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Abstract—Many constructions of randomness extractors are
known to work in the presence of quantum side information,
but there also exist extractors which do not [Gavinskyet al.,
STOC’07]. Here we find that spectral extractorsψ with a bound
on the second largest eigenvalueλ2(ψ

† ◦ψ) are quantum-proof.
We then discuss fully quantum extractors and call constructions
that also work in the presence of quantum correlations decou-
pling. As in the classical case we show that spectral extractors
are decoupling. The drawback of classical and quantum spectral
extractors is that they always have a long seed, whereas there
exist classical extractors with exponentially smaller seed size.
For the quantum case, we show that there exists an extractor
with extremely short seed sized = O(log(1/ǫ)), where ε > 0
denotes the quality of the randomness. In contrast to the classical
case this is independent of the input size and min-entropy and
matches the simple lower boundd ≥ log(1/ǫ).

I. I NTRODUCTION

Randomness is fundamental for many applications in com-
putation, cryptography and information theory, and the goal
of randomness extraction is to convert sources of biased and
correlated bits to almost-uniform bits (see, e.g., [29]). Amin-
entropy extractor takes an input stringN from a weakly
random source and applies a functionf together with a string
D of perfect randomness (called seed) to yield an output string
M = f(N,D) which is then supposed to beε-close to uniform
provided that the min-entropyHmin(N) = − log pguess(N) is
large enough. However, for some applications we also want
that the extractor works if the input source is correlated to
another systemR. That is, the output should be uniform and
independent ofR provided that the conditional min-entropy of
the sourceHmin(N |R) = − log pguess(N |R) is large enough.
Extractor constructions that also work ifR is quantum are
called quantum-proof. Such extractors are crucial in classical
and quantum cryptography (see, e.g., [23]) as well as for
proving quantum coding theorems (see, e.g., [5], [11]). In the
first part of this paper, we briefly discuss what is known about
extractors (Section II) and then show that spectral extractors
ψ with a bound on the second largest eigenvalueλ2(ψ

† ◦ ψ)
are quantum proof (Section III). In the second part of this
paper (Sections IV and V), we consider fully quantum min-
entropy extractors that output a quantum state that isε-close
to maximally mixed from a quantum sourceρN provided
that the min-entropyHmin(N)ρ = − logλ1(ρN ) is large
enough (λ1(·) denotes the largest eigenvalue). We then discuss
an extension of this when the input source is correlated to
another quantum systemR, and we require the output to be
to uniform and independent ofR provided that the quantum

conditional min-entropyHmin(N |R)ρ = − logF (N,R)ρ is
large enough (F (N,R)ρ denotes the maximal achievable
singlet fraction [18]). We call such extractors decouplingand
show that spectral extractors are decoupling. Finally, we show
that spectral extractors have the drawback of a long seed, but
also give a direct extractor construction with extremely short
seed. We end by stating some open questions (Section VI).

We use the following notation. The labelsN,M,D are used
to specify the subsystem as well as the domain of the classical
system, and classical states onN , i.e., probability distributions
on N , are denoted byPN ∈ ℓ1(N). The normalized uniform
distribution onN is denoted byuN , and the set of distributions
on N is denoted byℓ(N). Quantum systems are represented
by their (finite-dimensional) Hilbert spacesHN ,HM ,HR, and
states onHN , i.e., non-negative trace-one operators onHN

are denoted byρN ∈ S(HN ). We denote the set of linear
operators onHN by P(HN ). For α ≥ 1 andσ ∈ P(H) with
σ ≥ 0 we have theσ-weightedα-norms

‖ · ‖α,σ =
(

tr
[

|σ1/2α(·)σ1/2α|α
]

)1/α

, (1)

and forα = 2 the norm is induced by theσ-weighted Hilbert-
Schmidt inner product

〈·|∗〉σ = tr
[

(

σ1/4(·)σ1/4
)†(

σ1/4(∗)σ1/4
)

]

. (2)

Theσ-weightedα-norms satisfy the Hölder inequalities

〈·|∗〉σ ≤ ‖ · ‖p,σ · ‖ ∗ ‖q,σ (3)

for 1/p + 1/q = 1 [21]. For ρNR ∈ S(HNR) the quantum
conditional min-entropy is defined as [18]

