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Abstract. In information theory, one area of interest is gambling, where mutual

information characterizes the maximal gain in wealth growth rate due to knowledge of

side information; the betting strategy that achieves this maximum is named the Kelly

strategy. In the field of physics, it was recently shown that mutual information can

characterize the maximal amount of work that can be extracted from a single heat

bath using measurement-based control protocols, i.e., using “information engines”.

However, to the best of our knowledge, no relation between gambling and information

engines has been presented before. In this paper, we briefly review the two concepts

and then demonstrate an analogy between gambling, where bits are converted into

wealth, and information engines, where bits representing measurements are converted

into energy. From this analogy follows an extension of gambling to the continuous-

valued case, which is shown to be useful for investments in currency exchange rates or

in the stock market using options. Moreover, the analogy enables us to use well-known

methods and results from one field to solve problems in the other. We present three

such cases: maximum work extraction when the probability distributions governing

the system and measurements are unknown, work extraction when some energy is lost

in each cycle, e.g., due to friction, and an analysis of systems with memory. In all

three cases, the analogy enables us to use known results in order to obtain new ones.

Keywords : directed information, gambling, Kelly betting, Maxwell’s demon, Szilard

engine, universal investment, work extraction

1. Introduction

While both work extraction from feedback controlled systems and information-theoretic

analysis of gambling are old concepts, to the best of our knowledge the relation between

them has not been highlighted before. This relation includes a straightforward mapping

of concepts from one field to the other, e.g., measurements are analogous to side

information and control protocols to betting strategies. Fundamental formulas in one

field apply to the other after simple replacement of variables according to the derived

mapping. This allows us to gain insights with regard to one field from known results

from the other one.

http://arxiv.org/abs/1404.6788v3
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The relationship between work extraction and information was first suggested by

Maxwell [1] in a thought experiment consisting of an intelligent agent, later named

Maxwell’s demon. The agent measures the velocity of gas molecules in a box that is

divided into two parts by a barrier. Although both parts have the same temperature to

begin with, the molecules inside the box have different velocities. The demon opens a

small hole in the barrier only when a faster-than-average molecule arrives from the left

part of the box, allowing it to pass to the right part, and when a slower-than-average

molecule arrive from the right part of the box, allowing it to pass to the left part. By

doing this, the demon causes molecules of higher energy to concentrate in the right part

of the box and those of lower energy to concentrate in the left part. This causes the

right part to heat up and the left part to cool down, thus enabling work extraction

when the system returns to equilibrium in apparent contradiction to the second law of

thermodynamics. This experiment shows how information on the speed and location

of individual molecules can be transformed into extracted energy, setting the basis for

what is now known as “information engines”.

Extensive research and debate has centered around Maxwell’s demon since its

inception, expanding the concept to more general cases of feedback control based on

measurements. It was shown that, for a system with finite memory, the cost of bits

erasure nullifies any gain from such a demon [2–7]. However, it was not until recently

that Sagawa and Ueda reached a general upper bound on the amount of work that can

be extracted [8, 9], which was also demonstrated experimentally [10, 11]. That upper

bound was found to be closely related to Shannon’s mutual information, which inspired

us to look into a possible relation to problems in information theory, a relation that has

not yet been explored in full.

Gambling is another field where bits of information were given concrete value,

through the analysis of optimal gambling strategies using tools from information theory,

an analysis that was first done by Kelly [12]. The setting consisted of consecutive bets

on some random variable, where all the money won in the previous bet is invested in the

current one. Kelly showed that maximizing over the expectation of the gambler’s capital

would lead to the loss of all capital with high probability after sufficiently many rounds.

However, this problem is resolved when maximization is done over the expectation of the

logarithm of the capital. Moreover, the logarithm of the capital is additive in consecutive

bets, which means that the law of large numbers applies. Under these assumptions, the

optimal betting strategy is to place bets proportional to the probability of each result,

a strategy referred to as the “Kelly strategy”. Kelly also showed that, given some side

information on the event, the profit that can be made compared to the one with no side

information is given by Shannon’s mutual information. This serves as another hint at

a possible relation between information engines and gambling, as the amount of work

that can be extracted using measurements, compared to that which can be extracted

without measurements, is also given by mutual information.

In this paper, we present an analogy between the analysis of feedback controlled
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physical systems and the analysis of gambling in information theory‡. We show that the

optimal control protocol in various systems is analogous to the Kelly strategy, which is

the optimal betting strategy. Furthermore, the amount of work extracted after n cycles

of an information engine is shown to be analogous to the capital gained after n rounds

of gambling. The analogy is then shown on two models: the Szilard Engine, where

the particle’s location is a discrete random variable, and a particle in some potential

field, where the location can be a continuous random variable. The latter prompts

us to consider an extension of Kelly gambling to cases with continuous-valued random

variables, which is shown to be useful for investment in currency exchange rates or in

the stock market using binary options.

This analogy enables us to develop a simple criterion to determine the best control

protocol in cases where an optimal protocol is inapplicable and an optimal protocol

when the probabilities governing the system are not known. Moreover, well known

results for gambling with memory and causal knowledge of side information are applied

in the field of physical systems with memory, yielding the optimal control protocol for

a certain class of such systems. Under slightly different assumptions, Sagawa and Ueda

have derived an upper bound for all such systems in [14]. Throughout this paper, we

will ignore the cost of bits erasure, essentially assuming an infinite memory.

The remainder of the paper is organized as follows: in Section 2, we review the

problem of horse race gambling, including the optimal betting strategy and maximal

gain from side information. In Section 3, we review the operation of the Szilard Engine,

its optimal control protocol and maximal work extraction. Then, in Section 4, we

present the analogy between these two problems and discuss briefly the implications of

such an analogy. In Section 5, we review the mechanism for work extraction from a

particle in an external potential field, and present the extension of Kelly gambling to

cases with continuous-valued random variables which arises from that physical system.

In Section 6, we discuss in more detail some of the implications and uses of the analogy.

Finally, in section 7 we discuss speculated analogies to other problems in information

theory, and their shortcomings compared to the analogy with gambling.

2. The Horse Race Gambling

The problem of gambling, as presented in [12] and [15], consists of n experiments whose

results are denoted by the random vector Xn = (X1, . . . , Xn), e.g., the winning horse

in n horse races. We are concerned with the case where the gambler has some side

information about the races, denoted Y n = (Y1, . . . , Yn). The following notation is used:

• PX - the probability vector of X , the winning horse.

• PX,Y - the joint probability of X and Y .

‡ In [13], an analysis of the gambling problem was carried out using tools from feedback controlled

systems and was related to fluctuation theorems in non-equilibrium statistical mechanics (in particular,

the Jarzynski equality).
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• PX|Y - the conditional probability of X given Y .

