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Multiple Object Identification Coding
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Abstract

In the case of ordinary identification coding, a code is dabito identify a single object amony objects.
But, in this paper, we consider an identification coding pobto identify K objects at once amonyy objects in
the both cases that objects are ranked or not ranked. By combining Kurosawaidasscheme with Moulin-
Koetter scheme, an efficient identification coding schemprigosed, which can attain high coding rate and
error exponents compared with the case that an ordinantifidation code is used< times. Furthermore, the
achievable triplet of rate and error exponents of type | ajue tll decoding error probabilities are derived for

the proposed coding scheme.

Index Terms

Identification coding, channel coding, multiple objectassive feedback, common randomness.

I. INTRODUCTION

Consider a case such that we must inform many receivers abairiner, who is selected among them, via
a stationary discrete memoryless channel. If each reciiviaterested only in whether he/she is the winner or
not, but is not interested in who wins when he/she is not thanei, an identification code (ID code) can be
used to transmit the information efficiently. It is known thiae decoding error probability of each receiver can
become arbitrarily small iR < C, whereC' is the channel capacity anil is the coding rate of the ID code
defined byR = (loglog N)/n for the number of receiverd and the code length [1][2].

Verdl and Wei([3] showed that an ID code for a noisy channellma constructed by concatenating an 1D
code for the noiseless channel and a transmission code daraoy error correcting code) for the noisy channel.
They also gave an ID code for the noiseless channel by usiogstant weight matrix based on Reed-Solomon
codes. Furthermore, Kurosawa and Yoshida [4] showed thabra efficient ID code for the noiseless channel
can be constructed by usirgalmost strongly universal classes of hash functions, andliM and Koetter[[5]
proposed another construction scheme of ID codes basedemh&e#omon codes, which is efficient if common
randomness can be used among the sender and receivers.

In this paper, we consider the case that therefareinners amongV receivers. In this case, we can send

the information of winners by using an ordinary ID cofietimes. But, the coding rate is decreased®pK .
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If we construct an ordinary ID code faV = () and assign X _}) indices to each receiver, we can send the

information with the same coding rate as the case of = 1. However, the type Il decoding error probability

N-1
K-1

becomes very large because each receiver must decode #ieettword for aII( ) indices. This means
that the type Il decoding error probability becon(%j) times as large as the case &f= 1.

We note that Ahlswedé [6][7] studielf -Identification Let A" andK; be the set and a subset of all receivers,
respectively, wheré\| = N and|K;| = K, and| - | represents the cardinality of a set. Then, it is assumed
in the K-identification problem that each receivieknows the sefC;, a codeword is encoded from only one
i € N, and each receiver wants to know whethet € K; or i ¢ K;. In [8], the K-ldentification is further
generalized tdGeneralized Identificatiarin which each receiver not only finds out whether € K; ori ¢ K;,
but also identifies if i € K;. But, it is still assumed in the Generalized Identificatibitt each receiver
knows K; and a codeword is encoded from only one N. In contrast, we assume in our coding problem
that any receiver doesn’t knoi(C A), which is the set of winners selected at the sender side, everd
is encoded fromiC, and each receivarwants to know whethei € K or i ¢ K. So, since our coding problem
is quite different fromK -Identification and Generalized Identification, we canrse their coding schemes for
our coding problem.

We call our identification coding problem Multiple Objecteltification (MOID) to distinguish fromk -
Identification and Generalized Identification.

In this paper, we show that an efficient explicit MOID code dsnconstructed by combining Kurosawa-
Yoshida coding scheme&l[4] and Moulin-Koetter coding sch¢bheWe derive the achievable region of coding
rate and exponents of type | and type Il decoding error priiiab. In Sections 2 and 3, we treat the cases
that K winners are not ranked and are ranked, respectively.

For simplicity we first assume thdk is fixed. But the case of variabl& is considered in Sectiopn II}F.
Furthermore, in Sectioris IlID add TIFE, we treat the cased the noiseless feedback channel and common
randomness can be used between the sender and receiversdiAary error correcting code is called a trans-
mission code to distinguish from an ID code in this paper, gnedcombined MOID coding with transmission

coding is treated in Sectidn_I[}C.