Hmin(N |R)ρ = − log max
ENR≥0

trN [ENR]=1R

tr [ρNRENR] (4)

and the classical-quantum version simplifies to
Hmin(N |R)ρ = − log pguess(N |R)ρ, wherepguess(N |R)ρ is
the maximal probability of decodingN from measurements
on R. For ρNR ∈ S(HNR) the quantum conditional Rényi-
two entropy is defined asH2(N |R)ρ = − log ‖ρ̃NR‖22 with
ρ̃NR = (1N ⊗ ρ

−1/4
R )ρNR(1N ⊗ ρ

−1/4
R ), and we have [4]

Hmin(N |R)ρ ≤ H2(N |R)ρ . (5)

II. CLASSICAL M IN-ENTROPY EXTRACTORS

The definition of a (strong) extractor is due to Nisan and
Zuckerman [20].
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Definition 1. Let M ⊂ N , k ∈ [0, log |N |], and ε > 0. A
(k, ε) extractor is a set of functions{f1, . . . , f|D|} from N to
M such that for allPN ∈ ℓ1(N) with Hmin(N)P ≥ k,

∥

∥

1

|D| ·
|D|
∑

i=1

Pfi(N) ⊗ |i〉〈i|D − uM ⊗ uD
∥

∥

1
≤ ε . (6)

The quantityn = log |N | is called the input size,m = log |M |
the output size, andd = log |D| the seed size.1

An extractor is called permutation based if all the functions
fi : N → M have the formfi(·) = πi(·)

∣

∣

M
with πi ∈ S|N |,

the symmetric group on{1, 2, . . . , |N |}. It is instructive to
consider extractors with domain and range consisting of bit
strings, that is,N = {0, 1}n, M = {0, 1}m, D = {0, 1}d.
Typically we are given fixedn, k, and ε, and we want to
maximize the output lengthm and minimize the seed length
d. Radhakrishnan and Ta-Shma gave an ultimate limit onm
andd: every(k, ε) extractor necessarily has

m ≤ k − 2 log
1

ε
+O(1) (7)

d ≥ log(n− k) + 2 log
1

ε
−O(1) . (8)

It turns out that a probabilistic construction using random
functions achieves these bounds up to constants: there exists
a (k, ε) extractor with [22], [24]

m = k − 2 log
1

ε
−O(1) (9)

d = log(n− k) + 2 log
1

ε
+O(1) . (10)

However, for applications we usually want explicit extractors
and starting with Trevisan’s breakthrough result [28] there are
now many constructions that almost achieve the bounds above
(see [29] and references therein). Here, we study the question
if extractors also work in the presence of quantum information.

III. QUANTUM -PROOF EXTRACTORS

Definition 2. A (k, ε) extractor{f1, . . . , f|D|} is quantum-
proof if for all classical-quantum statesρNR ∈ S(HNR) with
Hmin(N |R)ρ ≥ k,

∥

∥

1

|D| ·
|D|
∑

i=1

ρfi(N)R ⊗ |i〉〈i|D − uM ⊗ ρR ⊗ uD
∥

∥

1
≤ ε .

(11)

It was shown by König and Terhal that extractors with
one bit output are quantum-proof [19, Theorem 1], and in
general it is known by now that many extractor constructions
are quantum-proof [17], [19], [23], [25], [27] or suffer at
most from a decent parameter loss [7]. However, Gavinsky
et al. [13] gave an example of a valid (though contrived)
extractor that completely fails in the presence of quantum side
information. Moreover there is no general understanding of

1For a weak(k, ε) extractor (6) is replaced with
∥

∥

1
|D|

·
∑|D|

i=1 Pfi(N) −

uM

∥

∥

1
≤ ε (i.e., the seed systemD is not necessarily part of the output).

when an extractor is quantum-proof. Next, we define spectral
extractors and show that they are quantum-proof extractors.