• PX|y - the probability vector of X given an observation Y = y of the side

information.

• bX|Y - the betting strategy on X given Y , describing the fraction of the gambler’s

capital invested in each horse.

• bX|y - a vector describing the betting strategy for Y = y.

• oX - a vector describing the amount of money earned for each dollar invested in the

winning horse, for each horse.

• Sn - the gambler’s capital after n experiments.

PX(x), PX,Y (x, y) and PX|Y (x|y) denote the probability mass function (PMF) of X ,

the joint PMF of X and Y and the conditional PMF of X given Y , respectively, for

the observations x and y. Similarly, bX|Y (x|y) and oX(x) denote the fraction of capital

invested and odds, respectively, for X = x and Y = y. Unless stated otherwise, we

assume {(Xi, Yi)}ni=1 are i.i.d, i.e., PXn,Y n(xn, yn) =
∏n

i=1 PX,Y (xi, yi), and that the

gambler invests all of his capital in each round.

Without loss of generality, we will set S0 = 1, namely, the gambling starts with 1

dollar. Sn is then given by:

Sn =

n
∏

i=1

bX|Y (Xi|Yi)oX(Xi), (1)

and maximization will be done on log Sn. We define the profit at round i as

log Si − log Si−1 = log
[

bX|Y (Xi|Yi)oX(Xi)
]

. (2)

The wealth growth rate is defined as

W =
1

n
E[logSn], (3)

where the expectation is with respect to PXn,Y n. The maximal wealth growth rate will

be denoted as W∗.

Since the races are assumed i.i.d., the same betting strategy will be used in every

round, i.e., bXi|Yi
= bX|Y for all i. As shown in [15, Chapter 6], the optimal betting

strategy is given by:

b∗X|Y = argmax
bX|Y

E[logSn] = PX|Y . (4)

Substituting b∗X|Y into (1) yields the following formula for W∗:

W∗ =
∑

x,y

PX,Y (x, y) log
[

PX|Y (x|y)oX(x)
]

. (5)

As defined in [12], the bet is “fair” if oX(x) = 1/PX(x). It can be seen from (5) that

without side information, no money can be earned in that case. For a fair bet where

side information is available, (5) can be written as

W∗ = I(X ; Y ), (6)



Analogy between gambling and measurement-based work extraction 5

where I(X ; Y ) is Shannon’s mutual information§ given by:

I(X ; Y ) =
∑

x,y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
. (7)

In this paper, we are mostly concerned with fair bets. Another point of interest is a

constrained bet, which is a fair bet where for each y bX|y is limited to some set B of

possible vectors. For such a bet, the maximal wealth growth rate is given by:

W∗ = max
bX|Y ∈B

1

n
E[log Sn]

= I(X ; Y )−
∑

y∈Y

PY (y) min
bX|y∈B

D(PX|y||bX|y), (8)

where D(·||·) is the Kullback-Leibler divergence given by:

D(PX|y||bX|y) =
∑

x

PX|y(x) log
PX|y(x)

bX|y(x)
, (9)

and for each y the optimal bX|y ∈ B is the one that minimizes D(PX|y||bX|y).

3. The Szilard Engine

We now describe the Szilard Engine [16], which involves a single particle of an ideal

gas enclosed in a box of volume V and attached to a heat bath of temperature T . The

engine’s cycle consists of the following stages (see Fig. 1):

(i) The particle moves freely in equilibrium with the heat bath.

(ii) A divider is inserted, dividing the box into two parts of volumes V L
0 and V R

0

(V L
0 + V R

0 = V ). The part of the box that contains the particle is denoted by

X , with the alphabet X = {L,R}.

(iii) A noisy measurement of the particle’s location is made; the result is denoted Y

with Y = {L,R}.

(iv) Given Y = y, the divider is moved quasi-statically until the volumes of the parts

are set to the prescribed volumes V L
f (y) and V R

f (y).

(v) The divider is removed from the box.

Denote the initial normalized volume as v0(x), which equals V L
0 /V for x = L and

V R
0 /V otherwise. Similarly, the final normalized volume vf(x|y) is equal to V L

f (y)/V for

x = L and V R
f (y)/V otherwise. Since the particle starts each cycle in equilibrium

with its environment, different cycles of the engine are independent of each other.

Moreover, since the particle has no potential energy, the particle’s location has a uniform

distribution across the volume of the box. Thus, assuming v0(x) to be the same for each

§ Following the customary notation conventions in information theory, I(X;Y) should not be understood

as a function I of the random outcomes of X and Y, but as a functional of the joint probability

distribution of X and Y.
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cycle, Xn are i.i.d. with PX(x) = v0(x). Following the analysis in [14], the work

extracted for Y = y is given by:

W = kBT ln
vf (X|Y )

PX(X)
, (10)

where kB is the Boltzmann constant. It was also shown in [14] that, for every y ∈ Y ,

the optimal vf is

v∗f(·|y) = argmax
vf

E[W |Y = y] = PX|Y (·|y), (11)

and the maximal amount of work extracted after n cycles is

max
vf

E[Wn] = nkBTE

[

ln
PX|Y (X|Y )

PX(X)

]

= nkBTI(X ; Y ). (12)

Note that the initial location of the barrier v0(x) can also be optimized, leading to

the following formula:

max
vf ,v0

E[Wn] = nkBT max
PX

I(X ; Y ). (13)

4. Analogy

An analogy between the Szilard Engine and gambling arises from this analysis, as

presented in Table 1. The equations defining both problems, (2) and (10), are the

same if one renames bX|Y as vf and oX as 1/PX . The analogy also holds for the optimal

strategy in both problems, presented in (4) and (11), and the maximum gain, presented

in (6) and (12), where log Sn is renamed Wn/kBT .

Analogous to the way bits of side information are converted into wealth in gambling,

bits of measurements are converted into work in the Szilard Engine. Moreover, the

actions of the controller in the Szilard Engine are analogous to a gamble on the location

of the particle. More specifically, in both problems the goal is to allocate a limited

Figure 1: The cycle of the Szilard Engine, starting at the upper left corner.
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Table 1: Analogy of gambling and the Szilard Engine

Gambling The Szilard Engine

Xi - result of horse race in round i. Xi - location of the particle in cycle i.

Namely, left or right.

Side information. Measurement results, possibly with noise.

Yi - some side information on round i. Yi - noisy measurement of the particle’s

location in cycle i.

PX - probability vector of the result. PX - probability vector of the particle’s

location.

PX|y - probability vector of the result

given side information y.

PX|y - probability vector of the particle’s

location given measurement y.

oX(x) - amount of money earned for every

dollar gambled.

1/v0(x) - the reciprocal of the initial

volume of the box’s parts.

Placing bets on different horses. Moving the dividers to their final posi-

tions.

