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Abstract—The g-composite key predistribution scheme [[i] In this paper, we investigate topological properties sxlat

is used prevalently for secure communications in large-sé& to nodE degree in WSNs employing thg-composite key
wireless sensor networks (WSNs). Prior work [[2][4] exploes ,qqistribution scheme with generatinder theon/off channel
topological properties of WSNs employing the g-composite . . . S

scheme forg = 1 with unreliable communication links modeled model as the- physical ,I'nk constraint comprising indepede
as independent on/off channels. In this paper, we investign Channels which are eithean or off. The degree of a node
topological properties related to the node degree in WSNs v is the number of nodes having secure links withand
operating under the g-composite scheme and the on/off channel the minimum (node) degree of a network is the least among
model. Our results apply to generalg and are stronger than  he gegrees of all nodes. Specifically, we demonstrate hieat t
those reported for the node degree in prior work even for the . . . . .
case ofg being 1. Specifically, we show that the number of nodes numper ,Of nodgs with cert.am degree is asymptotlcally e_a}uw
with certain degree is asymptotically equivalent in distrbution lent in distribution to a Poisson random variable, estatilie

to a Poisson random variable, present the asymptotic probality —asymptotic probability distribution for the minimum degref
distribution for the minimum degree of the network, and esteblish  the network, and derive the asymptotically exact probibili
the asymptotically exact probability for the property that the for the property that the minimum degree is no less than an

minimum degree is at least an arbitrary value. Numerical . o .
experiments confirm the validity of our analytical findings. arbitrary value. Ygan [2] and wel[B],[[4] consider the WSNs

Index Terms—Random intersection graph, random key graph, With ¢ = 1 and show results for several topological properties,
s-intersection graph, connectivity, node degree, key prestribu-  yet results about node degree in these prior work are weaker

tion, wireless sensor network. than our analytical findings even when the genegri set as
I. INTRODUCTION 1.

The basic key predistribution scheme of Eschenauer andOur approach to the analysis is to explore the induced
Gligor [5] has been recognized as a typical solution to seandom graph models of the WSNs. As will be clear in Section
cure communication in wireless sensor networks (WSNs) &fffithe graph modeling a WSN under thhecomposite scheme
studied extensively in the literature over the last decdde [ and the on/off channel model is an intersection of two distin
[11]. The idea is that cryptographic keys are assigned befaypes of random graphs. It is the intertwinird [4]. [34]. [36
deployment to ensure secure sensor-to-sensor commumisati[39] of these two graphs that makes our analysis challenging

The g-composite key predistribution scheme proposed by We organize the rest of the paper as follows. Sedfidn II
Chanet al.[1] as an extension of the basic Eschenauer-Gliggescribes the system model in detail. Afterwards, we ptesen
schemel[5] (the-composite scheme in the caseqof- 1) has  and discuss the results in Section I1l. Subsequently, weigkeo
received much interest][7]. [L8]-[23] since its introdoeti  numerical experiments in SectibAllV to confirm our analytica

The g-composite scheme works as follows. For a WSN witkesults, whereas Sectidnl V is devoted to relevant results in

n sensors, prior to deployment, each sensor is independeriily literature. Next, we conclude the paper and identifyriit
assignedk’,, different keys which are selectashiformly at research directions in Sectién]VI.

randomfrom a pool of P, keys. Then two sensors establish

a securelink in between after deploymenf and only if Il. SYSTEM MODEL

they share at least key(s) and the physical link constraint

between them is satisfied?, and K,, are both functions of = We elaborate the graph modeling of a WSN witlsensors,
n for generality, with the natural conditioh < K,, < P,. which employs theg-composite key predistribution scheme
Examples of physical link constraints include the religpibf and works under the on/off channel model. We use a node
the transmission channel and the distance between tworsenset) = {v1,vs,...,v,} to represent the sensors. For each
close enough for communication. Thecomposite scheme nodew; € V, the set of itsK,, different keys is denoted by
with ¢ > 2 outperforms the basic Eschenauer-Gligor schen$, which is uniformly distributed among alk,,-size subsets
with ¢ = 1 in terms of the strength against small-scale network a key pool of P,, keys.

