ. In this subsection, we denote the expectation and the variance

under the distribution W×n
~θ

× P
1
~θ by E~θ and V~θ.

Similar to (6.2), using ~gn(Xn+1) := [gnj (Xn+1)]j , we can show that

E~θ[
~gn(Xn+1)

n
] = ~η(~θ), (8.1)

which implies that ~gn(Xn+1) is an unbiased estimator of the expectation pa-

rameter ~η(~θ). We denote the covariance matrix of ~gn(Xn+1) by Covθ[~g
n(Xn+1)].

We also denote the covariance matrix of [ ∂
∂θj logP

3
~θ(X)]j by ˆCovθ.

Lemma 8.1. The matrix inequalities

nH~θ[φ](1 − 2

√

‖H~θ[φ]−
1
2 ˆCovθH~θ[φ]−

1
2 ‖

n
)2 ≤ Covθ[~g

n(Xn+1)]

≤nH~θ[φ](1 + 2

√

‖H~θ[φ]−
1
2 ˆCovθH~θ[φ]−

1
2 ‖

n
)2 (8.2)

hold, where the matrix inequality is defined by the positive semi-definiteness.

Proof. First, we fix a real unit vector ~a = [aj ]j . Applying (6.5) to the random
variable

∑

j ajg
n
j (Xn+1), we obtain

n~aTH~θ[φ]~a(1 − 2

√

~aT ˆCovθ~a

n~aTH~θ[φ]~a
)2 ≤~aTCovθ[~gn(Xn+1)]~a

≤n~aTH~θ[φ]~a(1 + 2

√

~aT ˆCovθ~a

n~aTH~θ[φ]~a
)2. (8.3)

Since ~aT Ĉovθ~a
~aTH~θ

[φ]~a
≤ ‖H~θ[φ]−

1
2 ˆCovθH~θ[φ]−

1
2 ‖, (8.3) implies (8.2).

Lemma 8.1 yields that

Cov~θ[
~gn(Xn+1)

n
] =

Cov~θ[~g
n(Xn+1)]

n2
=

H~θ[φ]

n
+ o(

1

n
). (8.4)

Now, we denote the Fisher information matrix of the distribution family

{P 1
~θ}~θ by J1

~θ
. The Fisher information matrix J̃n+1

~η(~θ)
for the expectation parameter

~η of the distribution family {W×n
~θ

× P
1
~θ}~θ is

J̃n+1

~η(~θ)
= ([

∂ηi(~θ)

∂θj
]Ti,j)

−1Jn+1
~θ

([
∂ηi(~θ)

∂θj
]i,j)

−1 = H~θ[φ]−1(nH~θ[φ] + J1
~θ
)H~θ[φ]−1

=H~θ[φ]−
1
2 (nI + H~θ[φ]−

1
2J1

~θ
H~θ[φ]−

1
2 )H~θ[φ]−

1
2 .
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That is, the lower bound of the variance of the unbiased estimator given by
Cramér-Rao inequality is 1

nH~θ[φ]
1
2 (1I+ 1

nH~θ[φ]−
1
2J1

~θ
H~θ[φ]−

1
2 )−1H~θ[φ]

1
2 , i.e., the

Cramér-Rao inequality is given as

Cov~θ[
~gn(Xn+1)

n
] ≥ 1

n
H~θ[φ]

1
2 (I +

1

n
H~θ[φ]−

1
2 J1

~θ
H~θ[φ]−

1
2 )−1

H~θ[φ]
1
2

=
1

n
H~θ[φ] +O(

1

n2
). (8.5)

The relation (8.4) shows that the unbiased estimator ~gn(Xn+1)
n realizes the op-

timal performance with the order 1
n .

Therefore, we obtain an asymptotically efficient estimator for the expectation
parameter. To estimate the natural parameter, we need to solve the equation

ηj =
∂φ

∂θj
(~θ) (8.6)

for ~θ. Since the function φ(~θ) is strictly convex, ~θ(~η) can be derived by the
maximization of the concave function as

argmax
~θ

~η · ~θ − φ(~θ). (8.7)

The calculation complexity does not depend on the number n of data. Hence,
when the number d of parameters is not so large, the natural parameter can be
estimated efficiently even with a large number n of data.