Choosing the optimal race to bet on. Choosing the optimal initial location for

the divider.

bX|y(x) - amount of money gambled on

each result, given y.

vf(x|y) - the normalized final volume of

the box’s parts, given y.

Logarithm of the capital. Extracted work.

log Sn - log of the acquired money after n

rounds of gambling.

Wn/(kBT ) - total work extracted after n

cycles of the engine.

Transforming bits to wealth. Transforming bits to energy.

(2), (4), (6) - Profit in round i, optimal

betting strategy and maximum profit.

(10), (11), (12) - Work extracted in round

i, optimal control protocol and maximum

work extraction.

resource (box’s volume, gambler’s capital) in a way that maximizes the gain (extracted

work, increase in capital).

Specifically, the Szilard Engine is analogous to a fair bet, since v0(x) = PX(x) and

this is analogous to oX(x) = 1/PX(x). As stated previously, in a fair bet no money can

be earned without side information. In an analogous manner, no work can be extracted

from the Szilard Engine without measurements; this conforms with the second law of

thermodynamics. However, the option to maximize over PX in the Szilard Engine has

no analogy in gambling as formulated in [12] and [15]. This prompts us to consider

an extension to horse race gambling, where the gambler can choose between several

different race tracks. This means that (6) can be maximized over all distributions {PX}

across some set of distributions P, yielding

W∗ = max
PX∈P

I(X ; Y ). (14)

The presented analogy allows us to quantify the loss of energy due to use of a less-
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than-optimal control protocol in the Szilard engine. Suppose the controller is unable to

move the divider to its optimal final position on each round, and is instead limited to

some set of divider positions, e.g., the position is limited to certain notches where the

divider can be stopped. The maximal extracted work in such a setting is given by the

following analogous version of (8):

max
vf∈V

E[Wn] = nkBTI(X ; Y )−
∑

y∈Y

PY (y) min
vf (·|y)∈V

D(PX|y||vf(·|y)), (15)

where V is the set of allowed partitions of the box. The loss of energy on each cycle

due to this limitation is seen to be D(PX|y||vf(·|y)) and the optimal control protocol for

each y will be the one that minimizes this loss.

Using the analogy, the Szilard Engine can also be extended to a configuration with

multiple dividers. The dividers are inserted simultaneously, dividing the box into m

parts with the normalized volume of the ith part denoted by v0(i). The alphabet of X

and Y is then given by X = Y = {1, ..., m}. This setting is analogous to a horse race

with m horses, where the optimal betting strategy is given by (4). Thus, the optimal

control protocol for a measurement y will consist of moving the dividers quasi-statically

until for every i the normalized volume of the ith part is v∗f(i|y) = PX|Y (i|y). The work

extracted by this scheme, when v0(i) is optimized, is given by:

max
v0(i)

E[Wn] = nkBT max
PX

m
∑

i,j=1

PY (i)PX|Y (j|i) ln
v∗f (j|i)

v0(j)

= nkBT max
PX

m
∑

i,j=1

PY (i)PX|Y (j|i) ln
PX|Y (j|i)

PX(j)

= nkBT max
PX

I(X ; Y ), (16)

i.e., the amount of work extracted is equal to the maximum given in [8, 9].

5. A Particle in an External Potential Field and Continuous-Valued

Gambling

In this section, we review the optimal control protocol for work extraction from a single

particle in an external potential field. This case is similar to the Szilard Engine in that

for both cases the optimal protocol depends solely on PX|Y . Moreover, in both cases the

protocol consists of making changes to the system that cause the probability distribution

of X after the change to be equal to PX|y, where y is the measurement result.

We show that the analogy derived in the previous section holds for this case as

well. Since the location of the particle in this case can be a continuous random variable,

it prompts us to consider an extension of Kelly gambling to scenarios with continuous

random variables. This extension is then shown to describe investment in the stock

market using options.
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5.1. A Particle in an External Potential Field

We now consider an overdamped Langevin system of one particle with the Hamiltonian:

H(x, p) =
p2

2M
+ E0(x), (17)

where p is the particle’s momentum, M is its mass, x is its location and E0(x) is the

potential energy. Again, the particle is kept at constant temperature T . The probability

distribution of X is then the Boltzmann distribution that arises from E0(x) and is

denoted PX . Namely,

PX(x) =
1

Z0
exp

(

−
E0(x)

kBT

)

, (18)

where Z0 is the partition function, given by:

Z0 =
∑

x∈X

exp

(

−
E0(x)

kBT

)

. (19)

For now, we will limit ourselves to cases where PX|y is a Boltzmann distribution for

every y ∈ Y , a constraint that will be relaxed later on. This happens, for example, in

the Gaussian case, where X ∼ N (0, kBTσ
2
X) and Y = X+N , where N ∼ N (0, kBTσ

2
N)

and is independent of X , similarly to [17]. The optimal control protocol for such a

system was found in [18] and [19] to be as follows:

• Based on the measurement y, E0(x) is instantaneously modified by the controller

to a different potential field. It then follows that the Boltzmann distribution of

X changes from PX to QX|y, which for every y is the probability distribution of

X chosen by the controller. The optimal final distribution, denoted Q∗
X|y, was

shown in [18] and [19] to be equal to the conditional distribution of X given y, i.e.,

Q∗
X|y = PX|y.

• The potential is changed back to E0(x) quasi-statically.

Noting that v∗f as presented in (11) is equal to Q∗
X|y, one notices that both in this case

and in the Szilard Engine the optimal control protocol is defined by PX|Y . Furthermore,

(10) is also valid for this case, with vf replaced by QX|y. If X is a continuous random

variable, PX(x), PX|Y (x|y) andQX|y(x) will be the particle’s probability density function

(PDF), conditional PDF and the PDF chosen by the controller, respectively.

The protocol presented above is optimal in the sense that it attains the upper

bound on extracted work, i.e., the extracted work using this protocol with QX|y = Q∗
X|y

is given by:

E[Wn] = nkBTI(X ; Y ). (20)

If the controller controls E0(x) as well, the expression in (20) can be maximized over

all distributions {PX}. However, it is important to note that there will always be some

constraint over PX , due to the finite volume of the system or due to the method of
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creating the external potential, or both. Thus, denoting by P the set of allowed initial

distributions PX , the maximal amount of extracted work is given by:

E[Wn] = nkBT max
PX∈P

I(X ; Y ). (21)

Another point of interest is that setting Q∗
X|y = PX|y is not necessarily possible, e.g., if

for some values of y, PX|y is not of the form

PX|y(x) =
1

Z
exp

(

−
f(x, y)

kBT

)

, (22)

and thus not a Boltzmann distribution. This gives rise to the following, more general,

formula:

E[Wn] = nkBT max
PX∈P

{I(X ; Y )−
∑

y∈Y

PY (y) min
QX|y∈PB

D(PX|y||QX|y)}, (23)

where PB is the set of all possible distributions PX that stems from the set of all

possible potentials. Thus, for every y, the optimal QX|y ∈ PB is the one that minimizes

D(PX|y||QX|y). Notice that this analysis holds for both continuous and discrete random

variables X, Y .

