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Abstract—The sum-capacity of a three user interference wired
network for time-varying channels is considered. Due to the
channel variations, it is assumed that the transmitters areonly
able to track the connectivity between the individual nodes,
thus only the (alternating) state of the network is known. By
considering a special subset of all possible states, we showthat
state splitting combined with joint encoding over the alternating
states is required to achieve the sum-capacity. Regarding upper
bounds, we use a genie aided approach to show the optimality
of this scheme. This highlights that more involved transmit
strategies are required for characterizing the degrees of freedom
even if the transmitters have heavily restricted channel state
information.

I. I NTRODUCTION

The optimal management of interference within an inter-
ference limited wireless network is a challenging task due
to scarce resources such as frequency bandwidth, power,
and time. Certainly, the more accurate is the channel state
information at the transmitters (CSIT), the more effectiveis the
interference management. However, providing perfect CSIT
is a challenging issue in wireless networks, especially for
networks with high mobility and size. Due to this, interference
management for different setups based on imperfect CSIT
attracted the attention of researchers.

In [1], the case of completely stale CSIT (using the so-called
retrospective interference alignment (IA)) have been con-
sidered. For the multiple-input and multiple-output (MIMO)
broadcast channels, they have shown that even completely
delayed CSIT can be useful.

Note that, the quality of CSIT might vary during the overall
transmission. To this end, a degrees of freedom (DoF) study
based on a mixture of CSIT was addressed in [2] and [3].
Interestingly, it was shown that splitting an alternating CSIT
problem into separate setups with fixed CSIT is not optimal.

As most wireless networks are rather heterogeneous in
terms of node mobility and capability, the CSI quality at the
transmitters is not the same for all users. This was considered
in [4], in which users have either perfect, delayed, or no CSIT
at all. Similarly, the capacity region of the two-user binary
fading channel was characterized in [5] for different models
of availability of CSIT.
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In [6], the CSIT is obtained by having a feedback of1 bit.
Essentially, this feedback provides information about presence
or absence of a link. In more detail, it is assumed that a
link is absent if its corresponding interference noise ratio
(INR) is lower than1. Due to this assumption, the information
available at the transmitter does not exceed the topology of
the network. To this end, the DoF optimal design of networks
with 1 bit feedback is referrred to as “topological interference
management” (TIM) [6]. Interestingly, it is shown in [6] that
TIM for linear wired and wireless networks reduces to a single
problem. In other words, solving one of these problems leads
to the solution for the other one, in such a way that the
DoF of a linear wirelessnetwork leads tothe capacity of
the corresponding linear wired channel,or vice versa. In [7],
[8], the robustness of topological interference alignmentin the
fast fading scenario is studied under the assumption that the
topology of the network is fixed during the communication.

While [6]–[8] considered fixed connectivity within the net-
work, alternating connectivity due to the underlying channel
being time-variant was considered in [9]. It was shown that the
DoF for several multi-user channels can only be achieved by
joint encoding acrossconnectivity states, each having a certain
probability of occurrence. The DoF for three user interference
channel with two connectivity states was considered in [9].
In [10], the DoF of a three user interference channel is
characterized for the case thatthe network has a Wyner-type
channel flavor [11]. Note that, the connectivity states were
assumed to be equiprobable in [9] and [10]. In this work,
we consider the three user interference channel with statesof
non-equal probabilities. As it turns out, the schemes in [9],
[10] are not enough to characterize the DoF for the general
case. In order to highlight this issue, we consider a subset of
all possible connectivity states.In more detail, we distinguish
between two transmission schemes which use joint encoding:

• JESS: Joint encoding across connectivity states and de-
coding using a single interference resolving state as in [9],
[10].

• JEMS: Joint encoding across connectivity states and
decoding using multiple interference resolving states.

