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Abstract

Interference alignment promises that, in Gaussian interference channels, each link can support

half of a degree of freedom (DoF) per pair of transmit-receive antennas. However, in general,

this result requires to precode the data bearing signals over a signal space of asymptotically large

diversity, e.g., over an infinite number of dimensions for time-frequency varying fading channels,

or over an infinite number of rationally independent signal levels, in the case of time-frequency

invariant channels. In this work we consider a wireless cellular system scenario where the promised

optimal DoFs are achieved with linear precoding in one-shot (i.e., over a single time-frequency

slot). We focus on the uplink of a symmetric cellular system, where each cell is split into three

sectors with orthogonal intra-sector multiple access. In our model, interference is “local”, i.e., it

is due to transmitters in neighboring cells only. We consider a message-passing backhaul network

architecture, in which nearby sectors can exchange already decoded messages and propose an

alignment solution that can achieve the optimal DoFs. To avoid signaling schemes relying on the

strength of interference, we further introduce the notion of topologically robust schemes, which

are able to guarantee a minimum rate (or DoFs) irrespectively of the strength of the interfering

links. Towards this end, we design an alignment scheme which is topologically robust and still

achieves the same optimum DoFs.
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I. INTRODUCTION

Interference is the dominant limiting factor in the performance of today’s wireless networks.

Recent theoretical results [1]–[3] have shown that transmission schemes based on interference

alignment [1], [4] are able to provide half of the Degrees of Freedom (DoFs) of the interference-

free rates1 to each user in the network. While these results promise significant gains compared to

conventional interference mitigation techniques, the extent to which such gains can be realized in

practice has been so far limited.

Most interference alignment schemes are either restricted to networks with a small number of

users (typically three transmit-receive pairs) [4]–[7], or rely infinite channel diversity/resolution

(e.g., through symbol extensions) for the more general cases [1], [2], [4], [8]. In fact, it has been

shown that without symbol extensions, the DoF gain of any linear interference alignment scheme

in a fully-connected network vanishes as the number of users increases [9]–[11]. On the other

hand, splitting the network into smaller sub-networks does not seem to be the solution either, as

the remaining interference between sub-networks can eliminate the potential gain of interference

alignment.

Another class of interference management techniques for wireless systems relies on utilizing

the backhaul connections in order to enable cooperation between base stations. For the uplink, it

is assumed that all base stations can share their received signal samples over the backhaul of the

network and then jointly decode the corresponding user messages. Similarly, for the downlink, it

is assumed that all user messages can be shared across the entire network, so that base stations can

cooperatively transmit the messages to the corresponding users and manage the interference. This

technique, often referred to as ”Network MIMO” in the literature [12]–[15], effectively reduces

the system to a (network-wide) multiple-antenna multiaccess channel for the uplink, or a multiple-

antenna broadcast channel [16], [17] for the downlink. In an effort to reduce the significant

backhaul load requirements of the above technique, limited base station collaboration has also been

considered for the downlink [18]–[22] where user message information is locally shared within

smaller clusters of the network, and for the uplink [23]–[26] where local receiver collaboration

is enabled by sharing sampled (or quantized) received signals under backhaul connectivity (or

capacity) constraints.

1 In our context, degrees of freedom are defined in Section II-D.
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Here we propose a framework that can take advantage of the partial connectivity of extended2

cellular networks and provide insights and guidelines for the design of the next generation advanced

inter-cell interference management in wireless systems. Within our framework, we are interested in

the design of interference alignment schemes for cellular networks with the following three basic

principles in mind.

• Scalability: The overall performance of the scheme should materialize irrespectively of the size

of the cellular network, i.e., when the number of number of transmit-receive pairs becomes

arbitrarily large.

• Locality: The transmission scheme should operate under local information exchange, and

exploit the distributed nature of the cellular network.

• Spectral Efficiency: The scheme should aim for high spectral-efficiency by allowing more

(interference-free) parallel transmissions to take place within the same spectrum.

In this paper we focus on the uplink of a sectored cellular system. Hence, receivers are located

at the base station sites. Motivated by results embraced in practice (see [30] for an example),

we assume that if a sector receiver can decode its own user’s message, it can share it with its

neighboring sector receivers. This can be easily done for sectors located in the same base station

site (co-located) and it can also be done with today’s technology and moderate infrastructure

effort through local backhaul connections to neighboring cells. In particular, we show that this

local and one directional data exchange — restricted only to decoded messages — is enough to

reduce the uplink of a sectored cellular network to a topology in which the optimal degrees of

freedom can be achieved without requiring time-frequency expansion or lattice alignment. Notice

that in the proposed architecture we do not require that the sector receivers share received signal

samples and/or perform joint decoding of multiple user messages, in contrast with existing works

on “distributed antenna systems” and the popular and widely studied “Wyner model” [31], [32]

for cellular systems. We emphasize that locally sharing decoded information messages over the

backhaul and restricting to single-user decoding can be easily implemented within the current

technology.

2Following [27]–[29] we refer to an “extended” network as a network with a fixed spatial density of cells and increasing

total coverage area, in contrast to a “dense” network where the total coverage area is fixed and the cell density increases.
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In general, in coordinated cell processing strategies, there is always the risk that the signaling

scheme relies on the strength of interference in order to achieve reliable communication. However,

practical systems are not designed to guarantee that strength. On the contrary, current system

deployment is geared to making interfering links as weak as possible. Hence, a scheme that relies

on “strong interference” links would fail if applied to a system which was designed according to

the current design guidelines. In order to address this issue, we introduce the concept of topological

robustness, where the goal is to design communication schemes that can maintain a minimum rate

(or degrees of freedom) no matter if the interference links are strong or weak. In particular, we

show that such schemes exists in our framework and prove their optimality using a compound

network formulation.

This paper is organized as follows. First, in Section II we describe the cellular model that we

consider in this work and give a formal problem statement. Then, in Section III we state our

results for networks with no intra-cell interference and give the corresponding achievability and

converse theorems. In Section IV we extend our model to incorporate both out-of-cell and intra-

cell interference and in Section V we focus on the design and optimality of topologically robust

transmission schemes. Finally, we conclude this paper with Section VI.

II. PROBLEM FORMULATION

A. Cellular Model

Consider a large multiple-input multiple-output (MIMO) cellular network with three sectors per

cell. As in current 4G cellular systems [33], orthogonal intra-sector multiple access is used in the

uplink, such that, without loss of generality, we can consider a single user per sector, as shown

in Fig. 1a. Within each sector, the receiver is interested in decoding the uplink message of the

user associated with it and observes all other transmissions as interference. We consider here a

symmetric configuration in which all transmitters and receivers in the network are equipped with

M antennas each and assume frequency-flat channel gains that remain constant throughout the

entire communication.

Because of shadowing effects and distance-dependent pathloss, that are inherent to wireless

communications [34], we assume that the interference seen at each receiver is generated locally,
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(a) Cellular network (b) Interference graph

Fig. 1: The cellular network topology and the corresponding interference graph: we consider the uplink

of a MIMO cellular network with 120o sector receivers as depicted in Fig. 1a. Each receiver is interested

in decoding the message of the mobile terminal associated with it and observes all other transmissions as

interference. In our cellular model we assume four dominant sources of interference for each sector shown

as orange arrows originating from its closest out-of-cell transmitters. Interference between the sectors of

the same cell is depicted with black arrows. Fig. 1b shows the corresponding interference graph by taking

into account all interfering links in a given cellular network, in which vertices represent transmit-receive

pairs within sectors and edges indicate interfering neighbors. The dashed black edges in the above graph

correspond to interference between sectors of the same cell that we are going to ignore until Section IV.

by transmitters located in neighboring sectors.3

Let S be the sector index set and let N (i) denote the set of the interfering neighbors of the ith

sector. The received signals in our model can be written as

yi = Hiixi +
∑

j∈N (i)

Hijxj + zi, i ∈ S (1)

where Hij is the M×M matrix of channel gains between the transmitter (user terminal) associated

with sector j and the receiver of sector i and xi are the corresponding transmitted signals satisfying

the average power constraint E
[
||xi||2

]
≤ P .

3 In practice, the aggregate effect of non-neighboring transmitters contributes to the “noise floor” of the system. In

[35], necessary and sufficient conditions on the channel gain coefficients of a Gaussian K-user interference channels

are found such that “treating interference as noise” (TIN) is approximately optimal in the sense that, subject to these

conditions, the TIN-achievable region is within an SNR-independent gap of the capacity region.
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In this paper, we will consider two interference models based on the choice of the sets N (i), i ∈
S. In the first part, we will assume that the sectors located in the same cell do not interfere with each

other and focus only on interference generated by nearby out-of-cell transmitters. This assumption

can be motivated by taking into account the physical orientation and radiation patterns of the

antennas used in sectored cellular systems, where the interference power from users in different

sectors of the same cell should be much less than the interference power observed from out-

of-cell users located in the sector’s line of sight. Then, in Section IV, we are going to lift this

assumption and consider the case where sector receivers observe both out-of-cell and intra-cell

interference. This extension takes into account the fact that users near the sector boundary may

produce significant interference to the neighboring sector in the same cell, due to possibly non-ideal

sectored antenna radiation patterns.

B. Interference Graph

A useful representation of our cellular model can be given by the corresponding interference

graph G(V, E) shown in Fig. 1b. In this graph, vertices represent transmit-receive pairs within

each sector and edges indicate interfering neighboring links: the transmitter associated with a

node u ∈ V causes interference to all receivers associated with nodes v ∈ V if there is an edge

(u, v) ∈ E . Notice that the interference graph is undirected and hence interference between sectors

in our model goes in both directions.

More formally, we can define the interference graph G(V, E) as follows. First, we are going

to define the set V through a one-to-one mapping between the vertices of the graph and a set of

complex numbers that we will refer to as node labels. The real and imaginary parts of these labels

can be interpreted as the coordinates of the corresponding nodes embedded on the complex plane

in a way that resembles the specific sector layout of our cellular system. A natural choice for

this labeling is the set of the Eisenstein integers Z(ω) that exhibits the hexagonal lattice structure

shown in Fig. 2.

Definition 1 (Eisenstein integers) The set of Eisenstein integers, denoted as Z(ω), is formed by

all complex numbers of the form z = a+ bω, where a, b ∈ Z and ω = 1
2(−1 + i

√
3). ♦

Define Br , {z∈C: |Re(z)| ≤ r, |Im(z)| ≤
√
3r
2 } and let φ : V → Z(ω) ∩ Br be an one-to-one

mapping between the elements of V and the set of bounded Eisenstein integers given by Z(ω)∩Br.
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Fig. 2: The Eisenstein integers Z(ω) on the complex plane.

For any v ∈ V we say that φ(v) is the label of the corresponding vertex in the interference graph.