capture attacks while trading off increased vulnerabititghe

face of large-scale attacks [1]. LA sensor is also referred to as a node.
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The ¢-composite key predistribution scheme is modeled by I1l. THE RESULTS AND DISCUSSION

a uniform g-intersection graph denoted By, (n, Ko, Pn), We present and discuss our results in this section. Through-

which is defined on the node sgtsuch that any two distinct 5+ the paperg is an arbitrary positive integer and does

nodesv; andv; sharing at leasy key(s) (an event denotedyo; scale withn; ¢ is the base of the natural logarithm

by I';;) have an edge in between. Clearly,; equals event ¢netion, In. All limits are understood with, — co. We use

[1S:18;] > q], where |[A] with A as a set means theyhe standard asymptotic notatien-),w(-), O(-), O(:),~. In

cardinality of A. particular, for two sequence, and g, f ~ g, Signifies
Under the on/off channel model, each node-to-node chanpgl . (f,/¢,) = 1; namely, f,, and g,, are asymptotically

is independentlpn with probability p,, andoff with probabil- - equivalent.

ity (1 — p,), wherep,, is a function ofn with 0 < p,, < 1.

Denoting byC;; the event that the channel between distiné- Results of Grapliz,

nodesv; and v; is on, we haveP [Cj;] = p,, whereP[€]  We detail the results of grapl, in Theorem[l and

denotes the probability that eveéithappens, throughout theCorollary [ below. The detailed proofs of Theorémh 1 and

paper. The on/off channel model is represented by add€=rd Corollary(d can be found in the full versian [6] and are ontte

Rényi graphG(n, p,) [62] defined on the node séf such here owing to the space limitation. The basic idea is to use

thatv; andv; have an edge in between if evefif; occurs.  the method of moments [44].

Finally, we denote byG,(n, K,, P,,p,) the underlying 2
graph of then-node WSN OSérating underilqecomposite key Theorem 1. Fo_r graph Gq. under K, = w(1) and 1;:2 -
predistribution scheme and the on/off channel model. V\.(ﬂ”ofto(l)' the following properties (a) and (b) hold.
write G, rather thanG,(n, K,,, P,,, p,,) for notation brevity. (@) If
GraphG, is defined on the node s&t such that there exists _o (ha_n) @
an edge between nodesandv; if and only if eventd’;; and Peq = ’

Ci; happen at the same time. We set evBit:= T N Cij- ypon gor ) — 0,1,2,..., it follows that ¢, denoting the

ThenG, can be seen as the intersectiorthf(n, K,,, P,) and

Gln,py), €., number of nodes with degrég is asymptotically equivalent in

distribution to a Poisson random variable with meap;, :=
n(h!) = (npe ) e~ "P=q. In other words, with Po\,, ;) denot-

Gq = Go(n, K, Pn) N G(1,p). ing a Poisson random variable with meay ;, it holds that

We definep; , as the probability that two different nodes Plpn = i] ~P[PO(A,,n) =], fori=0,1,2,....
share at least key(s) andp., as the probability that two

distinct nodes have a secure link@,. Clearly, p, , andp, 4 (b) If for some integert and some sequence, satisfying

are the edge probabilities in graplig (n, Ky, P,.) and G, —1 < liminf —2"_ < lim sup —2 ’
respectivelyp, , andp. , both depend oi,,, P,, andg, while n—oo Inlnn = nsee Inlnn
De,q also depends omp,. By definition, p, , is determined it holds that
through Inn+ (¢ —1)lnlnn + ay,
DPe,q = > %)
Ky n
Ps.q = P[] = ZIP’HSQ N S| =ul, (1) then defining) as the minimum degree @f,, we obtain:
u=q for ¢ <0, it follows that asn — oo,
where it is shown[[6],[]7] that 0 = 0 with a probability approaching td,
0 > 0 with a probability going to0;

