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Abstract—The process of state preparation, its transmis- one. Furthermore, any feasible point of the constraintsigeo
sion and subsequent measurement can be classically sim#et g Jower bound to the communication complexity. The new
through the communication of some amount of classical infana- reformulation has some interesting features. First, traber

tion. Recently, we proved that the minimal communication cst f unk iabl les i v in the i tsi Bd
is the minimum of a convex functional over a space of suitable ofunknown variables scales linearly in the input size. Heco

probability distributions. It is now proved that this optim ization the objective function is linear in the input parameters and
problem is the dual of a geometric programming maximization the variables. Finally, the constraints are independerthef

problem, which displays some appealing properties. Firstthe jnput parameters defining the channel. Thus, if we find the
number of variables grows linearly with the input size. Secad, maximum for a particular channel, we can still use the

the objective function is linear in the input parameters andthe lution t lculat | b d f diff t ch |
variables. Finally, the constraints do not depend on the inpt solution 1o calculate a lower bound for a different channel,

parameters. These properties imply that, once a feasible st Which can be tight for a slight change of the channel. For
is found, the computation of a lower bound on the communi- example, we could evaluate the communication complexity
cation cost in any two-party process is linearly complex. Te  for a noiseless quantum channel and, then, we could wish to
studied scenario goes beyond quantum processes and inclsde fing 5 |ower bound for a channel with a small noise. We will
the communication complexity scenario introduced by Yao. \& . . - L
illustrate the method by analytically deriving some non-tivial ~ YS€ th_'s reforml_JIatlon of the original minimization pr?‘“"?‘
lower bounds. Finally, we conjecture the lower boundn2™ for a  t0 derive analytically a lower bound for the communication
noiseless quantum channel with capacityr qubits. This bound complexity of a noiseless quantum channel followed by two-
can have an interesting consequence in the context of the ®mmt  outcome projective measurements with a randvent and its
quantum-foundational debate on the reality of the quantum sate. complement. Finally, we conjecture the lower bouxidog N,
N being the Hilbert space dimension.

The considered scenarios are a generalization of the fellow
ing one. A sender, Alice, prepares a quantum state For

In some distributed computational tasks, the communinatithe moment we assume that she can choose the state among a
of qubits can replace a much larger amount of classidihite set whose elements are labeled by an inde®econd,
communication([lL]. In some cases, the gap between classigéite sends the quantum state to another party, Bob, thraugh
and quantum communication can be even exponential. Whgtantum channel. Then, Bob performs a measurement chosen
is the ultimate limit to the power of a quantum channel? lamong a given set whose elements are labeled by an index
a two-party scenario, a limit in terms of classical communAgain, for the moment we assume tlbatkes a finite number
cation is provided by the communication complexity of thef values betweerni and M. Finally, Bob gets an outcome
channel. As defined in Ref.][2], this quantity is the minima. In a more abstract setting, we will consider the overall
amount of classical communication required to simulate tipeocess as a black box, which we call C-box, described by a
process of preparation of a state, its transmission througéneral conditional probability’(s|a, b). The C-Box has two
the channel and its subsequent measurement. In general,itip@tsa andb, which are separately chosen by the two parties
sender and receiver can have some restriction on the staird an outcomes, which is obtained by Bob. This setting
and measurements that can be used. In Réf. [2], we prowgsks beyond quantum processes. In particular, it includes t
that the communication complexity of a quantum channel gdmmunication complexity scenario introduced by Yao [5],
the minimum of a convex functional over a suitable space oferes takes two values an#(s|a, b) is deterministic.
probability distributions. A C-box can be simulated classically through a classical

In this paper, we will show that the original minimizationchannel from Alice to Bob. We call the minimal communica-
problem is the dual of a geometric programming maximizatidion costcommunication complexitgenoted by, of the C-
problem with inequality constraints. As Slater’s conditig]] box. Here, we employ an entropic definition of communication
is satisfied, the duality gap is equal to zero. Thus, the nawsst (see Refs. [2]._[6] for a detailed definition). Simijarthe
optimization problem turns out to be equivalent to the ordi asymptotic communication complexity, denoteddjy*™, of a