II. MOID CODE WITHOUT RANKING
A. Definition of MOID codes

Let A = {1,2,--- , N} be the set of objects and I&t be a subset of\/, which is selected at the sender
side. For simplicity,objectsare calledreceiversin the following.
The sender sends binary informatien € &/ = {T,F} to each receivei such thatu; = T if i € K and

u; = Fif i & KC. In other words/C can be represented as follows.
K={i:u,=T,ie N}, (1)

For simplicity, we assume thdt = |K| > 1 is fixed. LetZ = {K} be the set of all possibl€. Then we note
that | Z| is given by(g), and the ordinary ID coding corresponds to the cas& of 1.
The channel is a discrete memoryless channel (DMCith input alphabett’” and output alphabéey. For

simplicity, we assume that the channel input is binary,|#.= 2. But, the results can easily be extended to
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the case of X'| > 2. We also assume that the encogenf MOID code can use a random numhemhich

takes a value oV = {1,2,---, |V|}. Then, the encodep to identify K receivers can be defined as follows.
P ZxXV—= X", (2)

wheren is the code length, and a codewatt is generated by™ = ¢ (/C, v) from MOID informationk € Z
and random numbaer € V. This means that the encodgris a stochastic encoder for a givé&h The decoder

1; of receiveri, which outputs T or F, is defined as follows.
v Y = U. 3

An MOID code (p, 91,92, - ,9¥n) is called aK-MOID code if K = |K|.
The coding rateRf,?) of a K-MOID code is defined

1
Rg?) = — loglog N. 4)
n

Next we consider the decoding error probabilities dfaMOID code. Type | decoding error probability and

its exponent are defined as follows.

A" (i1K) = Pr{yi(p(K, V) = F} fori €K, (5)
(n) _ (n)(;
A7 = maxmax A;™ (1K), (6)
n 1 n
E} )E—ﬁlog)\g), (7)

Where>\§") (7| ) represents the decoding error probability of receiver IC, A§"> is the worst of>\§") (1K),
and E{™ is the exponent oh{™.

Similarly, type Il decoding error probability is defined by

A (]K) = Pr{vi(p(K,V)) =T} fori ¢ K, (8)
)\;n) = max max Aé") (i), 9)
B = % log AY, (10)

where ™ (i|K) is the decoding error probability of receiveg K, A" is the worst ofA{™ (i|K), and E{™
is the exponent of{",
A triplet (R, E1, E5) is said to be achievable by a coding scheme if the followirgjiralities can be satisfied

by the coding scheme.

liminf R{Y > R (12)
n— o0
liminf B > By (12)
n—oo
liminf B > B, (13)
n—oo

Remark 1:When K = 1, the K-MOID code coincides with the ordinary ID code, and codinge rﬁﬁ?) and

error exponentsE}") and Eé") also coincide with the ones of the ordinary ID code.

1The base of logarithm is always 2 in this paper.
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For K = 1, the following triplet is achievable by Verdl-Wei codingheme [[3] and Kurosawa-Yoshida

coding scheme_[4].

(RJﬁJﬁ)((1%)rjﬂﬂgmn{%Jﬂﬂ}),

0O<r<C, (=345, (14)

where E(r) is the reliability function (or the error exponent) of DM@ in transmission coding(' is the
capacity ofil’ given byC = maxp, I(X;Y), andr and? are parameters that we can select freely. Furthermore,

the following triplet is also achievable by Verdi-Wei cogischeme[[3] and Moulin-Koetter coding scheme

(5]
(Ra Ex, EQ) :(pT, E(T)v mln{(1/2 - p)T, E(T)})a

0<r<C, 0<p<1/2, (15)

wherer andp are parameters.
We note from[(T4) that we can attaitim )\5”) =0 and lim Aé") =0 for any0 < R < C by settingr
n—oo n—oo

sufficiently close toC' and! sufficiently large.

