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Sampling from a Iabtltlce Gaussian distribution t|1$ emerg:jr)g derstanding on how the complexity depends on the standard
as an important problem in various areas such as coding o : : . i
and cryptography. The default sampling algorithm — Klein's dgwatlon is an important issue. However, in contrast to-sam
algorithm yields a distribution close to the lattice Gaussin pllng from the continuous Gaussu’:\.n d'St”bUt'C’n:_ itis nbaldi
only if the standard deviation is sufficiently large. In this straightforward to sample from a discrete Gaussian digioh
paper, we propose the Markov chain Monte Carlo (MCMC) over a lattice. At present, the default sampling algorithon f
method for lattice Gaussian sampling when this condition isot  |attices is due to Klein, originally proposed for bounded-

satisfied. In particular, we present a sampling algorithm baed on . . ; : o -
Gibbs sampling, which converges to the target lattice Gaugmn distance decoding [11] (see also][12].]13] for variations a

distribution for any value of the standard deviation. To improve  [4] for an algorithm for lattices of Construction A). It was
the convergence rate, a more efficient algorithm referred toas shown in [10] that Klein’s algorithm samples within a negli-
Gibbs-Klein sampling is proposed, which samples block by block gible statistical distance from the lattice Gaussian itlistion
u_sing Kle_in’s_ algorithm. We show that (_Sibbs-KIeir_l sampling only if the standard deviation > W(\/Im)'maxl<i<n”6i”n
yields a distribution close to the target lattice Gaussianunder a . . . . ~ ==
less stringent condition than that of the original Klein algorithm. Whergn is the lattice dlme_nS|on a}nﬁis are the Gram-
Schmidt vectors of the lattice basis. Unfortunately, such a
requirement ofr can be excessive, rendering Klein's algorithm
I. INTRODUCTION inapplicable to many cases of interest.
Markov chain Monte Carlo (MCMC) methods attempt to
The lattice Gaussian distribution is emerging as a commeample from the target distribution of interest by building
theme in various areas. In mathematics, Banasz¢zyk [1lfirsa Markov chain, which randomly generate the next sample
used it to prove the transference theorems of lattices. ¢onditioned on the previous samples. As a major algorithm
coding, it mimics Shannon’s Gaussian random coding teabt MCMC, Gibbs sampling[[14] constructs a Markov chain
nique, yet permits lattice decoding. Forney applied theéckt which gradually converges to the target distribution byyonl
Gaussian distribution to obtain the full shaping gain ii¢et considering univariate sampling at each step. In this paper
coding [2] (see alsd [3]). Recently, it has been used to aehientroduce the Gibbs algorithm into lattice Gaussian sangpli
the capacity of the Gaussian chanrel [4] and to approach #red propose a more efficient block-based algorithm named
secrecy capacity of the Gaussian wiretap channel [5], oespas Gibbs-Klein samplingln contrast to conventional blocked
tively. Sampling from the lattice Gaussian has also beed ussampling which is computationally more demanding, the pro-
in lattice decoding for the multi-input multi-output systd6], posed algorithm takes advantages of Klein's algorithm as a
[7]. In cryptography, lattice Gaussians have become a &entouilding block. The proposed algorithms are applicablehia t
tool in the construction of many primitives. Micciancio andcenarios < w(+/Iog n) - max <;<x | bl-
Regev used it to propose lattice-based cryptosystems base@io the best of our knowledge, this is the first time that
on the worst-case hardness assumptions [8], and recenthyMCMC methods are used in lattice Gaussian distributions.
has underpinned the fully-homomorphic encryption for diouDifferent from previous works on Gibbs sampling for signal
computing[[9]. The key fact is again that a vector distribids detection of finite constellations [15]-[17], here we ar@-co
a lattice Gaussian centeredcatvith a small standard deviation cerned with countably infinite state spaces and with sirmdat
is typically very close toc. To illustrate why this might be Gaussian distributions over a lattice. It is worth pointimgt
useful in cryptography, note that if one knows a short badisat although the underlying Markov chain converges to the
of the lattice, one can efficiently produce such a vector,[1Q§tationary distribution for all values of, the convergence
while disclosing no information on the short basis—sinoe tlis expected to become very slow whenbecomes small,
lattice Gaussian distribution does not depend on the pdatic since for very smallc we would solve the closest vector
basis. problem (CVP) and shortest vector problem (SVP) with high
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Algorithm 1 Klein’s Algorithm rangec < w(+/1og 1) - max||b,|.