However, the conventional algorithm for the maximization of the concave
function [28] requires the calculation of the derivative. Since the convex func-

tion φ(~θ) is given as the logarithm of the Perron-Frobenius eigenvalue of the
matrix W θ, the calculation of the derivative is not so easy. To overcome this
kind of difficulty, we can employ derivative-free optimization algorithms [29, 32]
represented by Nelder-Mead method [30]. A derivative-free optimization algo-
rithm maximizes a concave function without calculating the derivative only with
calculating the outcomes with several inputs. In particular, it is expected that
such an algorithm enables us to numerically derive ~θ(~η) for a given ~η.

8.2. Estimation with multi-parameter exponential family:

non-stationary case

Next, similar to Section 7, we consider the non-stationary case and assume that
the transition matrices W~θ are ergodic as well as irreducible. Then, we fix an
arbitrary initial distributions P~θ on X such that the distribution P~θ is smoothly

parameterized by the natural parameter ~θ. This assumption contains the special
case when the distribution P~θ does not depend on the parameter ~θ.

In this subsection, we denote the expectation, the variance, and the covari-
ance matrix under the distribution W×n

~θ
× P~θ by E~θ, V~θ, and Cov~θ. Then, we

employ the random variable ~gn(Xn+1) := (gnj (Xn+1)). When we use the random
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variable ~gn(Xn+1)/n as an estimator of the parameter ~θ, the error is measured
by the mean square error matrix:

MSEθ[
~gn(Xn+1)

n
]i,j := Eθ[(

gni (Xn+1)

n
− ηi(~θ))(

gnj (Xn+1)

n
− ηj(~θ))].

Similar to (7.6), we can show that

lim
n→∞

E~θ[
~gn(Xn+1)

n
] =~η(~θ) = [

∂φ

∂θj
(~θ)]j . (8.8)

For any vector ~c = (ci), the application of (7.7) to θ = ~c · ~θ implies that

lim
n→∞

n~cTMSE~θ[
~gn(Xn+1)

n
]~c = lim

n→∞
n~cTCov~θ[

~gn(Xn+1)

n
]~c = ~cTH~θ[φ]~c,

which implies the following theorem.

Theorem 8.2.

lim
n→∞

nMSE~θ[
~gn(Xn+1)

n
] = lim

n→∞
nCov~θ[

~gn(Xn+1)

n
] = H~θ[φ]. (8.9)

The relation (8.8) shows that the estimator ~gn(Xn+1)
n is asymptotically unbi-

ased for the expectation parameter ~η. The above theorem implies that the mean
square error is 1

nH~θ[φ] + o( 1
n ).

Next, for the family {W×n
~θ

×P~θ}~θ, we consider the Fisher information matrix

Jn~θ for the natural parameter ~θ and the Fisher information matrix J̃n~θ for the
expectation parameter ~η.

Lemma 8.3. The limit of the Fisher information matrix Jn~θ for the natural

parameter ~θ is characterized as limn→∞
Jn
~θ

n = H~θ[φ]. Hence, the limit of the

Fisher information matrix J̃n~θ for the expectation parameter ~η is characterized

as limn→∞
J̃n
~θ

n = H~θ[φ]−1.

Proof. We fix a real unit vector ~a = [aj ]j . The application of the relation (7.8)

to θ = ~c · ~θ yields that limn→∞
~aT Jn

~θ
~a

n = ~aTH~θ[φ]~a, which implies limn→∞
Jn
~θ

n =

H~θ[φ]. Since [∂ηi(
~θ)

∂θj
]i,j is H~θ[φ], we obtain limn→∞

J̃n
~θ

n = H~θ[φ]−1.

Lemma 8.3 implies that the lower bound of the Cramér-Rao inequality is
1
nH~θ[φ] + o( 1

n ). Therefore, the estimator ~gn(Xn+1)
n attains the lower bound by

the Cramér-Rao inequality with the order 1
n . That is, the estimator ~gn(Xn+1)

n is
asymptotically efficient.