Correspondingly, the set of vertices V is given by

V =
{
φ−1(z) : z ∈ Z(ω) ∩ Br

}
. (2)

We now explicitly describe the set of edges E in the interference graph in terms of the function

φ. Consider the set of three segments in C

∆(z) = {(z, z + ω), (z, z + ω + 1), (z + ω, z + ω + 1)}

and define the set

D ,
⋃

a,b∈Z:
[a+b]mod 36=0

∆(a+ bω) (3)

to be the union of ∆(a + bω) over all a, b ∈ Z such that [a+ b] mod 3 6= 0. Observe that the

segments in ∆(z) form a triangle with vertices in the Eisenstein integers z, z+ω and z+ω+1, as

shown in Fig. 2. The function f(a+bω) , [a+ b] mod 3 partitions the hexagonal lattice Z(ω) into

three cosets. In particular, all points z such that f(z) = 0 form a sublattice Λ0 of Z(ω), and the

points z for which f(z) = 1 and f(z) = 2 corresponds to its cosets Λ0 + 1 and Λ0− 1. In Fig. 2,

the points of Λ0, Λ0 + 1 and Λ0 − 1 are shown with squares, circles and diamonds, respectively.

Without loss of generality, we assume that for all z ∈ Λ0 the segments in ∆(z) correspond to links

between the three sectors of the same cell. Hence, under the assumption that such sectors do not

interfere, we exclude the corresponding {∆(z) : z ∈ Λ0} in the definition of D in (3). Eventually,
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the set of edges E representing out-of-cell interference is given by

E = {(u, v) : u, v ∈ V and (φ(u), φ(v)) ∈ D} . (4)

Definition 2 (Interference Graph) The out-of-cell interference graph G(V, E) is an undirected

graph defined by the set of vertices V given in (2) and the corresponding set of edges E given in

(4). The graph vertices represent transmit-receive pairs in our cellular model and edges indicate

interfering neighbors. ♦

C. Network Interference Cancellation

We further consider a message-passing network architecture for our cellular system, in which

sector receivers communicate locally in order to exchange decoded messages. Any receiver that

has already decoded its own user’s message can use the backhaul of the network and pass it as side

information to one or more of its neighbors. In turn, the neighboring sectors can use the received

decoded messages in order to reconstruct the corresponding interfering signals and subtract them

from their observation. It is important to note that this scheme only requires sharing (decoded)

information messages between sector receivers and does not require sharing the baseband signal

samples, which is much more demanding for the backbone network.

The above operation effectively cancels interference in one direction: all decoded messages

propagate through the backhaul of the network, successively eliminating certain interfering links

between neighboring sectors according to a specified decoding order. Fig. 3 illustrates the above

network interference cancellation process in our cellular graph model assuming a “left-to-right, top-

down” decoding order. Notice that edges are now directed in order to indicate the interference flow

over the network. For example, if an undirected edge (u, v) exists in E and, under this message-

passing architecture, node v decodes its message before node u and passes it to node u through

the backhaul, then the resulting interference graph will contain the directed link [u, v], indicating

that the interference is from node (sector) u node (sector) v only.
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Fig. 3: The directed interference graph Gπ∗(V, Eπ∗) after network interference cancellation according to

the “left-to-right, top-down” decoding order π∗. The transmitter of a sector associated with node i causes

interference only to its neighboring sector receivers j with j < i. Orange arrows indicate out-of-cell

interference while black dashed arrows correspond to interference from within each cell.

A decoding order π can be specified by defining a partial order “≺π” over the set of vertices

V in our interference graph. Then, the message of the user associated with vertex v ∈ V will

be decoded before the one associated with vertex u ∈ V if v ≺π u. In principle, we can choose

any decoding order that partially orders the set V and hence π can be treated as an optimization

parameter in our model.

Definition 3 (Directed Interference Graph Gπ) For a given partial order “≺π” on V , the di-

rected interference graph is defined as Gπ(V, Eπ) where Eπ is a set of ordered pairs [u, v] given

by Eπ = {[u, v] : (u, v) ∈ E and v ≺π u}. ♦

Next, we formally specify the “left-to-right, top-down” decoding order π∗ that has been chosen

in Fig. 3. As we will show in the following section, this decoding order is indeed optimum and

can lead to the maximum possible DoF per user in large cellular networks.

Definition 4 (The Decoding Order π∗) The “left-to-right, top-down” decoding order π∗ is de-

fined by the partial ordering ≺π∗ over V such that for any u, v ∈ V , v ≺π∗ u⇔Im (φ(v)) > Im (φ(u)) , or

Im (φ(v)) = Im (φ(u)) and Re (φ(v)) < Re (φ(u))

♦
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D. Problem Statement

Our main goal is to design efficient communication schemes for the cellular model previously

introduced. As a first-order approximation of a scheme’s efficiency, we will consider here the

achievable DoFs, broadly defined as the number of point-to-point interference-free channels that

can be created between transmit-receive pairs in the network.

More specifically, we are going to limit ourselves to linear beamforming strategies over multiple

antennas assuming constant (frequency-flat) channel gains without allowing symbol extensions.

We refer to such schemes as “one-shot”, indicating that precoding is achieved over a single time-

frequency slot (symbol-by-symbol). Our goal it to maximize, over all decoding orders π, the

average (per sector) achievable DoFs

dG,π ,
1

|V|
∑
v∈V

dv , (5)

where G(V, E) is the interference graph defined in Section II-B and dv denotes the DoFs achieved

by the transmit-receive pair associated with the node v ∈ V , where

dv = lim
P→∞

Rv(P )

log(P )
,

and Rv(P ) is the achievable rate in sector v ∈ V under the per-user transmit power constraint P .

III. NETWORKS WITH NO INTRA-CELL INTERFERENCE

Here we state our main results for the case where there is no interference between the sectors of

the same cell. It is worth pointing out that in this section we do not assume any form of collaboration

between sector receivers other than the message passing scheme described in Section II-C. The

main results of this section are given by the following achievability and converse theorems. The

complete proof of these results is provided in Appendices A and C. For the sake of clarity and in

order to build intuition on both the achievability coding scheme and the converse proof technique,

we treat in detail the case of two-antenna terminals (M = 2) in Sections III-A and III-B.

Theorem 1 For a sectored cellular system G(V, E) in which transmitters and receivers are equipped

with M antennas each, there exist a one-shot linear beamforming scheme that achieves the average

(per sector) DoFs

dG,π∗ =


M
2 , M is even

M
2 − 1

6 , M is odd
(6)

under the network interference cancellation framework with decoding order π∗.



10

Theorem 2 For a sectored cellular system G(V, E) in which transmitters and receivers are equipped

with M antennas each and for any network interference cancellation decoding order π, the average

(per sector) DoFs dG,π that can be achieved by any one-shot linear beamforming scheme are

bounded by dG,π∗ +O (1/
√
|V|), where dG,π∗ is given by Theorem 1.

The above theorems yield a tight DoFs result for large extended cellular networks, for which

|V| → ∞. The term O (1/
√
|V|) comes from the fact that sectors on the boundary observe less

interference, and therefore can achieve higher DoFs. However, the number of sectors on the

boundary is small compared to the total number or sectors |V|, and therefore, their effect vanishes

as the size of the network increases.

Remark 1 Notice that dG,π∗ is not exactly M/2 for odd values of M . This is because we have

insisted on one-shot schemes. By precoding over two time-frequency varying slots it is not difficult

to show that M/2 DoFs per sector are indeed achievable also for odd M . ♦

A. Achievability

For the purpose of illustrating our main ideas, we will consider here the case where sector

receivers and mobile terminal transmitters are equipped with M = 2 antennas and describe the

linear beamforming scheme that is able to achieve one DoF per link for the entire network.

Consider the directed interference graph Gπ∗(V, Eπ∗) shown in Fig. 3 and assume that all user

terminals v ∈ V are simultaneously transmitting their signals xv to their corresponding receivers.

Recall that each sector receiver that is able to decode its own message, is also able to pass it

as side information to its neighbors, effectively eliminating interference in that direction. Hence,

following the “left-to-right, top-down” decoding order π∗ introduced in Section II-C, the sector

receiver associated with the node u ∈ V is able to eliminate interference from all neighboring

sectors v ≺π∗ u and attempt to decode its own message from the two-dimensional received signal

observation yu given by

yu = Huuxu +
∑

v:[v,u]∈Eπ∗
Huvxv + zu. (7)

Our goal is to design the transmitted signals xv such that all interference observed in yu is

aligned in one dimension for every sector receiver u in our cellular system. Let uu and vu denote

the 2-dimensional receive and transmit beamforming vectors associated with node u ∈ V and
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assume that every user terminal in the network has encoded its message in the corresponding

codeword. Although codewords span many slots (in time), we focus here on a single slot and

denote the corresponding coded symbol of user u by su. Then, the vector transmitted by user u is

given by xu = vusu and each receiver can project its observation yu along uu to obtain

ŷu = uH
uHuuvusu +

∑
v:[v,u]∈Eπ∗

uH
uHuvvvsv + ẑu.

We will show next that it is possible to design uu and vu across the entire network Gπ∗(V, Eπ∗)
such that the following interference alignment conditions are satisfied:

uH
uHuuvu 6= 0, ∀u ∈ V and (8)

uH
uHuvvv = 0, ∀[v, u] ∈ Eπ∗ . (9)

Hence, each receiver in the network can decode its own desired symbol su from an interference-free

channel observation of the form

ŷu = ĥusu + ẑu (10)

where ĥu = uH
uHuuvu and ẑu = uH

u zu.

vc

va

vb

vdd

cb

e Hea

Heb

Had

Hab Hac Hdc

a d

cb

ea

Fig. 4: Out-of-Cell Interference in the neighborhood of a blue node. Sectors are labeled here with letters to

avoid confusion with the underlying decoding order (cf. Fig. 3).

In order to describe the alignment precoding scheme, we will partition the nodes in Gπ∗(V, Eπ∗)
into three sets based on their interference in-degree, defined as the number of incoming interfering

links. Notice that in Fig. 3 all the square nodes observe at most three incoming interfering links,

while the in-degrees of all diamond and circle nodes are at most two and one respectively. Let

Vsquare = {v : φ(v) ∈ Λ0}, Vcircle = {v : φ(v) ∈ Λ0 + 1} and Vdiamond = {v : φ(v) ∈ Λ0 − 1}
denote the sets of square, diamond, and circle nodes respectively, as introduced in Section II-B.
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First we are going to propose an interference alignment solution for a small part of the network

that we will refer to as the neighborhood of a square node, denoted as S(u), u ∈ Vsquare, and

then explain how this solution can be extended and applied in the entire network. Fig. 4 shows

the interfering links and transmit-receive pairs that belong to the neighborhood S(a).

In the above neighborhood, the goal is to design the 2-dimensional beamforming vectors va,

vb, vc and vd such that all interference occupies a single dimension in every receiver. We will

hence require that span(Heava) = span(Hebvb) for receiver e and span(Habvb) = span(Hacvc) =

span(Hadvd) for receiver a. These interference alignment conditions can be satisfied if we choose:

va
.
= H−1ea Hebvb (11)

vb
.
= H−1ab Hacvc (12)

vc
.
= H−1ac Hadvd, (13)

where v
.
= u is a shorthand notation for v ∈ span(u). Notice that in the above solution the

beamforming vectors va, vb and vc depend on the chosen direction for vd. This is a key observation

in order to embed the above beamforming strategy in the entire network.

b c

a

1

2
3

1

2
3

1

2
3

Fig. 5: Interference Alignment Scheme. The alignment conditions are depicted here with arrows connecting

interfering streams that have to be aligned. The direction of the arrows show the corresponding beamforming

dependencies (e.g., the arrow labeled with the number 1 requires that va is chosen as a function of vb).

All the transmitters associated with square nodes a ∈ Vsquare can choose their beamforming

vectors va such that the first alignment condition (Eq. 11) is satisfied in every neighborhood S(a).