I. INTRODUCTION


http://arxiv.org/abs/1401.4126v1

C-box is the minimal asymptotic communication cost in a panon-optimal distributiorp(a) provides a lower bound on the
allel simulation of many copies of the C-box. In Refl [2], weasymptotic communication complexity. Again, let us retadit
proved that the asymptotic communication complekify’™ a lower bound for the& ;¥ is also a lower bound fo€.,.

is the minimum of a convex functional over a suitable space,

V, of probability distributions. Then, we also proved a tight ) . _D UALITY o
lower and upper bound for the communication complegigy !N the following, we will assume thap(a) is given and
in terms ofC%¥™. Namely, we have that, possibly optimal. Our task is to show that the computation

. . . of Z is the dual of a geometric programming maximization
Cop?™ < Cop <CHP™ +210gy(Cop”™ + 1) + 2logse. (1) problem (See Ref[[4] for a definition of geometric program-
ming and duality). Namely, the objective function of the new

Note that a lower bound for thé’;*™ is also a lower bound . .
maximization problem is

for C.,. Let us define the sér.

Definition. Given a C-box P(s|a;b), the set) contains I = ZP(Sla;b)p(a)/\(S,aab), (7)
any conditional probabilityp(sla) over the sequencé = b
{s1,...,sm} whose marginal distribution of thieth variable

which has to be maximized with respect to the variables

is the distributionP(s|a, b) of the outcomes givena andb. A(s, a, b) under the inequality constraints

In other words, the seV contains anyp(sla) satisfying the
constraints Zp(a)eZbA(sb’a’b) <1,V5=(s1,...,sm). (8)
p(8la) >0, @ ¢ _ _ _

s.5,—s P(31a) = P(sla,b), Ya,b ands, The number of variables is equal to the number of input

. parameter®(s|a; b), whereas the number of constraints grows
where the summation is over every component of the sequeRgs g nentially with the number of measurements. As the prob-
5, except they-th component;, which is set equal ta. lem is convex and Slater’s conditionl[4] is satisfied, strong

duality holds and the maximum dfunder the constraintg](8)

Then, we proved that is equal to the minimum of its dual.

Cov™ — min_ C(a — ), (3) Theorem. Given the maximization problem with objective
p(8la)ev function [1) and inequality constraintg] (8), its dual is the
where minimization of the objective function
Cla — §) =maxI(S; A 4
(2 8) = wax (5 4) @ Lauat =) _ p(8la)p(a) log, S G )@ pglj)) @ O
is the capacity of the channg(s]a), defined as the maximum 8a @ P P
of the mutual information with respect to the variablep(5]a) under the constraint
p(5]a) p(8la) € V, that is, under the constrain{s (2).

I(S;4) =) _ p(Sla)p(a) logy S p(Ea)p(d) (3)  Proof. It is convenient to introduce a further set of variables,
sa “ (5, a), and the constraint
between the input and the output over the space of input .
probability distributionsp(a) [3]. As the mutual information (8, a) Z sy, a,b) = 0. (10)
is convex and the maximum over a set of convex functions is _ ) b
still convex [2], the asymptotic communication complexigy 1hrough this equation, we recast Ineds. (8) as
the minimum of a convex function over the spake Since 1— Zp(a)ea(§,a) > 0. (11)
the setV is also convex, the minimization problem is convex. -
As the mutual information is convex in(s]a) and concave
in p(a), we have from the minimax theorem th@f,*™ =
max,(q) Ip(a), where

The objective function of the dual problem is the maximum
of the Lagrangian

L=T+>_n(5)|1—- a)e*(%a)
Loe min IS4 © Tenl) L= Tapl@e @]
p(5la)yev + > 5a (8 a) [(5,a) = 37, A(sp, a,D)],

is a functional of the distributiorp(a). In some cases, it which is a function of the Lagrange multipliergs) and
is trivial to find the distributionpq.(a) maximizing the (3 q) with the constraint

functional Z. For example, when there is no restriction on

the set of states and measurements that can be used and n(5) = 0. (13)

the channel is noiseless, we can infer by symmetry that thg differentiating£ with respect to\(s, a, b) anda(3, a), we
distribution pyq.(a) is uniform. Thus, ifp;mq. is known, the get the maximization conditions

asym

computation ofC_,“™ is reduced to the minimization of the .
mutual information (S; A), that is,C¥"™ = () More > p(.a) = P(s|a, b)p(a) (14)