In general, removing the interference might have to be
performed over a set of states (JEMS). In addition to this,
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Fig. 2. All possible states under consideration.
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Fig. 1. Three Tx want to communicate with their desired Rx over a time-
variant channel. The desired links (solid lines) exist always. However, the
interference links (dashed lines) are not always present.

state splitting is also required. The optimality of our proposed
scheme is shown by comparing the achievable sum-rate with
a genie aided upper bound.

II. SYSTEM MODEL

Consider a wired network with three transmitters (Tx),
which want to communicate with their desired receivers (Rx).
Tx i, i ∈ {1, 2, 3} wants to send a messageWi to Rxi (see
Fig. 1). It encodes this message into a length-n sequence
Xi = (Xi(1), . . . , Xi(n)) and sends this sequence. The
received symbol at Rxj in the kth channel use is given by

Yj(k) =
3∑

i=1

hji(k)Xi(k), ∀j ∈ {1, 2, 3}, (1)

whereXi(k) and hji(k) denote the transmitted symbol by
Tx i and the time-variant channel coefficient corresponding
to the link between Txi and Rxj, respectively. All symbols
are chosen from a Galois Field(GF). Moreover, the linear
operations areperformedover thisGF. The capacity of each
point to point channel is log |GF|, where |GF| represents
the cardinality ofGF. Therefore,only one symbol can be
transmitted over a linkper channel use.

In our model, CSIT is restricted only to the topology of
the network. Therefore, the only information availableto the
transmitters is aboutthe presenceor absenceof links but not
about the channel coefficients.1 However,each Rx knows its
channel coefficientsin addition tothe topology of the network.

Since the channel coefficients changeover time, the con-
nectivity of the network varies during the transmission.Note
that each connectivity state occurs with a certain probability.

It is worthy to note that the receivers start the decoding
after receivinga complete sequenceY j as there are no latency
constraints. Therefore, the order of occurrence of the states is
not important.Let A be a subset of the set of states shown
in Fig. 2 andXi,A be the sequence of transmitted symbols
by Tx i in all states inA. Assuming a length-n sequenceXi,

1In order to make the available CSIT strictly weaker than perfect CSI, we
set the cardinality ofGF larger than2.
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Fig. 3. The interference links can appear in a cyclic manner.

in which n is sufficiently large,the length ofXi,A is nλA,
whereλA denotes the sum of the probabilities of the states
in A. Note that if the setA includes one single state, we
drop braces for simplicity in writing. For example,X i,A is
the sequence of transmitted symbols by Txi in A = {A}.
Note thatλ{A,B,C,D,E,F,G} = 1.

The probability of error, achievable ratesR1, R2, R3, and
sum-capacity are defined in the standard Shannon sense [12].

In the following the joint encoding strategy in [10] is
briefly introduced in order to motivate that more sophisti-
cated schemes are needed when we are considering the non-
equiprobable connectivity states.

III. JOINT ENCODING STRATEGY INTIM

To discuss the main idea of joint encoding, consider a
network with three Tx and Rx in which the interference links
can appear in a cyclic manner shown in Fig. 3. In this example,
the network has a total of 8 states. Among all these, there are
three stateswith a singleinterferencelink. We denote these
interference states by I-states (see Fig. 4).Considering all
transmitters to be active, all receivers will get interference in I-
states.As it is shown in [10], we can resolve the interferences
at the receivers by using a single state in which all the
interference links appear. This resolving state is denotedby
R-state in Fig. 4. Note that no extra interference link (apart
from the interference links in I-states) appears in the R-state.
In a network with two users, the R-state is thestate in which
both interference links are present (as cross links). By using
the cross links in this state the interference caused in Z- and
S-channels can be resolved [9].

In general, this joint encoding scheme is not enough to
obtain the capacity of three user interference channels. As
an example, we consider a subset of all possible connectivity
states shown in Fig. 2. In what follows, we highlight the key
facts whichmake the discussed joint encoding scheme non-
applicableto the states in Fig. 2. These facts provide valuable
insights to study this network.