This beamforming choice is shown in Fig. 5 with an arrow labeled with the number 1, connecting

the two interfering links that have to be aligned. The direction of the arrow indicates that va has
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been chosen as a function of vb. In a similar fashion, following the arrows labeled with the number

2, every circle node b ∈ Vcircle can beamform to satisfy the second alignment condition (Eq. 12)

by choosing vb as a function of vc. Now, in order to ensure that the third condition (Eq. 13) is

also satisfied in every neighborhood we can choose the beamforming vectors of diamond nodes

c ∈ Vdiamond according to the arrows labeled with the number 3, as shown in Fig 5.

Notice that, from each neighborhood’s perspective, vc is chosen as a function of an arbitrary

vector vd that has in turn been chosen to satisfy an alignment condition in a different neighborhood.

Following this procedure, all the transmitters are able design their beamforming vectors sequen-

tially, as functions of their neighbors’ choices, starting from the boundary of the network. It is not

hard to verify that with the above beamforming strategy, every receiver in the network will observe

all interference aligned in one dimension that can subsequently be zero-forced in order to obtain an

observation in the form of (10). In that way, under the network interference cancellation framework

with decoding order π∗, all transmit-receive pairs in Gπ∗(V, Eπ∗) can successively create an one-

dimensional interference-free channel for communication and hence achieve dv = 1, ∀v ∈ V .

B. Converse

In the previous section we described a linear beamforming scheme that can be applied in G(V, E)

when M = 2, and achieve dv = 1, for all v ∈ V , following the “left-to-right, top-down” decoding

order π∗. Here, we are going to show that the above DoFs are almost optimal for our cellular

network in the sense that for any decoding order π, the average (per sector) DoFs dG,π achievable

by any linear scheme are upper bounded by 1 +O (1/
√
|V|).

Let Vv,Uv ∈ C2×dv denote the transmit and receive beamforming matrices associated with a

node v ∈ V . Any linear scheme that achieves the DoFs {dv, v ∈ V} in Gπ(V, Eπ) has to satisfy

the interference alignment conditions:

UH
vHvuVu = 0, ∀[u, v] ∈ Eπ (14)

rank
(
UH
vHvvVv

)
= dv, ∀v ∈ V. (15)

For any receiver associated with a node v ∈ V , the first condition corresponds to zero-forcing all

interference from transmitters {u ∈ V : [v, u] ∈ Eπ} and the second one requires that its own

desired symbols can be successfully resolved.



14

From the above we can obtain the following necessary conditions such that any {dv : v ∈ V}
is achievable in Gπ(V, Eπ):

dv ∈ {0, 1, 2} , ∀v ∈ V (16)

dv + du ≤ 2 , ∀[u, v] ∈ Eπ, (17)

where (16) follows directly from (15) and (17) follows from (14) assuming that rank(HvuVu) =

rank(Vu) = du, ∀[v, u] ∈ Eπ.

In order to obtain an upper bound on the achievable average DoFs, we shall consider the

optimization problem

Q1(Gπ) : maximize
{dv:v∈V}

1

|V|
∑
v∈V

dv

subject to: (16), (17).

In particular, we will derive an upper bound d̂G for the optimal value of Q1(Gπ), such that d̂G ≥
opt(Q1(Gπ)), ∀π and show that d̂G = 1 +O (1/

√
|V|).

As a first step, we are going to rewrite the sum in the objective of Q1(Gπ) as a sum over

connected vertex triplets [u, v, w] that we are going to call the triangles T of our graph.

u

v w

Fig. 6: The set of triangles [u, v, w] ∈ T for G(V, E). All the circle nodes belong to Vin and participate in

exactly two triangles (nv = 2). The set Vex contains the colored nodes on the boundary for which nv < 2.
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In order to formally describe the set of triangles T in G(V, E), we consider the set of ordered

Eisenstein integer triplets

P = {[z, z + ω, z + ω + 1] : z ∈ Z(ω) \ Λ0}.

Recall from Section II-B that when z ∈ Z(ω) \Λ0, the points z, z+ω and z+ω+ 1 form the line

segments ∆(z) ⊆ D and the corresponding graph vertices φ−1(z), φ−1(z+ω) and φ−1(z+ω+1)

form a connected triangle in G(V, E). We can hence define the set of vertex triangles as

T={[u, v, w] : [φ(u), φ(v), φ(w)] ∈ P, u, v, w ∈ V}. (18)

The above definition is illustrated in Fig. 6 in which shaded triangles connect the corresponding

vertex triplets [u, v, w] ∈ T . Notice that apart from some vertices on the external boundary of the

graph, all other nodes participate in exactly two triangles in T . This observation will be particularly

useful in rewriting the sum in the objective function of Q1(Gπ) as a sum over T instead of V .

Let

nv ,
∑

[i,j,k]∈T

1

{
v ∈ {i, j, k}

}
(19)

denote the number of triangles [i, j, k] ∈ T that include a given vertex v ∈ V . As we have seen, nv

can only take values in {0, 1, 2} for any v ∈ V . More specifically nv = 2 for all internal vertices

in G(V, E), while nv < 2 only for some external vertices that lie on the outside boundary of our

graph.

We define the set of internal and external vertices as follows.

Vin = {v ∈ V : nv = 2}, and (20)

Vex = {v ∈ V : nv < 2}. (21)

In Fig. 6 we show the above distinction by coloring all graph vertices v that belong to the set

Vex ⊆ V .

Lemma 1 (Triangle sums) Consider the interference graph G(V, E) and let {xv : v ∈ V} be a

set of values associated with V . The sum of xv over all vertices v ∈ V can be written as∑
v∈V

xv =
∑

[i,j,k]∈T

(
xi + xj + xk

2

)
+
∑
u∈Vex

(
1− nu

2

)
xu. (22)
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Proof: From the definition of nv in (19), we have that∑
[i,j,k]∈T

(xi + xj + xk) =
∑
v∈V

nvxv.

Splitting the sum in terms of Vin and Vex we get∑
v∈V

nvxv =
∑
v∈Vin

nvxv +
∑
u∈Vex

nuxu

= 2
∑
v∈V

xv +
∑
v∈Vin

(nv − 2)xv +
∑
u∈Vex

(nu − 2)xu

= 2
∑
v∈V

xv +
∑
v∈Vex

(nv − 2)xv ,

where the last step follows from the fact that nv = 2 for all v ∈ Vin. Rearranging the terms and

dividing by 2 gives the desired result.

In view of the above lemma, we can rewrite the average DoFs in the objective of Q1(Gπ) as

1

|V|
∑
v∈V

dv =
1

2|V|
∑

[i,j,k]∈T

(di + dj + dk) +
Dex

|V| , (23)

where

Dex =
∑
v∈Vex

(
1− nv

2

)
dv.

Notice that from (16) and (17), the maximum sum di + dj + dk that any triangle [i, j, k] ∈ T
can achieve in our setting is 3 and hence we can bound the sum in (23) as∑

[i,j,k]∈T

(di + dj + dk) ≤ 3|T |.

Similarly, since dv ≤ 2 and nv ≥ 0 for all v ∈ V , we have that

Dex ≤ 2|Vex|.

Using the above inequalities we can upper bound the average achievable DoFs in the cellular

network as 1

|V|
∑
v∈V

dv ≤
3|T |
2|V| +

2|Vex|
|V| . (24)

Lemma 2 By construction, the interference graph G(V, E) satisfies

|T | ≤ 2

3
|V|, and (25)

|Vex| = O
(√
|V|
)
. (26)
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Proof: See Appendix B.

Using the result of the above lemma, we can obtain

opt(Q1(Gπ)) ≤ 1 +O (1/
√
|V|) , (27)

and hence conclude that when M = 2, the average DoFs achievable in the sectored cellular system

are bounded by 1 +O (1/
√
|V|) for any decoding order π.

IV. NETWORKS WITH INTRA-CELL INTERFERENCE

In this section we extend our cellular model to incorporate both out-of-cell and intra-cell

interference. Namely we will assume here that a sector receiver observes interference not only

from its out-of-cell neighbors but also from the other transmitters located within the same cell.

These intra-cell interfering links are shown as black arrows in Fig. 1a and correspond to the dashed

edges in the interference graph shown in Fig. 1b.

The interference graph, denoted here as Ĝ
(
V, Ê

)
, is the same as the graph defined in Section

II-B with the only difference that the set Ê now includes both out-of-cell and intra-cell interfer-

ence edges. Similarly we can define the directed interference graph Ĝπ
(
V, Êπ

)
for any network

interference cancellation decoding order π.

We will see next that these additional interfering links in Ê do not affect the achievable degrees

of freedom in our cellular system as long as we allow the sectors of each cell to jointly process

their received signals.4 Again, we state here our main achievability result and focus on the case

where M = 2 in Section IV-A, while the full proof is postponed to Appendix D.

Theorem 3 For a sectored cellular system Ĝ
(
V, Ê

)
in which transmitters and receivers are equipped

with M antennas each, there exists a one-shot linear beamforming scheme that achieves the average

(per sector) DoFs

dĜ,π∗ =


M
2 , M is even

M
2 − 1

6 , M is odd
(28)

under the network interference cancellation framework with decoding order π∗, and with joint

processing within the sectors of each cell.

4It is interesting to notice that joint sector processing at the same cell base station site is implemented in current

technology.
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A. Achievability

Consider the beamforming scheme described in Section III-A for M = 2 and focus on the cell

{a, b, c} shown in Fig. 7. Without loss of generality, we will describe here how to jointly process

the received observations in ya, yb and yc such that all intra-cell interference can be eliminated

and show that under the network interference cancellation framework and the beamforming choices

of Section III-A, every sector receiver in the network is able to decode its own desired message.

a

d c

b

Fig. 7: Intra-Cell Interference Elimination. The sectors of each cell can jointly process their received signals

and successively decode their desired messages.

According to the “left-to-right, top-down” decoding order π∗, at the time when sector a attempts

to decode, all the interfering links from transmitters located “above and to the left” of a have already

been eliminated. As we can also see in Fig. 7, sector a will observe intra-cell interference from

sectors b and c, and out-of-cell interference from sector d. Hence, the received signal available to

sector a is given by

ya = Haavasa +
∑

u∈{b,c,d}

Hauvusu + za. (29)

At the same time, the receivers b and c will be observing interference from all their neighboring

sectors that have not decoded their messages yet. Notice however that with the specific beamforming

choices described in Section III-A, all interference that comes from sectors whose messages will

be decoded after sectors b and c according to π∗, occupy a single dimension in each receiver and

can hence be zero-forced. It is only the transmitter associated with sector d that is going to cause

interference after the projection. Therefore, the corresponding observations from sectors b and c
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that are available when receiver a attempts to decode are given by

uH
b yb = uH

b Hbbvbsb +
∑

u∈{a,c}

uH
b Hbuvusu + uH

b zb, (30)

uH
c yc = uH

c Hccvcsc +
∑

u∈{a,b,d}

uH
c Hcuvusu + uH

c zc. (31)

We will see next that the cell with sectors {a, b, c} can jointly process the above observations

such that all the corresponding sector receivers will be able to decode their desired messages in

the order sa, sb, sc specified by π∗. Indeed, if we let s = [sa, sb, sc, sd]
T, the observations (29),

(30) and (31) can be written in vector form as

ỹ = H̃s + z̃ (32)

where

ỹ = [ya,u
H
b yb,u

H
c yc]

T,

z̃ = [za,u
H
b zb,u

H
c zc]

T

and

H̃ =


Haava Habvb Hacvc Hadvd

uH
b Hbava uH

b Hbbvb uH
b Hbcvc 0

uH
c Hcava uH

c Hcbvb uH
c Hccvc uH

c Hcdvd

 .
Now, assuming that the channel matrices in our cellular network are chosen independently

at random from a non-degenerate continuous complex distribution (e.g., they have independent

elements drawn from a complex normal distribution), we can show that H̃ ∈ C4×4 is full rank

with probability one. One can check that the beamforming vectors ui and vj do not depend on the

above channel realizations, and therefore the elements of H̃ can be seen as independent random

variables for which P
[
det(H̃) 6= 0

]
= 1. Hence, the given cell can always decode the corresponding

messages from ỹ in the required order, as soon as the observations (29), (30) and (31) become

available to sectors a, b and c.
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In order to state the decoding process more explicitly, consider Q = [q1,q2,q3,q4] to be the

unitary matrix obtained by the QL-decomposition of H̃ such that

QHH̃ =


`11 0 0 0

`21 `22 0 0

`31 `32 `33 0

`41 `42 `43 `44

 .