It follows that the analogy presented in Table 1 can be extended to work extraction

from a particle in an external potential. Again, this system is analogous to a fair bet, in

conformance with the second law of thermodynamics. This system is also analogous to

a constrained bet, as can be seen from (23) and its analogy with (8). If X is continuous,

an interesting extension to the gambling problem arises where the bet is on continuous

random variables. We will now present this extension in detail.

5.2. Continuous-Valued Gambling

We consider a bet on some continuous-valued random variable, where the gambler has

knowledge of side information. The gambler’s wealth is still given by (1), but the betting

strategy, bX|y(x), and the odds, oX(x), are functions of the continuous variable x instead

of vectors. In the case of stocks or currency exchange rates, for instance, such a betting

strategy and odds can be implemented using options‖.

The constraint that the gambler invests all his capital in each round is translated

in this case to the constraint
∫

X

bX|y(x)dx = 1 ∀y ∈ Y . (24)

The optimal betting strategy is then given by b∗X|Y (x|y) = fX|Y (x|y), where fX|Y (x|y)

is the conditional PDF of X given Y , and the bet is said to be fair if oX(x) = 1/fX(x),

where fX(x) is the PDF of X . For a fair bet, (6) holds and (8) holds with the sum

replaced by an integral and each probability mass function replaced by the appropriate

PDF.

‖ This is not to be confused with [20], where an investment in m stocks was formulated as a bet on m

continuous-valued random variables, and b was a vector of length m denoting the amount invested in

each stock.
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As an example, consider the price of some stock or currency exchange rates, which

are continuous-valued. In order to gamble using this model, binary put options are used.

A binary put option is defined by its strike price - if the price of the stock at the expiry

date, denoted X , is below the strike price, the option pays 1 dollar and otherwise it is

worthless. The investment strategy will consist of selling a binary put with strike price

K and buying a binary put with strike price K + ∆ for some ∆ > 0; a combination

denoted as a spread on (K,K + ∆], which yields 1 dollar if x ∈ (K,K + ∆] and is

worthless otherwise. This strategy will be shown to conform with the model of horse

race gambling on a continuous-valued random variable.

First, note that the price of a binary option depends on its strike price. We assume it

is linear in the interval of a spread, which means that the price of a spread on (K,K+∆]

is CK∆, where CK is the slope of the option’s price in that interval. This assumption

is valid for sufficiently small values of ∆. It follows that the gain per dollar for such a

spread is

oK,∆ =
1

CK∆
. (25)

In order to invest, divide the x axis into N intervals (Kj , Kj +∆j ], j ∈ {1, ..., N},

where Kj+1 = Kj + ∆j and N can be arbitrarily large. For each interval j, denote by

ϕj(y) the fraction of the capital invested in buying spreads on that interval, given side

information y. The betting strategy bX|Y is then set as

bX|Y (x|y) =
N
∑

j=1

ϕj(y)

∆j

1(Kj ,Kj+∆j ](x), (26)

where 1{·} is the indicator function. Then, for all y ∈ Y , the constraint on bX|y is

∞
∫

−∞

bX|y(x)dx =

N
∑

j=1

ϕj(y) = 1, (27)

which is the same as the constraint in (24). Similarly, oX(x) is the piecewise constant

function

oX(x) =
N
∑

j=1

∆j · oKj ,∆j
· 1(Kj ,Kj+∆j ](x). (28)

The capital at the end of the ith round is then given by the capital invested in the

spread containing xi times the gain per dollar for this spread, i.e.,

Si =

N
∑

j=1

ϕj(yi) · Si−1 · oKj ,∆j
· 1(Kj ,Kj+∆j ](Xi)

= bX|Y (Xi|yi)oX(Xi)Si−1. (29)

It follows that (1) holds. The analogous case to the maximization on PX in (21), in this

case, is choosing the options to invest in.
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For ∆ → 0, the betting strategy bX|y(x) is not necessarily piecewise constant.

Denoting the slope of the option’s price as C(x), (28) is then rewritten as

oX(x) =
1

C(x)
, (30)

which is also not piecewise constant. It follows that, in this case, the bet is fair if the

price of an option with striking price x is Pr(X ≤ x). Also note that, in this limit, the

term I(X ; Y ) in (6) is generally not bounded, as is the case in (20) when the particle’s

location is not discrete. This means that the gain from knowledge of a stock’s exact price

at a future date is unlimited, similar to the unlimited work extracted from knowledge

of the particle’s exact location.

We conclude that two often-discussed schemes of work extraction are analogous to

the well-known problem of horse race gambling or to the extension of that problem to

the continuous-valued case, an extension that actually arose from the analogy. We will

now discuss some of the possible benefits from this analogy.

6. Consequences of the Analogy

The analogy that was shown in this paper enables us to use well-known methods and

results from horse race gambling to solve problems regarding measurement-based work

extraction, and vice versa. Two such cases have already been shown: the Szilard Engine

with multiple dividers and continuous-valued gambling. In this section, we present three

more problems solved using the analogy: maximum work extraction when the joint

distribution of X and Y is unknown, work extraction when some energy is lost in each

cycle, e.g., due to friction, and an analysis of systems with memory. In all three cases,

the analogy enables us to use known results to gain new insight.

In this section, we assume the control protocol is defined by a probability

distribution QX|y, chosen by the controller. Since for every choice of vf (x|y), which

defines the control protocol in the Szilard Engine, the following holds

vf(x|y) ∈ [0, 1] ∀x ∈ X
∑

x∈X

vf (x|y) = 1, (31)

and since (10) holds for both problems, the analysis done henceforth for QX|y is

applicable for vf(x|y) as well.

6.1. Universal Work Extraction

In both control protocols presented so far, in order to achieve the upper bound of

E[W ] = kBTI(X ; Y ), it was necessary to know the conditional distribution PX|Y in

advance. The question then arises whether this bound could also be achieved when

the conditional probability is not known, e.g., a system with an unknown measurement

error. The analogous problem in gambling was solved by Cover and Ordentlich [21] for

the case of portfolio management.
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Portfolio management is an extension of horse race gambling, where instead of

multiple horses with only one winner, the gambler invests in multiple stocks, each

performing differently. Namely, following the notation in [21], xi is a vector representing

the price of each stock at time i relative to its price at time i − 1. b will denote the

portfolio, i.e., a vector whose jth element is the fraction of the investors capital invested

in the jth stock. The investor’s capital at time n, Sn, is then given by Sn−1 times the

vector product of xi and b. Alternatively, it can be written as:

Sn =

n
∏

i=1

bt(yi) · xi, (32)

where the notation b(yi) represents the fact that the portfolio can depend on side

information.

