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Abstract-We consider a variational free energy approach for 
compressed sensing. We first show that the naive mean field 
approach performs remarkably well when coupled with a noise 
learning procedure. We also notice that it leads to the same 
equations as those used for iterative thresholding. We then discuss 
the Bethe free energy and how it corresponds to the fixed points 
of the approximate message passing algorithm. In both cases, 
we test numerically the direct optimization of the free energies 
as a converging sparse-estimation algorithm. We further derive 
the Bethe free energy in the context of generalized approximate 
message passing. 

I. INTRODUCTION 

The last few years have witnessed spectacular advances 
in the application of message passing strategies to sparse 
estimation and compressed sensing (CS) [1-3]. However, these 
belief propagation (BP) based strategies often possess poor 
convergence properties in real applications. It is therefore 
interesting to look for alternative approaches with similar 
performance but better convergence properties. A standard 
alternative is the direct optimization of the Bethe free energy 
[4, 5]. The goal of the present contribution is to discuss the 
Bethe free energy in the context of CS, its relation with the 
iterative thresholding and the variational mean field approach. 

In compressed sensing, we wish to estimate an unknown 
N -dimensional signal x from a set of !vI -dimensional mea­
surements y where !vI < < N, given the prior knowledge 
that only a small ratio p of the elements of x are non­
zero. Here, p = �, where K is the number of non-zero 
coefficients of x. The measurements are obtained through a 
linear transformation followed by a component-wise output 
map. We first concentrate on the case, y = <Dx + �, where 
� rv N(O, � oIM) is i. i. d. white Gaussian noise and <D is the 
!vI x N measurement matrix. The case of a more general output 
Pout(YI<I>x) will be treated in Sec. IV. Graphical-models [6, 
7] are a natural tool to use when discussing such problems in 
a probabilistic setting. Here we shall assume (although it is 
not strictly necessary, as shown in [3]) the knowledge of the 
empirical distribution of x, 

Po(x) = II [pN(O, 1) + (1 - P)5(Xi)]' (I) 

which leads to the posterior distribution 

P( I<D ) = 

Po(x)P(yl<D, x) 
(2) x , y Z (y, <D) , 

Our goal is to perform probabilistic inference and estimate the 
posterior distribution by minimizing the Gibbs free energy F 
over a trial distribution, PYa", with 

F({Pvar}) = DKL(PvarllPo(x)) - (logP(ylx)){pvm} , (4) 

where ( . ) {Pvar} denotes the average over distribution Pvar 
and DKL is the Kullback-Leibler divergence. 

A. Outline and Main Results 

We first discuss in Sec. II the nai"ve mean field approach 
to the problem. It turns out that this provides remarkably 
good results if one couples it with the estimation of the noise 
variance, �. We find that noise estimation for the naYve mean 
field, which was first considered in [8], is indeed crucial to 
the performance of the naIve mean field for CS. We discuss 
minimization of the mean field free energy as an alternative 
algorithm. We also show, perhaps surprisingly, that the mean 
field approach leads to the same equations as those utilized for 
iterative thresholding and demonstrate how the two approaches 
are, in fact, formally related within a Bayesian framework. 

We then consider in Sec. III the Bethe free energy and 
show how it corresponds to the fixed point of the approxi­
mate message passing (AMP) [1-3] algorithm. We will show 
through an explicit minimization that the direct optimization of 
this free energy is a promising alternative approach to AMP. 
Interestingly, there is a very close relationship between the 
minimization of the mean field and the Bethe free energy. 

Finally, in Sec. IV we derive the Bethe free energy in the 
case of generic output distribution Pout. In a recent work [9] 
the authors have shown how a fixed point of the generalized­
AMP corresponds to a stationary point of a function. Perhaps 
unsurprisingly, we show that this function is nothing but the 
Bethe free energy itself. 