The sector receivers a, b and c can first project ỹ along q1, q2 and q3 in order to obtain their

corresponding observations in the form

y′a = `11sa + z′1 (33)

y′b = `21sa + `22sb + z′2 (34)

y′c = `31sa + `32sb + `33sc + z′3, (35)

and then successively decode their desired messages sa, sb and sc according to the specified order.

In general, the above observations can be generated for every cell in the network just before

their first sector receiver attempts to decode. Therefore, following the “left-to-right, top-down”

decoding order π∗, all the sectors in Ĝπ∗
(
V, Êπ∗

)
can decode their desired messages using the

above procedure and hence the average (per sector) degrees of freedom dĜ,π∗ = 1 are achievable.

V. TOPOLOGICAL ROBUSTNESS

In this section we introduce the concept of topological robustness for interference networks.

Broadly speaking, an achievable scheme is said to be robust with respect to a network topology

if its performance does not depend on the existence (or strength) of interference. This is a very

important property to take into account if we want to apply a communication scheme in practice.

Cellular systems are in principle designed such that most interfering links are weak and hence any

scheme that solely depends on the existence (or strength) of interference will fail whenever the

corresponding links are missing (or weak).

Consider for example the achievable scheme described in Section IV-A and assume that for a

given channel realization all interference observed at receiver a is zero. In this network instance,

depicted in Fig. 8, the equivalent channel matrix in the joint receiver observation for the cell
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a

d c

b

Fig. 8: The achievable scheme of Section IV-A is not topologically robust. Sector b will not able to decode

its own desired message if Sector a does not observe interference from its neighbors.

{a, b, c}, given by

H̃′ =


Haava 02×1 02×1 02×1

0 uH
b Hbbvb uH

b Hbcvc 0

0 uH
c Hcbvb uH

c Hccvc uH
c Hcdvd

 ,
is rank-deficient and hence the desired transmitted messages cannot be resolved from (32). Even

though sector a can always decode its own message, its observation cannot help sectors b and c

eliminate the remaining interference, and therefore sector b cannot decode its message.

It is not surprising that the above scheme fails in this case; the receiver has been designed

to rely on a specific interference topology (cf. Fig. 7) in order obtain the required linearly-

independent observations. Whenever the corresponding links are missing, the decoding process

fails and therefore the scheme proposed in Section IV-A cannot be considered topologically robust.

In practice, interference will never be exactly zero as in the previous example. However, any

communication scheme that critically depends on sufficiently strong interfering links (e.g. , such

that the corresponding messages can be decoded and interference can be canceled) will suffer from

significant noise enhancement in the decoding process whenever the corresponding channel gains

are below a certain threshold. In this case the corresponding receiver will not be able to decode

within the operating SNR range of the network and the weaker interference links will become the

bottleneck in its performance.



22

Under this framework, one could consider all possible channel realizations and design a family of

transmission schemes, each one specifically optimized for the corresponding interference topology.

Even though this is a tractable approach for small networks, it becomes more challenging as the

size of the network increases. Here, we take a unified approach and propose a topologically robust

transmission scheme for large cellular systems that is able to maintain the same performance for

all network configurations, no matter if the interference links are strong or weak.

A. The Compound Cellular Network

In order to formally capture the concept of topological robustness in our cellular model, we

will consider here a compound scenario in which any subset of the interfering links could be

potentially missing from the network. More precisely, we focus on the sectored cellular system

Ĝ(V, Ê) defined in Section IV and we assume that every directed edge [v, u] ∈ Ê is associated with

a binary channel-state parameter αuv ∈ {0, 1} that determines whether the corresponding link will

exist in the network or not.

The compound channel matrices are generated in the form of αuv ·Huv, ∀[v, u] ∈ Ê , as a

function of the channel-state configuration

A ,
{
αuv ∈ {0, 1} : [v, u] ∈ Ê

}
, (36)

and the compound cellular network is defined over all possible choices of A ∈ {0, 1}2|Ê|. We

assume that the channel-state configuration A is known to all receivers but is a priori unavailable5

to the transmitters in the above compound network, in the sense that the interference alignment

precoding scheme (although a function of the channel matrices Huv and of the interference graph

Ĝ(V, Ê)) must be designed irrespectively of A.

A topologically robust transmission scheme is required to maintain the same performance for

all channel-state parameters A ∈ {0, 1}2|Ê|. Let Ĝ(V, Ê
∣∣A) be the interference graph generated in

the above compound network when the channel-state is A and let dĜ(A) denote the average (per

sector) degrees of freedom achievable in Ĝ(V, Ê
∣∣A).

5It is important to note that in the original set-up, the channel state information is available at the transmitters, and

therefore obviously the channel is not compound. However, this rather artificial compound model allows us to design a

unified achievable scheme, which works, independent of the strength of interference links.
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Definition 5 A communication scheme designed for a sectored cellular system Ĝ(V, Ê) is said to be

topologically robust with robustness level d > 0, if it can achieve dĜ(A) ≥ d, for all channel-state

configurations A ∈ {0, 1}2|Ê|. ♦

As we have seen before, the achievable scheme described in Section IV-A is not topologically

robust according to the above definition: even though it can achieve dĜ(A) = 1, when αuv =

1,∀(u, v) ∈ Ê , there exists a configuration A′, shown in Fig. 8, in which the decoding process

fails.

Under this framework, we are interested in the design of communication schemes that maximize

the compound degrees of freedom,

dC , min
A∈{0,1}|Ê|

dĜ(A). (37)

Notice that a topologically robust scheme with robustness level d achieves (by definition) the

compound DoFs dC = d. The following theorems show the existence of topologically robust

schemes that achieve the optimum compound DoFs performance, which coincides with the optimum

DoFs performance in the non-compound setting with intra-cell interference given in Section IV-A.

Theorem 4 For a compound sectored cellular system
{
Ĝ
(
V, Ê

∣∣A) : A ∈ {0, 1}2|Ê|
}

, in which

transmitters and receivers are equipped with M antennas each, there exists a one-shot linear

beamforming scheme that achieves the average (per sector) compound DoFs

d∗C =


M
2 , M is even

M
2 − 1

6 , M is odd
(38)

under the network interference cancellation framework, assuming local receiver cooperation within

each cell.

Theorem 5 The compound DoFs dC of a sectored cellular system
{
Ĝ
(
V, Ê

∣∣A) : A ∈ {0, 1}2|Ê|
}

achievable by any one-shot linear beamforming scheme under the network interference cancellation

framework are bounded by d∗C +O (1/
√
|V|), where d∗C is given by Theorem 4.

As before, we discuss in detail the case M = 2 and sketch the proof of Theorem 4 in the general

case in Appendix E. Theorem 5 is proved in Appendix F.
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B. Topologically Robust Achievability

In this section, we focus on the case where M = 2 and describe a topologically robust

transmission scheme for Ĝ(V, Ê) that is able to achieve dC = 1. We will consider a scheme

very similar to the one described in Section IV-A. We will use the same beamforming strategy,

but consider a new decoding order that is able to guarantee topological robustness.

In the terminology to follow, we distinguish between primary and secondary sectors in our

network according to their relative position within each cell. We say that a sector v ∈ V is primary

if v ∈ Vcircle (i.e., it is located in the upper-left corner of a cell) and secondary otherwise.

decoding
order

D1

D2

D3

...

⇡s

Fig. 9: The decoding order πs. The highlighted sector pairs decode their messages simultaneously.

We consider here a new decoding order under the network interference cancellation framework

in which cells decode their messages in diagonal groups, starting from the upper-left corner of the

network. Within each group, the cells first decode their primary messages (i.e, the ones associated

with primary sectors) following a top-down decoding order and then proceed to their secondary

messages which are decoded in the opposite direction. This process leads to the “curly-S” decoding

order shown in Fig. 9 and will be denoted here as πs.

An important property of the above decoding order is that it maintains, under network interfer-

ence cancellation, the same out-of-cell interfering link directions as the “left-to-right, top-down”
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decoding order π∗. We have that

Eπs
, {[u, v] : (u, v) ∈ E and v ≺πs

u} = Eπ∗

and hence the beamforming scheme designed for Eπ∗ (Section III-A) can be directly applied in

this case and satisfy the out-of-cell alignment conditions

uH
uHuvvv = 0, ∀[v, u] ∈ Eπs

. (39)

Recall the example shown in Fig. 8 and assume that receiver a has already decoded its own

message. With the previous decoding order, π∗, the receivers b and c were unable to jointly decode

their messages due to the existing interference from sector d. With the new decoding order however,

this is no longer an issue. According to πs, the receiver in sector d will be decoded before sectors

b and c, and hence its message will be available to the corresponding receivers for interference

cancellation.

a b

cd

messages decoded before (b), (c)

Fig. 10: Robust decoding for sectors b and c.

The network instance described above is depicted in Fig. 10. Under the network interference

cancellation framework with decoding order πs, the receiver observations at the time when sectors

b and c attempt to decode are given by

yb = Hbbvbsb + Hbcvcsc +
∑

v:[v,b]∈Eπs

Hbvvvsv + zb,
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and

yc = Hccvcsc + Hcbvbsb +
∑

v:[v,c]∈Eπs

Hcvvvsv + zc,

where Huv = αuv ·Huv are the compound channel matrices with state parameters αuv ∈ {0, 1}.
Notice that the secondary sectors b and c, no longer need the primary observation from sector a

in order to decode their messages. From (39) we have that

uH
b

∑
v:[v,b]∈Eπs

Hbvvvsv = 0 and uH
c

∑
v:[v,c]∈Eπs

Hcvvvsv = 0,

for all compound channel states and hence the corresponding observations can be written in vector

form as uH
b yb

uH
c yc

 =

uH
b Hbbvb uH

b Hbcvc

uH
c Hcbvb uH

c Hccvc


︸ ︷︷ ︸

,H̃(αbc,αcb)

sb
sc

+ z̃. (40)

The equivalent channel matrix H̃(αbc, αcb) ∈ C2×2 given in the above observation depends on

the compound channel-state parameters αbc, αcb ∈ {0, 1}, which determine whether sectors b and

c interfere with each other or not. We can see that the resulting channel matrices,

H̃(0, 0) =

uH
b Hbbvb 0

0 uH
c Hccvc

 , H̃(1, 0) =

uH
b Hbbvb uH

b Hbcvc

0 uH
c Hccvc

 ,
H̃(0, 1) =

uH
b Hbbvb 0

uH
c Hcbvb uH

c Hccvc

 , H̃(1, 1) =

uH
b Hbbvb uH

b Hbcvc

uH
c Hcbvb uH

c Hccvc

 ,
are all full-rank, and hence the receivers in sectors b and c are always able to decode their messages,

irrespective of the compound channel-state parameters.