Similar to the one-parameter case, we can show that the random variable√
n(~g

n(Xn+1)
n −~η(~θ)) converges to the Gaussian distribution with the covariance

matrix H~θ[φ].
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8.3. Estimation with multi-parameter curved exponential family

Next, we proceed to estimation with multi-parameter curved exponential family.
A d′-parameter subset Ẽ = {W~θCRV(~ξ)}~ξ of an exponential family E = {W~θ}~θ
of transition matrices is called a curved exponential family of transition matri-
ces. For example, a mixture family defined in Subsection 4.2 is also a curved
exponential family. As explained in Example 1, the set of all positive transition
matrices on a finite-size system forms an exponential family. Hence, any smooth
subfamily of transition matrices on a finite-size system forms a curved exponen-
tial family. Then, we define the Fisher information matrix H̃~ξ as the metric of

the submanifold. Assume that the Jacobian matrix A := [∂ηi∂ξj
|~ξ=~ξo ]i,j has the

rank d′. When the potential function of the exponential family is φ, the Fisher
information matrix is written as H̃~ξo

= ATH~θCRV(~ξo)
[φ]−1A because the Fisher

information matrix for the expectation parameter η at ~θCRV(~ξo) is H
−1
~θCRV(~ξo)

.

CRV ( )oθ ξ
�� ��

1
CRV ( ( ) / )ng X nθ +

��

1
CRV ( ( ))nXθ ξ +

�� ��

�
EModel

Fig 1. Estimator for the curved exponential family.

In the following, we assume that the exponential family E is generated by gj .

Given n+ 1 observations Xn+1, as Fig. 1, we define the estimator ~ξn(Xn+1) :=
argminξD(W~θCRV(~gn(Xn+1)/n)‖W~θCRV(~ξ)) for the curved exponential family Ẽ .

Then, similar to the case of a curved exponential family of probability distribu-
tions [4, Section 4.4], we can show that the estimator ~ξn(Xn+1) is asymptotically
efficient. That is, the mean square error matrix is asymptotically approximated
to 1

n H̃~ξ[φ]−1 + o( 1
n ) as follows.

Theorem 8.4. The random variable ~ξn(Xn+1) − ~ξo asymptotically obeys the
Gaussian distribution with the covariance matrix 1

n H̃~ξo
[φ]−1. Then, the mean

square error matrix of our estimator ~ξn(Xn+1) is asymptotically approximated
to 1

n H̃~ξ[φ]−1 + o( 1
n ).

Proof. The random variable ~gn(Xn+1)/n−~ηo asymptotically obeys the Gaussian

distribution with the covariance matrix 1
nH~θCRV(~ξo)

[φ], where ~ηo := ~η(~θCRV(~ξo))).

Since the neighborhood of ~ξn(Xn+1) in Ẽ can be approximated to the tangent
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space at the true point ~ξo, due to Corollary 4.8, the point ~θCRV(~ξn(Xn+1)) can

be approximately regarded as the projection to the tangent space at ~ξo from the
observed point ~θCRV(~gn(Xn+1)/n).

To see the asymptotic variance of the random variable ~ξn(Xn+1) − ~ξo, we
choose a d × d′ matrix B1 and a d × (d − d′) matrix B2 such that the d × d
matrix B = (B1, B2) satisfies that

BTH~θCRV(~ξo)
[φ]−1B = I and BT2 H~θCRV(~ξo)

[φ]−1A = 0. (8.10)

Then, BT1 H~θCRV(~ξo)
[φ]−1A is invertible. So, ATH~θCRV(~ξo)

[φ]−1A =

(BT1 H~θCRV(~ξo)
[φ]−1A)TBT1 H~θCRV(~ξo)

[φ]−1B1(BT1 H~θCRV(~ξo)
[φ]−1A)

= (BT1 H~θCRV(~ξo)
[φ]−1A)T (BT1 H~θCRV(~ξo)

[φ]−1A). Now, we introduce the new pa-

rameter ~τ(~η) := B−1~η under which, the metric is given as Cartesian inner
product. Hence, the covariance matrix of the estimator B−1(~gn(Xn+1)/n) for
the parameter ~τ (~η) is the matrix 1

nI.