II. THE MEAN FIELD APPROACH 

A. A Separable Ansatz 

It is instructive to first review the simplest variational 
solution to the CS problem, namely, the mean field one 
where Pvar IIi Qi(Xi). In such a case, the min­
imum of the free energy is achieved for Qi(Xi) ex 
exp (log (P(ylx)Po (x))) Pvm(X\i) where we denote x\i to be 
all entries of x which are not Xi. We thus observe that the 
variational distribution is a product of the prior and a Gaussian 
which defines the distribution for Xi, 

1 (", _R)2 
Q(Xi; Ri, �i) £ Z(Ri' �i) Po (x; ) e - �  (5) 
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Cr-II)2 with the normalization Z(R, �) = J dxPo(x)e- �. Note 
that since we consider (5) at a single coefficient, we drop i 
from the notation. We denote the mean and the variance of 
(5) by the functions fa and fe, respectively, 

fa(R, �) £ J dx 
Z(
;

, �) Po(x)e- ('2-2',�)2 , (6) 

fe(R, �) £ J dx 
Z(�� �) Po(x)e- ('2-2',�)2 - f;(R, �). (7) 

The following identities will be useful in the sequel, 

(8) 

(9) 

With this separable ansatz, we can now compute the expression 
for the Gibbs free energy, i.e. F evaluated at the distribution 
Q, using the short-hand notations ai £ fa(Ri, �i) and Ci £ 
fe(Ri' �i)' for every pair (Ri' �i)' 

/', ]vI FMF( {Ri}, {�i}) = 2 log (27f�) + DKL(QllPo) 

+ 2� L [(YI' - L <I>1'iai)2 + L <I>7,iCi] , (10) 
I" , , 

wherei E {1, 2, . . .  , N}, JL E {1, 2, . . .  , M}, and the 
Kullback-Leibler divergence between the variational ansatz 
and the prior is given by 

B. Stationary Points and Iterative Thresholding 

We now investigate the stationary points of (10). In order 
to do so, we shall first consider a slightly different free energy 
that we shall call the "unconstrained" mean field free energy 
wherein we treat the ai and Ci in (10) and (11) as free variables 
independent from Ri and �i. At the stationary points of this 
unconstrained free energy we find 

1 
L 

<I>7,i 
�2 �' (12) 

, I' 

Ri �2 
ai + � L <I>l"i(YI" - L <I>l"jaj), (13) 

I' j 
ai fa(Ri' �i)' (14) 

Ci fe(Ri' �i). (15) 

From (14) and (15) we see that stationary points of the 
unconstrained and constrained free energy are equivalent. 
These equations are, in fact, nothing more than the iterative 
mean field method, where one updates the distribution (5) 
at each iteration. In [8] this method was applied, albeit with 
different notations, sequentially to each element in x in order 
to minimize the free energy. Properly rescaled, these equations 
lead to the following property. 

Proposition i: The fixed points of iterative thresholding 
using a given thresholding function T)6 are identical to the 
(properly rescaled) stationary points of the mean field free 
energy (5). 

Proof If one rescales <I> such that LI" <I>7,i = 1, when 
the fixed-point equations are updated in parallel, we see that 

at+1 
= r16(<I>*zt + at) where zt 

= y - <I>at, (16) 

where T)6(R) = fa(R, �). This is exactly iterative threshold­
ing (see [10]). • 
This is an interesting and, perhaps, unexpected connection 
which was also noticed in the context of AMP [7]. If one 
performs a mean field variational Bayesian learning with an 
£1 or £0 type "prior", then the resulting update equations 
are nothing more than soft and hard iterative thresholding, 
respectively. 

C. Numerical Investigation 

In order to study the performance of the mean field ap­
proach, we have performed a numerical optimization of the 
mean field free energy, as shown in Fig. 1, using the knowledge 
of both the prior distribution and the value of the true noise 
variance, �o. Surprisingly, the results are rather poor. Since 
the free energy is not convex, it may possess many minima. 
Because of this, the correct solution is almost never found in 
any setting we tested. 

Motivated by the results of [8] and by the strong connection 
between the AMP fixed points and noise estimation, which we 
discuss in the sequel, we thus consider � as a further variable 
to optimize over rather than a parameter. This modification 
is also favorable because it allows for the inference of the 
noise variance, a value which is generally unknown a priori. 

The estimate of the noise variance is given by the zero of the 
partial derivative of (10) w.r.t. �, 

* 1 2 1 2 � = 

M Ily - <I>a112 + 
M II <I> c111, (17) 

which shows that � * is a function of the proximity of the 
means, a, to the measurements in the projected domain and 
the estimation of the variances, c, where the square in the 
second term is taken element-wise. 