Input: B,o,c

Output: Bx € A I1l. MCMC FORLATTICE GAUSSIAN
L letB= QR andc’ = Q"c In this section, we introduce the concept of MCMC into
2. fori=m, .. 1d0 P lattice Gaussian sampling for the range ofwhere Klein's
3 let o; = ‘ | andz; = czjj# algorithm cannot reach. We further propose a more efficient
4: samplez; from Dy, o; ' sampling algorithm named &Sibbs-Klein samplingto im-
5. end for prove the convergence rate.
6: returnBx

A. Gibbs Sampling for Lattice Gaussian

Lattice Gaussian distributioPy . . with ¢ < w(y/log n) -
probability. max||b;|| can be seen as a complex target distribution lacking
The rest of this paper is organized as follows. Section dlirect sampling methods. MCMC makes use of the conditional
introduces lattice Gaussian distributions and briefly eas  distribution as a tractable alternative to work with. Here w
Klein's algorithm. In Section 1lI, the conventional Gibbadh apply the Gibbs algorithm to sample from the original joint
the new Gibbs-Klein sampling algorithms are proposed felistribution Dy , c.
lattice Gaussians, followed by a theoretical analysis ictiSe Gibbs sampling employs 1-dimensional conditional distri-

IV. Section V presents the simulation results. butions to construct the Markov chain_[14], where all other
variables in the distribution are unchanged in each stefhisn
[I. LATTICE GAUSSIAN DISTRIBUTIONS way, we sample: random variables from the corresponding
Let B = [by,...,b,] C R" consist ofn linearly inde- 7 univariate conditionals in a certain order instead of diyec
pendent vectors. The-dimensional lattice\ based onB is 9enerating am-dimensional vector. Samples drawn from the
defined by target joint distribution will be generated when the Markov
A=L(B)={Bx:xeZ"}, (1) chain reaches the stationary distribution.

_ _ _ _ ~ Specifically, in Gibbs sampling, each coordinatecé$ sam-
whereB is known as the lattice basis. We define the Gaussigfed from the following 1-dimensional conditional distitipn
function centered at € R™ for standard deviatiomr > 0 as

z—c|? 1
poclz) =e 5t 7 Pai () =

for all z € R™. Then, thediscrete Gaussian distributioaver

1 2
— L Bx e

e
t+1_c||2” (5)

1
-5,z |IBx
Zm?rl €L € 2

where 1l < ¢ < n denotes the coordinate index of,

Als defined as ) , Xty 2 [t xlg,alyy,. . xp]", andt s the time index
Po.c(Bx) ¢~ 2oz IBx=cl 0# the Markov chain. It is noteworthy that there are many scan
Dpoe(x) = = e O in Gi : “scan |
Po.c(N) ) e~ 307 IBx—¢] schemes in Gibbs sampling and we apply the random-scan in
ez this paper, which means the indéxis randomly chosen at
for all Bx € A, wherep, o(A) £ > Bxen Poc(BX). each step. The extension to other scan strategies is passibl
An intuition of Dy ,c(x) suggests that the closer lattice By repeating such a procedure, an underlying Markov chain
point Bx is to c, the higher probability it will be sampled. x'*1 = [2%,... 2t |, zl™ 2t |, ... 2)7 is induced, whose

Thus, lattice Gaussian sampling can be applied to solve tiansition probability between two adjacent states is eefipy
CVP, and Klein’s algorithm was originally proposed for dethe univariate Gibbs sampler,
coding [11]. As a randomized version of Babai's nearestla t+1 41t
algorithm (i.e., successive interference cancellatiétigin’s P(x'x") = P2 x_y)- (6)
algorithm obtains a vector by sequentially sampling from @jearly, every two adjacent states »ofdiffer from each other
1-dimensional conditional Gaussian distribution. As shaw py only one coordinate and it is easy to see that, . stays
Algorithm 1, its operation has polynomial complexity(n®) invariant under such transitions. Algorithm 2 gives therape
excluding QR decomposition. tion of Gibbs sampling for lattice Gaussian distributionbe
The parameter is key to the distribution produced byinitial random variablex® can be chosen frori" arbitrarily
Klein's algorithm. Klein suggested = min;||b;]|/v10g 7 or from the output of a suboptimal algorithm, while the time
and this was followed/adapted in [6].l [7]. In this case, Ki&i boundT is large enough to reach the stationary distribution
algorithm only yields a distribution that is lower-boundeg), _ ..
by the Gaussian distribution. On the other hand, it waswjth the transition probabilities[{6), we may form the
demonstrated in_[10] that Klein's algorithm actually sae®l infinite transition matrixP, whose (i, j)-th entry P(s;;s ;)