Similarly, we can show that all transmitted messages in Ĝ
(
V, Ê

∣∣A) associated with secondary

sectors, can be successfully decoded according to πs, for all compound channel-state configurations

A ∈ {0, 1}2|Ê|. It remains to argue that primary sectors are also able to decode their messages in

the above compound network and hence show that the average (per sector) degrees of freedom

d∗C = 1 are achievable.

Consider the cell {a, b, c} shown in Fig. 11 just before its primary sector receiver a attempts to

decode. According to πs, the available receiver observations in this cell are given by
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a b

cd

messages decoded before (a)

Fig. 11: Robust decoding for sector a.

ya = Haavasa +
∑

v∈{b,c,d}

Havvvsv + za,

uH
b yb = uH

b Hbbvbsb +
∑

v∈{a,c}

uH
b Hbvvvsv + uH

b zb,

uH
c yc = uH

c Hccvcsc +
∑

v∈{a,b,d}

uH
c Hcvvvsv + uH

c zc,

where all interference coming from sectors v ≺πs
a has already been eliminated. The above

observations can be written in vector form (cf. Eq. 32) as,

ỹ = H̃(α) s̃ + z̃, (41)

where H̃(α) depends on the channel-state parameters α , [αab, αac, αad, αba, αbc, αca, αcb, αcd] ∈
{0, 1}8 and is given by

H̃(α) =


Haava Habvb Hacvc Hadvd

uH
b Hbava uH

b Hbbvb uH
b Hbcvc 0

uH
c Hcava uH

c Hcbvb uH
c Hccvc uH

c Hcdvd

 .

Notice that H̃(α) has the same structure as the matrix H̃ we considered in Section III-A, and

as we have already seen in the example of Fig. 8, there exist channel-state configurations (e.g,

α = [0, 0, 0, 0, 1, 0, 1, 1]), for which H̃(α) becomes rank-deficient. However, this is not necessarily
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a problem here, since we are only interested in decoding the primary sector’s message sa. In this

case, we just have to guarantee that the following condition,

[1, 0, 0, 0] ∈ rowspan
(
H̃(α)

)
, (42)

holds for every channel-state configuration α. Of course, when α is the all-ones vector, the matrix

H̃(α) ∈ C4×4 is full-rank and the above condition is automatically satisfied.

In order to show that the primary sector’s message can be always be decoded and that (42) holds

for all α ∈ {0, 1}8, we will consider here the following cases:

1) αcd = 0, for all [αab, αac, αad, αba, αbc, αca, αcb] ∈ {0, 1}7.

2) αad = 1, for all [αab, αac, αba, αbc, αca, αcb, αcd] ∈ {0, 1}7.

3) [αcd, αad] = [1, 0], for all [αab, αac, αad, αba, αbc, αca, αcb, αcd] with αab · αac = 0.

4) [αcd, αad] = [1, 0], for all [αab, αac, αad, αba, αbc, αca, αcb, αcd] with αab · αac = 1.

Notice that these four cases (illustrated in Fig. 13) cover all possible compound channel-state

configurations for the interfering links between the sectors a, b, c, and d. Before proceeding to

examine these cases separately, we give a lemma that will be repeatedly used.

a b

cd

a b

cd

a b

cd

a b

cd

Case 1 Case 2 Case 3 Case 4

↵cd = 0 ↵ad = 1

↵ab · ↵ac = 0 ↵ab · ↵ac = 1
↵cd = 1 ↵ad = 0 ↵cd = 1 ↵ad = 0, ,

Fig. 12: Compound channel-state configurations for sectors a, b, c and d. Case 1 captures all parameter

configurations α, in which there is no interference between sectors c and d, and Case 2 corresponds to

configurations with αad = 1. In Cases 3 and 4, we assume that [αcd, αad] = [1, 0] and distinguish between

configurations in which sector a observes at most one, or two interfering signals.
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Lemma 3 Let H be an n×n matrix whose elements are chosen independently at random from a

continuous probability distribution. For any binary matrix A ∈ {0, 1}n×n with diagonal elements

aii = 1, i = 1, ..., n, the rank of the Hadamard (pointwise) product (A ◦H) is equal to n with

probability one.

Proof: Let G = (A ◦ H) and define the multivariate polynomial Q(h1,1, h1,2, ..., hn,n) as

being equal to det(G). Using the Leibnitz formula for the determinant we have that

Q(h1,1, h1,2, ..., hn,n) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Gi,σ(i) (43)

=
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i)

n∏
i=1

hi,σ(i) (44)

=

n∏
i=1

hi,i +
∑

σ∈Sn\{σ∗}

sgn(σ)

n∏
i=1

ai,σ(i)

n∏
i=1

hi,σ(i) (45)

and hence Q(h1,1, h1,2, ..., hn,n) 6≡ 0, for all A with ai,i = 1. Further, assuming that hi,j are

chosen independently at random from a continuous distribution we have that

P[Q(h1,1, h1,2, ..., hn,n) 6= 0] = 1,

and therefore the matrix G = (A ◦H) is full-rank with probability one.

Case 1: When αcd = 0, the receiver a can first zero-force the interference from sector d and

obtain

uH
a ya = uH

aHaavasa +
∑

v∈{b,c}

uH
aHavvvsv + uH

a za.

Then it can use the projected observations from sectors b and c, which are given in this case by

uH
b yb = uH

b Hbbvbsb +
∑

v∈{a,c}

uH
b Hbvvvsv + uH

b zb,

uH
c yc = uH

c Hccvcsc +
∑

v∈{a,b}

uH
c Hcvvvsv + uH

c zc,

in order to create a three-dimensional vector observation of the form


uH
b yb

uH
b yb

uH
c yc

 =


uH
aHaava uH

aHabvb uH
aHacvc

uH
b Hbava uH

b Hbbvb uH
b Hbcvc

uH
c Hcava uH

c Hcbvb uH
c Hccvc


︸ ︷︷ ︸

,H̃(αab,αac,αba,αbc,αca,αcb)


sa

sb

sc

+ z̃.
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Notice that H̃(αab, αac, αba, αbc, αca, αcb) can be written as the pointwise product (A ◦H) =
1 αab αac

αba 1 αbc

αca αcb 1

 ◦

uH
aHaava uH

aHabvb uH
aHacvc

uH
b Hbava uH

b Hbbvb uH
b Hbcvc

uH
c Hcava uH

c Hcbvb uH
c Hccvc

 ,
where H and A satisfy the conditions of Lemma 3, and hence it is full-rank for all channel-state

parameters [αab, αac, αba, αbc, αca, αcb]. We can therefore argue that receiver a is always able in

this case to decode its desired message from the above joint observation.

Case 2: When αad = 1, the equivalent channel matrix H̃(α) is going to be full-rank for every

choice of [αab, αac, αba, αbc, αca, αcb, αcd] ∈ {0, 1}7 and hence sa can be decoded directly from

(41). In order to show this we will first write the matrix H̃(α) in its product form (A ◦ H̃), where

A =


1 αab αac 1

1 αab αac 1

αba 1 αbc 0

αca αcb 1 αcd

 ,

and consider a permutation matrix Pσ that reorders the rows of A according to σ(1) = 4, σ(2) = 1,

σ(3) = 2, σ(4) = 3. We have that

rank(A ◦ H̃) = rank
(
Pσ(A ◦ H̃)

)
= rank(PσA ◦PσH̃)

and since [PσA]ii = 1, ∀i, we can use Lemma 3 to show that the above matrix is indeed full-rank

for any choice of channel-state parameters [αab, αac, αba, αbc, αca, αcb, αcd] ∈ {0, 1}7.

Case 3: When αad = 0 and [αab, αac] = [0, 0], receiver a observes no interference and can

directly decode its own message. Now, when [αab, αac] ∈ {[0, 1], [1, 0]}, the receiver a has only

one interfering link which can always be zero-forced from its two-dimensional observation ya.

Without loss of generality, assume that αac = 1 and choose ua ∈ C2 such that uH
aHacvc = 0.

Then,
uH
a ya = uH

aHaavasa + uH
a za,

and since uH
aHaava 6= 0 with probability one, the message sa can be decoded in this case as well.
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Case 4: In this case, the equivalent channel matrix H̃(α) can be written as (A ◦ H̃), with

A =


1 1 1 0

1 1 1 0

αba 1 αbc 0

αca αcb 1 1

 ,

and, as in Case 2, we can use Lemma 3 to show that it is full-rank, by swapping the second and

third rows of A. Hence, sa can be decoded from (41) for all [αba, αbc, αca, αcb] ∈ {0, 1}4.

VI. CONCLUSIONS

In this work we have shown that the promised DoFs gain of interference alignment can be

achieved in cellular networks with straightforward one-shot alignment precoding, without requiring

symbol extensions over very large number of time-frequency dimensions, or infinite resolution of

“rationally independent” signal levels. In particular, we have shown schemes that achieve 1/2 DoFs

per antenna in the uplink of a cellular system with three sectors per cell and one active user per

sector, where both the user transmitter and the sector receiver have M antennas. Our result applies

immediately to the case of M even, while it requires extension over two time/frequency varying

slots for M odd. Furthermore, for the case where there is (possibly) interference between sectors

of the same cell, we have considered a scheme that exploits joint processing (in fact, successive

decoding is sufficient) of the three sectors in the same cell and achieves the same optimal DoFs.

Finally, for this scenario we have defined the notion of “topological robustness” of a scheme, as

the ability to achieve fixed average DoFs irrespectively of the presence/absence of the interfering

links. We have shown that topologically robust one-shot linear schemes exist, which achieve the

same optimal DoFs of the original network where all links are present.

The key technology enabler to achieve these results is to allow base stations to share their

own locally decoded messages with their neighboring base station receivers. This framework is

very different from joint processing of all the cell sites as advocated in the so-called “Wyner

model”, which requires all received signals to be jointly processed at a single central processor.

As a matter of fact, both joint processing of same-cell sectors and message passing of already

(individually) decoded messages to neighboring cells can be implemented in current cellular

technology. Therefore, we believe that the results of this paper are not only a step forward in

the understanding of the true potential of interference alignment in wireless networks, but also



32

provide practical and valuable system design guidelines towards a much more efficient interference

management in large wireless networks.

APPENDIX A

PROOF OF THEOREM 1

Consider the directed interference graph Gπ∗
(
V, Eπ∗

)
and let Vv,Uv ∈ CM×dv denote the

transmit and receive beamforming matrices associated with each node v ∈ V .

We will show here that it is possible to choose dv, Vv and Uv for every v ∈ V such that the

following conditions are satisfied.