B. Construction of MOID codes

We construct an MOID code for a noisy channel by cocatinaingMOID code for the noiseless channel
and a transmission code for the noisy channel in the same w/{§].a

We first review the known coding schemes for the noiselesardian the case ol = 1, i.e. the ordinary
ID coding. In Verda-Wei schemeé |[3] and Kurosawa-Yoshidbesoe [4], a codeword of ID informatiohis
given by a random number, which is distributed uniformly over a subsgt C V. The subseV; depends on
and is determined based on Reed-Solomon codel in [3] or baseehlimost strongly universal classes of hash
functions in [4]. These coding schemes can be extended tM®k coding by replacing a single with a K
dimensional vectofvy, va, - - - , vk ),v; € Vi, C Vfor K = {i1,is,--- ,ix}. But, since the code length becomes
K times long, the coding rate decreased td&. On the other hand, the codeword of ID informatiooconsists
of (v, ¢, (7)) in Moulin-Koetter scheme_[5], where, () is constructed based on Reed-Solomon code. Their
scheme can be extended to the MOID coding by replacing thevemd with (v, ¢, (i1), ¢y (i2), - -+ , ¢ (iK)).
But, sincev and ¢, (i) must satisfy||v|| = ||, ()| in their scheme, wherga|| represents the bit length af
the code length becomé& +1)/2 times longer and the coding rate decrease®/t{d{ + 1). Hence, the above
extensions of known schemes are inefficient for the MOID odi

Instead of(v, ¢, (7)), we use a codeworg@, h, (7)), wherec, (i) is replaced with a hash functidn, () satisfy-
ing that||v|| > ||, (2)]]. Inthis case, even if we extend the codewor¢ita, (i) to (v, hy(i1), hy(i2), -+, hy(ix))
for the MODI coding, the coding rate does not decrease sugmifiy.

Now we describe our coding scheme for the MOID coding. We heesames-almost strongly universal

classes of hash functiold = {h;} as Kurosawa-Yoshida scheme [4], which satisfies the foligwilations
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for h; : A — B.

H
H{h € H :h(a) =B} = u
B
for Yo € A, V5 € B -
H
[{h € H :hu(on) = b1, lu(ae) = B2} < 6%
for Vay,az € A, a1 # a2,Yp31,82 € B -

In order to construct d&-MOID code, we setd andH as. A =N (JA| = N) and [H| = |V|, respectively.
Let f and g be the encoder and decoder, respectively, of a transmisside for noisy channél’ such that
f:VxpE = A"nandg: Y* — V x pX. Then, we construck’ -MOID code (¢, 11,2, - - - ,¥n) as follows.

Coding Scheme 1:
Encoderyp :
For K = {i1,ia, -~ ,ix} C N,
(K, v) = fv, ho(in), ho(iz), -+ ho(ix)). (18)
Decodery;:

T, if hy(i) = B; holds
Yi(y") = for somej, 1 <j < K

F, otherwise
for (,05/817525"' 7ﬂK):g(yn>a (19)

wherev is a random number distributed uniformly over

This K-MOID code satisfies the following theorem.
Theorem 1:The following triplet is achievable by Coding Scheme 1.
(R,E1, E2) =

<<1 - I}g—ii) r, E(r), min {KLM,E(T)D ,

O<r<C, £=3,4,5,---. (20)

Proof First we construct &(-MOID code with code lengthy, for the binary noiseless channel.
We use the above-strongly universal classes of hash functions. Setting= ¢* andd = ¢* —¢* +1 in [4]

Corollary 3.1], we have foy = 2™ that

|A| = N = ¢, (21)
B=GF(q) (IB]=0q), (22)
V| = H| = "2, (23)
T e f).

wheret < k — 1 because it must hold that— 0 asm — oo (i.e., ¢ — o0).
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Then, from [[2R),[(2B), and = 2™, the code lengtg = ||(v, hy (31), By (32), - - - , by (ix))|| is given by
ng = log |V| + Klog |B| = (k+ 2+ K)m. (25)
Hence, from[(2l1) and(25), the coding rate of this code sesisfi