P[lS; N S| = .
i (Kn;ipnii]n) and for/ > 0, properties (b1)—(b4) below hold.
_ {ﬁ for max{0,2K, — P,} <u< K, (bl) (6 #¢)N(§+#¢—1) with a probability going to 0 as
" n — o0;

0 otherwise
’ @) (b2) if lim «a, = a* € (—o0,0), then asn — oo,
n— oo

From E;; = I';; N C;; and the independence 6f;; andl';;, 0 = ¢ with a probability converging toz’(ﬁkilﬂ,
we obtain 0 = ¢ — 1 with a probability tending to(l—e_f:lﬂ);
Peq = P[Ei;] = P[Cy5] - P[T'ij] = pn - Ps,q- () (b3) if lim a, = oo, then asn — oo,
n—oo
2Many papers[[7],[[I8]5[23] in the literature usenstead ofg so we have {5 = ¢ with a probability approaching td, and
uniform s-intersection graplt:s (n, K., Py). This work useg; following the ; i ; .
g-composite key predistribution schenfé [1]. 07 ¢ with a prObablllty going to0;
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(b4) if lim «, = —oo, then asn — oo, 025
0 = ¢ — 1 with a probability tending tal, ;Q‘Jé 0.2 -°—Z = ; ((ZS;imllﬂaﬁit;n) 1
5} -m=h = sis
0 # £ — 1 with a probability converging t@. § Eo s o h=3 (S;fuﬁ?on)
RN -A-h =3 (Analysis
Remark 1. Property (b) of Theoref 1 presents the asymptotic < < N (Analysie)
probability distribution for the minimum degree of the netiu @ §, 01 § e»% ’6»,& i
We present a corollary of Theordmh 1 below. The corollary é £ & :1
is established with the help of a graph coupling argunierjt [12 £ @095 G ES I
. . =] [
(see the full version |6] for the detailed proof). g N A‘_Q_‘f . : * 6~$ ans
_ J 0 5 10 15 20 25
CorO”a.ry 1. For graph G, und.er Kn = w(l) and Pn 7" Fig. 1. A plot of the probability distriflition for the numbef nodes with
o(1), with some sequencg, defined by degreeh for h = 2,3 in graphG,(n, K, P,p) with n = 2,000, ¢ = 2,

Clnnt (k- Dinlan+ B, P =10,000, K = 36 andp = 0.7.

Pe,q = n (6)

for some positive integet, and withd denoting the minimum
degree ofG,, it holds that

1

0.8 e

Nl . 0.6 0!
e” &=t if lim 3, = 8* € (—00,0), : KA
n—r00 <
lim P[0 > k] =<1, if lim 8, = oo, 04F ‘ -o- k = 4 (Simulation)
n—00 oo -A-k =4 (Analysis)
0, if nh_)ngo P = —o0. 02t -« =k = 8 (Simulation)
—m—k = 8 (Analysis)

P[G4 has a minimum degree at least k|

Remark 2. Corollary [ presents the asymptotically exact

probability and a zero—one law [10] (a kind of phase trarmiti ') i 31 3 3 31 35 36
[4Q)) for the event that grapltz, has a minimum node degree K

no less thark.

] ] Fig. 2. A plot of the probability that grapfy,(n, K, P,p) has a minimum
Remark 3. Settingp,, to 1 in Theorenill and Corollary]1, we node degree at leastas a function ofi for k = 4 andk = 8 with ¢ = 2,
obtain corresponding results [24] for topological propies ™ = 2,000, P = 10,000, andp =0.8.
in uniform g-intersection graph,(n, K,,, P,,). )
! e ) Lemma 1. If K,, = w(1) and I;"z = o(1), then it follow that
Remark 4. In Theorenill and Corollaryl1, giveR,, = w(1), N L(K_n?)q "
we haveg < K, for all n sufficiently large sincg does not Ps.a ™ qi\"p,)
scale withn. From £a- — o(1), it is clear thatK,, < P, for

Pn
all n sufficiently large.