As shown in Fig. 1, when the noise variance is learned the 
performance of the mean field approach improves dramatically 
and displays a much better phase transition in reconstruction 
performance than convex optimization (which does not use 
the prior knowledge of Po (x) . This transition is very close to 
the one obtained by AMP when the signal is very sparse (p 
small). As noted in [8], the sequential update of (12)-(15) is 
guaranteed to converge to a local minimum of the mean field 
free energy. This algoritmh (called SOBAP in [8]) gives very 
similar performances and in particular the same transition as 
observed in the center panel of Fig. 1. Our goal in the next 
section is to have now a similar guarantee while matching 
AMP performance. 

III. THE BETHE APPROACH 

AMP has been shown to be a very powerful algorithm for 
CS signal recovery. The algorithm is obtained by a Gaussian 
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approximation of the BP algorithm when the measurement 
matrix <D has iid elements of mean and variance of O(l/N). 
We refer the reader to [1-3] and in particular to [11] for the 
present notation and the derivation of AMP from BP. Here, 
we give the iterative form of the algorithm: 

vt+1 
M 

wt+1 
M 

(��+1 )2 

Rt+l 
't 

L <D�ic�, 
vt+1 � <DMia� - (YM - w�) �: VJ' 

<D Mi 
[ 'r � �+ VJ+l ' 

(y wt+l) 
at + (�t+l)2 L <D . M - M 

t t M' � + V;t+l 
M M 

together with the consistency equations (14) and (15). 

A. AMP vs. Mean Field 

(18) 

(19) 

(20) 

, (21) 

We now investigate the fixed points of AMP. In this case, 
one can solve for w in (19) and remove this variable from all 
the other equations. Then, at the fixed points, we obtain 

1 '" <D�i 
� (22) �; M � + L:j <D�jCj 

, 

�2 
Ri ai + � L <DMi(YM - L <DMjaj). (23) 

M j 
These are exactly the same equations as the mean-field ones, 
(12) and (13), except for �;, where the � term has been 
replaced by � + L:j <D�jCj. This difference is crucial to the 
performance of AMP over the mean field iteration given in 
(12)-(15). The key in AMP is that the variance-like term �; 
is computed consistently with the present estimations as it 
incorporates the effect of all Ci. This, a posteriori, admits the 
interpretation of noise learning in the mean field approach as 
a method of approximating (22) by using � * in (12). Hence, 
the similarity in performance between AMP and the mean field 
approach with noise learning seen in Fig. 1 for small p. 

B. The Bethe Free Energy 

While AMP is a powerful method, it does not always 
converge to a solution, especially if the entries of the sensing 
matrix are not iid randomly distributed. A simple modification 
of the mean field free energy (10) leads to what is called the 
Bethe free energy [4, 15], 

FBethe({R;}, {�;}) � L:M (y"-L.i:,,iai)2 + J:{ log 21f� 
+ L:M � log [1 + L:i <D�icd � 1 + DKL( QllPo), (24) 

where the KL distance is given by (11). This free energy is 
derived in Sec. IV. For now, let us accept this expression and 
investigate its properties. 

Proposition 2: The Bethe free energy FBethe(Ri, �i) 
in (24) has at least one minimum and is strictly upper bounded 
by the mean field free energy. 

Proof' The proof follows from the fact that (24) is the 
sum of two terms which both possess a lower bound: a 

"cost-like" term bounded by J:{ log 21f � and the non-negative 
Kullback-Leibler term. Moreover, since log(l + x) :::: x for 
x :;0. 0, one can see that J:{ log 21f � :::: FBethe ( {R;}, {�i}) :::: 
FMF({Ri}, {�i})' • 

We shall now connect this minimum, and the other possible 
stationary points, to the fixed point(s) of the AMP recursion. 

C. Equivalence with AMP 

Theorem i: All stationary points of the Bethe free energy 
correspond to fixed points of AMP. 