I
R%O) = loglog N

i log {k:qt log q}
1o

1
— {tm + log k + logm}
no

t 1
= 1 —(logk+1
I<:+2+K+n0(0g + logm)

t log ng
k+2+K+O( ng ) (26)

Since the optimat that maximizes[(26) foil <t < k —1ist = k — 1, we can attain the following coding

rate.

k—1 log ng
R =——"—10
K K121 K ( no )

K+3 log ng
=l-r— % 27
k+2+K+O< 1o > (27)

Next we evaluate the decoding error probabilities. In thsecaf the noiseless channel, evefy always

outputs T ifi € K. Hence for anylC € Z and anyi € K, A&"O)(WC) = 0. This means thakg’m) = 0 and
Efno) = 0.
For KC = {i1,i2, - ,ix} andi & K, Aé"")(iVC) is bounded as follows.

A i) = Pr{ U (v (i) = hv(ij))}

< Z Pr{hy (i) = hv(i;)}

_ KZBEB [{ho : h'u|(]i/)| = hv(ij) = B}

<eK, (28)

where the first and second inequalities hold from the uniamdaand[(1l7), respectively. Since this bound does

not depend ork andi ¢ K, )\5”) has the same bound.
A1) < e (29)

Next we evaluateEé"), the exponent oﬁé"). From [10), [24),[(25), and:ﬂZ9E§"°) has the following bound
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fort <k-—1.

1
E{™) > —n—o{logK +loge}

1 t
> —— {logK—logq—i-log (k-i—%)}
1o q
1 1 qt
=——— — —<SlogK +1 k
k+2+K7m{Og +°g('%&1>}
1 log k
— — _0 30
k+2+K <n0 ) (30)

Settingl =k +2, £ =3,4,---, andm — oo, i.e. ng — oo, in Z4) and [3D), we note that the following
triplet is achievable for the binary noiseless channel.

K+3 1
— «
K+0 7 K+1t)’

(R, En, Ep) = (1 (31)

wherea > 0 is an arbitrarily large constant.

Next we treat the case of binary DM@/. If we transmit(v, (1), hy (i2), - -+ , hy(ix)) via W by using
the best transmission codg, g) of W with coding rater, 0 < r» < C, then the code length is given by
n = ngo/r and the decoding error probability of the transmission cisdepper bounded bg—"#("), where
E(r) andC are the reliability function and the capacity Bf, respectively. Hence, the total error probability

)\5."), j =1,2, is bounded as follows.
)\Sn) < 27noE](vn0) + 27nE(r) < 27nmin{rE;n0),E(r)} (32)
From [31) and[(32), the triplet given bl (20) is achievable.

Q.E.D.

Remark 2:In (20), we haveR = 0 when/ = 3. In this case,Rg?) = (loglog N)/n tends to zero as — 0.
But, 1%?) = (log N)/n does not tend to zero because it holds frém (26) that ferk — 1 =¢—3 =0,

~(n log N
Ry ==
_ kq'loggq
o
B m
3+ K)m/r
r
3+ K (33)

Hence, the case df= 3 is not meaningless.

Remark 3:If we use Verd(-Wei's ID code or Kurosawa-Yoshida's ID coHetimes, the following triplet
can be achieved froni_(114).

(RaEla EQ)

(62)r 5 2}

0<r<C, (=345, (34)
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If we use (v, ¢, (i1), ¢y (i2), -+, ey (ix)) in Moulin-Koetter scheme, we can achieve

(R,E1, E»)
_( 2pr 2E(r) min (1—2p)r 2E(r)
C\K+1"K+1’ K+1 K ’
0<r<C, 0<p<1/2 (35)

We can easily check thdi_(20) is much better tHad (34) bnd (85K > 2.
Remark 4:From Theoreni]1, Coding Scheme 1 can achieveifor 1 that

(RaEla EQ)

O<r<dC, £=3,4,5,--- (36)

This triplet is a little worse thal {14). But Coding Schemeaf attain high performance féf > 2. Furthermore,
it has advantages fdk > 1 if the encoder and decoders can use common randomness edessifeedback
channel as shown in Sections 1l-D and1I-E.