We denote the vector (τ1, . . . , τd′)
T by ~τ ′(~η). Since the parameter ~ξ is approx-

imately identified with the element of the tangent space, we have A(~ξ − ~ξo) =
~η − ~ηo = B(~τ (~η) − ~τ(~ηo)). Hence, (8.10) implies that

BT1 H~θCRV(~ξo)
[φ]−1A(~ξ − ~ξo) = BT1 H~θCRV(~ξo)

[φ]−1B(~τ (~η(~ξ)) − ~τ (~ηo))

=BT1 H~θCRV(~ξo)
[φ]−1B1(~τ ′(~η(~ξ)) − ~τ ′(~ηo)) = ~τ ′(~η(~ξ)) − ~τ ′(~ηo).

Thus,

~ξ − ~ξo = (BT1 H~θCRV(~ξo)
[φ]−1A)−1(~τ ′(~η(~ξ)) − ~τ ′(~ηo)).

In this approximation, our estimator ~ξn(Xn+1) for ~ξ is characterized as

(BT1 H~θCRV(~ξo)
[φ]−1A)−1B−1(~gn(Xn+1)/n−~ηo)+~ξo. Thus, the covariance matrix

of our estimator is

(BT1 H~θCRV(~ξo)
[φ]−1A)−1 I

n
((BT1 H~θCRV(~ξo)

[φ]−1A)T )−1

=
1

n
((BT1 H~θCRV(~ξo)

[φ]−1A)T (BT1 H~θCRV(~ξo)
[φ]−1A))−1

=
1

n
(ATH~θCRV(~ξo)

[φ]−1A)−1 =
1

n
H̃~ξo

[φ]−1.

That is, the random variable ~ξn(Xn+1) − ~ξo asymptotically obeys the Gaus-
sian distribution with the covariance matrix 1

n H̃~ξo
[φ]−1. Therefore, the mean

square error matrix of our estimator ~ξn(Xn+1) is asymptotically approximated
to 1

n H̃~ξ[φ]−1 + o( 1
n ).

Remark 3. The papers [9, 10, 11, 12, 14, 15, 16] showed that the maximum
likelihood estimator (MLE) is asymptotically efficient in the exponential family
with their definition (4.4). Since the definition (4.4) is different from ours (4.1),
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the results in this section are different from theirs. Further, since our asymptoti-
cally efficient estimator is given as the sample mean of g, the required calculation
amount is smaller than theirs. Even in the case of a curved exponential fam-
ily, the Pythagorean theorem (4.20) enables us to calculate our asymptotically
efficient estimator with small amount of calculation. However, their MLE does
not have so simple form because their exponential family does not have such a
geometrical structure, e.g., expectation parameter and the Pythagorean theorem,
etc. Hence, it requires large calculation amounts.

Indeed, when the matrix entries of the transition matrix is to be estimated,
the literature [8] showed that the sample mean is the same as the maximum
likelihood estimator. However, this fact holds only for such a specific parameter,
and cannot be applied to the parameter estimation of our exponential family, in
general. Our method can be applied to any parameter of an exponential family
in our sense.

8.4. Implementation of our estimator for curved exponential family

In this subsection, we consider how to calculate our estimator ~ξn(Xn+1). This
calculation depends on the type of parametrization of the transition matrix
W~θCRV(~ξ). We can consider two cases as follows.

(1) The entries of the transition matrix W~θCRV(~ξ) are calculated directly from

~ξ with small calculation complexity.
(2) The entries of the transition matrix W~θCRV(~ξ) are calculated by (4.2) via

the calculation of ~θCRV(~ξ). In this case, the calculation of these entries
has large calculation complexity.

For example, Example 4 belongs to Case (1) because W~η is directly calculated
from the parameter ~η.

In the calculation of the estimator ~ξn(Xn+1), first, we obtain the estimate
~η′ of the larger exponential family E with the expectation parameter. Then, we
calculate its natural parameter ~θ′ by the method given in the end of Subsec-
tion 8.1. The following steps depend on the above case. In Case (1), we can
implement the minimization by employing the final expression in (5.5) with
small calculation complexity due to the following reason. The final expression
in (5.5) needs only the entries of the transition matrices W~θ′ and W~θCRV(~ξ) and

the Perron-Frobenius eigenvector of W~θ′ . In this case, it is enough to calcu-
late the Perron-Frobenius eigenvalue the Perron-Frobenius eigenvector of W~θ′

only at the first step. At each step of the minimization, we do not have any
difficult calculation. Therefore, the final expression in (5.5) brings us an easy
implementation of the minimization in Case (1).