• In Fig. 2, there is no state in which the cross channel
without an extra interference link appears. In other words,
there is no single R-state. As an example, the interference
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Fig. 5. L(·, ·) operator is a linear operation which depends on the channel coefficientsnot known at Tx. Therefore, theL operator changes over the time.
By using joint encoding over the states together with symbolextension, we can transmit 29 symbols over 14 channel uses.

︸ ︷︷ ︸

I-states
︸ ︷︷ ︸

R-state

Fig. 4. The interference links in I-states appear in R-statein a cyclic manner
without additional interference link. Therefore, all interferences caused in I-
states can be resolved by using a single R-state [10].

links in statesA andB appear inF . However, an extra
interference link exists in stateF , which is the link
between Tx 3 and Rx 2. This extra interference link in
F together with its complementary interference link (the
link between Tx 2 and Rx 3) in stateC appear in state
E. Again, in stateE, we have an extra interference link
between Tx 2 and Rx 1 in addition to the cross channel.
Due to this entanglement, interference symbols cannot
be resolved over a single state (in contrast to the known
schemes in [9] and [10]) butsuccessively within a group
of states.

• The interference links in statesA andB appear together
in statesF andG. Roughly speaking, both of these states
can be used to resolve the interference caused in states
A andB. In order to fully utilize the benefit associated
in resolving over cross channels of both statesF andG,
we need to involve a new pair ofA andB. This leads to
the idea of joint encoding based onstate splitting.

The exact explanation of the scheme is given in proof of
Theorem 1.

IV. M AIN RESULT

The following theorem provides the main result of this
work.

Theorem 1. The sum-capacity for the three user interference
wired channel with alternating connectivity shown in Fig. 2 is
(2 + λ) log |GF|, where

λ = min

{
λA

2
,
λB

2
, λC , λD, λE , λF , λG

}

.

Proof: To establish Theorem 1, we need to find an optimal
achievability scheme. The optimality of the scheme is shown
by comparing it with a tight upper bound of the sum-capacity.
We start by introducing an achievability scheme leading to a
sum-ratelower bound denotedRe.

Achievability:

The achievability scheme is based on JEMS together with
state splitting.The goal is to resolve the interference signals
caused in some states. To do this, as in [9], we retransmit the
interference signals in a state in which the links corresponding
to the interference symbols appear.In our case, the interference
links in statesA and B appear together in statesF and
G. The cross channels in statesF and G can be used for
resolving the interference signal caused in statesA and B.
In order to use the cross channel in both statesF and G,
we need to consider two pairs ofA and B. Therefore, we
split all states into two parts, and perform joint encoding
over 9 states represented byS1 shown in Fig. 5.As it is
shown in Fig. 5, the interference symbols in statesA and
B are resolved by using statesF and G. In both statesF
andG, there is an interference link in addition to the cross
channel.Interestingly, these interference links together with
their complementary interference links in statesC and E

appear as cross channels in statesE and D, respectively.
Therefore, the interference symbols caused in states{F,C}
and {G,E} are resolved using the cross channels in states
E and D, respectively. Now, consider the encoding scheme
over the states inS1, shown in Fig. 5. It is shown that each
Rx needs to decode 9 symbols. As an example, Rx1 needs to
decode{a1, b1, b3, c1, a4, c2, e1, b6, b4}. This is possible due to
9 linear independent equations which are available at each Rx.
Compared to the achievability scheme in [10], resolving the
interference is not performed over a single state. Therefore,
we use JEMS over the states inS1 to transmit 19 symbols
reliably over 9 channel uses.Note that by considering these
states separately, we cannot transmit more than 2 symbols per
channel use.

In order to complete the achievability scheme, we need to
consider the states inS2 = (C,D,E, F,G) in addition toS1.