Corollary 1: The K-MOID code constructed by Coding Scheme 1 can achieve

lim R™ = C, (37)
n—oo

lim A™ =0, (38)
n—oo

lim A = 0. (39)
n—oo

Proof For an arbitrarily giver¢ > 0, we selectr and/ that satisfy the following inequalities.

C<1%)<T<C (40)
K+3 ¢
K+l°2 (41)
Then, for sufficiently large:, coding rateRf,?) ~ ( — g—ﬁ) r satisfies
c1-¢<RrRP<c. (42)

From (40), we have’(r) > 0. Obviously 7 > 0. Hence [(3B) and.{39) hold because their exponents are

positive. Since the above holds for agy> 0, (31) is obtained by setting — 0 asn — oc.
Q.E.D.

Remark 5:In order to attain[(37)¢ must be sufficiently large and must be sufficiently close t¢'. This

means tha’; — 0 and F; — 0 even though[(38) and (B9) hold.

C. K-MOID Coding with a Transmission Message

It is shown in [2] that an ID code can send a transmission ngesgaaddition to an ID message at once.

Actually ID codes given by [3]+[5] can realize such codingniBarly, Coding Scheme 1 can send a transmission
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message in addition to &A-MOID message at once by replacing the random numbweith a transmission
message which is distributed uniformly over

In this case, the coding ralz@(T") of the transmission message is given by

o1
R(T)Eglog|V|
no 1
_;On—lg|V|
0
ot s 43)
7T€+K, - b

from (23) and[(2b). Hence, by settingsufficiently close toC and/ sufficiently large, we can achieve

lim RY” =C and lim P =0 (44)
n—oo i

n—oo
in addition to lim R%) = (C and lim AE") =0,7= 1,2 atonce, WhereP}’;) is the decoding error probability
n—oo n—oo

of the transmission message.

D. K-MOID Coding with Common Randomness

If the encoder and decoders can use common randomness,gegd seudo random number generator, we
don't need to send some or all bits of random numbén the same way as Moulin-Koetter scheme.

Assume that we can use). bit common randomness, and define the rate of the common mareks by
R. = ng./ng. Then, from [2b);ng = (£ + K)m and0 < ng. < ¢m for k+2 = ¢ = 3,4,---. Since we don't
need senchy. = R.no bits, the code length can be shortenedito— R.ng. = no(1 — R.) bits. This means
that achievablé R, Ey, E2) can be enlarged tOR/(1 — R.), E1/(1 — R.), E2/(1 — R.)) by using common
randomness with rat&...

Now consider the case of maximuRy, i.e. R. = /(¢ + K). In this case, we can attain from{20) that

(R, Ey, Ey) =
((€—3)r (t+K)E(r) . {L (f—i—K)E(r)})
K K UMK K :
0<r<C, (=3,4,5--. (45)

Hence, R can be enlarged arbitrarily by settirfgsufficiently large. This property comes from the fact that
[P (@/l[0]l = 0 asf — oo.

Note that Verd(-Wei scheme and Kurosawa-Yoshida schemsotaise common randomness becausaust
be selected inV;, which depends on, in their schemes. Although Moulin-Koetter scheme can usamon
randomness, the improvement of coding rate is upper boubge?i because the codewof(d, ¢, (i)) of their
scheme must satisfijv|| = ||c,(¢)||. Hence, Coding Scheme 1 is much more efficient than the knaaing

schemes when common randomness can be used.
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E. K-MOID Coding with Passive Feedback

It is shown in [9] that if we can use a passive noiseless feddlbhannel such that the encoder can know

the channel output; at each timg =1,2,--- ,n — 1, the following coding rate can be achieved.
max H(W (-|z)) if the encoder is deterministic. (46)
max H(P-W) if the encoder is stochastic. 47
PeP(X)

Here W (|-) is the transition probability of the forward channél, P(X) is the set of input probability
distributions, andP - W is the output probability distribution for input probalyjlidistribution P € P(X).