Definition 3. A (k, ε) spectral extractor is a set of functions
{f1, . . . , f|D|} from N to M such that for the mapψ :

ℓ(N) → ℓ(MD) with ψ(PN ) = 1
|D| ·

∑|D|
i=1 Pfi(N) ⊗ |i〉〈i|D,

λ1
(

ψ† ◦ ψ − τ† ◦ τ
)

≤ 2k · ε

|M | · |D| , (12)

where λ1(·) denotes the largest eigenvalue, andτ(PN ) =
(
∑|N |

j=1 Pj

)

·
(

uM ⊗ uD
)

. For typical applications, it is suffi-
cient to bound the second largest eigenvalueλ2(ψ

† ◦ ψ).
Now, we show that spectral extractors are also quantum-

proof extractors. For this we use a similar calculation as
Renneret al., who showed (directly) that families of two-
universal hash functions [23], [27], and families of pairwise
independent permutations [25] give rise to quantum-proof
extractors.

Theorem 4. Every(k, ε) spectral extractor is also a quantum-
proof (k, 2

√
ε) extractor of the same output size and the same

seed size.

Proof: We write the extractor as a mapψ : ℓ(N) →
ℓ(MD) with ψ(PN ) = 1

|D| ·
∑|D|

i=1 Pfi(N)⊗|i〉〈i|D, and denote

τ : ℓ(N) → ℓ(MD) with τ(PN ) =
(
∑|N |

j=1 Pj

)

·
(

uM ⊗ uD
)

.
Then we get for the 1-norm

‖((ψ − τ) ⊗ IR)(ρNR)‖1
= 2 · max

0≤X≤1
tr
[

(

(ψ − τ)⊗ IR
)

(ρNR)X
]

= 2 · max
0≤X≤1

tr
[

(

(ψ − τ)⊗ IR
)

(ρ̂NR)(1MD ⊗ ρ
1/2
R )

X(1MD ⊗ ρ
1/2
R )

]

= 2 · max
0≤X≤1

〈((ψ − τ) ⊗ IR)(ρ̂NR)|X〉(1⊗ρ) , (13)

whereρ̂NR = (1N ⊗ ρ
−1/2
R )ρNR(1N ⊗ ρ

−1/2
R ), and we made

use of the(1MD ⊗ ρR)-weighted Hilbert-Schmidt inner prod-
uct. By using the(2, 2)-Hölder inequality for the(1MD⊗ρR)-
weighted Hilbert-Schmidt inner product we get

2 · max
0≤X≤1

〈((ψ − τ)⊗ IR)(ρ̂NR)|X〉(1⊗ρ)

≤ 2 · max
0≤X≤1

‖X‖2,(1⊗ρ) · ‖((ψ − τ)⊗ IR)(ρ̂NR)‖2,(1⊗ρ) ,

(14)

with the (1MD ⊗ ρR)-weighted 2-norm. We estimate the first
term by using the(1,∞)-Hölder inequality for the(1MD ⊗
ρR)-weighted Hilbert-Schmidt inner product

‖X‖2,(1⊗ρ) =
√

〈X |X〉2,(1⊗ρ)

≤
√

‖X‖∞,(1⊗ρ) · ‖X‖1,(1⊗ρ)

=
√

λ1(X) · tr[(1MD ⊗ ρR)X ]

≤
√

|M | · |D| . (15)



For the second term a straightforward calculation gives

‖((ψ − τ) ⊗ IR)(ρ̂NR)‖22,(1⊗ρ)

= 〈(ψ ⊗ IR)(ρ̂NR)|(ψ ⊗ IR)(ρ̂NR)〉(1⊗ρ)

− 2 · 〈(ψ ⊗ IR)(ρ̂NR)|(τ ⊗ IR)(ρ̂NR)〉(1⊗ρ)

+ 〈(τ ⊗ IR)(ρ̂NR)|(τ ⊗ IR)(ρ̂NR)〉(1⊗ρ)

= 〈ρ̂NR|((ψ† ◦ ψ − τ† ◦ τ)⊗ IR)(ρ̂NR)〉(1⊗ρ)

= 〈ρ̃NR|((ψ† ◦ ψ − τ† ◦ τ)⊗ IR)(ρ̃NR)〉 , (16)

where ρ̃NR = (1N ⊗ ρ
−1/4
R )ρNR(1N ⊗ ρ

−1/4
R ). By (5) the

conditional min-entropy is upper bounded by the conditional
Rényi-two entropyH2(N |R)ρ = − log ‖ρ̃NR‖22, and this gives

sup
Hmin(N |R)ρ≥k

‖ρ‖1=1

〈ρ̃NR|((ψ† ◦ ψ − τ† ◦ τ)⊗ IR)(ρ̃NR)〉

≤ 1

2k
· sup
‖ρ̃‖2=1

〈ρ̃NR|((ψ† ◦ ψ − τ† ◦ τ) ⊗ IR)(ρ̃NR)〉

=
1

2k
· λ1(ψ† ◦ ψ − τ† ◦ τ) . (17)

From the properties of a(k, ε) spectral extractor, the claim
follows.