As it is shown in Fig. 5, in all these states, we can transmit 2
symbols reliably per channel use.Note that the encodings are
different for same states (for exampleC) in S1 andS2. This
fact highlights the notion of state splitting.Since every symbol
is chosen fromGF with the entropylog |GF|, the achievable
sum-rates for equiprobable states inS1 andS2 are as follows

Re =

{
19
9 log |GF| for S1,

2 log |GF| for S2.

Consideringn total channel uses, we perform joint encoding
across2nλ channel uses of states{A,B} together withnλ
channel uses of states{C,D,E, F,G} (seeS1 in Fig. 5).
Note thatλ is defined asmin{λA

2 , λB

2 , λC , λD, λE , λF , λG}.
Roughly speaking, during the overall transmission,S1 cannot
occur in more channel uses thannλ. Therefore, we transmit
19nλ symbols based on the joint encoding over states in
S1 during the overall transmission. In the remaining channel
uses, we transmit2 symbols. Therefore, the total number of
transmitted symbols overn channel uses is given by

19nλ+ 2n[(λA − 2λ) + (λB − 2λ) + (λC − λ)

+ (λD − λ) + (λE − λ) + (λF − λ) + (λG − λ)]

= n(2 + λ). (2)

By dividing (2) by the number of channel usesn and multi-
plying it by log |GF| (since the symbol are chosen fromGF

with the entropylog |GF|) we obtain the following achievable
sum-rate

Re ≤ (2 + λ) log |GF|. (3)

Upper bound:

We establish the upper boundon the sum-capacityas
follows. Consider the sum-rate

nRΣ =

3∑

i=1

H(Wi)

=
3∑

i=1

H(Wi) +H(Wi|Y i)−H(Wi|Y i)

(a)

≤

3∑

i=1

I(Wi;Y i) + 3nǫn, (4)

where (a) follows from Fano’s inequalityand ǫn → 0 for
n → ∞. By multiplying the inequality in (4) by 2, every mu-
tual information appears twice, which corresponds to creating
(virtually) three additional receivers. In the next step, we give
some side information to the receivers. Therefore, we write

2nRΣ ≤I(W1;Y 1,X2,D,X3,F ,X3,G)

+ I(W2;Y 2,X3,E) + I(W3;Y 3)

+ I(W1;Y 1,X3,F ,X3,G)

+ I(W2;Y 2,X1,D,X3,E)

+ I(W3;Y 3,X1,F ,X1,G,X2,E) + 6nǫn.

By using the chain rule and since the messages of three
transmitters are independent from each other, we write

2nRΣ ≤I(W1;Y 1|X2,D,X3,F ,X3,G)

+ I(W2;Y 2|X3,E) + I(W3;Y 3)

+ I(W1;Y 1|X3,F ,X3,G)

+ I(W2;Y 2|X1,D,X3,E)

+ I(W3;Y 3|X1,F ,X1,G,X2,E) + 6nǫn. (5)

By expressing the mutual information as entropy terms, (5) is
restated as

2nRΣ ≤H(Y 1|X2,D,X3,F ,X3,G)

−H(Y 1|X2,D,X3,F ,X3,G,W1)

+H(Y 2|X3,E)−H(Y 2|X3,E ,W2) +H(Y 3)

−H(Y 3|W3) +H(Y 1|X3,F ,X3,G)

−H(Y 1|X3,F ,X3,G,W1) +H(Y 2|X1,D,X3,E)

−H(Y 2|X1,D,X3,E ,W2)

+H(Y 3|X1,F ,X1,G,X2,E)

−H(Y 3|X1,F ,X1,G,X2,E ,W3) + 6nǫn. (6)

By considering (1) together with the fact that channel coeffi-
cients are completely known at the destination, the expression
in (6) can be rewritten as in (7) on the top of the next page. By
using the chain rule, together with the facts that conditioning
does not increase entropy, and that the messages of the users
are independent of each other, the individual terms in (7) can
be rewritten as in (8)-(18). We can see that by substitutingthe
right hand side of(8)-(18) into (7) many terms will cancel
out (it follows directly after summing up (8)-(18))and we can
rewrite (7) as