Proof' The proof follows the same outline as in the case 
of the mean field free energy. Define the "unconstrained" 
Bethe free energy where ai and Ci are free variables. Sta­
tionarity with respect to Ci and ai leads to (22) and (23), and 
stationarity w.r.t. Ri and �i to the consistency equations, (14) 
and (15). This demonstrates the correspondence between AMP 
fixed points and the stationary points of the "unconstrained" 
free energy. Since, at the stationarity points, the consistency 
equations are satisfied, then all stationarity points of the 
"unconstrained" free energy are stationarity points of the 
normal Bethe free energy (24) and vice-versa. • 
Note the difference between the "unconstrained" and the 
"constrained" Bethe free energy (24). While the former allows 
one to easily generate the AMP fixed points (a classical 
property, see [15]), it is not bounded and cannot generically 
be interpreted as a variational free energy. Only the latter 
"constrained" form should be considered a proper variational 
functional, as indicated by Proposition 2. Indeed, while we 
should look for a minimum of the constrained free energy, 
all stationary points of the unconstrained functional appear, 
instead, as saddle points. In fact, for a given variable 'i, the 
sign of the second derivative shows that the unconstrained free 
energy is a minimum for ai and a maximum for Ci, Ri and 
�;. This is, again, reminiscent of the known phenomena that 
the fixed points of the Bethe free energy are, in general, only 
saddle points unless some consistency conditions are imposed 
(see [16]). 

D. Numerical investigation 

There are a number of ways the Bethe free energy (24) 
can be used. For instance, one can utilize it to damp, self­
consistently, the AMP iteration to ensure a strict minimization, 
or at least a minimizing trend, at each AMP step. We have 
empirically observed that this method significantly increases 
the convergence properties of the AMP approach I. Some 
authors [2, 17] have, instead, used the mean field free energy 
to the same effect. This approach, however, does not seem well 
justified as it is truly the Bethe free energy which is optimized 
by AMP. 

We have also performed numerical optimization of the 
Bethe free energy using the same approach as we used for 
the mean field approach. As shown in Fig. 1, direct mini­
mization gives the same performance as iterating the AMP 
equations and, in fact, reaches the usual AMP limit obtained 

1 See our recent implementation of the AMP al-
gorithm at http://aspics.krzakaJa.orgi or on GitHub at 
https://github.com/jeanbarbierIBPCS_common 
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Fig. I. Phase diagram for the performance of (from left to right) mean field, mean field with noise learning, and Bethe in the Ci-p plane using Gaussian 
noise with �o = 10-8, N = 1024, Ci = M / N, and p = K / N. The measurements yare generated using matrix <I> with iid Gaussian elements of zero 
mean and unit variance. These numerical results were obtained using the function fmin_l_bfgs_b of the SciPy package [12] to minimize the free energy 
(10) (left and center) and (24) (right). The lines denote (from bottom to top) the optimal threshold for noiseless compressed sensing (straight dashed line, 
e.g. [13]), the Bayesian AMP phase transition for a Gauss-Bernoulli signal (reached in the right panel, see [3]) and the Donoho-Tanner transition for convex 
£1 reconstruction [14]. Left: In the pure mean field case, reconstruction is always mediocre. Center: With noise learning, the performance greatly improves 
and, in particular, outperforms convex optimization. Right: The best results are obtained by the minimization of the Bethe free energy which gives the same 
results as the AMP algorithm. 

by the (rigorous [18]) state evolution analysis [3, 11]. Direct 
minimization of the Bethe free energy, a task that can be 
adressed in many different ways guaranties to find at least a 
local minima, is therefore a promising alternative to the AMP 
when convergence problems are encountered. 

IV. DERIVATION OF THE BETHE FREE ENERGY 

Given the probabilistic model defined in Sec. I and that the 
measurement matrix <I> possesses i. i. d. elements of mean and 
variance O(l/N), the fixed point of the BP equations can be 
used to estimate the posterior likelihood. The logarithm of this 
normalization is, up to a sign, called the Bethe free energy 
[4, 15]. In BP, one utilizes a graphical model by updating 
messages from constraints to variables, rnll-+i(xi), and from 
variables to constraints, rni-+I,(Xi). Following [11], one can 
write the Bethe free energy for a given instance as 