The above coding rate$, (46) aldl(47), can be achieved bynG@agheme 1 fof-MOID coding as follows.
We first sendz™, wherex,, t = 1,2,--- , 7, is the optimal fixed inpuf: that achieves the maximum df_(46)
in the deterministic case, or is generated by the optimaltigobability distributionP that achieves the
maximum of [4Y) in the stochastic case. Then the encoder anddérs can obtain random numhefrom
the corresponding channel outpyit by using the interval algorithm for random number generafid]. After
v is obtained at the encoder and decoders, the encoder §ends), i, (i), - -, hy(iar)) by a transmission
code with code length* = Km/r.

In order to obtainv uniformly distributed over{0,1,2,---,2" — 1} by the interval algorithm, we use
variablern.. Then the expected lengifi#:] is bounded as follows [10, Theorem 3].

%n <E[n] < % <€m+log2(|y| -1+ 1}1(_1)17;:;))) , (48)
wherepmax = I;leal)}(Py(y), h(-) is the binary entropy function, anl = H(W (-|Z)) or H = H(P - W) if the
encode is deterministic or stochastic, respectively.

In this case, coding rat&, which is defined byR = (loglog N)/(E[n] + n*), satisfies that

_ loglog N
E[n] + n*
(£ —3)m +log(¢ — 2) + logm
E[n] + Km/r

— H asm — oo and{ — oo (49)

where the second equality holds froml(2d) k — 1 =¢ — 3, andn* = Km/r.

F. MOID Coding with variableK

In the above, we assumed for simplicity thigtis fixed and known. But, ifX' is variable and the decoders
don't know K, the encoder must send the informationfofto the decoders. For instance, this can be realized
if we define the encodep as (K, v) = f(K, v, hy(i1), hy(iz), -+, hy(ix)) instead of [(IB).

If the maximum value of<', K,ax, iS given,K can be represented Blog K ax] bits. If Kyax is not known,

K can be represented by Elidscode [11], the length of which is not larger thar-log K + 21log(1 + log K)
bits. Since these additional bits can be ignored comparéd »i = (¢ + K)m asm — oo, Theorenl1L still
holds even ifK is variable. However, we note froi_(26) thialog N ~ (¢ — 3)m. Hence,K must satisfy
thatlog K <=ng = (£ + K)m = loglog N — (K — 3)m < loglog N, which means

K

— = 50
mgnoo log N (50)
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11
Furthermore, from{20)R and E, decrease to zero & becomes large for fixed and /.

IIl. MOID CODE WITH RANKING
A. Definition of RMOID codes

In Section[), we assumed that select&dreceivers are not ranked. But, in this section, we consider t
case thati{ receivers are ranked. Ldt = (i1,142,- - , ix), Wherei; stands for the receiver of rank Then,

encoderp and decoder/?l- for K ranked receivers can be defined as follows.

G:ZxXY X" (51)

wi:ynﬁ{1527"'aK7F}a (52)

where Z = { K}, which is the set of all possibl&, andF means “outside of the ranking”. We call this code
K-RMOID (ranked-multiple-object identification) code.

Although we can consider many types of errors for thisRMOID code(@,iﬁl, o, ,&N), we group the
errors into only two types. To simplify notation, we treat & rank K 4+ 1. Then, the type | (resp. Il) error is
defined as the error such that a decoded rank of a receivergiesr l&cesp. smaller) than the true rank of the
receiver.

Let 5\5") andXé") be the worst probability of type | and Il errors, respectivdlhen, they can be represented

as follows.
N (| K) = Pr{dh, (B(K. V) > j} =
A = max max A" (45 K), Y
KeZ %
A (051 K) = Prid, (3(K, V) < j}, o
S\gn) = max max S\gn) (1] K). 0)
Kez

Furthermore, the error exponentsiffl) and 5\5") are defined by
- 1 -
EM = —Zlog A, (57)
n
- 1 -
ESM = —Zlog A, (58)
n
Remark 6:From the definition of decodep; given by [52), we note that\™ (x| K) = A" (i1 | K) = 0.
This means that we can exclude receivers with rgnk K + 1 (i.e. F) and the receiver with rank = 1
in the maximizationmax of (&4) and [(56), respectively. Hence, we can easily cheek the type | and II
errors defined in this section coincide with the ordinarysoimethe case of< = 1. Furthermore, if all ranks

7, 1 < j < K, are treated as the same rank,] (55) dnd (56) coincide Witar(@)[9), respectively. Therefore,
the definition of type | and Il errors given bl (53)-(56) ar@senable.