2nRΣ ≤H(X1,C ,Y 1,{B,E}) +H(X2,{A,B},Y 2,{D,F,G})

+H(Y 3) +H(X1,F |X1,G) +H(Y 1,{D,E,B},X1,C)

+H(X2,{A,B},Y 2,{F,G}) +H(X3,E)

+H(X3,G|X3,{E,F}) +H(Y 3,{A,D,C}) + 6nǫn.
(19)

After dropping the conditioning in all terms, the inequality
(19) can be upper bounded by the following expression

2nRΣ ≤n log |GF|[λ{C,B,E} + λ{A,B,D,F,G} + 1 + λF

+ λ{D,E,B,C} + λ{A,B,F,G} + λE

+ λG + λ{A,D,C}] + 6nǫn, (20)

where we used the chain rule, the facts that conditioning
does not increase the entropy, and that the entropy of discrete
random variable inGF is upper bounded bylog |GF| [12].
Next, we divide the inequality in (20) by2n, and letn → ∞.
Then, we obtain

RΣ ≤ log |GF|

(

2 +
λB

2

)

. (21)

Using the same technique with appropriate genie information
and smart utilizations of chain rule, we can also establish the



2nRΣ ≤H(X1,{A,C,D,F,G},Y 1,{B,E}|X2,D,X3,{F,G})−H(X3,B,X2,E |X2,D,X3,{F,G},W1)

+H(X2,{A,B,C,E},Y 2,{D,F,G}|X3,E)−H(X1,{D,G},X3,F |X3,E,W2)

+H(Y 3)−H(X1,{A,D,F,G},X2,{C,E}|W3)

+H(X1,{A,C,F,G},Y 1,{B,D,E}|X3,{F,G})−H(X2,{D,E},X3,B|X3,{F,G},W1)

+H(X2,{A,B,C,D,E},Y 2,{F,G}|X1,D,X3,E)−H(X3,F ,X1,G|X1,D,X3,E ,W2)

+H(X3,{B,E,F,G},Y 3,{A,C,D}|X1,{F,G},X2,E)−H(X1,{A,D},X2,C |X1,{F,G},X2,E ,W3) + 6nǫn (7)

H(X1,{A,C,D,F,G},Y 1,{B,E}|X2,D,X3,F ,X3,G) ≤H(X1,{A,D,F,G}) +H(X1,C ,Y 1,{B,E}) (8)

H(X3,B,X2,E |X2,D,X3,{F,G},W1) =H(X2,E |X2,D) +H(X3,B|X3,{F,G}) (9)

H(X2,{A,B,C,E},Y 2,{D,F,G}|X3,E) ≤H(X2,{C,E}) +H(X2,{A,B},Y 2,{D,F,G}) (10)

H(X1,{D,G},X3,F |X3,E ,W2) =H(X3,F |X3,E) +H(X1,G) +H(X1,D|X1,G) (11)

H(X1,{A,D,F,G},X2,{C,E}|W3) =H(X2,{E,C}) +H(X1,{A,D,F,G}) (12)

H(X1,{A,C,F,G},Y 1,{B,D,E}|X3,{F,G}) ≤H(X1,G) +H(X1,F |X1,G) +H(X1,A|X1,{G,F})

+H(Y 1,{D,E,B},X1,C) (13)

H(X2,{D,E},X3,B|X3,{F,G},W1) =H(X3,B|X3,{F,G}) +H(X2,{D,E}) (14)

H(X2,{A,B,C,D,E},Y 2,{F,G}|X1,D,X3,E) ≤H(X2,{D,E}) +H(X2,C |X2,E) +H(X2,{A,B},Y 2,{F,G}) (15)

H(X3,F ,X1,G|X1,D,X3,E ,W2) =H(X3,F |X3,E) +H(X1,G|X1,D) (16)

H(X3,{B,E,F,G},Y 3,{A,C,D}|X1,{F,G},X2,E) ≤H(X3,E) +H(X3,F |X3,E) +H(X3,G|X3,{E,F})

+H(X3,B|X3,{F,G}) +H(Y 3,{A,D,C}) (17)

H(X1,{A,D},X2,C |X1,{F,G},X2,E ,W3) =H(X1,A|X1,{F,G}) +H(X1,D|X1,{F,G,A}) +H(X2,C |X2,E) (18)

following upper bound

RΣ ≤ log |GF|

(

2 + min

{
λA

2
, λC , λD, λE , λF , λG

})

.