However, in Case (2), it is better to employ (4.15) instead of the final expres-
sion in (5.5) due to the following reason. When the final expression in (5.5) is
employed, the calculation of the transition matrix W~θCRV(~ξ) requires the calcula-

tions of the Perron-Frobenius eigenvalue and the Perron-Frobenius eigenvector
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of the matrix given in (4.1) as in (4.2). To calculate the RHS of (4.15), we need

to calculate the partial derivative ∂φ
∂θj (~θ′) and the Perron-Frobenius eigenvalues

φ(~θ′) and φ(~θCRV(~ξ)). Fortunately, the partial derivative ∂φ
∂θj (~θ′) coincides with

the expectation parameter ~η′, which is firstly obtained. Also, it is enough to
calculate the Perron-Frobenius eigenvalue φ(~θ′) only once. Hence, at each step
of the minimization, we need to calculate only the Perron-Frobenius eigenvalue
φ(~θCRV(~ξ)), i.e., we do not need to calculate the Perron-Frobenius vector. There-
fore, (4.15) requires less calculation complexity than the final expression in (5.5)
in Case (2).

9. Conclusion

We have revisited the information geometrical structure (the exponential fam-
ily, the natural parameter, the expectation parameter, relative entropy, relative
Rényi entropy, Fisher information matrix, and the Pythagorean theorem) of
transition matrices by using the convex function φ(θ) defined by the Perron-
Frobenius eigenvalue of the matrix W ~θ defined by (4.1). Then, we have shown
that the sample mean of the generating function is an asymptotically efficient
estimator for the expectation parameters in the exponential family of transition
matrices. Combining this property and the Pythagorean theorem, we have given
an asymptotically efficient estimator for a curved exponential family of transi-
tion matrices. As a consequence, we have characterized the asymptotic variance
of the sample mean in the Markovian chain by using the second derivative of
the convex function φ(θ).

In this paper, we have assumed that our system consists of finite elements.
Indeed, the existing papers [22, 23, 24, 25, 26] reported several difficulties to
evaluate the variance of the sample mean in the continuous probability space
even with the discrete time Markov chain. So, it is remained to extend the
obtained results to the continuous case. However, this assumption is assumed
only for describing the conditional distribution by a matrix. We do not use the
finiteness of the cardinality of the probability space explicitly. Therefore, it seems
that there is no essential obstacle for extension to the continuous case under
a proper regularity condition. This extension will enable us to handle several
Gaussian Markovian chains in a simple way. Further, the obtained version of the
Pythagorean theorem will be helpful for the hierarchy of exponential families of
transition matrices. For an example, a hierarchy of exponential families can be
constructed by changing the degree of Markovian chain, it might be interesting
to investigate this example.
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Appendix A: Relation with existing results

As mentioned in Introduction, some of results in this paper for relative entropy
and exponential family have been already stated in [5] (without detailed proof)
and we restate those results and give proofs to keep the paper self-contained.
For deeper understanding, we summarize the relation with those papers in this
appendix.

Our definition (3.2) for the relative entropy D(W‖V ) has the following rela-
tion with those by [1, 2, 5]. Natarajan [1] and Nakagawa and Kanaya [2] defined
the relative entropy D(W‖V ) by the final term of (5.5). However, Nagaoka [5]
defined the relative entropy D(W‖V ) by (4.15) and showed the equivalence
with the final term of (5.5). If we consider only the relative entropy D(W‖V ),
the definition by the final term of (5.5) is natural. However, the relative Rényi
entropy D1+s(W‖V ) cannot define in the same way. Hence, in order to treat
the relative entropy D(W‖V ) and the relative Rényi entropy D1+s(W‖V ) in
a unified way, we adopt the definition (3.2) for the relative entropy D(W‖V )
instead of the final term of (5.5). Our definition clarifies the relation between the
relative entropy D(W‖V ) and the relative Rényi entropy D1+s(W‖V ), which is
helpful when we apply these quantities to simple hypothesis testing [17], random
number generation, data compression, and channel coding [18] in Markov chain.