In [21], the µ-weighted universal portfolio with side information was devised, and

was shown to asymptotically achieve the same wealth as the best constant betting

strategy for any pair of sequences xn, yn. Namely, it was shown that

lim
n→∞

max
xn,yn

1

n
log

S∗
n(x

n|yn)

Ŝn(xn|yn)
= 0, (33)

where Ŝn is the wealth achieved by the universal portfolio and S∗
n is the maximal wealth

that can be achieved by a constant portfolio, i.e., where bi(yi) = b(yi)
∗ for all i.

The universal portfolio at time i will be denoted by b̂i(y
i,xi−1), which depends on the

investor’s causal knowledge.

The universal portfolio was given by:

b̂i(y
i,xi−1) =

∫

B

bSi−1(b|yi)dµ(b)

∫

B

Si−1(b|yi)dµ(b)
, (34)

where µ is a measure that can be chosen by the investor under the constraint
∫

B
dµ = 1,

B is the set of all possible portfolios b and Si−1(b|yi) is the wealth acquired using

portfolio b along the subsequence {j < i : yj = yi}, i.e.,

Si−1(b|y) =
∏

j<i:yj=y

bt · xj . (35)

Choosing µ to be the uniform (Dirichlet(1, . . . , 1)) distribution, it was also shown that

the wealth achieved by the portfolio can be lower bounded by:

log Ŝn(x
n|yn) ≥ logS∗

n(x
n|yn)− k(m− 1) log(n+ 1), (36)

where m is the length of vector x and k is the cardinality of Y .

We will now consider the case of horse race gambling. Denote oj = oX(j), i.e.,

the odds of the jth horse, and, similarly, bj denotes the jth component of b, i.e., the

fraction of the capital invested in the jth horse by some betting strategy b. Then, (35)

can be rewritten as

Si−1(b|y) =
m
∏

j=1

(bjoj)
ni(j,yi), (37)
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where ni(j, yi) is the number of times X was observed to be j and Y was observed to be

yi before the ith cycle, i.e., ni(j, y) = |{l : xl = j, yl = y, l < i}|. When µ is the uniform

distribution, the universal portfolio is then reduced to the following universal betting

strategy for the case of horse race gambling:

b̂i(y
i, xi−1) =

1
∫

0

1−b1
∫

0

· · ·
1−

∑m−2

j=1
bj

∫

0

b
∏m

j=1(bjoj)
ni(j,yi)db1db2 · · · dbm−1

1
∫

0

1−b1
∫

0

· · ·
1−

∑m−2

j=1
bj

∫

0

∏m

j=1(bjoj)
ni(j,yi)db1db2 · · ·dbm−1

=

1
∫

0

1−b1
∫

0

· · ·
1−

∑m−2

j=1
bj

∫

0

(b1, . . . , bm)
∏m

j=1 b
ni(j,yi)
j db1db2 · · · dbm−1

1
∫

0

1−b1
∫

0

· · ·
1−

∑m−2

j=1
bj

∫

0

∏m

j=1 b
ni(j,yi)
j db1db2 · · ·dbm−1

=

(

ni(1, yi) + 1

ni(yi) +m
, . . . ,

ni(m, yi) + 1

ni(yi) +m

)

, (38)

where ni(y) = |{l : yl = y, l < i}| is the number of times Y was observed to be y before

the ith cycle and bm = 1−
∑m−1

j=1 bj .

Using the analogy presented above, this universal portfolio can be adapted

straightforwardly into a universal control protocol in cases whereX has a finite alphabet.

In this control protocol, QXi|yi,xi−1 is given by the right-hand-side (RHS) of (38) and

the extracted work is lower bounded by:

Ŵn ≥ W ∗
n − kBTk(m− 1) ln(n + 1), (39)

a bound that follows directly from (36), where m is the cardinality of X and k is

the same as before. Namely, the work extracted by this universal control protocol is

asymptotically equal to the work extracted by the best constant control protocol, i.e., the

control protocol in which QXi|yi = Q∗
X|yi

for all i. However, this derivation is applicable

only for finite alphabets.

6.2. Imperfect Work Extraction

Another outcome that arises from the analogy shown above is the analysis of an

imperfect system of work extraction. Consider a system where some amount of energy

f(x) is lost in each cycle, e.g., due to friction. The work extracted in each cycle is then

given by:

W = kBT ln
QX|Y (X|Y )

PX(X)
− f(X). (40)

This is analogous to an unfair bet with the odds

oX(x) =
1

PX(x)
exp(−fT (x)), (41)

where fT (x) = f(x)/kBT and T is an “unfairness” parameter.
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As shown in [15, Chapter 6], if the gambler has to invest all the capital in each

round, the optimal betting strategy is independent of oX(x), i.e., for the odds given in

(41) the optimal betting strategy is still given by (4), which yields

E[lnSi − lnSi−1|Yi = yi] = D(PX|yi||PX)− E[fT (Xi)|Yi = yi]. (42)

However, it may be the case that for some values of y the gambler should not gamble

at all. Specifically, in rounds where Yi = yi and D(PXi|yi||PX) ≤ E[fT (Xi)|Yi = yi],

gambling should be avoided.

In the same manner, the optimal control protocol for imperfect systems of work

extraction is still given by:

Q∗
X|y = PX|y, (43)

but for some measurement results it may be preferable not to perform the cycle at all.

Substituting (43) into (40) and taking the average w.r.t. PX|y yields

E[W |Y = y] = kBTD(PX|y||PX)−E[f(X)|Y = y]. (44)

Thus, the engine’s cycle should be performed only if yi satisfies kBTD(PXi|yi||PXi
) >

E[f(Xi)|Yi = yi].

6.3. Systems With Memory

Finally, we would like to analyze cases where the different cycles of the engine, or

different measurements, are not independent. An upper-bound for this case was derived

in [14], under different assumptions. Namely, we assume the controller has causal

knowledge of previous states of the system, and that the measurement result on each

cycle can explicitly depend on previous measurements. Under these assumptions, we

derive the optimal control protocol and the general gain in work extraction due to

measurements, and in one example also the maximal amount of work that can be

extracted.