A triplet (R, E, Eg) is said to be achievable by a coding scheme if the followirggjuralities can be satisfied
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by the coding scheme.

liminf R > R (59)
lim inf E( ) > Fy (60)
n—oo
lim inf E( ) > F, (61)
n—oo

B. Construction of RMOID codes
For K = (iy,ia,--- , ix), we define a codég, i1, s, - - -, ) as follows.

Coding Scheme 2:

@(va) Ef(’l), hv(i1>a h’U(iQ)v T 7hU(ZK>> (62)
ja |fh{,(’t)7éﬁl,l:1,2,,j—1
di(y") = andhy (i) = B;
F, if ho(i) £ 8, 1=1,2,---, K

for (0, 81, B2, -+, Bum) = g(y™) (63)

The encoder? is the same as the encodenf Coding Scheme 1 defined in_(18). But the orderpfi;) in f
of ¢ represents the rank of receiver while the ordef.pfi;) has no meaning in the case pfdefined in [(18).

As shown in [6B), each decoder first checks whether or not receivers rank 1. If so,v; outputs 1.
Otherwisey; next checks whether or not receivieis rank 2. If so,; outputs 2. Otherwise); checks whether
or not receiveri is rank 3. This procedure repeats until rank becoifeg=inally, if receiveri is not rank K,
W; outputs F .

This code(@, 11,1, - - - ,1by) satisfies the following theorem.

Theorem 2:The following triplet is achievable by Coding Scheme 2 f6+RMOID coding.

(RaElaEQ) =
M+ 3
((1 - Mj_—f) r, E(r), min {MLM,E(T)}) ,
0<r<C, (=3,4,5,--- (64)
Proof First we consider the case of the noiseless channel. Forraakh, j =1,2,3,--- | K, X§”> (i K)

can be evaluated as follows.

)\(n) (i;| K) = {ﬂ (hv (i5) # hv( Zl))}

=0, (65)

where the last equality holds becausg(i;) = hy (4;) is satisfied ai = j.
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Next we derive an upper bound éﬁ") (i;]K) for receiveri; with rank j.

A (65| K) = Pr{ L] (hv (i) = hv(il))}
=1

< Z Pr{hv(i;) = hy (i)}

=1

<e(j—1) <ekK, (66)

where the second inequality can be proved in the same wdy8s (2

A" (i;|K) and the bound of\{"™ (i;|K) are the same aa!™ (i|k) and the bound of{" (i|K) treated
in Section IlI, respectively. This means that the lower bmnﬂﬂ”) and Eé") are the same as the lower
bounds ofE§") and Eé") derived in Section Il, respectively. Hence, (iR, E1, E2) is achievable for code

(¢, 1h1, 09, ,1hy), it is also achievable for codép, i1, s, ,1y). Therefore, Theorem 2 holds from

Theorem 1.

Q.E.D.
Corollary 2: The K-RMOID code constructed by Coding Scheme 2 can attain
lim R™ =, (67)
n—oo
lim A" =0, (68)
n—oo
lim A = 0. (69)
n—oo
Proof Corollary[2 can be proved in the same way as Corollary 1.
Q.E.D.

Remark 7:The same arguments treated in Sectlong| II-CTd II-F also fwld-RMOID code (3, U1, s, - - -,
Un).

IV. CONCLUSION

In this paper, we defined the MOID coding and we proposed efftcexplicit MOID coding schemes for
non-ranked and ranked cases. We also considered the MOiBgoaith common randomness, noiseless passive
feedback, transmission coding, and variaklecoding.

Although we don’t consider the converse part of the codirgptbm for the MOID coding, it is an interesting

open problem.
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