An instructive example are two-universal families of hash
functions.

Definition 5. A set of functions{f1, . . . , f|D|} from N to M
is said to be a two-universal family of hash functions if we
have for allj 6= k ∈ N ,

1

D

|D|
∑

i=1

δfi(j)=fi(k) ≤
1

|M | . (18)

Proposition 6. A two-universal family of hash functions is a
(k, ε) spectral extractor withm = k − log(1/ε).

Proof: For anyPN , QN ∈ ℓ(N) we calculate

〈QN |(τ† ◦ τ)(PN )〉 = 1

|M | · |D| ·
|N |
∑

j=1

P j
N

|N |
∑

k=1

Qk
N . (19)

Furthermore, we get from (18),

〈QN |(ψ† ◦ ψ)(PN )〉 = 1

|D|2 ·
|D|
∑

i=1

〈PN |(ψ†
i ◦ ψi)(QN )〉

=
1

|D|2 ·
|D|
∑

i=1

|N |
∑

j,k=1

P̄ j
NQ

k
Nδfi(j)=fi(k)

≤ 1

|D| · 〈PN |QN〉+ 1

|M | · |D| ·
|N |
∑

j=1

P j
N

|N |
∑

k=1

Qk
N . (20)

Hence, we arrive at

〈PN |(ψ† ◦ ψ − τ† ◦ τ)(PN )〉 ≤ 1

|D| · 〈XN |XN 〉 , (21)

and the claim follows.
Other examples of constructions based on spectral extractors

are, e.g., pairwise independent families of permutations,or

constructions based on balanced expander graphs (these are
weak extractors). Unfortunately, spectral extractors have the
drawback of a long seed.

Proposition 7. Every (k, ε) spectral extractor with input size
n, output sizem, and seed sized necessarily has

d ≥ min{n− k,m}+ log
1

ε
−O(1) . (22)

Proof: By the same arguments as in the proof of Theo-
rem 4 we have that

λ1(ψ
† ◦ ψ − τ† ◦ τ) = sup

‖PN‖2

2
≤1

‖(ψ − τ)(PN )‖22 , (23)

wherePN ∈ ℓ(N). Now letQN be a flatk-source (i.e.,QN

has 2k non-zero entries equal to2−k) such that the image
Qf1(N) of QN under the functionf1 has support of size|S| =
⌈2k · |M |/|N |⌉. SinceH2(N)Q = − log ‖QN‖22 ≥ k we have
with (23) that

λ1(ψ
† ◦ ψ − τ† ◦ τ) ≥ 2k

|D|2 ·
|D|
∑

i=1

∥

∥

∥
Qfi(N) − uM

∥

∥

∥

2

2

≥ 2k

|D|2 ·
∥

∥

∥
Qf1(N) − uM

∥

∥

∥

2

2

≥ 2k

|D|2 ·
|S|
∑

s=1

(

Qs
f1(N) −

1

|M |

)2

≥ 2k

|D|2 · |S| ·
( 1

|S| −
1

|M |
)2

, (24)

where we used for the last inequality that the expression
is maximized whenQf1(N) is uniformly distributed overS.
Hence, we get by assumption that

1

|D| · |S| ·
(

1

|S| −
1

|M |

)2

≤ ε

|M | , (25)

or equivalently,

|D| ≥ 1

ε
·
(

|M | − |S|
)2

|M | · |S| . (26)

Now, if 2k · |M |/|N | ≤ 1, then |S| = 1 and (26) becomes

d ≥ log
1

ε
+ 2 log(|M | − 1)− log |M |

≥ m+ log
1

ε
− 2 . (27)