from Dy . within a negligible statistical distance if represents the probability of transferring to stajefrom the
. _ ) o )
o > w(y/Iog n) - maxlgign”bi”- 4) previous states;. Denote byP* the transition matrix after

t steps. We group in the following theorem standard results
However, Gaussian sampling algorithms are lacking for ttedout Gibbs sampling [18].



Algorithm 2 Gibbs sampling for lattice Gaussian Algorithm 3 Gibbs-Klein sampling for lattice Gaussian

Input: B,o,c,x° Input: B,o,c,m,x;
Output: x ~ Dp ¢ aST — o0 Output: x from a distribution close td, , . as? — oo
1: for t =1, ...,T do 1: for t =1, ...,7 do

2: randomly choose coordinate indeftom {1, 2, ..., n} 2: randomly generate a permutation matkix

3 sampler; from P(z}|x;";) 3 LetB=BEandz=E"'x
4 updatex’ = [0, .. 2l T a2l e T 4  LetB=QRandc =Q%c
5. if Markov chain has reached stationariben 5 fori=m,..., 1do
6 outputx? 6: let a; = 7
H ’ m Wt n , t—1
; ende;’(l)(: if - let 2&-1:% ZJ:1+171vJZJTi?j,:m+1 Toi 2y
8: samplez{ from D, , -
o:  end for S
Proposition 1. Given the invariant distributionD ..., the % updatez" = [zét'OCk; Zf—élock}]T
Markov chain induced by the Gibbs sampler is irreduciblell:  retumnx’ = Ez o
aperiodic and reversible (hence positive recurrent), and-c 12 if Markov chain has reached stationariben
verges to the stationary distribution in the total variati¢TV) 13 outputx’
distance ag — oc: 14: end if
15: end for
t'LrQOHPt(X; ) = Dagcllrv =0, (7)

for all statesx € Z", where P*(x; ) denotes the row P’ ang calculatinge’ = QT'c, 2; in the block is sampled from

corresponding to initial statec. _ the following 1-dimensional distribution with the backwiar
According to Proposition 1, if time permits to reach theyder fromz,, to z;:

stationary distribution, the proposed Gibbs sampler witivd

. 1=
samples fromD, , . no matter what valuer takes, which P(z"'z_) = Dga,z (8)
means the obstacle encountered by Klein's algorithm is-over =
come. y 9 %vhereal- = ﬁ, z’fﬂ-] = [zfill,...,zfjl,zfn_‘_l,...,sz]T
and 3t = SRl Thi% T Mgt Ey Algorithm 3
. . . . . % Tii ’
B. Gibbs-Klein Sampling for Lattice Gaussian gives the proposed Gibbs-Klein sampling, where! —
Although the afore-mentioned Gibbs sampler will convergel!" ; Zf—block]] is obtained after each step, a{iblock] =
to the stationary distribution eventually, the way it funos by [ty s 2t]T. The implementation given in Algorithm 3 is

individually sampling only one component each time leads bt so efficient due to repeated QR decompositions; Optimiz-
slow convergence. Especially, for lattice bases whose cempnhg for better efficiency will be pursued in the future. Note

nents are highly correlated with each other, the Markovithahat the extension to other scan strategies is also possible
induced by the standard Gibbs sampling can be trapped for a

long time. To hasten convergence of the Markov chain, a new

sampling algorithm combining Gibbs and Klein algorithms is In this section, we show that the proposed Gibbs-Klein

proposed in the sequel. sampling algorithm can induce a reversible Markov chain
The idea of blocked sampling is to sample a block ofithin a negligible error. From[{8) and by induction, the

components ok at each step [19]. Intuitively, this will lead sampling probability ok}, conditioned Omf—mock] is given

to a faster convergence rate, which is already showi ih [14)l

IV. ANALYSIS OF GIBBS-KLEIN SAMPLING

However, sampling a block is generally more costly than m
componentwise sampling. We propose to use Klein's algorith  P(z{b}, | 2f poeg) = [ [ P a2 mia o) 9
for block sampling; this leads to the Gibbs-Klein. i=1