(22)

Due to the page limitation, we do not present the proofs.
Considering all bounds in (21), (22), we get

RΣ ≤ log |GF| (2 + λ) , (23)

which agrees with the lower bound in (3) and completes the
proof of Theorem 1.

V. CONCLUSION

We studied the sum-capacity of the three users interference
wired channel with an alternating connectivity with only
topological knowledge at the transmitters. It is assumed that
the connectivity states are non-equiprobable.As shown in [6],
this result translates to a DoF result for the corresponding
wireless network.We proposed a new achievability scheme
which is based on joint encoding across connectivity statesand
decoding using a multiple interference resolving states (JEMS)
combined with splitting the connectivity states. By establishing
a genie aided upper bound, the optimality of transmission
scheme is shown.

REFERENCES

[1] M. Maddah-Ali and D. Tse, “Completely stale transmitterchannel state
information is still very useful,” in48th Allerton Conf. on CCC, 2010,
pp. 1188–1195.

[2] T. Gou and S. A. Jafar, “Optimal use of current and outdated channel
state information – degrees of freedom of the MISO BC with mixed
CSIT,” IEEE Comm. Letters, vol. 16, no. 7, pp. 1084–1087, July 2012.

[3] M. Kobayashi, S. Yang, D. Gesbert, and X. Yi, “On the degrees of
freedom of time correlated MISO broadcast channel with delayed CSIT,”
in IEEE ISIT, 2012, pp. 2501–2505.

[4] R. Tandon, S. Jafar, S. Shamai Shitz, and H. Poor, “On the synergistic
benefits of alternating CSIT for the MISO broadcast channel,” IEEE
Trans. on IT, July 2013.

[5] A. Vahid, M. A. Maddah-Ali, and A. S. Avestimehr, “Capacity results
for binary fading interference channels with delayed CSIT,” Jan. 2013.
[Online]. Available: http://arxiv.org/abs/1301.5309

[6] S. A. Jafar, “Topological interference management through index cod-
ing,” Jan. 2013. [Online]. Available: http://arxiv.org/pdf/1301.3106.pdf

[7] ——, “Elements of cellular blind interference alignment— aligned
frequency reuse, wireless index coding and interference diversity,”
CoRR, vol. abs/1203.2384, 2012.

[8] N. Naderializadeh and A. S. Avestimehr, “Impact of topology on
interference networks with no CSIT,” inISIT, Istanbul, Turkey, 2013,
pp. 394–398.

[9] H. Sun, C. Geng, and S. A. Jafar, “Topological interference management
with alternating connectivity,” inIEEE ISIT, Istanbul, Turkey, July 2013.

[10] S. Gherekhloo, S. Chaaban, and A. Sezgin, “Topologicalinterference
management with alternating connectivity: The wyner-typethree user
interference channel,” inIEEE IZS, Feb 2014.

[11] A. Wyner, “Shannon-theoretic approach to a gaussian cellular multiple-
access channel,”IEEE Transactions on IT, vol. 40, no. 6, pp. 1713–1727,
1994.

[12] T. M. Cover and J. A. Thomas,Elements of Information Theory. John
Wiley & Sons, August 1991.

http://arxiv.org/abs/1301.5309
http://arxiv.org/pdf/1301.3106.pdf

	I Introduction
	II System Model
	III Joint encoding strategy in TIM
	IV Main Result
	V Conclusion
	References