Next, we address the convexity of the function φ(~θ). Nakagawa and Kanaya

[2, Section III] and Nagaoka [5] showed the convexity φ(~θ) in their respective
cases. Nagaoka [5] also showed the equivalence between (1) and (5) in Lemma
4.1. However, they did not clearly consider the relation with the other conditions
in Lemma 4.1. In fact, these equivalence relations are essential for the condition
of a generator of an exponential family and also for applications to finite-length
evaluations of the tail probability, the error probability in simple hypothesis
testing [17], source coding, channel coding, and random number generation [18]
in Markov chain.

Now, we proceed to the definition of an exponential family for transition ma-
trices. Our logical order of arguments in this definition is different from that
by Nagaoka [5] and Nakagawa and Kanaya [2]. We firstly define the potential

function φ(~θ) from a given transition matrix W and a given generator {gj}
Then, we give the parametric transition matrices although their papers [5, 2]

gave the parametric transition matrices firstly. The potential function φ(~θ) for
a transition matrix W and a generator {gj} produces several information quan-
tities, which play the central roles when we apply the exponential family for
transition matrices to finite-length evaluations of the tail probability and the
above applications [17, 18] in Markov chain. To characterize these information
quantities, we employ an exponential family of transition matrices. So, our log-



M. Hayashi and S. Watanabe/Information Geometry Approach in Markov Chains 30

ical order adapts such an application. Further, this paper introduces a mixture
family while the existing papers [5, 2] did not define a mixture family.

Indeed, Kontoyiannis and Meyn [31, (11)] gave a one-parameter family of
transition matrices with the same logical order. However, they did not use the
terminology “exponential family” and did not show the convexity of the poten-
tial function φ(~θ). Ito and Amari [19] discussed the geometrical structure of an
exponential family of transition matrices only for WX in the same definition as
ours. However, they did not treat this set as an exponential family of transition
matrices.

Our formula (4.20) in Pythagorean theorem (Proposition 4.6) has the follow-
ing relation with Nakagawa and Kanaya [2]. Nakagawa and Kanaya [2, Lemma
5] showed (4.20) with k = 1. Hence, our relation (4.20) can be regarded as a
generalization of Nakagawa and Kanaya [2, Lemma 5]. Indeed, the motivation
of Nakagawa and Kanaya [2, Lemma 5] is related to the exponent of simple
hypothesis testing. That is, their purpose is to show the relation

min
W :D(W‖W1)≤r

D(W‖W0) = min
θ:D(Wθ‖W1)≤r

D(Wθ‖W0). (A.1)

However, the multi-parametric extension (4.20) is essential for estimation in a
curved exponential family, which is discussed in Subsection 8.3.

Appendix B: Set of positive bi-stochastic matrices

To discuss Example 4 in the detail, we investigate the set of bi-stochastic matri-
ces on X = {0, 1, . . . ,m}. First, we divide the linear space of (m+ 1)× (m+ 1)
matrices into two linear spaces:

A := {(vx + wy)x,y|(vx)x, (wx)x ∈ R
m+1} (B.1)

B :=







(ax,y)x,y

∣

∣

∣

∣

∣

∣

m
∑

x′=0

ax′,y =

m
∑

y′=0

ax,y′ = 0 for x, y = 0, 1, . . . ,m







. (B.2)

In the following, any two-input function g(x, x′) is regarded as an (m+1)×(m+1)
matrix. For an arbitrary non-identical permutation σ ∈ SX , the function ĝσ
belongs to B. The function gj belongs to A. Also, when a function h satisfies
h(x, y) = c+ vx − vy with a constant c and a vector (vx) ∈ R

m+1, the function
h belongs to A. Any non-zero linear combination of {gj}mj=1 cannot be written
by the above function h. Thus, to show the linear independence of the set of
functions {gj}mj=1 ∪ {ĝσ}σ∈T∪H , it is enough to show the following lemma.

