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Abstract—We study the problem of channel resolvability for
fixed i.i.d. input distributions and discrete memoryless channels
(DMCs), and derive the strong converse theorem for any DMCs
that are not necessarily full rank. We also derive the optimal
second-order rate under a condition. Furthermore, under the
condition that a DMC has the unique capacity achieving input
distribution, we derive the optimal second-order rate of channel
resolvability for the worst input distribution.

I. I NTRODUCTION

We study the problem of channel resolvability introduced
by Han-Verdú [1] (see also [2, Sec. 6.2]). In addition to
theoretical interest as a random number generation problem,
channel resolvability has a lot of applications in problemsof
information theory. First, channel resolvability can be used
to show the converse coding theorem for identification via
channels, and this direction of research has been extensively
studied by many researchers [1], [3], [4], [5], [6]. Second,
channel resolvability can be used as a building block of
wiretap channel codes [7], [8], [9], [5], [10]. Third, channel
resolvability can be used as a building block of channel
simulation, which in turn can be used as a building block of
certain coding problems (eg. [11], [12], [13], [14], [15], [16]).

Despite its importance, our understanding of channel re-
solvability is far from complete even for discrete memoryless
channels (DMCs). For instance, the optimal rate of channel
resolvability for fixed i.i.d. input distributionp is not known.
In [1], Han-Verdú showed it is less than or equal to the mutual
informationI(p,W ), and they also showed an example such
that this bound isnot tight [1, Example 1]. In [17], Han-Verdú
showed thatI(p,W ) is indeed the optimal rate for the class of
channels calledfull rank. In this paper, we derive the optimal
rate (cf. (2)) for any channels that are not necessarily fullrank.
In fact, we derive even stronger result, i.e., the strong converse
theorem.

Once we have established the strong converse theorem,
the next step is the second-order asymptotics [18], [19],
[20]. In this paper, we also derive the optimal second-order
rate of channel resolvability under a condition (cf. (10)).
Furthermore, under the condition that a DMC has the unique
capacity achieving input distribution, we derive the optimal

second-order rate of channel resolvability for the worst input
distribution.

The rest of this paper is organized as follows: we introduce
the problem setting of channel resolvability and main results
in Section II. Then, we will show proofs of main results in
Section III. We conclude in Section IV and discuss open prob-
lems. The proofs of technical lemmas are given in appendices.

II. FORMULATION AND RESULTS

A. Problem Formulation

For a given input distributionpn ∈ P(Xn) on Xn and
a given channelW : x 7→ Wx, the goal of the channel
resolvability problem (for DMCs) is to approximate the output
distribution

Wpn
(y) :=

∑

x∈Xn

pn(x)W
n
x
(y),

Wn
x
(y) = Wx1

(y1) · · ·Wxn
(yn) is the nth independent ex-

tension ofW with input vectorx. Throughout the paper, we
assume that alphabets are finite. More precisely, a channel
resolvability codeCn of size|Cn| = Mn is a set of codewords
Cn = {x1, . . . ,xMn

} ⊂ Xn, and we are interested in
approximatingWpn

by

WCn
:=

Mn
∑

i=1

1

Mn

Wn
xi
.

In this paper, the approximation error is evaluated by the
normalized variational distance:

ρ(Cn,Wpn
) :=

1

2
‖WCn

−Wpn
‖1.

For a given0 ≤ ε < 1, we define the minimum size of the
random number needed to approximateWpn

by

R(n, ε|pn) := inf
Cn

{

1

n
log |Cn| : ρ(Cn,Wpn

) ≤ ε

}

.

We also consider the worst input distribution case:

Rwst(n, ε) := sup{R(n, ε|pn) : pn ∈ P(Xn)},

where the supremum is taken over all distributions onXn that
are not necessarily i.i.d.
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B. Fixed I.I.D. Input Distribution

First, we consider the case in which the input distribution is
fixed aspn = pn for nth i.i.d. extension ofp ∈ P(X ). When
the transition vectors{Wx}x∈X are linearly independent, the
channelW is called full rank. For full rank channels, the
following result is known.

Proposition 1 ([1], [17]): For a full rank channel1, we have

lim
ε↓0

lim sup
n→∞

R(n, ε|pn) = I(p,W ), (1)

whereI(p,W ) is the mutual information for the input distri-
bution p.