Again, we use known results from the analysis of gambling on dependent horse

races. The gain in wealth due to casual knowledge of side information, as shown in [22],

is

E[log Sn(X
n||Y n)]− E[logSn(X

n)] = I(Y n → Xn). (45)

The term I(Y n → Xn) ,
∑n

i=1 I(Xi; Y
i|X i−1) is the directed information from Y n

to Xn, as defined by Massey [23], and Sn(X
n||Y n) indicates the betting strategy

at round i depends causally on previous results X i−1 and side-information Y i. The

optimal betting strategy in this case is given by b∗Xn||Y n(xn||yn) = PXn||Y n(xn||yn), where

PXn||Y n(xn||yn) =
∏n

i=1 PXi|Y i,Xi−1(xi|yi, xi−1) is the causal conditioning of Xn by Y n,

as defined by Kramer [24, 25].

Analogously, in a physical system of work extraction where different cycles are

dependent, e.g., when the system does not reach equilibrium between cycles, the

formulas presented so far are no longer valid. Instead, the controller’s causal knowledge
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of previous states and measurements can be used, meaning the optimal control protocol

is given by

arg max
Q

Xi|y
i,xi−1

E[Wi|Y
i = yi, X i−1 = xi−1]

= arg max
Q

Xi|y
i,xi−1

kBT
n

∑

i=1

E

[

ln
QXi|yi,xi−1(Xi)

PX(Xi)

∣

∣

∣
Y i = yi, X i−1 = xi−1

]

= PXi|yi,xi−1 , (46)

where for each (yi, xi−1), QXi|yi,xi−1 is some probability distribution of X chosen by the

controller. This means that maximal work extraction is given by:

E[Wn(X
n||Y n)] = kBT

n
∑

i=1

E

[

ln
PXi|Y i,Xi−1(Xi|Y i, X i−1)

oi(X i)

]

= −kBT
n

∑

i=1

[

H(Xi|Y
i, X i−1)− Oi

]

, (47)

where H(·|·) is Shannon’s conditional entropy given by:

H(X|Y ) = −
∑

x,y

PX,Y (x, y) logPX|Y (x|y), (48)

oi(X
i) is some function of the current and previous states, Oi = E[ln oi(X

i)] and the

notation Wn(X
n||Y n) indicates that the control protocol at round i depends causally on

previous states X i−1 and side-information Y i. Without access to measurement results,

which is equivalent to setting Yi = ∅ for all i, the maximal work extraction is

E[Wn(X
n)] = kBT

n
∑

i=1

E

[

ln
PXi|Xi−1(Xi|X i−1)

oi(X i)

]

= −kBT
n

∑

i=1

[

H(Xi|X
i−1)−Oi

]

. (49)

Subtracting (49) from (47), the gain in work extraction due to causal knowledge of

measurement results is

E[Wn(X
n||Y n)]− E[Wn(X

n)] = kBTI(Y
n → Xn), (50)

analogously to the horse race gamble, where the gain in wealth growth rate due to causal

knowledge of side information is I(Y n → Xn).

Example 1 Consider the Szilard Engine where the initial placement of the barrier in

each cycle is done before the system reaches equilibrium. As a result, in each cycle the

particle has a higher probability to be in the same part of the box that it was in in

the previous one. Denote by p the probability that the particle moved from one part

of the box to the other between cycles and q the probability of measurement error,

i.e., Pr(Xi 6= Xi−1) = p and Pr(Xi 6= Yi) = q for each i. Since the measurement

device has no memory and only the previous location affects the current one, the
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system has the Markov properties Xi − (Xi−1, Yi) − (Y i−1, X i−2), Xi − Xi−1 − X i−2

and Yi −Xi − (X i−1, Y i−1). Equation (50) can then be written explicitly as

E[Wn(X
n||Y n)]− E[Wn(X

n)] = kBT

n
∑

i=1

I(Xi; Y
i|X i−1)

= kBT
n

∑

i=1

[H(Xi|Xi−1)−H(Xi|Xi−1, Yi)]

= kBT

n
∑

i=1

I(Xi; Yi|Xi−1)

= kBT

n
∑

i=1

[H(Yi|Xi−1)−H(Yi|Xi)]

= kBTn [Hb(p ∗ q)−Hb(q)] , (51)

where p ∗ q = pq + (1 − p)(1 − q) and Hb(x) = −x ln x − (1 − x) ln(1 − x). For this

example, the analogous case is a horse race with two horses, where the probability that

a horse would win two consecutive races is 1− p, and the gambler has side information

on the outcome of the race with error probability q. In that case, the gain in wealth

growth rate due to the side information is given by

E[log(S(Xn||Y n)]− E[logS(Xn)] = I(Y n → Xn)

=

n
∑

i=1

I(Xi; Y
i|X i−1)

= n [Hb(p ∗ q)−Hb(q)] . (52)

Specifically, the particle remaining in the same part of the box is analogous to a horse

winning two consecutive races, and the error in side information is analogous to a

measurement error.

Example 2 Consider a system of work extraction where the position of the particle in

each cycle is independent of previous cycles, but each measurement depends on previous

ones, e.g., due to hysteresis. However, both for the Szilard Engine and for a particle in

an external potential, the probability distribution at the ith cycle can be chosen by the

controller. Thus, the controller can introduce a dependence of Xi on X i−1, Y i−1 through

the choice of PXi
. Maximal work extraction is then given by

E[Wn] = kBT max
{P

Xi|X
i−1,Y i−1}ni=1

∈P

n
∑

i=1

E

[

ln
PXi|Y i,Xi−1(Xi|Y i, X i−1)

PXi|Y i−1,Xi−1(Xi|Y i−1, X i−1)

]

= kBT max
{P

Xi|X
i−1,Y i−1}

n
i=1

∈P

n
∑

i=1

I(Xi; Yi|X
i−1, Y i−1), (53)

where P is the set of possible distributions and {PYi|Y i−1,Xi}ni=1 is a constant of the

measuring device.

This example is analogous to gambling where the gambler can choose in each round

between several different race tracks, with different tracks independent of each other.
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In that case, in each round the probability distribution of the horses depends on the

chosen track, which itself depends on the causal knowledge the gambler has. Thus, Xi

depends on X i−1, Y i−1 through the gambler’s choice of PXi
, i.e., if in round i track j

was chosen, and the bet is fair, the odds at round i are

oi(xi) =
1

Pj(xi)
=

1

PXi|Xi−1,Y i−1(xi|xi−1, yi−1)
, (54)

where Pj(xi) is the PMF corresponding to the jth track. The maximal wealth growth

rate is then given by

W∗ = max
{P

Xi|X
i−1,Y i−1}ni=1

∈P

1

n

n
∑

i=1

E

[

ln
PXi|Y i,Xi−1(Xi|Y i, X i−1)

PXi|Y i−1,Xi−1(Xi|Y i−1, X i−1)

]

= max
{P

Xi|X
i−1,Y i−1}ni=1

∈P

1

n

n
∑

i=1

I(Xi; Yi|X
i−1, Y i−1), (55)

where P is the set of distributions of the different tracks. This equation is analogous to

(53), and in both cases no gain is possible without knowledge of Yi.