UH
uHuvVv = 0, ∀[v, u] ∈ Eπ∗ (46)

rank
(
UH
vHvvVv

)
= dv, ∀v ∈ V, and (47)

1

|V|
∑
v∈V

dv ≥


M
2 , M is even

M
2 − 1

6 , M is odd.
(48)

Recall the definitions of f(·) and φ(·) that are given in Section II-B and consider the sets

Vk = {v ∈ V : f(φ(v)) = k}, k = 0, 1, 2. (49)

Notice that Vk satisfy

V =

2⋃
k=0

Vk and Vi ∩ Vj = ∅, i 6= j

and hence form a partition of V .

An important observation is that, according to Eπ∗ , every receiver associated with a node u ∈ V1
has at most one interfering transmitter. More specifically, for every u ∈ V1 there exist [v, u] ∈ Eπ∗
if and only if there exist v ∈ V2 with φ(v) = φ(u)− 1− ω.

Similarly, the receivers associated with the nodes u ∈ V2 have at most two interfering transmitters

and hence we can argue that for every u ∈ V2 there exist [v, u] ∈ Eπ∗ if and only if there exist

v0 ∈ V0 with φ(v0) = φ(u) + 1 or v1 ∈ V1 with φ(v1) = φ(u)− ω.

Finally, every receiver associated with a node u ∈ V0 observes at most three interferers and

we have that for every u ∈ V0 there exist [v, u] ∈ Eπ∗ if and only if there exist v1 ∈ V1 with

φ(v1) = φ(u) + 1 or v2 ∈ V2 with φ(v2) = φ(u)− ω or v′1 ∈ V1 with φ(v′1) = φ(u)− 1− ω.
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For any full rank matrix A ∈ Cm×n with m > n, we let P⊥A ∈ Cm×(m−n) be a basis for the

nullspace of AH, such that (P⊥A)HA = 0.

A. M is even

Let dv = M
2 , for all v ∈ V and consider the following beamforming choices.

(a) For all v0 ∈ V0 such that there exist v1 ∈ V1 and u ∈ V2 with φ(v1) = φ(v0) − 1 − ω and

φ(u) = φ(v0)− 1, set

Vv0 = H−1uv0Huv1Vv1/||H−1uv0Huv1Vv1 ||.

Otherwise choose Vv0 ∈ CM×dv at random.

(b) For all v1 ∈ V1 such that there exists v2 ∈ V2 and u ∈ V0 with φ(v2) = φ(v1) + 1 and

φ(u) = φ(v1)− 1 + ω, set

Vv1 = H−1uv1Huv2Vv2/||H−1uv1Huv2Vv2 ||.

Otherwise choose Vv1 ∈ CM×dv at random.

(c) For all v2 ∈ V2 such that there exists v1 ∈ V1 and u ∈ V0 with φ(v1) = φ(v2) + 1 + ω and

φ(u) = φ(v2) + ω, set

Vv2 = H−1uv2Huv1Vv1/||H−1uv2Huv1Vv1 ||.

Otherwise choose Vv2 ∈ CM×dv at random.

(d) For all u ∈ V such that there exists an edge [v, u] ∈ Eπ∗ for some v ∈ V , set

Uu = P⊥HuvVv
.

Otherwise choose Uu ∈ CM×dv at random.

Notice that the conditions (47) and (48) are automatically satisfied (with probability one) since

dv = M
2 , ∀v ∈ V and Huv are chosen at random from a continuous distribution. We are going to

show next that the conditions (46) are also satisfied for all [v, u] ∈ Eπ∗ . Consider the sets:

E(k)π∗ = {[v, u] ∈ Eπ∗ : u ∈ Vk}.

As we have seen, every receiver associated with u ∈ V1 observers at most one interfering transmitter

and hence UH
uHuvVv = (P⊥HuvVv

)HHuvVv = 0 for all [v, u] ∈ E(1)π∗ . For every receiver u ∈ V2
there exist at most two interfering transmitters given by v0 ∈ V0, v1 ∈ V1 with φ(v0) = φ(u)+1 and
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v0

v1

u

v1 v2

u

v1u

(a)

(b)

(c)
v2

Fig. 13: The beamforming choices (a), (b) and (c). In this example, all the nodes with dashed outline have

chosen their beamforming vectors at random.

φ(v1) = φ(u)−ω. Notice that in this case φ(v1) = φ(v0)−1−ω and according to (a), Huv0Vv0 =

Huv1Vv1/||H−1uv0Huv1Vv1 || ∈ span(Huv1Vv1). Hence we can also argue that UH
uHuvVv = 0 for

all [v, u] ∈ E(2)π∗ . Now consider the set E(2)π∗ . In a similar fashion, we can see that according to the

beamforming choices (b) and (c), all interference observed by receivers u ∈ V0 aligns in M/2

dimensions. That is for every u ∈ V0 that observes interference from the transmitters v1 ∈ V1,

v2 ∈ V2 and v′1 ∈ V1 with φ(v1) = φ(u) + 1 , φ(v2) = φ(u) − ω and φ(v′1) = φ(u) − 1 − ω we

have that span(Huv1Vv1) = span(Huv′1Vv′1) = span(Huv2Vv2) and hence UH
uHuvVv = 0 for all

[v, u] ∈ E(3)π∗ as well. Since by definition E(1)π∗ ∪ E(2)π∗ ∪ E(3)π∗ = Eπ∗ we conclude that the conditions

(46) are satisfied for all [v, u] ∈ Eπ∗ .

B. M is odd

Let d̃v = M−1
2 , ∀v ∈ V and consider the beamforming matrices Ũv ∈ CM×

M+1

2 and Ṽv ∈
CM×

M−1

2 given by (a), (b), (c) and (d). Following the same arguments as before we can see that

if we use the above beamforming subspaces for transmission, every receiver u ∈ V will observe



35

interference aligned in M−1
2 dimensions and hence we could directly achieve 1

|V|
∑

v∈V d̃v = M−1
2 .

Notice however that in this case, any receiver that zero-forces M−1
2 out of M dimensions can in

principle support one extra dimension for transmission since M−M−1
2 = d̃v+1. Furthermore, any

receiver that uses only d̃v = M−1
2 dimensions for desired symbols can zero-force the remaining

M+1
2 dimensions and can hence tolerate one additional interfering stream from its neighbors.

Let V∗ ⊆ V be a set of nodes such that the following two conditions are satisfied:

(u, v) /∈ E , ∀u, v ∈ V∗ (50)∣∣{v ∈ V∗ : [v, u] ∈ Eπ∗}
∣∣ ≤ 1,∀u /∈ V∗. (51)

The first condition requires that V∗ is an independent set in G(V, E) and the second one states

that for every u /∈ V∗ there is at most one v ∈ V∗ such that [v, u] ∈ Eπ∗ . Consider the following

beamforming choices given in terms of Ṽv and Ũv:

• For all v ∈ V∗ set Vv = [Ṽv,vv]/||[Ṽv,vv]||, for some vv /∈ span(Ṽv) and let UH
v = ŨH

v .

• For all u /∈ V∗ set Vu = Ṽu. If there exists v ∈ V∗ such that [v, u] ∈ Eπ∗ set and UH
u =

P⊥
ŨH
uHuvvv

ŨH
u . Otherwise set UH

u = ŨH
u .

We have that dv = d̃v + 1 for all v ∈ V∗ and dv = d̃v for all v /∈ V∗. We are going to show next

that with the above beamforming choices the interference alignment conditions (46) and (47) are

satisfied and hence the average (per sector) degrees of freedom

1

|V|
∑
v∈V

dv =
M − 1

2
+
|V∗|
|V| (52)

are achievable. Then we are going to show that it is always possible to find a set V∗ ⊆ V that

satisfies the properties (50) and (51) with |V∗| ≥ |V|3 and hence show that 1
|V|
∑

v∈V dv ≥ M
2 − 1

6

as required by (48).

First notice that the conditions (47) are automatically satisfied (with probability one) since all

the channel matrices Huv have been chosen at random from a continuous distribution. In order to

show that the zero-forcing conditions (46) are also satisfied, consider the sets

V(0)∗ , {u ∈ V\V∗ :
∣∣{v ∈ V∗ : [v, u] ∈ Eπ∗}

∣∣ = 0},

V(1)∗ , {u ∈ V\V∗ :
∣∣{v ∈ V∗ : [v, u] ∈ Eπ∗}

∣∣ = 1}.
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Notice that according to (51), the sets V∗, V(0)∗ and V(1)∗ form a partition of V . According to (50),

every receiver associated with u ∈ V∗ will only observe interference from transmitters v /∈ V∗
and since Uu = Ũu for all u ∈ V∗ and Vv = Ṽv for all v /∈ V∗, we have that UH

uHuvVv =

ŨH
uHuvṼv = 0, ∀{[u, v] ∈ Eπ∗ : u ∈ V∗}. Similarly, UH

uHuvVv = ŨH
uHuvṼv = 0, ∀{[u, v] ∈

Eπ∗ : u ∈ V(0)∗ }. Now, consider the receivers associated with the nodes u ∈ V(1)∗ and let v0 ∈
{v ∈ V∗ : [v, u] ∈ Eπ∗}. By construction, we have that span(HuvVv) ⊆ span(Huv0Vv0) =

span(Huv0Ṽv0) ∪ span(Huv0vv0) for all v ∈ V such that [v, u] ∈ Eπ∗ and since UH
uHuv0Vv0 =

[ŨH
uHuv0Ṽv0 ,U

H
uHuv0vv0 ] = [P⊥

ŨH
uHuv0

vv0
ŨH
uHuv0Ṽv0 ,P

⊥
ŨH
uHuv0

vv0
ŨH
uHuv0vv0 ] = 0, we get

UH
uHuvVv = 0, ∀{[u, v] ∈ Eπ∗ : u ∈ V(1)∗ }. Putting everything together, since the sets V∗, V(0)∗

and V(1)∗ form a partition of V , we can argue that UH
uHuvVv = 0 for all [u, v] ∈ Eπ∗ and hence

show that the conditions (46) are satisfied.

For the last part of the proof consider the sets Vk given in (49) and recall that they form a partition

of V . First notice that since |V| = |V0|+ |V1|+ |V2|, there must exist some k∗ ∈ {0, 1, 2} such that

|Vk∗ | ≥ |V|
3 . By symmetry, we have that |V1| = |V2| since f(z) = 1 ⇔ f(−z) = 2,∀z ∈ Z(ω),

and hence we can assume without loss of generality that k∗ is either 0 or 2.

Furthermore the set Vk∗ will satisfy (50) since for every (u, v) ∈ E we can write φ(u) = φ(v)+δ,

for some δ ∈ {±1,±ω,±(ω + 1)} and hence f(φ(u)) 6= f(φ(v)), ∀(u, v) ∈ E .

Finally, recall that 1) for every u ∈ V1 there exist [v, u] ∈ Eπ∗ if and only if there exist v ∈ V2
with φ(v) = φ(u) − 1 − ω, 2) for every u ∈ V2 there exist [v, u] ∈ Eπ∗ if and only if there exist

v0 ∈ V0 with φ(v0) = φ(u) + 1 or v1 ∈ V1 with φ(v1) = φ(u) − ω and 3) for every u ∈ V0
there exist [v, u] ∈ Eπ∗ if and only if there exist v1 ∈ V1 with φ(v1) = φ(u) + 1 or v2 ∈ V2 with

φ(v2) = φ(u)− ω or v′1 ∈ V1 with φ(v′1) = φ(u)− 1− ω. Therefore,
∣∣{v ∈ Vk∗ : [v, u] ∈ Eπ∗}

∣∣ ≤
1, ∀u ∈ V and hence the set Vk∗ , k∗ ∈ {0, 2} will also satisfy (51).