_FBethe = L log ZIl + L log Zi - L log Zlli(25) 
Il 0 

where Zi J dXi II rnIHi(xi)PO(Xi), (26) 
Il 

Zlli J dXirnll-+i(xi)rni-+ll(xi), (27) 

(",_",_,::)2 

ZIl = J dZ e� Pout(YI,lz) . (28) 
27TVIl 

Note that here we follow the framework of GAMP [2] and 
consider the context where the observations of the sparse 
signal are given by element-wise measurements, YIl' specified 
by some known probability distribution function Pout(YI,lzl')' 
where Zll = L:i <P lliXi. Following the notation of [2], we 
define the output function as 

I dZ Pout(Ylz) (z - W) e- (z;:;:)2 

gout(W, y, V) £ (z_w)2 (29) 
V I dz Pout(Ylz)e- ----w-

The integrals in the evaluation of the free energy are not 
algorithmically tractable in their general form. Using the same 
notations as in [11] and the same approximations used to go 
from BP to AMP, which are valid in the leading order when 
N ---+ 00, we shall obtain a tractable form for the free energy. 
First, we use the properties of the BP messages [1 1] to rewrite 
(25), 

_FBethe = L log ZI' + L log Xi + L log Yi, 
I' 

where 

vi _ f' d P, ( ) -ib+Xi� ('\. - Xi 0 Xi e I 't , 

M 
i Ri 1 2 1 ,, 2 2  log Y = -2ai + --2 (Ci + ai) + -Ci � <I>lligout· �. 2� 2 " 1'= 1 

(30) 

(31) 

(32) 

Then, we replace g�ut by its fixed-point value, g�ut = 

(L:i <Plliai-wll)/VIl, to obtain the following expression which 
gives the (negative) posterior likelihood given a fixed point of 
the GAMP equations, 

Fg��!p ({ Ri}, {�i}' {wll}, {ai}, {c;}) = - L log ZIl 
I' 

_ L Ci + (ai - Ri)2 _ L (WIl - L:i <Plliai? 
. 2�; 2VIl , Il 

- L log Z(Ri' �i) with VIl = L <I>�iCi , (33) 

where Z(R, �) is the same as in (5). In its present form, the 
Bethe free energy can be easily computed and satisfies the 
following theorem. 

Theorem 2: (BetheiGAMP correspondence) The fixed 
points of the GAMP message passing equations are the 
stationary points of the cost function Fg��!p (33). 

1502 

100 

10.3 

10.6 

10.9 



2014 IEEE International Symposium on Information Theory 

Proof" By setting the derivatives of (33) with respect to 
Ri, �i ' w�, ai, and Ci to zero we obtain (14), (15), (19), (21), 
and (20), respectively. Or, more precisely, the GAMP analogs 
of the equations using the generic output function gout. • 

While the fixed points of the message passing equations 
are the stationary points of FgAt1.1P, they have no reason to 
minimize (33). Indeed, they are only saddle points of this 
expression. This is no surprise: we are not only optimizing the 
free energy with respect to a given distribution, we also have 
to satisfy the consistency conditions between, for instance, the 
parameters �i and Ri and the values ai and Ci. Only when 
ai = ia(Ri, �i) is there consistency between these variables. 
In fact, as is always the case with the Bethe free energy, only 
at a fixed point can it be interpreted as an estimation of the 
posterior. It is thus practical to return to a variational form of 
the free energy that one should simply minimize. To do this, 
we impose the consistency conditions and express the free 
energy as a function of the parameters of our trial distributions 
for the two matrices, 

F!r ({ Ri}, {�i}) = FgAt�IP ({ Rd, {�i}' {w;'}, {an, {cn) , 
where the * variables are given in terms of the fixed points as 
function of Ri and �i only. In order to write this variational 
expression in a nicer form, let us define the distribution 

1 1 (z_w)2 
M(z, w, V) £ -z Pout(ylz) �e- ----W- . � v 27fV 

Then, one has 

(34) 

field and Bethe functional. We also demonstrate how the 
mean field approach paired with noise learning serves as 
an approximation of the AMP algorithm. Most interestingly, 
AMP has been recast in a form equivalent to a cost function 
minimization. One possible avenue for future work is to 
investigate efficient ways of minimizing this cost function with 
convergence guarantees. 
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