A simpler form of this example would be to assume the same probability distribution

ofX is chosen for every i, so that Xi is independent ofX
i−1, Y i−1. For instance, consider

a case where the measurement device can either be in a ”good” state, yielding error-

free measurements, or a ”bad” state, yielding measurements which are independent of

X , and in each cycle it is likely to remain in the same state as it was in the previous

cycle. Thus, even though Xi is independent of X i−1 and Y i−1, previous states and

measurements contain information on the state of the measurement device given Yi. In

such a case, Xi are i.i.d. and (53) is reduced to

E[Wn] = kBT

n
∑

i=1

E

[

ln
PXi|Y i,Xi−1(Xi|Y i, X i−1)

PX(Xi)

]

= kBTI(Y
n → Xn). (56)

In Example 2, the amount of work that can be extracted is given by (53), which is

a solution to a maximization problem. Hence, it would be beneficial if the maximized

expression was concave.

Lemma 1 Let f(PXn||Y n−1 , PY n||Xn) =
∑n

i=1 I(Xi; Yi|X i−1, Y i−1). Then f is concave in

PXn||Y n−1 with PY n||Xn constant.

Proof: See the appendix.

Notice that a one-to-one mapping exists between PXn||Y n−1 and {PXi|Xi−1,Y i−1}ni=1

[26, Lemma 3]. It then follows from Lemma 1 that the maximization problem in (53)

can be solved using the tools of convex optimization, if P is convex. Alternatively,

the alternating maximization procedure can be used to maximize over each term

PXi|Xi−1,Y i−1 separately while setting all other terms to be constant, beginning with

i = n and moving backward to i = 1, similarly to [27]. Since each term depends only

on previous terms and not on the following ones, this procedure will yield the global

maximum as needed.
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7. Other Speculated Analogies

Since mutual information appears in another context in information theory, called

channel coding, the reader might speculate that an analogy between the Szilard engine

and channel coding may be more natural. However, we feel the analogy with gambling

is the most fitting and complete.

In channel coding, an encoder needs to encode a message of nR bits into a stream

of n bits, denoted xn, which would be transmitted through a channel with output yn

and a probability distribution PY |X . A decoder then needs to reconstruct the original

message out of yn. The maximal value of R in this scenario, which could be seen

as the maximal gain of message bits, is known as the channel capacity and is equal to

I(X ; Y ) [15, Chapter 7]. While the maximal gain in channel coding is defined by mutual

information, and while p(x|y) plays an important part in the decoding strategy, we feel

an analogy of this with the Szilard engine is lacking.

First and foremost, in channel coding, as the decoder attempts to estimate xn based

on yn it uses the fact that only certain values of xn are possible. This is not the case in

the Szilard engine, nor is it the case in horse race gambling, where estimation of X is

performed in each round. As a result, if Xn are i.i.d knowledge of previous values of X

does not help the gambler, nor does it help the controller in the Szilard engine, i.e., no

gain or work extraction is possible if Yi = Xi−1. In channel coding, on the other hand,

the capacity of a channel with Yi = Xi−1 is the same as that of a perfect channel, where

Yi = Xi.

Second, once systems with memory are considered in Section 6.3, the extracted

work is characterized by the directed information from Y n to Xn [23], I(Y n →

Xn) =
∑n

i=1 I(Xi; Y
i|X i−1). This is also what characterizes the maximal wealth

growth rate in horse race gambling with memory. However, in the setting of channel

coding over channels with memory, the capacity is characterized by I(Xn → Y n) =
∑n

i=1 I(Yi;X
i|Y i−1). Again, using the previous example where Yi = Xi−1, one can see

that indeed I(Y n → Xn) = 0, but I(Xn → Y n) > 0 even though no work extraction is

possible.

In conclusion, while there are connections between channel coding and Maxwell’s

demon [28], we feel that an analogy between the two is lacking in several key aspects,

and offers no further insight, compared to the analogy proposed in this paper.

8. Conclusions

In this paper we have shown an analogy between the field of gambling in information

theory and the analysis of information engines in statistical mechanics. This analogy

consisted of a one-to-one mapping of concepts and equations between those two fields,

which enabled us to use methods and results from one field to gain new insights in the

other. Such insights included universal work extraction, continuous-valued gambling

and information engines with memory, among others.
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While in this paper we reviewed only two information engines, the analogy is valid

for every engine where the optimal control protocol dictates a change of the Boltzmann

distribution so that it is equal to PX|y for every measurement y. Analysis of other

systems could yield further insight into this analogy and, through it, into gambling.
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Appendix

In this appendix we prove the concavity of
∑n

i=1 I(Xi; Yi|X i−1, Y i−1) in PXn||Y n−1 with

PY n||Xn constant, where PXn||Y n−1 is the causal conditioning given by:

PXn||Y n−1(xn||yn−1) =

n
∏

i=1

PXi|Xi−1,Y i−1(xi|x
i−1, yi−1). (A.1)

Namely, we would like to show that for any λ ∈ [0, 1] and causal conditioning measures

P 1
Xn||Y n−1 and P 2

Xn||Y n−1 ,

f(λP 1
Xn||Y n−1 + λ̄P 2

Xn||Y n−1 , PY n||Xn) ≥ λf(P 1
Xn||Y n−1 , PY n||Xn)

+ λ̄f(P 2
Xn||Y n−1 , PY n||Xn), (A.2)

where λ̄ = 1− λ and

f(P j

Xn||Y n−1 , PY n||Xn) =
n

∑

i=1

Ij(Xi; Yi|X
i−1, Y i−1), (A.3)

where Ij(Xi; Yi|X i−1, Y i−1) is the mutual information induced by P j

Xn||Y n−1 for j ∈

{1, 2}.