Lemma B.1. The set {ĝσ}σ∈T∪H is linearly independent in the linear space B.
The number of elements of the set {gj}mj=1 ∪ {ĝσ}σ∈T∪H is m2, which equals

the dimension of B. So, the set {gj}mj=1 ∪ {ĝσ}σ∈T∪H spans the linear space B.
For any bi-stochastic matrix W , we have W −Wid ∈ B. Hence, W −Wid can be
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written as a linear combination of {ĝσ}σ∈T∪H , i.e.,
∑

σ∈T∪H ησ ĝσ. Therefore,
W = Wid +

∑

σ∈T∪H ησ ĝσ = W~η.

Proof of Lemma B.1: Now, we prepare notations. For a two-input function
g, we define the symmetric matrix S[g]x,x′ := g(x, x′) + g(x′, x) and the anti-
symmetric matrix A[g]x,x′ := g(x, x′) − g(x′, x).

Due to the constraint for B, the diagonal entries of an element of S(B) are
determined by other entries. Fixed 0 ≤ i′ < j′ ≤ m, only the matrix S[ĝ(i′,j′)]
has a non-zero (i′, j′)-th entry among the set {S[ĝ(i,j)]}(i,j)∈T . Hence, the set
{S[ĝ(i,j)]}(i,j)∈T is linearly independent in the linear space S[B].

Due to the constraint for B, the (0, i)-th entry and (i, 0)-th entry of an element
of A(B) are determined by other entries. Fixed 0 < i′ < j′ ≤ m, only the matrix
A[ĝ(0,i′,j′)] has a non-zero (i′, j′)-th entry among the set {A[ĝ(0,i,j)]}(0,i,j)∈H .
Hence, the set {A[ĝ(0,i,j)]}(0,i,j)∈H is linearly independent in the linear space
A[B]. Therefore, the set {ĝ(0,i,j)}(0,i,j)∈H is linearly independent in the linear
space B. Since A[ĝ(i,j)] = 0 for (i, j) ∈ T , the set {ĝσ}σ∈T∪H is linearly inde-
pendent in the linear space B.

✷

Appendix C: Proofs of Lemmas 5.2 and 5.3

The Fisher information J2
θ can be written as

J2
θ =

∑

x,x′

Wθ × P
1

θ(x, x
′)[− d2

dθ2
logWθ(x|x′)P

1

θ(x
′)]

=
∑

x,x′

Wθ × P
1

θ(x, x
′)[− d2

dθ2
logWθ(x|x′) −

d2

dθ2
logP

1

θ(x
′)]

=
∑

x,x′

Wθ × P
1

θ(x, x
′)[− d2

dθ2
logWθ(x|x′)] +

∑

x′

P
1

θ(x
′)[− d2

dθ2
logP

1

θ(x
′)]

=
∑

x,x′

Wθ × P
1

θ(x, x
′)[− d2

dθ2
logWθ(x|x′)] + J1

θ

=
∑

x,x′

Wθ × P
1

θ(x, x
′)
[

− d2

dθ2
log

1

λθ
− d2

dθ2
log

P
3

θ(x)

P
3

θ(x
′)

− d2

dθ2
logW (x|x′)

− d2

dθ2
θg(x, x′)

]

+ J1
θ

(a)
=

∑

x,x′

Wθ × P
1

θ(x, x
′)[− d2

dθ2
log

1

λθ
] + J1

θ =
d2φ

dθ2
(θ) + J1

θ , (C.1)

where (a) follows from the relation
∑

x,x′ Wθ × P
1

θ(x, x
′) d

2

dθ2 log
P

3

θ(x)

P
3

θ(x
′)

= 0,

which is shown by the following fact: The expectations of d2

dθ2 logP
3

θ(X) and
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d2

dθ2 logP
3

θ(X
′) are the same because the marginal distributions of X and X ′ are

the same. Hence, we obtain (5.6). The Fisher information J2
θ is also written as

J2
θ =

∑

x,x′

Wθ × P
1

θ(x, x
′)
( d

dθ
logWθ(x|x′)P

1

θ(x
′)
)2

=
∑

x,x′

Wθ × P
1

θ(x, x
′)

[

( d

dθ
logWθ(x|x′)

)2

+ 2
( d

dθ
logWθ(x|x′)

)( d

dθ
logP

1

θ(x
′)
)

+
( d

dθ
logP

1

θ(x
′)
)2

]