When a channel is not necessarily full rank, more than one
q ∈ P(X ) satisfyingWq = Wp may exist. Thus, we introduce
the following quantity:

SWp
:= min {I(q,W ) : q ∈ P(X ),Wq = Wp} . (2)

In general,SWp
is strictly smaller thanI(p,W ), as is illus-

trated by the following example.
Example 1 ([1]): ForX = {0, 1, e} andY = {0, 1}, let W

be given by

W0(0) = 1, W1(1) = 1, We(0) = We(1) = 1/2.

Let p be such thatp(0) = p(1) = 1/2. Then, we have
I(p,W ) = 1 but SWp

= 0.
We can derive the following refinement of Proposition 1.
Theorem 1 (First Order Asymptotics for Fixed p): For any

0 < ε < 1, we have

lim
n→∞

R(n, ε|pn) = SWp
. (3)

Fon an input distributionsq, let

Uq,W :=
∑

x,y

q(x)Wx(y)

[

log
Wx(y)

Wq(y)
− I(q,W )

]2

and

Vq,Wp
:=

∑

x,y

q(x)Wx(y)

[

log
Wx(y)

Wp(y)
−D(Wx‖Wp)

]2

,

whereD(·‖·) is the KL divergence. Forq satisfyingWq = Wp,
Uq,W and Vq,Wp

= Vq,Wq
are the unconditional information

variance and conditional information variance respectively
[20]. In such a case, we have

Vq,Wp
≤ Uq,W , (4)

and the equality hold if and only if

D(Wx‖Wp) = I(q,W ) ∀x s.t. q(x) > 0.

Let

V(p,W ) :=
{

q ∈ P(X ) : I(q,W ) = SWp
,Wq = Wp

}

.

1The full rank condition is only needed in the converse part [17].

Then, we define the following four quantities:

U+
p,W := max

q∈V(p,W )
Uq,W , (5)

U−
p,W := min

q∈V(p,W )
Uq,W , (6)

V +
p,W := max

q∈V(p,W )
Vq,Wp

, (7)

V −
p,W := min

q∈V(p,W )
Vq,Wp

. (8)

Theorem 2 (Second Order Asymptotics for Fixed p): We
have

lim sup
n→∞

√
n
(

R(n, ε|pn)− SWp

)

≤







√

U+
p,WQ−1(ε) ε ≥ 1/2

√

U−
p,WQ−1(ε) ε < 1/2

(9)

provided thatU−
p,W > 0. Furthermore, if

D(Wx‖Wp) = SWp
∀x ∈ X (10)

andV −
p,W > 0 hold, we have

lim
n→∞

√
n
(

R(n, ε)− SWp

)

=







√

V +
p,WQ−1(ε) ε ≥ 1/2

√

V −
p,WQ−1(ε) ε < 1/2

(11)

=







√

U+
p,WQ−1(ε) ε ≥ 1/2

√

U−
p,WQ−1(ε) ε < 1/2

, (12)

where

Q(a) :=

∫ ∞

a

1√
2π

exp

[

− t2

2

]

dt.

Remark 1: In the converse part, we are going to prove the
inequality≥ in (11). It should be noted that the condition in
(10) is not only used as a matching condition for (11) and (12)
to coincide, but it is crucially used in the converse proof. In
fact, the inequality≥ in (11) does not hold in general since
the inequality

√

V +
p,WQ−1(ε) >

√

U+
p,WQ−1(ε)

may hold forε > 1/2, which contradicts the achievability part.
Remark 2: When channelW is a noiseless channel, the

channel resolvability problem reduces to the source resolv-
ability problem [21, Sec. 2]. In this case, since the channelis
full rank, V(p,W ) is the singleton{p}. We also haveSWp

=
H(p), V +

p,W = V −
p,W = 0, and U∗

p,W := U+
p,W = U−

p,W .
Although this case is not covered by Theorem 2, the second
order asymptotics for this case is already known to be [22]

lim sup
n→∞

√
n (R(n, ε|pn)−H(p)) =

√

U∗
p,WQ−1(ε).



C. Worst Input Distribution

Next, we consider the worst input distribution case. Let

CW := max{I(p,W ) : p ∈ P(X )}

be the channel capacity ofW . The following result is known.

Proposition 2 ([1]): For any0 < ε < 1, we have

lim
n→∞

Rwst(n, ε) = CW .

Let

V(W ) := {p ∈ P(X ) : I(p,W ) = CW }

be the set of all capacity achieving input distribution (CAID).
It is well known that the output distributionWp∗ for any CAID
p∗ is unique. Let us introducefull support CAID condition:

D(Wx‖Wp∗) = CW ∀x ∈ X . (13)

Under this condition, we find that

SWp∗
= CW (14)

holds. Moreover,V +
p∗,W and V −

p∗,W defined in (7) and (8)
coincide with the conditional variances that appear in the
channel coding problems:

V +
W := max

p∈V(W )
Vp,Wp

,

V −
W := min

p∈V(W )
Vp,Wp

.