Otherwise, we get

d ≥ log
1

ε
+ log

(

N

2k
· (1− 2k/|N | − 1/|M |)2

1 + |N |/(2k · |M |)

)

. (28)

But we have |N |
2k·|M| ≤ 1 and thus,

(1 − 2k/|N | − 1/|M |)2
1 + |N |/(2k · |M |) ≥ 1− 2 · 2k/N

2
. (29)

Whenk ≤ n− 2, then we get

d ≥ log
1

ε
+ log

(

N

2k
· 1
4

)

= n− k + log
1

ε
− 2 , (30)

and otherwise the bound we aim to prove is simply implied
by the general lower bound for the seed of extractors (7).



IV. QUANTUM M IN-ENTROPY EXTRACTORS

To understand our definition of quantum extractors, it is
convenient to start with permutation based classical extractors,
i.e., a family of permutations acting on the input. This family
of permutations should satisfy the following property: forany
probability distribution on input bit strings with high min-
entropy, applying a typical permutation from the family to the
input induces an almost uniform probability distribution on a
prefix of the output. We define a quantum to quantum extractor
in a similar way by allowing the operations performed to be
general unitary transformations and the input to the extractor
to be quantum.

Definition 8. Let HM ⊂ HN , k ∈ [0, log |N |], andε > 0. A
(k, ε)-quantum extractor is a set of unitaries{U1

N , . . . , U
|D|
N }

such that for allρN ∈ S(HN ) with Hmin(N)ρ ≥ k,

∥

∥

∥

1

|D| ·
|D|
∑

i=1

trN\M
[

U i
NρN (U i

N )†
]

⊗ |i〉〈i|D − 1M

|M |⊗
1D

|D|
∥

∥

∥

1

≤ ε .
(31)

The quantityn = log |N | is called the input size,m = log |M |
the output size, andd = log |D| the seed size.2

We note that the seedD is still classical in this definition.
Alternatively, we could also define quantum extractors as
general quantum channels fromS(HN ) to S(HM ), and the
number of Kraus operators would correspond to the dimension
of the quantum seedD. For example, the fully depolarizing
channel corresponds to a perfect extractor, independent ofthe
min-entropy of the input. But since the minimal number of
Kraus operators of the fully depolarizing channel is equal to
the square of the output dimension|M |, it also has quantum
seed sized = 2m. However, here we restrict ourselves to
quantum extractors with classical seed. It is instructive to
consider extractors with domain and range consisting of qubit
strings, i.e.,HN = (C2)⊗n andHM = (C2)⊗m, as well as
with a binary seed, i.e.,D = {0, 1}d. Examples for quantum
extractors in the literature include the following:

• In [10] so-called decoupling theorems were studied, and
in particular it was shown that unitary 2-designs (see
Definition 12) are quantum extractors.

• Ben-Aroya et al. considered weak quantum extractors
with the input size equal to the output size [3, Defini-
tion 5.1], and showed how to use quantum expanders
for explicit constructions. See also the related work by
Harrow [15] and references therein.

• Haydenet al.studied quantum state randomization, which
corresponds to weak(0, ε)-quantum extractors with the
input size equal to the output size [16]. See also the
subsequent literature [1], [2], [8].

2For a weak(k, ε)-quantum extractor we just replace (31) with
∥

∥

∥

1
|D|

·

∑|D|
i=1 trN\M

[

U i
N
ρN (U i

N
)†
]

−
1M
|M|

∥

∥

∥

1
≤ ε.

These constructions have many applications in quantum in-
formation theory, quantum cryptography, quantum complexity
theory, and quantum physics (see, e.g., the papers above and
references therein). Here, we discuss whether an extractoralso
works if the input is initially correlated with another quantum
system. That is, we ask if an extractor is not only randomizing
but decoupling as well. Note that the fully quantum conditional
min-entropy can be negative for entangled states.

Definition 9. Let HM ⊂ HN , k ∈ [− log |N |, log |N |],
and ε > 0. A (k, ε)-quantum extractor{U1

N , . . . , U
|D|
N } is

decoupling if for allρNR ∈ S(HNR) with Hmin(N |R)ρ ≥ k,

∥

∥

∥

1

|D| ·
|D|
∑

i=1

trN\M
[

U i
NρNR(U

i
N )†

]

⊗ |i〉〈i|D

− 1M

|M | ⊗ ρR ⊗ 1D

|D|
∥

∥

∥

1
≤ ε .