- pmam

generally, even ifp(a) does not maximize the functional, we §sp=s .
have thatCs¥™ > T,,. Thus, the computation of with a n(5)p(a)e®®? = p(5, a). (15)



As the left-hand side of the second equation is positive, weThus, the optimization problem is the maximization of the
have the constraint objective function[{I9) under the constrairlis](22).
p(3,a) > 0. (16)

From Egs.[(I#.15), we have that

IIl. APPLICATION: LOWER BOUNDS

. The solution of the geometric programming maximiza-
Lovaw = Z”(g) +Zp(§’ a) (1Og2 p(8,a) 1)7 (17) tion problem introduced in the previous section gives the
- — n(5)p(a) asymptotic communication complexity of a quantum chan-
nel. Furthermore, any feasible point satisfying the indiua
W& onstraints provides a lower bound @if;*" and C.,. As
an application of the method, let us analytically calculate
non-trivial lower bounds in the case of noiseless channels
n(5) = Zp(g, a) = p(5). (18) and two-outcome measurements with a rank-1 event and its
a complement. In particular, we will consider the cases with

As P(s|a,b) andp(a) are normalized, from this equation andV < 9. for which the calculations are simpler. It is possible
Eq. (I3) we have tha} .n(5) = . p(5,a) = 1. Letus © find non-trivial lower bounds for arbitrary dimensions by
define the new variabl@s(ﬂa) _ p(sf';aa)/p(a). From these Using the same procedure, but the calculations becomerharde
equations and Eqs[(L14JL6l17), we have that the objectR® @ used differentiability property does not hold fér> 5.

function is the function in Eq.[9) with the constraing (2)The measurement is specified by a vectoy defining the
0 rank-1 eveni¢)(¢| and the complemertt — |$)(¢|.

The objective function and the constraints take the forms

which is the objective function of the dual problem. Now,
can analytically perform the minimization with respectg§)
under the constrainf(13), and we get

A. Infinite set of states and measurements

. . 2
Until now, we have assumed that Alice and Bob can choose I— Z/dfb/de(SW, OIS, 0, ), (23)
one element in a finite set of states and measurements, frespec pt

tively. The maximization probleni{4,8) can be extended to th
case of infinite sets. In particular, if the sets are uncdilata /dwefQ dA(L,9,8)+ [oe dA2.0,8) < |y () (24)
and measurable, the sums oveand b have to be replaced - ’

by integrals. For example, suppose thgt Alice can prepare fhere() is a subset of the set of measuremelais and Q°
state and Bob can perform any rahjrojective measurement.is jts complement. For a noiseless quantum channel, we have
Let the dimension of the Hilbert space Bé. The space of it

states is a manifold with dimensioc2WV — 1 including the
physically irrelevant global phase. The space of measun&ame P(s|t), ¢) = 65 1|(0|0)|* + 6s2(1 — [{1]@)]?). (25)
is defined as the space of any orthogonal se¥aiformalized
vectors. Let us denote byt = (|¢1,...,|¢n)) an element in
this.manifold, Wherq¢j> are the vectors of the orthonormal /dujefn dNW,0)+[ doN20.0) < 1 v Q,
basis. The function in Eq[]7) becomes

The constraints can be written in the form

(26)

I— Z/dM/de(slw,M)A(s,w,M) (19) WhereA(v, ) = (1,1, ) — A(2.4:,0).