At each step of the Markov chain, the proposed Gibbs-Klein The following lemma gives a closed-form expression of this
sampling randomly picks up a block @ components ok  conditional probability within a negligible error and theopf
to update. For convenience, anx n permutation matrix  follows [10].

is applied before blocking so that the blocks are updated in a ) ) . o

fixed order. Lemma 1. For a given invariant distributionDy ., the
. g t 1 . .

Specifically, if E is random, then Gibbs-Klein samplingtransition probability P(zye | z{_yq) Of Gibbs-Klein algo-

on m randomly chosen components will be equivalent tgthm is within negligible statistical distance of the foling

samplem consecutive components sfin a fixed order, where distribution
z = E~'x and B = BE. For simplicity, we always consider efﬁuézf“fcu?
the block formed by the firstn components ofz, namely D' = (10)

cll?

1Bttt
Zblock = [21,---,2m]T. After QR-decompositiolB = QR D pttiegm € 207 Bz

block



if o>wh/1ogm)-max <;<ml|riill Wherezt“:[zﬁglck-zfiblocﬂ]. wherexpjocki) andxpiock(j) denote then components belong-
ing to s; ands;, respectively. Then, the transition probability
of Gibbs-Klein sampling is
m
el _ t+1 _ vt — ..
P(ZE)IJg(l:k|Z2[£7bIOCI4) = HDZ,amﬁ,i,z;nH,i(ny#l—i) P(sizsj) = PET =silx =si)
=1

= P (Xélock(i) - Xérgék(jﬂxl[lblocﬂ)

Proof: According to [8) and[(9), we have

1 m (= _xm o t+1)2
e 202 Zi:1(cm+lﬂ Zj:mﬂfi”nﬂﬂazj )

t+1 t
= = P(x N x
m -1 (Em+17i722~1m+17i Tmtl—i jz;+1)2 ( blOCk('7)| [_bIOCk]) )
ILzi 2o ene ™ o 5izlBs;—cl

1

— L |le—Fz 1|2 I Bxtti_q2’
B e 202 block th“ezm e~ 2z IBx cl|
- 1 t+1)2 block

m —=(r i 2t E > e i %
" . é 202( meHl—i mAl—i Z 7 CmeHl—i G=mtamil—ij 2 . .
[IES . ez where (a) is due to the fact thatf;' is sampled only

m+1ﬂ€
t+1 v ¢
PL(F).0.c(Zblock) conditioned onx{

(16)

— —block* : .
11 po (Pomtiimi1—iZ + &) (11) To show the Markov chain is irreducible, we note that given
N , n . a _ ., astates one can attain with positive probability in one step

where e, = ¢ — 3y 1Ty 2y €= 1, seml” any states’ which shares>= (n — m) components withs.

§=> o ?‘m+1—i,j2§-+1 — Cm—it; andT is them xm  Now, if s ands’ have, sayd < n—m components in common,
segment ofR with 71, 10y, in the diagonal. Clearly, the there is always a positive probability that after each skegy t
effect of the subvectoz .., is hidden inc;. In [20], it has  get exactly one more component in common. So we can go in

been demonstrated thatdf> 7.(L(r)), then n—d steps from one to the other. But as soomas-= 2, we
17, po(riiZ +€) 1—e\™ can assume that at the first step we get two more components
= )1 (12) in common, and then one at each further step, so we can go
[1;21 po(riiZ) 1+e ' P 9

with positive probability inn — d — 1 steps.
which means[[", p,(r;;Z + &) can be substituted by On the other hand, it is clear to see that the number of
[T, po(risZ) within negligible errors whem is sufficiently steps required to move between any two states (can be the
small. same state) is arbitrary without any limitation to be a npusti