(32)

Decoupling quantum extractors are extremely useful in
quantum coding theory (see, e.g., [9] and references therein).
In analogy to the classical case, one way of constructing
quantum extractors is by means of quantum spectral extractors.
In fact, all constructions (even the probabilistic ones) for
quantum extractors that are known to be decoupling are based
on spectral extractors.

Definition 10. A (k, ε)-quantum spectral extractor is a set
of unitaries{U1

N , . . . , U
|D|
N } such that for the mapψ(ρN ) =

1
|D| ·

∑|D|
i=1 trN M

[

U i
NρN (U i

N )†
]

⊗ |i〉〈i|D,

λ1
(

ψ† ◦ ψ − τ† ◦ τ
)

≤ 2k · ε

|M | · |D| , (33)

whereτ(ρN ) = tr[ρN ] · 1M

|M| ⊗
1D

|D| . For typical applications, it
is sufficient to bound the second largest eigenvalueλ2(ψ

†◦ψ).
In full analogy to the classical case, we get:

Theorem 11. Every (k, ε)-quantum spectral extractor is also
a decoupling(k, 2

√
ε)-quantum extractor of the same output

size and the same seed size.

An instructive example are unitary two-designs.

Definition 12. A set of unitaries{U1, . . . , UL} acting onH
is said to be a unitary 2-design if we have for allM ∈ B(H)
that

1

L
·

L
∑

i=1

U⊗2
i M(U †

i )
⊗2 =

∫

U⊗2M(U †)⊗2dU , (34)

where the integration is with respect to the Haar measure on
the unitary group.

Many efficient constructions of unitary 2-designs are
known [6], [14], and in ann-qubit space, such unitaries can
typically be computed by circuits of sizeO(n2).

Proposition 13. A unitary 2-design is a(k, ε)-quantum spec-
tral extractor with output sizem = (n + k)/2 − log(1/

√
ε),

wheren denotes the input size.



Note thatk can be negative for entangled input states, and
that the corresponding classical result for families of two-
universal hash functions readsm = k− log 1

ε (Proposition 6).
Proof: For anyXN , YN ∈ P(HN ) we get

〈XN |(τ† ◦ τ)(YN )〉 = 〈τ(XN )|τ(YN )〉

= tr

[

tr
[

X†
N

]

· 1MD

|M | · |D| · tr
[

YN
]

· 1MD

|M | · |D|

]

=
1

|M | · |D| · tr
[

X†
N

]

· tr
[

YN
]

. (35)

Furthermore, we calculate

〈XN |(ψ† ◦ ψ)(YN )〉 = 1

|D|2 ·
|D|
∑

i=1

〈XN |(ψ†
i ◦ ψi)(YN )〉

=
1

|D|2 ·
|D|
∑

i=1

tr
[

X†
N (U i

N )†

(

1N\M ⊗ (trN\M [U i
NYN (U i

N )†])
)

U i
N

]

=
1

|D|2 ·
|D|
∑

i=1

tr
[

(

trN\M [U i
NX

†
N (U i

N )†]

⊗ trN ′\M ′ [U i
N ′YN ′(U i

N ′)†]
)

FMM ′

]

=
1

|D| · tr
[

(

X†
N ⊗ YN ′

) 1

|D|

|D|
∑

i=1

(

(U i
N )† ⊗ (U i

N ′)†
)

(FMM ′ ⊗ 1NN ′\MM ′)
(

U i
N ⊗ U i

N ′

)

]

, (36)

where we have used that the partial trace commutes with
the identity, and denote the swap operator byFMM ′ . Since
{U1

N , . . . , U
|D|
N } is a unitary 2-design we have that [10,

Lemma 3.4]

1

|D|

|D|
∑

i=1

(

(U i
N )† ⊗ (U i

N ′)†
)

(FMM ′ ⊗ 1NN ′\MM ′ )
(

U i
N ⊗ U i

N ′

)

=

∫

(

U †
N ⊗ U †

N ′

)

(FMM ′ ⊗ 1NN ′\MM ′ )
(

UN ⊗ UN ′

)

dU

=
1

|M | ·
|N |3 − |M |2 · |N |

|N |3 − |N | · 1NN ′

+
1

|M | ·
|N |2 · |M |2 − |N |2

|N |3 − |N | · FNN ′ . (37)

Hence, we arrive at

〈XN |(ψ† ◦ ψ − τ† ◦ τ)(XN )〉 ≤ |M |
|N | · |D| · 〈XN |XN 〉 ,

(38)

and the claim follows.
As in the classical case, quantum spectral extractors always

have a long seed.