Every A(4,1, ¢) satisfying the constraints induces a lower
bound to the asymptotic communication complexity. A simple

in the continuous limit, under the assumption that the irgteg form for these functions is

tion measure is such that

/d./\/l — /dw -1, (20) (i, ¢) = o¢1|<¢>|1[1>|2 + B (27)
o .. . The constraints are satisfied for a suitable choice;cnd j3;.
The second equality implies thaty) = 1, as the distribution This is obviously the case far; = 3; = 0. Leta = a; — as
is uniform over the space of quantum states. Let us denotefgg/dﬂ — 1 — fo. It is simple tZ) sh(;w that
S : M — s any function mapping a measuremebt to a

value s in the set of possible outcomes. The constrainis (8) /d¢|(¢|¢)|2 =1/N. (28)
become
/dwef AMASM ML <1 vy . (21) Furthermore,
This constraint can be recast in the form /d¢|<¢|¢)|4 = m (29)
dipeXe Jo, MAEM) <1 (L Q 22
/ pe <LV (O O) €P, (22) Using these equations, we have that the objective function
where(Qy,...,Qy) € P is any partition of the measuremenf@kes the form
manifold so that2; N Q; = 0 if ¢ # j andU;Q; is the whole B8 2a Q2
manifold. I=5+ N(N +1) TNt B2 (30)



and the constraints become the last equation coming from the fact ttéat is a stationary
: oint in . Note that, until this point, the input function
22 4 B9+ 8Sq d 2 p . . ! . T .
™ Hhth5a /dweajﬁ A <1vQ, (31)  P(s|, ) is not involved in the calculations, as it appears
only in the objective function.

where Using the first equation, we can remoge and a» from
So = /Qd¢- (32) the objective function and we get
Taking 2 equal to the empty set and to the whole set of I = ﬁ + 270‘ + FlOm(a, B), a, A]. (41)
vectors, we get the inequalities N = N(N+1)
Qo ! Qs Now, we assume that the functiép,(«, ) is differentiable in
N +h2 <0, N tA+ N +52 <0 (33) the maximal point. We have checked a posteriori that thisstur

Qut to be true forV < 5, but it is false in higher dimensions,
which we will not consider here. Thus, if the objective fuont

is maximal, then

To have a non-trivial lower bound, the objective functiors h
to be positive, thus, the above inequalities and the pdtgitiv
of I give the following significant region of parameters

oI ol
2a & — =0, — =0. (42)
>0, — <B <L ——. ’
R S S (34) Oa = OB
In particular,a must be positive. With Eq. (40), we have three equations and three unknown

Using the Isserlis-Wick theorerfil[7] and the positivityf Values, that isp, 5 and6,,. To find an analytical solution,
it is possible to prove that the left-hand side of constr@@d) W€ introduce an approximation by neglecting the gamma

is maximal if Q is a suitable cone of vectors. function in F(0, «, 3). Then, we will check the validity of
Claim. The left-hand side of the Ined{31) is maximal for 41iS @pproximation. The analytical solution is
setQ) such that, for soméy) andé € [0, 7/2], o N2(N +1) 43)
16) € Q2 = |(x|p)[? > cos? 6. (35) N—(N+1)NTx
In other wordsf2 is a cone with symmetry axjg) and angular sin?N=2¢,, = i, (44)
aperture26. N
1 —1
Let us denote by2(6) a cone with angular apertug®. From (1 — Nﬁ) -1 a
this claim, we have that constrainfs31) are satisfied fgr an B = N -2 No1 (45)

Q if and only if they are satisfied faf? = Q(6), wheref is
any element if0, 7 /2]. Thus, we need to evaluate the integral

in the exponent of the constraints only over any ctX@) of Using these equations, we obtain that the maximum is

unit vectors. Let us denote b¥(¢) the quantitySq . It is N(N +1) (Nﬁ _ 1) o1

easy to find that Lnae = (N —1)log 1 ] - (46)
S(6) = sin?N 2. (36) (14 N)NTF - N| 7T ()

Using equation Thus, in base of the logarithm, we have the lower bounds

sin? 0 1.14227, 1.86776, and 2.45238 bits for N = 2, 3,4, respec-
/ do|(p|e) > = S(0) <60329|<1/1|X>|2 + 2 > (37) tively. They are higher than the trivial lower bound bbit,