=
∑

x,x′

Wθ × P
1

θ(x, x
′)

[

( d

dθ
logWθ(x|x′)

)2
]

+
∑

x′

P
1

θ(x
′)
( d

dθ
logP

1

θ(x
′)
)2

]

+ 2
∑

x,x′

( d

dθ
logWθ(x|x′)

)

Wθ(x|x′)
( d

dθ
logP

1

θ(x
′)
)

P
1

θ(x
′)

=
∑

x,x′

Wθ × P
1

θ(x, x
′)
[ d

dθ
logWθ(x|x′)

]2

+ J1
θ

=
∑

x,x′

Wθ × P
1

θ(x, x
′)
[

−dφ
dθ

(θ) +
d

dθ
logP

3

θ(x) − d

dθ
logP

3

θ(x
′) + g(x, x′)

]2

+ J1
θ .

(C.2)

Combining (5.6) and (C.2), we have

d2φ

dθ2
(θ) = Vθ[(g(x, x′) − dφ

dθ
(θ)) +

d

dθ
logP

3

θ(x) − d

dθ
logP

3

θ(x
′)] > 0, (C.3)

which implies (5.7). Since

(
d2φ

dθ2
(θ) + (

d

dθ
φ(θ))2)eφ(θ) =

d2

dθ2
eφ(θ) =

∑

x,x′

d2

dθ2
W (x|x′)eθg(x,x′)P

2

θ(x
′)

=
∑

x,x′

W (x|x′)eθg(x,x′)P
2

θ(x
′)g(x, x′)2 + 2W (x|x′)eθg(x,x′) dP

2

θ(x
′)

dθ
g(x, x′)

+W (x|x′)eθg(x,x′) d
2P

2

θ(x
′)

dθ2
,

we have another expression of d2φ
dθ2 (θ) as follows.

d2φ

dθ2
(θ)

=e−φ(θ)
[

∑

x,x′

W (x|x′)eθg(x,x′)P
2

θ(x
′)g(x, x′)2 + 2W (x|x′)eθg(x,x′) dP

2

θ(x
′)

dθ
g(x, x′)

+W (x|x′)eθg(x,x′) d
2P

2

θ(x
′)

dθ2

]

− (
d

dθ
φ(θ))2.
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When θ = 0,

d2φ

dθ2
(0) =[

∑

x,x′

W (x|x′)P 2

0(x′)g(x, x′)2 + 2W (x|x′)g(x, x′)
dP

2

θ(x
′)

dθ

∣

∣

∣

θ=0
] − η(0)2

=V0[g(X,X ′)] + 2
∑

x,x′

W (x|x′)g(x, x′)
dP

2

θ(x
′)

dθ

∣

∣

∣

θ=0

because
∑

x,x′ W (x|x′)d
2P

2

θ(x
′)

dθ2 = d2

dθ2

∑

x,x′ W (x|x′)P 2

θ(x
′) = 0 and η(0) =

E0[g(X,X ′)]. Hence, we obtain (5.8).

Appendix D: Twice differentiability

We show the twice-differentiablity of φ(θ), P
2

θ and P
3

θ. First, focus on the 1-
parameter case. Now, we define the function F1(θ, z) := det(W θ − zI) with the
identity matrix I. Since λθ = eφ(θ) is the unique solution of F1(θ, z) = 0 and the
function F1(θ, z) is twice-differentiable, the implicit function theorem guarantees
that λθ is twice-differentiable. Hence, φ(θ) is also twice-differentiable.

Next, we show that the twice-differentiablity of P
2

θ and P
3

θ, which are nor-

malized eigenvector with positive entries of W θ and W
T

θ . Now, we define the
vector-valued function F2(θ, y) := W θy and the function F3(θ, y) :=

∑

x∈X yx.

Since P
3

θ is the unique solution of F2(θ, y) = 0 and F3(θ, y) = 1 and the func-
tions F2(θ, y) and F3(θ, y) are twice-differentiable, the implicit function theorem

guarantees that P
2

θ is twice-differentiable. Replacing the role of W θ by that of

W
T

θ , we can show the twice-differentiablity of P
3

θ. These discussions can be
extended to the case when θ is a d-dimensional parameter.
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