Proposition 14. Every (k, ε)-quantum spectral extractor with
input sizen, output sizem, and seed sized necessarily has
d ≥ min{n− k,m}+ log(1/ε)−O(1).

Proof: Let HS ⊂ HM with |S| = ⌈2k · |M |/|N |⌉, let
{|t〉}|N |/|M|

t=1 be an orthonormal basis ofHN\M , and consider
the state

γN =
|M |

|S| · |N | ·
∑

s∈S

|N |/|M|
∑

t=1

(U1
N )†|st〉〈st|NU1

N . (39)

SinceH2(N)γ = − log ‖γN‖22 ≥ k we have by the same
arguments as in the classical case (Proposition 7) that

λ1(ψ
† ◦ ψ − τ† ◦ τ)

≥ 2k

|D|2 ·
|D|
∑

i=1

∥

∥

∥
trN\M

[

U i
NγN (U i

N )†
]

− 1M

|M |
∥

∥

∥

2

2

≥ 2k

|D|2 ·
∥

∥

∥
trN\M

[

U1
NγN (U1

N )†
]

− 1M

|M |
∥

∥

∥

2

2

≥ 2k

|D|2 · |S| ·
( 1

|S| −
1

|M |
)2

. (40)

The rest of the proof proceeds as in the classical case (Propo-
sition 7), except that we use in the very end a general lower
bound for the seed of quantum extractors (Proposition 15)
instead of the corresponding bound for classical extractors (7).

We show in the next section that there exists a quantum
extractor with seed sizeO(log(1/ε)) matching the simpled ≥
log(1/ε) lower bound. In contrast, any classical extractor has
to satisfyd ≥ log(n− k) + 2 log(1/ε)−O(1).

Proposition 15. Every (k, ε)-quantum min-entropy extractor
with k ≤ n−1 (n is the output size) necessarily has seed size
d ≥ log(1/ε).

Proof: Let HS ⊂ HM with |S| = |M |/2, let {|t〉}|N |/|M|
t=1

be an orthonormal basis ofHN\M , and consider the state

γN =
2

|M | ·
∑

s∈S

|N |/|M|
∑

t=1

(U1
N)†|st〉〈st|NU1

N . (41)

SinceHmin(N)σ = n− 1, and

∥

∥

∥
trN\M

[

U1
NγN(U1

N )†]− 1M

|M |
∥

∥

∥

1

=
∥

∥

∥

2

|M | ·
∑

s∈S

|s〉〈s|M − 1M

|M |
∥

∥

∥

1

= 1 , (42)

the claim follows.

V. SHORT SEEDED QUANTUM EXTRACTORS

Here we show that very small sets of random unitaries yield
good quantum extractors.

Theorem 16. There exists a(k, ε)-quantum extractor with
m = (n + k)/2 − log(1/ε) − O(1), and d = 2 log(1/ε) +
O(log log(1/ε)).



Proof: ForρN ∈ S(HN ) with Hmin(N)ρ ≥ l we have by
the extraction property of unitary 2-designs (Proposition13)
that

∫

‖trN\M
[

UNρNU
†
N

]

− 1M

|M | ‖1 dU ≤ M√
N · 2l

, (43)

where the integration is with respect to the Haar measure on
the unitary group. This means that for each specific input
there exists a unitaryUN that extracts well. We use a measure
concentration argument (based on Lévy’s lemma) that gives[9,
Theorem 3.9],

Pr

{
∥

∥

∥
trN\M

[

UNρNU
†
N

]

− 1M

|M |
∥

∥

∥

1
≥ M√

N · 2l
+ γ

}

≤ exp(−Nγ
2 · 2l
16

) , (44)

for γ > 0. Moreover, we use a concentration of the average
bound [12, Lemma A.2] to get

Pr

{1

t
·

t
∑

i=1

∥

∥

∥
trN\M

[

U i
NρN (U i

N )†
]

− 1M

|M |
∥

∥

∥

1
− M√

N · 2l
≥ γ

}

≤ exp(− tNγ
2 · 2l
16

) .