IV. NUMERICAL EXPERIMENTS

To confirm the results in Theoref 1, we now provide nu-
merical experiments in the non-asymptotic regime. As wé wil
We check the practicality of the conditions in TheorEn dee from the simulation results, the experimental obsengt

and Corollanfl:K,, = w(1), &= = o(1), and [@)-I(B). First, are in agreement with our theoretical findings.

the conditionk,, = w(l) follows in wireless sensor network In all experimentsy we fix the number of nodesiat 2,000

applications[[?2] sincé<, i; often logarithmic[[2] withn, the _and the key pool size aP = 10,000. In Figure[d, we

number of sensor nodes in the network. Second, the conditigt the probability distribution for the number of nodesttwi

Ba— = o(1) also holds in practice since the key pool si2¢ degreeh in graph G,(n, K, P,p) for h = 2,3 from both

is expected to be several orders of magnitude larger #ian the simulation and the analysis, with= 2, K = 36 and

[1], [5]. Finally, @)-(8) present the range of , that is of j, — 0.7. On the one hand, for the simulation, we generate

interest. 2,000 independent samples & ,(n, K, P, p) and record the

C. Analogs of Theorefd 1 and Corolldfy 1 cqunt (out of a possible, 000) that the_number of nodgs

with degreeh for eachh equals a particular non-negative

numberM (M is the horizontal axis in Figurgl 1). Then the
Analogou; resulj[s to those of Theoréh 1 and COrOIIal@'mpirical probabilities are obtained by dividing the caunt

EE' Cf(mz bqe given withp. , at all places substituted by, - by 2,000. On the other hand, we approximate the analytical

o (Fp=)", due tope g = pr s, from @) and the replacementgyryes by the asymptotic results as explained below. Ptpper

of ps 4 by i!(ff)q given Lemmdl below. Howeveextra (a) of Theoren Il notes that with the parameter conditions

conditions %ave" to be added for some results. The detailsthsrein, the number of nodes@, (n, K., P,,, p,) with degree

well as the proof of Lemmel 1 are provided in the full version is asymptotically equivalent in distribution to a Poisson

[el. random variable with mean,, ,, = n(h!) = (npe 4)" e "Peq.

B. Practicality of Conditions
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We derive )\, , by computing the corresponding probabilitconnectivity and perfect matching. Still it/ (n, K,,, P,),

of pe,q IN G4(n, K, P,p) through Bloznelis et al. [20] investigate assortativity and clustering,
K while for asymptotic node degree distribution, Blozneli§][
Peqg =D Z KK) (P o K)/<P)] (7) analyzes clustering coefficient and the degree distributioa
' u—g L\ U K—u K typical node. We[[24] compute the probability distributifmm

the minimum node degree. Recently, Bloznelis and Rybarczyk

[22] and we [28] have derived the asymptotically exact proba

mlgy of k-connectivity. Several variants or generalizations of
raphG,(n, K,,, P,) are also considered in the literaturé [7],

given [A£B) and” > 2K. Then for eachh, we plot a Poisson
distribution with mean),, , as the curve corresponding to
the analysis. We observe that the curves generated from

simulation and those obtained by the analysis are closecto e

other, confirming the result on asymptotic Poisson distigou —[20].
in property (a) of Theorerl 1. When ¢ = 1, for graphG:(n, K,,, P,) (also referred to