Q(0) N which is the classical information that can be communicated

(See Ref.[[B] for its derivation) and performing the intdgrghrough the channel with subsequent two-outcome measure-

over in the constraintd (31), we obtain the inequalites ment. They even beat the trivial bounds obtained in the case
of rank-l measurementdog,2 = 1, log,3 = 1.585, and

F(0,a,8) = -5(0) {ﬁ-i—a (% + cos® 9)} log, 4 = 2, although we considered only simulations of a
—log (Nfl)!fgg(;))rcg;;ﬁi(e)COS29) > 92 4 8, V0. channel with subsequent two-outcome measurements.

(38) To derive Eq. [(46), we have neglected the incomplete
whereT is the incomplete gamma function gamma function inF (0, «, 3). The exact solution still satisfies

Since the objective function is linear in the unknowr.llz'qsl'. MB) bu; the explicit EqL{(43) is replaced by the
variables, its maximum is attained when the minimum d?np'c't equation fora

F(9,a, ) overd is strictly equal toSz + 2. Let 6,,(a, ) N ool Ome (cosz ema)Nfl
be the value of such thatF is minimum. We have that (NHV — ﬁ) xt1= r(N)_(N_nr(N—le,cosema/zv)’
_ 22 (47)
FlOm(a, B),a, B] = — + 39 o . .
(brn(, B), e, Bl N & (39) where 6,,, is given by Eq.[(44). The approximate given
dF (0, a, B) _0 (40) by Eq. [43) is obtained by neglecting the right-side term in

dg 0=, (cr,3) Eq. (47).
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Fig. 1. - 7(6,a, ) as a function off for N = 2 (solid line), N = 3 Fig. 2. Calculated lower bound of the communication cosliqdme). The

(dashed line) andv = 4 (dotted line). The variables and 3 take the values dashed line is the lower bound . . Y
L A s S A proved using the double cajectome [8]. The
maximizing the 1ob1ect|ve functiod in Eq. [41). The minimum ofF is in star for N = 2 is the lower bound obtained in Ref.I[2]. As the measurements

0 = arccos N 2=2N , in agreement with Eq[(44). have two outcomes and the quantum channel is noiselebt, is a trivial
lower bound.

To check the validity of the approximation used to calculate _ L .
the maximum [(46), we have numerically solved the exaEPSt' We have used this optimization problem to derive @analy

Eq. [47) through few iterations of the Newton method Wl&ally some non-trivial lower bounds for a noiseless quentu
obtain slightly higher values, thus EQ. {46) gives an exatitlv channel and subsgquent two-outcome measurements with a
lower bound. The numerical bounds dré4602, 1.87606 and rankl event and |ts_complement. We exphcnly evaluated
2.46463 bits for N — 2, 3, 4, respectively. Note that Ed:(]40)the bounds for a Hilbert space dimensidfi between 2

guarantees thdf,, is a stationary point o, not a minimum. and 4. In a more detailed papefl[9], we wil Q'SCUSS t_he.
To be sure that,,, is actually a minimum, we have plotte8 case N > 4. There are some reasons suggesting that it is
as a function of, see Fig[lL possible to prove the lower boun log N with a suitable

The lower bound forN — 2 is lower than the bound + choice of\(i, ¢, ¢). This lower bound would have interesting
logy T =~ 1.2088 previously_derived by us in Ref.][2]. A betterCONSEqUENces in the context of the recent debate on thgyreali
ESEE 2]

result can be obtained by using a slightly different form o?f the quantum statd_[10]L[11]. The relation between this

. . L7 . . . _gquantum foundational problem and communication complexit
(2,1, ¢) in Eq. [2T). This will be discussed in a more detalleg(ils pointed out in Ref[ T11].

[¢
paper[[9]. Also, the other two bounds are lower than the bouit AcknowledgmentsThis work is supported by the Swiss

V=1 proved by one of us in Ret.[8], but the_ proofrelies on aRlational Science Foundation, the NCCR QSIT, and the COST
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bounds are plotted in Fif] 2. If we extrapolated Eq] (46), we ysICs.
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