Let S ∼ B(λ). Denote

P 1
Xn||Y n−1(xn||yn−1) =

n
∏

i=1

PXi|Xi−1,Y i−1,S(xi|x
i−1, yi−1, 0)

P 2
Xn||Y n−1(xn||yn−1) =

n
∏

i=1

PXi|Xi−1,Y i−1,S(xi|x
i−1, yi−1, 1). (A.4)

It follows that for all i

I1(Xi; Yi|X
i−1, Y i−1) = I(Xi; Yi|X

i−1, Y i−1, S = 0)

I2(Xi; Yi|X
i−1, Y i−1) = I(Xi; Yi|X

i−1, Y i−1, S = 1). (A.5)
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The RHS of (A.2) emerges from the following derivation:
n

∑

i=1

I(S,Xi; Yi|X
i−1, Y i−1) ≥

n
∑

i=1

I(Xi; Yi|X
i−1, Y i−1, S)

=
n

∑

i=1

P (S = 0)I(Xi; Yi|X
i−1, Y i−1, S = 0)

+

n
∑

i=1

P (S = 1)I(Xi; Yi|X
i−1, Y i−1, S = 1)

= λ
n

∑

i=1

I1(Xi; Yi|X
i−1, Y i−1)

+ λ̄

n
∑

i=1

I2(Xi; Yi|X
i−1, Y i−1)

= λf(P 1
Xn||Y n−1 , PY n||Xn)

+ λ̄f(P 2
Xn||Y n−1 , PY n||Xn). (A.6)

As for the LHS, notice that
n

∑

i=1

I(S,Xi; Yi|X
i−1, Y i−1) =

n
∑

i=1

I(Xi; Yi|X
i−1, Y i−1) +

n
∑

i=1

I(S; Yi|X
i, Y i−1)

(a)
=

n
∑

i=1

I(Xi; Yi|X
i−1, Y i−1), (A.7)

where (a) follows from the fact that PY n||Xn is constant and thus the Markov property

Yi−(X i, Y i−1)−S holds for all i. From (A.6) and (A.7), it follows that for any λ ∈ [0, 1]
n

∑

i=1

I(Xi; Yi|X
i−1, Y i−1) ≥ λf(P 1

Xn||Y n−1 , PY n||Xn)

+ λ̄f(P 2
Xn||Y n−1 , PY n||Xn). (A.8)

In order to complete the proof of (A.2), it is necessary to show that the RHS of (A.7)

is the LHS of (A.2), i.e., it is needed to show that

PXn||Y n−1 = λP 1
Xn||Y n−1 + λ̄P 2

Xn||Y n−1 . (A.9)

Lemma 2 For every pair of r.v. vectors {Xn, Y n} and r.v. S that satisfy the Markov

property Yi − (X i, Y i−1)− S,

PXn||Y n−1(xn||yn−1) =
∑

s

PS,Xn||Y n−1(s, xn||yn−1), (A.10)

where PS,Xn||Y n−1 = PZn+1||Y n−1 for Zn+1 = {S,Xn}.

Proof:

PXn||Y n−1(xn||yn−1) =
PXn,Y n(xn, yn)

PY n||Xn(yn||xn)
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=

∑

s PS,Xn,Y n(s, xn, yn)

PY n||Xn(yn||xn)

(a)
=

∑

s PS,Xn||Y n−1(s, xn||yn−1)PY n||Xn(yn||xn)

PY n||Xn(yn||xn)
, (A.11)

where (a) follows from the definition of PS,Xn||Y n−1 , the probability chain rule and the

Markov property.

Lemma 3 For every pair of r.v. vectors {Xn, Y n} and r.v. S,

PS,Xn,Y n−1(s, xn||yn−1) = PS(s)PXn||S,Y n−1(xn||s, yn−1), (A.12)

where PXn||S,Y n−1 = PXn||Zn for Zn = {S, Y n−1}.

Proof: The proof follows directly from the definitions of PS,Xn||Y n−1 and PXn||S,Y n−1 .

Equation (A.9) emerges from the previous lemmas as follows:

PXn||Y n−1(xn||yn−1) =
∑

s

PS(s)PXn||S,Y n−1(xn||s, yn−1)

= λ

n
∏

i=1

PXi|Xi−1,Y i−1,S(xi|x
i−1, yi−1, 0)

+ λ̄
n
∏

i=1

PXi|Xi−1,Y i−1,S(xi|x
i−1, yi−1, 1)

= λP 1
Xn||Y n−1(xn||yn−1) + λ̄P 2

Xn||Y n−1(xn||yn−1).(A.13)

References

[1] Maxwell J C 1871 Theory of Heat (Appleton, London)

[2] Brillouin L 1951 J. Appl. Phys. 22 334–337

[3] Landauer R 1961 IBM J. Res. Dev. 5 183–191

[4] Bennett C H 1987 Scientific American 257 108–116

[5] Mandal D and Jarzynski C 2012 Proc. Natl. Acad. Sci. USA 109 11641–11645

[6] Mandal D, Quan H and Jarzynski C 2013 Phys. Rev. Lett. 111 030602

[7] Bérut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R and Lutz E 2012 Nature 483

187–189

[8] Sagawa T and Ueda M 2008 Phys. Rev. Lett. 100 080403

[9] Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 090602

[10] Toyabe S, Sagawa T, Ueda M, Muneyuki E and Sano M 2010 Nature Physics 6 988–992

[11] Koski J, Kutvonen A, Khaymovich I, Ala-Nissila T and Pekola J 2015 Physical review letters 115

260602

[12] Kelly Jr J L 1956 Bell System Technical Journal 35 917–926

[13] Hirono Y and Hidaka Y 2015 Journal of Statistical Physics 161 721–742

[14] Sagawa T and Ueda M 2012 Phys. Rev. E 85 021104

[15] Cover T M and Thomas J A 1991 Elements of Information Theory (John Wiley & Sons)

[16] Szilard L 1929 Zeitschrift für Physik 53 840–856

[17] Abreu D and Seifert U 2011 EPL 94 10001

[18] Horowitz J M and Parrondo J M 2011 New J. Phys. 13 123019

[19] Esposito M and Van den Broeck C 2011 EPL 95 40004

[20] Erkip E and Cover T M 1998 Information Theory, IEEE Transactions on 44 1026–1040



Analogy between gambling and measurement-based work extraction 23

[21] Cover T M and Ordentlich E 1996 IEEE Trans. Inf. Theory 42 348–363

[22] Permuter H H, Kim Y H and Weissman T 2011 IEEE Trans. Inf. Theory 57 3248–3259

[23] Massey J 1990 Causality, feedback and directed information Proc. Int. Symp. Inf. Theory Applic.

(ISITA-90) pp 303–305

[24] Kramer G 1998 Directed information for channels with feedback Ph.D. thesis University of

Manitoba, Canada

[25] Kramer G 2003 IEEE Trans. Inf. Theory 49 4–21

[26] Permuter H H, Weissman T and Goldsmith A J 2009 IEEE Trans. Inf. Theory 55 644–662

[27] Naiss I and Permuter H H 2013 IEEE Trans. Inf. Theory 59 760–781

[28] Kafri D and Deffner S 2012 Physical Review A 86 044302


	1 Introduction
	2 The Horse Race Gambling
	3 The Szilard Engine
	4 Analogy
	5 A Particle in an External Potential Field and Continuous-Valued Gambling
	5.1 A Particle in an External Potential Field
	5.2 Continuous-Valued Gambling

	6 Consequences of the Analogy
	6.1 Universal Work Extraction
	6.2 Imperfect Work Extraction
	6.3 Systems With Memory

	7 Other Speculated Analogies
	8 Conclusions