In Figure [2, we depict the probability that graptS @ random key graphl[8]. [10]. [11] or a uniform random
Gy(n, K, P,p) has a minimum node degree at leasfrom intersection graph [9][[13]) and some of its variants, a heam
both the simulation and the analysis, for= 4 and k = 8 of properties have been extensively studied in the liteeatu
with ¢ = 2 andp = 0.8 and K varying from 29 to 36 including component evolutior [43], connegtiv?tm [_9]:M10
(we still setn = 2,000 and P = 10,000). Similar to L3, k-connectivity [12], [37], node degree distributidn [14]-
the experiments for Figuf@ 1 above, we also genezapeo [17] and independent sefs [41], [42].
independent samples of grafih, (n, K, P,p) and record the N graphG., Yagan [2] presents zero—one laws for connec-
count that the minimum degree of grafy(n, K, P, p) is no tivity and for the property that the minimum degree is atteas
less thank; and the empirical probability of,(n, K, P,p) 1- We extend Ygan's results to generai for G, in [3], [4].
having a minimum degree at leastis derived by averaging Krishnanet al. [8] and Krzywdzhski and Rybarczyk [38]
over the2, 000 experiments. The analytical curves in Figlite gléscribe results for the probability of connectivity asyaip
are also approximated by the asymptotical results as fsllovgally converging to 1in WSNs employing thecomposite key
First, we compute the corresponding probability f, in pr(_ed|str|but|on scher_ne \_N|tl]1: 1 (i.e., the basic Eschenauer—
G,4(n, K, P,p) through [T). Then based ofll (6), we determineligor key predistribution scheme), not under the on/off
3 throughp,, = mnt(h-Dinlnnts Then with an approx- channel model but under the well-known disk modell [45]-
imation to the asymptotigal results in Corolldfy 1, we p|O@],_Where nodes are distributed over a bound_ed_ region of_a
the analytical curves by considering that the minimum degr%_”‘;“dea? plane, and t"t‘{o ngdeslh?ve to bl? within a cirtaln
of G,(n, K, P,p) is at leastk with probability e~ &7 . The istance for communication. Simulation results in our w3

. . . indicate that for WSNs under the key predistribution scheme
observation that the curves generated from the simulatioh g, .. ¢ = 1, when the on-off channel model is replaced by the

the analytical curves are close to each other is in accoajaraﬁ,sk model, the performances férconnectivity and for the

with Corollary[l. property that the minimum degree is at leAsio not change

V. RELATED WORK significantly.
Erdés and Rényi[[52] propose the random graph model
G(n,p,) defined on a node set with size such that an V1. CONCLUSION AND FUTURE DIRECTIONS

edge between any two nodes exists with probabjity in- In this paper, we analyze several topological properties

dependentlpf all other edges. For gragifi(n, py), ErdSs and related to node degree in a wireless sensor network opgratin

Rényi [52] derive the asymptotically exact probabilities f under theg-composite key predistribution scheme with on/off

connectlw_ty th_e property that the minimum degree is attIeaC annels. The network is modeled by the superposition of
1, by proving first that the number of isolated nodes convergés

to a Poisson distribution as — oo. Later, they extend the an Erc_ﬁs-Rényi graph on a uniforrrq_—intersection grz_slph.

results to generat in [53], obtaining the asymptotic F,OissonNumerlcal simulation is shown to be in agreement with our
S ' . : tlaeoretical findings.

distribution for the number of nodes with certain degree an Two fut h directi ol To beai

the asymptotically exact probabilities fé~connectivity and . Wo Tuture research directions are as 1oliows. 10 begin

the event that the minimum degree is at lehstwhere k- with, we can consider physical link constraints different

connectivity is defined as the property that the network ﬁamaw'th the o-n/off ch_annel model, where one qand_ldate IS t.he
connected in spite of the removal of afly— 1) nodeB. Since aforementioned disk model. Another extension is to derive

its introduction, graplG(n, p,) has been widely investigatedthe asymptotl_cally_exact probability and thus a zero-ome la
[25]-[35]. for k-connectivity in graphG,. Note that a zero—law fok-
connectivity follows immediately from Corollarfy]l 1 sinde

For graphG K,,P,), Blozneliset al. demonstrate LT .
graphGq(n, ) [ onnectivity implies the property of minimum node degree

that a connected component with at at least a constantdract}™ . least:. Th | d th icall
of n emerges asymptotically when the edge probalblity ex- eing at least. The one—law and the asymptotically exact

ceedsl /n. Bloznelis and Luczak[21] have recentl considereﬁmbapi”ty result wil fc_)llow if we shovy t_hat under certain
/n ki21] y conditions, the probability tha, has a minimum node degree

3k-connectivity throughout this paper meahsrertex-connectivity[[51].  no less thark but is notk-connected convergesfasn — co.
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