As shown in[10],1. (A) with negligiblec is upper bounded of some integer. Put another way, the chain is not forced into
asn-(A) < w(yIogn) - max <i<n||b;||. Therefore, ifc > some cycle with fixed period between certain states. Thezgfo
w(y/10g m) - MaX <i<ml|riill, P(Zek | 2 _poey) Shown in  the Markov chain is aperiodic. _
(@I1) can be rewritten as As for reversibility, it is no hard to check that the follovgin

relationship holds

- pL(F),a,E(thng(l:k) P

L po(riaZ)’ Dpo.c(5:)P(si;585) = D o.c(s5)P(s555:) (17)

where ~" represents equality up to a negligible error. Becausgith the same expression
. . . 1 t .
the Qenomlnator is independentzf- ., Z[_piock andc_, itcan 1 Bsi—c® 1, B —cf?
be viewed as a constant and the output has a lattice Gaussian ¢ *° ) e 2
. . . 1 1 £ ’
distribution Dﬂ(f),a,é(zﬁg(l;k)' [ erZn s IBx—c||2 thﬂezm o7z Bxt+l—c|2

block
Then we arrive at the following proposition. o i .
g prop within negligible errors. Thus, the conclusion follows,nto

Proposition 2. Supposer > w(v/Iogm) - max;<i<m ||by| pleting the proof. . . . " ]
at each step so that the negligible statistical distance is The advantages of Gibbs-Klein sampling are two-fold:
absorbed by numerical errors. Then, within numerical esror C0mpared with the conventional Gibbs sampling which only
the Markov chain induced by the Gibbs-Klein sampler igrocesses a single variate each time, it is more efficient to
irreducible, aperiodic and reversible (hence positiveueent) S@mple multiple variates in a block, improving the converge

and converges to the stationary distribution in the totafiva 'ate; on the other hand, it overcomes the limitation of K&in
ation distance ag — oo sampling which requires large values®fand extends lattice

Gaussian sampling to the more general case.

P (26l _biock) (13)

(18)

lim |P*(x;+) — Daocllrv =0 (14)
t—o00

for all statesx € 7" V. SIMULATION RESULTS

Proof: Let s; and s; be two adjacent states in Gibbs- In this section, the_ pgrformances of various samp_ling
Klein sampling. For blolz:k sizen, every two adjacent statesSCher_n_eS are exemphf_led in the con_text of MIMO de_c_:c_)dlng.
in Gibbs-Klein sampling differ from each other by at mast Specifically, we examine the decoding error probabilities t

components. For convenience, we express them as assess the. convergence rates. By samplmg f®m=“' the
closest lattice point will be returned with the highest mob

5 = [Xblock(s)» X[—block] @Nd s; = [Xpiock(;), X[—block], (15)  bility, which implies an effective approach to lattice deow.
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Fig.[ depicts the bit error rates (BER) of different Gibbg”!

samplers in @ x4 uncoded MIMO system with 16-QAM. This

corresponds to lattice dimension = 8. The performances [10]

of zero-forcing (ZF) and maximume-likelihood (ML) decoding
are also shown as benchmarks. We assume a flat fadjng
environment with fixed SNRK;,/Ny=15 dB). The channel

matrix H consists of uncorrelated complex Gaussian fadil{bzl
gains with unit varianceHx can be viewed as a lattice point13]

in lattice A = £(H) and detecting the transmitted signal
corresponds to solving the CVP. Due to the finite consteltati [

14]

size, the implementation for discrete Gaussian samplingngi [15]

in [6] is followed.

Klein choses = min, <;<,|/bs||//0g 7 and derived poly- [16]

nomial complexityO (n//Bx—¢l*/min:[6:11*) for his algorithm to
find the closest lattice point when it is not far franj11]. His

derivation is essentially based on the assumption of a Gausg17]

distribution. However, we now know this choice @fdoes not

satisfy the smoothing condition and thus his sampler doés ng
. ]

really produce Gaussian samplés![10].
Here, we follow Klein’s choice of and apply the proposed(19]

Gibbs and Gibbs-Klein samplers to produce Gaussian samples

from the lattice. For a fair comparison, when the block sizeo]

is m, we run block sampling forn/m times, and count this

as a full iteration. This corresponds to one run of Klein's

original algorithm which samplea components. As shown

in Fig. [, the decoding performance of all the sampling
schemes improve with the number of iterations. With the
same number of iterations (hence the same complexity), the
decoding performance improves with the block size, which
implies a faster convergence rate.
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