In order to complete the proof we set V∗ = Vk∗ and obtain 1
|V|
∑

v∈V dv = M−1
2 + |Vk

∗ |
|V| ≥ M

2 − 1
6

as required.
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APPENDIX B

PROOF OF LEMMA 2

Recall that the set of vertices V of the graph G(V, E) is defined in terms of a parameter r ≥ 1

as

V =
{
φ−1(z) : z ∈ Z(ω) ∩ Br

}
,

where

Br ,
{
z ∈ C : |Re(z)| ≤ r, |Im(z)| ≤

√
3r

2

}
.

Since the size of the graph depends on the choice of r, we will consider here the sequence of

graphs G(r)(V(r), E(r)), indexed by r ∈ Z+ and provide the corresponding results in terms of the

above parameter.

A. The cardinality of V(r)

By definition |V(r)| = |Z(ω)∩Br|. Hence, our goal is to count the number of Eisenstein integers

that belong to the set Z(ω) ∩ Br. We define the sets

L(k) =

{
z ∈ Z(ω) ∩ Br : |Im(z)| =

√
3k

2

}
(53)

for all k ∈ {−r, ..., 0, ..., r}. Notice that the sets L(k) contain all the Eisenstein integers that lie

on the same horizontal line on the complex plane and hence
⋃
k L(k) forms a partition of the set

Z(ω) ∩ Br. Therefore,

|Z(ω) ∩ Br| =
r∑

k=−r
|L(k)|.

A key observation coming from the triangular structure of Z(ω) is that

|L(k)| =

|L(0)|, k is even

|L(1)|, k is odd.

Hence, we can write

|Z(ω) ∩ Br| = K [r]
even|L(0)|+K

[r]
odd|L(1)|.

where K [r]
even,K

[r]
odd denote the cardinalities of even and odd integers in {−r, ..., 0, ..., r}.
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If r is even then K
[r]
even = r + 1 and K

[r]
even = r, whereas if r is odd then K

[r]
even = r and

K
[r]
even = r + 1. Since |L(0)| = 2r + 1 and |L(1)| = 2r for all r ≥ 1 we have that

|V(r)| = |Z(ω) ∩ Br| =

4r2 + 3r + 1, r is even

4r2 + 3r, r is odd.
(54)

B. The cardinality of T (r)

We will associate here each ordered vertex triplet [u, v, w] ∈ T (r) with its leading vertex u ∈ V(r)

in an one-to-one fashion and define the set

A(r) = {φ−1(u) ∈ Z(ω) ∩ Br : [u, v, w] ∈ T (r)}.

In order to determine the cardinality of T (r), it suffices to count the number of Eisenstein integers

that belong to the set A(r), since |T (r)| = |A(r)| by definition. Consider the sets

S(k) = A(r) ∩ L(k)

for all k ∈ {−r, ..., 0, ..., r−1}. The set S(k) contains all the Eisenstein integers that are associated

with a leading vertex of a triangle and lie on the same horizontal line L(k). As before,
⋃
k S(k)

forms a partition of A(r) and hence

|A(r)| =
r−1∑
k=−r

|S(k)|.

Intuitively |S(k)| counts the number of triangles that are formed between the lines L(k) and

L(k + 1) and hence the total number of triangles can be obtained by adding all |S(k)| up to

k = r − 1.

It is not hard to verify that

|S(k)| =

|S(0)|, k is even

|S(1)|, k is odd.

for all r ≥ 2 and hence

|A(r)| = K [r]
even|S(0)|+K

[r]
odd|S(1)|

where K [r]
even,K

[r]
odd denote the cardinalities of even and odd integers in {−r, ..., 0, ..., r − 1}. We

have that K [r]
even = K

[r]
odd = r and hence

|A(r)| = r (|S(0)|+ |S(1)|) .
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It follows from the definitions of T (r), A(r) and S(0) that

z ∈ S(0)⇔

z ∈ L(0), f(z) 6= 0 and

z + ω, z + ω + 1 ∈ L(1).

We can argue hence that the set S(0) hence contains the integers a ∈ {−r+ 1, ...r− 1} for which

f(a) = [a]mod 3 6= 0.

Similarly,

z ∈ S(1)⇔

z ∈ L(1), f(z) 6= 0 and

z + ω, z + ω + 1 ∈ L(2).

And hence the set S(1) contains the Eisenstein integers z = a + ω, for all a ∈ {−r + 1, r} that

satisfy f(z) = [a+ 1]mod 3 6= 0.

It follows that

|S(0)| = 2

(
r − 1−

⌊
r − 1

3

⌋)
, and

|S(1)| = 2r − 1−
⌊
r + 1

3

⌋
−
⌊
r − 2

3

⌋
.

We can hence conclude that

|T (r)| = r

(
4r −

⌊
r − 2

3

⌋
− 2

⌊
r − 1

3

⌋
−
⌊
r + 1

3

⌋
− 3

)
. (55)

C. The cardinality of V(r)ex

We will upper bound |V(r)ex | as follows. From Lemma 1 we have that∑
u∈V(r)

ex

(
1− nu

2

)
xu=

∑
v∈V(r)

xv −
∑

[i,j,k]∈T (r)

(
xi + xj + xk

2

)
,

for any {xv : v ∈ V(r)}. Setting xv = 1, ∀v ∈ V(r), we obtain

|V(r)ex | −
∑
u∈Vex

nu
2

= |V(r)| − 3

2
|T (r)|.

Since nv ≤ 1 for all v ∈ V(r)ex we have that∑
u∈Vex

nu
2
≤ 1

2
|V(r)ex |,
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and hence

|V(r)ex | ≤ 2|V(r)| − 3|T (r)|. (56)

We can lower bound |T (r)| from (55) as

|T (r)| ≥ r

(
4r − r − 2

3
− 2r − 2

3
− r + 1

3
− 3

)
= r

(
4r − 4r − 3

3
− 3

)
=

8

3
r2 − 2r. (57)

From (54), (56) and (57), we have that

|V(r)ex | ≤ 2
(
4r2 + 3r + 1

)
− 3

(
8r2

3
− 2r

)
= 8r2 + 6r + 2− 8r2 + 6r

= 12r + 2. (58)

D. Proof of |T (r)| = 2
3 |V(r)|

First we will upper bound |T (r)| using the inequality

⌊x
3

⌋
≥ x− 2

3
, ∀x ∈ R.

Applying the above inequality in (55) we obtain

|T (r)| ≤ r

(
4r − 4r − 11

3
− 3

)
=

8r2 + 2r

3
.

From (54) we can see that

2|V(r)| ≥ 8r2 + 2r,

and hence it follows that |T (r)| ≤ 2|V(r)|
3 , which completes the proof.

E. Proof of |V(r)ex | = O
(√
|V(r)|

)
From (54) it follows that

√
|V(r)| ≥ 2r for all r ≥ 1. From (58) we have that

|V(r)ex | ≤ 12r + 2 ≤ 7

√
|V(r)|, ∀r ≥ 1,

and hence |V(r)ex | = O
(√
|V(r)|

)
.
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APPENDIX C

PROOF OF THEOREM 2

Consider the directed interference graph Gπ(V, Eπ) and assume that there exist full rank matrices

Uv,Vv ∈ CM×dv , v ∈ V such that

UH
vHvuVu = 0, ∀[u, v] ∈ Eπ (59)

rank
(
UH
vHvvVv

)
= dv, ∀v ∈ V, (60)

where Huv ∈ CM×M have been chosen at random from a continuous distribution. Then, {dv : v ∈
V} must satisfy

dv ∈ {0, 1, ...,M} , ∀v ∈ V (61)

dv + du ≤M , ∀(u, v) ∈ E . (62)

The first condition follows trivially from the fact that rank
(
UH
vHvvVv

)
≤ M . The second

condition follows from (59): The columns of the matrices HvuVu and Uv span two orthogonal

subspaces of CM . Since rank (HvuVu) = du and rank (Uv) = dv, the columns of the composite

matrix [HvuVu,Uv] span a (du + dv)-dimensional subspace of CM and hence du + dv ≤M , for

all [u, v] ∈ Eπ. Now, for any (u, v) ∈ E and any π, either [u, v] or [v, u] must be in Eπ. Since,

du + dv ≤M is symmetric in (du, dv), we can write the above inequalities for all (u, v) ∈ E .

The above conditions are necessary for all {dv : v ∈ V} that can be achieved in Gπ(V, Eπ) for

any decoding order π and any linear beamforming scheme that does not use symbol extensions.

We will use these conditions here to upper bound the average (per sector) achievable degrees of

freedom in our framework.

From Lemma 1 we can write

1

|V|
∑
v∈V

dv =
1

2|V|
∑

[i,j,k]∈T

s(di,dj ,dk) +
Dex

|V| , (63)

where

s(di,dj ,dk) , di + dj + dk (64)

and

Dex =
∑
v∈Vex

(
1− nv

2

)
dv.



42

Since dv ≤M and nv ≥ 0 for all v ∈ V , we have that

Dex ≤M |Vex|,

and hence
1

|V|
∑
v∈V

dv ≤
1

2|V|
∑

[i,j,k]∈T

s(di,dj ,dk) +
2|Vex|
|V| , (65)

for all {dv : v ∈ V} that satisfy (61) and (62). Letting

s∗ , max
(di,dj ,dk)∈TD

s(di,dj ,dk) (66)

where

TD =


(di, dj , dk) :

di, dj , dk ∈ {0, 1, ...,M}

di + dj ≤M

dj + dk ≤M

dk + di ≤M


,

we can conclude that any degrees of freedom {dv : v ∈ V} that are achievable in Gπ(V, Eπ) for

any π must satisfy

1

|V|
∑
v∈V

dv ≤
|T |
2|V|s

∗ +
M |Vex|
|V| . (67)

Lemma 4 We have that

s∗ =


3M
2 , M is even

3M−1
2 , M is odd

(68)

Proof: By definition, every (di, dj , dk) ∈ TD must satisfy di + dj ≤ M , dj + dk ≤ M ,

dk + di ≤M . Adding these inequalities together we obtain

s(di,dj ,dk) ≤
3M

2
, ∀(di, dj , dk) ∈ TD. (69)

When M is even, the tuple
(
M
2 ,

M
2 ,

M
2

)
∈ TD achieves s(M2 ,M2 ,M2 ) = 3M/2 and from (69) we

can conclude that s∗ = s(M2 ,
M

2
,M

2 ) = 3M/2.
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When M is odd, consider
(
M−1
2 , M−12 , M+1

2

)
∈ TD with s(M−1

2
,M−1

2
,M+1

2 ) = (3M−1)/2. As-

sume that s∗ > (3M−1)/2. Since s(di,dj ,dk) is integer, there must exist a tuple (di, dj , dk) ∈ TD
with s(di,dj ,dk) ≥ 3M−1

2 + 1 = 3M+1
2 . This is a contradiction due to (69) and hence s∗ =

s(M−1

2
,M−1

2
,M+1

2 ) = (3M−1)/2.