(45)

In order to obtain a set of unitaries that extracts well for all
states, we use a netNl,δ of states with|Nl,δ| ≤ (5/δ)2N ·2l

such that for every flatl-sourceρN (i.e., ρN has2l non-zero
eigenvalues equal to2−l) there exists̄ρN ∈ Nl,δ with ‖ρN −
ρ̄N‖1 ≤ δ for (sufficiently small)δ > 0 [16, Lemma II.4]. For
a union bound over allρN ∈ Nl,δ, (45) then gives

Pr

{

∃ρN ∈ Nl,δ :
1

t
·

t
∑

i=1

∥

∥

∥
trN\M

[

U i
NρN(U i

N )†
]

− 1M

|M |
∥

∥

∥

1

(46)

− M√
N · 2l

≥ γ
}

≤
(

5

δ

)2N ·2l

· exp(− tNγ
2 · 2l
16

) .

Now, we fix M√
N ·2k = ε/3 giving us m = (n + k)/2 −

log(1/ε) − log(3). Furthermore, we chooseγ = ε/3 and
t = (C/ε2) · log(1/δ) for some (sufficiently large)C > 0.
From (46) we then get that for allρN ∈ Nk,δ,

1

t
·

t
∑

i=1

∥

∥

∥
trN\M

[

U i
NρN (U i

N )†
]

− 1M

|M |
∥

∥

∥

1
≤ 2ε/3 , (47)

with very high probability. By taking a union bound over all
l ≥ k, we get that (47) still holds with very high probability for
all ρN ∈ ⋃

l≥kNl,δ. Hence we have shown the existence of a
set of unitaries withd = log(t) = 2 log(1/ε)+ log log(1/δ)+
log(C) that extracts well for allρN ∈ ⋃

l≥kNl,δ. In order
to make it work for allρN ∈ S(HN ) with Hmin(N)ρ ≥ k,
we write ρN as a mixtureρN =

∑

j pjρ
j
N of flat k-sources

ρjN [29, Lemma 6.10]. For eachρjN , we know there exists
ρ̄jN ∈ ∪l≥kNl,δ such that‖ρjN − ρ̄jN‖1 ≤ δ. This means that

for all ρjN we have

1

t
·

t
∑

i=1

∥

∥

∥
trN\M

[

U i
Nρ

j
N (U i

N )†
]

− 1M

|M |
∥

∥

∥

1
≤ 2ε/3 + δ . (48)

The claim follows forδ = ε/3.
Thus the optimal seed size does only depend on the error

ε and not on the input sizen and min-entropyk as in the
classical case. However, we do not know if the extractor
from Theorem 16 is also decoupling. Or more generally,
if any decoupling quantum extractors with seed sized <
min{n− k,m}+ log(1/ε)−O(1) exist (cf. Proposition 14).

VI. D ISCUSSION

We note that our stability result for classical and quantum
spectral extractors (Theorems 4 and 11) also works if the
quantum side information is described by infinite-dimensional
Hilbert spaces.

There are many open questions whose answers would
have applications in quantum information theory. Concerning
classical extractors we would like to gain a general under-
standing of when a construction is quantum-proof. Following
Ta-Shma [26], we mention that the example from [13] is
compatible with the conjecture that every extractor is ap-
proximately quantum-proof withε 7→ ε′ = O(ε · m). For
quantum extractors we would like to find probabilistic and
explicit constructions that are decoupling but not based on
spectral extractors. For quantum spectral extractors we would
like to find probabilistic and explicit constructions that match
our lower bound for the seed size in Proposition 14. Finally,
quantum spectral extractorsψ are specified by the second
largest eigenvalueλ2(ψ† ◦ ψ), and this relates them to the
study of balanced quantum expanders (as, e.g., defined in [3]).
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