Combining the results of Lemma 2 and 3 with the bound in (67) we arrive at

1

|V|
∑
v∈V

dv ≤


M
2 +O (1/

√
|V|) , M is even

M
2 − 1

6 +O (1/
√
|V|) , M is odd,

(70)

which completes the proof of Theorem 2.

APPENDIX D

PROOF OF THEOREM 3

Consider the set V as defined as in Section II-B and let

Din ,
⋃

a,b∈Z:
[a+b]mod 3=0

∆(a+ bω), (71)

and

Dout ,
⋃

a,b∈Z:
[a+b]mod 36=0

∆(a+ bω) (72)

where

∆(z) = {(z, z + ω), (z, z + ω + 1), (z + ω, z + ω + 1)}.

The set of out-of-cell edges can be defined as

Eout = {(u, v) : u, v ∈ V and (φ(u), φ(v)) ∈ Dout} , (73)

and the set of intra-cell edges as

E in = {(u, v) : u, v ∈ V and (φ(u), φ(v)) ∈ Din} . (74)

The interference graph in this case is given by Ĝ
(
V, Ê

)
, where Ê = Eout∪E in. We further define

the sets

C(z) = {z, z + 1, z − ω, z − ω − 1} ∩ Br
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for all z ∈ Z(ω) such that f(z) = 1. Notice that if |C(z)| = 4, the set C(z) corresponds to the

labels of four vertices a, b, c, d ∈ V with

φ(a) = z,

φ(b) = z + 1,

φ(c) = z − ω,

φ(d) = z − ω − 1.

Moreover, the vertices {a, b, c} are connected in Ĝ
(
V, Ê

)
only with edges in E in and hence

correspond to sectors of the same cell (cf. Fig. 7).

First we are going to show that with the beamforming choices given in Appendix A, the above

cell {a, b, c} can jointly decode its corresponding messages according to the decoding order π∗.

Notice that at the time when receiver a wants to decode, all the sectors that correspond to vertices

v ∈ V : v ≺π∗ a have already decoded their messages and no longer cause interference to their

neighbors. Hence, the received signal for a sector associated with u ∈ V can be written as

yu = HuuVusu +
∑

(u,v)∈Ê:
a≺π∗v

HuvVvsv + zu. (75)

The interfering transmitters for receiver a are given by {v : (a, v) ∈ Ê , a ≺π∗ v} = {b, c, d}. In

order to identify the interfering transmitters for receivers b and c notice that for any u ∈ {b, c} the

set {v : (u, v) ∈ Ê , a ≺π∗ v} can be written as

{v : (u, v) ∈ E in}
⋃
{v : (u, v) ∈ Êout, a ≺π∗ v}.

For receiver b the set {v : (b, v) ∈ Êout, a ≺π∗ v} = {v : [v, b] ∈ Êoutπ∗ } and for receiver c we

have that {v : (c, v) ∈ Êout, a ≺π∗ v} = {d} ∪ {v : [v, c] ∈ Êoutπ∗ }. Putting everything together, the

interfering transmitters for receivers b and c are given by

{v : (b, v) ∈ Ê ,a ≺π∗ v} = {a, c} ∪ {v : [v, b] ∈ Êoutπ∗ },

and

{v : (c, v) ∈ Ê ,a ≺π∗ v} = {a, c, d} ∪ {v : [v, c] ∈ Êoutπ∗ }.

A key observation is that according to (46) and the achievability scheme of Appendix A all the

interference from the transmitters in {v : [v, b] ∈ Êoutπ∗ } and {v : [v, c] ∈ Êoutπ∗ } can be zero-forced
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at receivers b and c by projecting along UH
b and UH

c respectively. The corresponding observations

are given by

UH
b yb = UH

b HbbVbsb +
∑

v∈{a,c}

UH
b HbvVvsv + zb, (76)

UH
c yc = UH

c HccVcsc +
∑

v∈{a,c,d}

UH
c HcVvsv + zc. (77)

We are going to show next that it is possible for the cell {a, b, c} to jointly decode the desired

messages sa, sb and sc from the received signals ya, UH
b yb and UH

c yc. Let

s̃ =


sa

sb

sc

sd

 , ỹ =


ya

UH
b yb

UH
c yc

 , z̃ =


za

UH
b zb

UH
c zc

 ,

and

H̃ =


HaaVa HabVb HacVc HadVd

UH
b HbaVa UH

b HbbVb UH
b HbcVc 0db×dd

UH
c HcaVa uH

c HcbVb UH
c HccVc UH

c HcdVd

 ,
such that the available observations in the cell {a, b, c} can be written in vector form as

ỹ = H̃s̃ + z̃. (78)

Lemma 5 If the channel gains Huv ∈ CM×M , (u, v) ∈ Ê are chosen independently at random

from a Gaussian distribution, the matrix H̃ has full column rank with probability one.

Proof: The matrix H̃ has M+db+dc rows and da+db+dc+dd columns. Since da+dd ≤M
for all M (odd or even), we have to show that Pr

[
rank(H̃) = da + db + dc + dd

]
= 1. Recall

that the beamforming matrices Vv, Uu do not depend on the channel realizations Hij used in the

definition of the above matrix. Hence, assuming that all channel gains are chosen independently

at random from a Gaussian distribution, we can argue that the non-zero entries in H̃ (given by the

projections UH
uHijVv) are also independent. Let F = PH̃ be the matrix obtained by rearranging

the rows of H̃ such that all zero entries are in the upper-right corner and consider F̃ to be the

square sub-matrix defined by the da + db + dc + dd rows of F. We can see that the diagonal
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elements of F̃ are going to be non-zero, and hence, we can show by Lemma 3 that the rank of F̃

is full with probability one. Therefore, H̃ will always have da + db + dc + dd linearly independent

rows and Pr
[
rank(H̃) = da + db + dc + dd

]
= 1.

In view of the above lemma, the vector observation in (78) can be used to decode the symbols

in s̃ and hence the cell {a, b, c} is able to recover the desired messages sa, sb and sc.

Applying the above procedure successively, according to the decoding order π∗, we can argue

that that all the cells {a, b, c} ⊆ V whose labels correspond to a set C(z) with |C(z)| = 4, can

decode their desired messages using the beamforming choices of Appendix A.

In order to conclude the proof it remains to consider all the degenerate cases for cells that lie on

the boundary of Ĝ
(
V, Ê

)
and correspond to C(z) with |C(z)| ≤ 3. When C(z) = 1, there is only

out-of-cell interference and hence the scheme works as described in Appendix A. This is also the

case when |C(z)| = 2 and φ(d) = z− 1−ω ∈ C(z). If |C(z)| = 2 and φ(d) = z− 1−ω /∈ C(z)

the two sectors u, v of the given cell can zero-force all out-of-cell interference and use their vector

observation UH
uyu

UH
v yv

 =

UH
vHvvVv UH

vHvuVu

UH
uHuvVv UH

uHuuVu

su
sv

+ z̃

to jointly decode the desired messages su and sv. In a similar fashion, all the cells {a, b, c} that

correspond to a set C(z) with |C(z)| = 3 and φ(d) = z − 1 − ω /∈ C(z) can decode their

messages using the projected observations UH
a ya, UH

b yb and UH
c yc. Finally, the only possible

cell configuration with |C(z)| = 3 and φ(d) = z − 1 − ω ∈ C(z), is {a, c} with φ(a) = z and

φ(c) = z − ω. The corresponding vector observation is given by

 ya

UH
c yc

 =

 HaaVa HacVc HadVd

UH
c HcaVa UH

c HccVc UH
c HcdVd



sa

sc

sd

+ z̃.

Notice that the above channel matrix has M + dc rows and da + dc + dd columns. According

to the beamforming choices of Appendix A, we have that da + dd ≤M for all M and hence we

can argue as before that the above matrix has full column rank with probability one. Therefore,

the receivers a and c can jointly decode their desired messages in this case as well.
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APPENDIX E

PROOF OF THEOREM 4

The proof can be obtained as a straightforward generalization of the proof described in Section

V-B using the beamforming design of Theorem 3 given in Appendix D. Applying Lemma 3, we

can show that primary and secondary sectors are always able to decode their messages from the

available observations
ya

UH
b yb

UH
c yc

 =


HaaVa HabVb HacVc HadVd

UH
b HbaVa UH

b HbbVb UH
b HbcVc 0db×dd

UH
c HcaVa UH

c HcbVb UH
c HccVc UH

c HcdVd



sa

sb

sc

sd

+ z̃, (79)

and UH
b yb

UH
c yc

 =

UH
b HbbVb UH

b HbcVc

UH
c HcbVb UH

c HccVc

sb
sc

+ z̃, (80)

for all channel-state configurations given in Section V-B. We omit the details here for brevity.

APPENDIX F

PROOF OF THEOREM 5

Here, we are going to follow an approach similar to the one in Section III-B and show that for

any decoding order π, any linear scheme for the system
{
Ĝ
(
V, Ê

∣∣A) : A ∈ {0, 1}2|Ê|
}

achieves

compound DoFs dC upper bounded by d∗C +O (1/
√
|V|), as stated in Theorem 5.

First we will upper bound dC by conditioning on a specific channel-state configuration A∗ shown

in Fig. 14. We have that

dC = min
A∈{0,1}2|Ê|

dĜ(A) ≤ dĜ(A∗), (81)

where A∗ is given by setting αij = 1 for all edges [i, j] ∈ Ê that belong to the triangles,

T̂={[u, v, w] : [φ(u), φ(v), φ(w)] ∈ P̂, u, v, w ∈ V},

with P̂ = {[z, z + ω, z + ω + 1] : z ∈ Λ0 − 1}, and αij = 0 otherwise.

Notice, that the set T̂ has been chosen such that for all [u, v, w] ∈ T̂ , the sectors associated with

the nodes u, v, w belong to different cells and hence cannot be jointly decoded. Arguing as in
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u

v w

Fig. 14: The set of triangles [u, v, w] ∈ T̂ for Ĝ
(
V, Ê

∣∣A∗). All the circle nodes belong to V̂in and participate

in one triangle (nv = 1). The set V̂ex contains the colored nodes on the boundary for which nv = 0.

Lemma 4 in Appendix C, we can show that for any decoding order, the total degrees of freedom

achievable in each triangle cannot be more than

s∗ =


3M
2 , M is even

3M−1
2 , M is odd.

(82)

Further, observe that apart from some vertices on the external boundary of the graph (v ∈ V̂ex),

all other nodes (v ∈ V̂in) participate in exactly one triangle in T̂ , and therefore we have that∑
v∈V dv =

∑
[i,j,k]∈T̂ (du + dv + dw) +

∑
v∈V̂ex dv. The average (per sector) degrees of freedom

achievable in Ĝ
(
V, Ê

∣∣A∗) can be bounded as

dĜ(A∗) =
1

|V|
∑
v∈V

dv (83)

=
1

|V|
∑

[i,j,k]∈T̂

(du + dv + dw) +
1

|V|
∑
v∈V̂ex

dv (84)

≤ |T̂ ||V| s
∗ +
|V̂ex|
|V| . (85)

To conclude the proof we can argue as, in Lemma 2, that |T̂ | ≤ 1
3 |V| and |Vex| = O

(√
|V|
)

, and

show that dC = 1
3s
∗ +O (1/

√
|V|).
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