Theorem 3 (Second Order Asymptotics for the Worst Case):
Suppose that the full support CAID condition is satisfied
(cf. (13)). Then, we have

lim sup
n→∞

√
n (Rwst(n, ε)− CW )

≤







√

V −
WQ−1(ε) ε ≥ 1/2

√

V +
WQ−1(ε) ε < 1/2

(15)

and

lim inf
n→∞

√
n (Rwst(n, ε)− CW )

≥







√

V +
WQ−1(ε) ε ≥ 1/2

√

V −
WQ−1(ε) ε < 1/2

(16)

provided thatV −
W > 0.

Remark 3: It should be noted that (14) is not true in general.
In fact, the channel in Example 1 does not satisfy (14). It
should be also noted that (14) is slightly weaker condition
than (13). These conditions are needed only in the converse
part, and for the achievability part of Theorem 3, we need not
to assume neither (13) nor (14).

III. PROOFS OFMAIN RESULTS

A. Preliminaries for Proofs

The purpose of this section is to prepare lemmas that
will be used for the achievability part and the converse part,
respectively. To save space, we introduce a notation that is
usually used in quantum information (eg. [23]). For a function
A on Y, let {A ≥ 0} indicates the set{y : A(y) ≥ 0}.
Then, for a non-negative functionP on Y (not necessarily
normalized), we denoteP{A ≥ 0} :=

∑

y∈{A≥0} P (y).
The following lemma guarantees existence of a good chan-

nel resolvability code.
Lemma 1 (Theorem 2 of [5]): For any qn ∈ P(Xn) such

that Wqn = Wpn
and any real numberCn, there exists a

channel resolvability codeCn such that

ρ(Cn,Wpn
)

≤
∑

x

qn(x)W
n
x
{Wn

x
− CnWpn

≥ 0}+ 1

2

√

Cn

Mn

.

In the converse part, we are going to use the argument of
the typical sequence. LetTp,δ be the set of typical sequences,
i.e., |Px(a) − p(a)| ≤ δ ∀a ∈ X and, in addition, noa ∈ X
with p(a) = 0 occur inx, wherePx is the type of sequencex.
We also define the setTW,δ(x) of W -typical sequences given
x, i.e., |Pxy(a, b) − Px(a)Wa(b)| ≤ δ ∀(a, b) ∈ X × Y and,
in addition,Pxy(a, b) = 0 wheneverWa(b) = 0, wherePxy

is the joint type of(x,y). For the output distribution, we also
define the set of typical sequences:TWp,δ. For anyδ > 0, it
is well known that [24, Lemma 2.12]

pn(Tp,δ) ≥ 1− γn,

Wn
p (TWp,δ) ≥ 1− γn,

Wn
x
(TW,δ(x)) ≥ 1− γn ∀x ∈ Xn

for someγn such thatγn → 0 asn → ∞.
Let

An(δ) := {x : |WPx
(b)−Wp(b)| > 2|X |δ for someb ∈ Y}

be the set of all sequences such that the output distribution
WPx

is not close toWp. For such sequences, we have the
following property.

Lemma 2: For x ∈ An(δ), we haveTW,δ(x) ⊂ T c
Wp,δ′

for
δ′ = |X |δ.

The following will be used as a key lemma in the converse
part.

Lemma 3: For a given channel resolvability codeCn, let
Bn = {i : xi ∈ An(δ)}. Then, for anyα ≥ 0 and sufficiently
largen, we have

ρ(Cn,Wn
p )

≥ |Bn|
Mn

(1− γn) +
∑

i∈Bc
n

1

Mn

Wn
xi
{Wn

xi
− eαMnW

n
p ≥ 0}

−e−α − γn

for someγn such thatγn → 0 asn → ∞.



The following two lemmas are also used in the converse
part.

Lemma 4: Supposex /∈ An(δ). Then, we have
∑

a

Px(a)D(Wa‖Wp) + τ(δ) ≥ SWp

for someτ(δ) such thatτ(δ) → 0 as δ → 0.
Lemma 5: Suppose (10) holds andx /∈ An(δ). Then, we

have

VPx,Wp
+ τ1(δ) ≥ V −

p,W , (17)

VPx,Wp
− τ2(δ) ≤ V +

p,W (18)

for someτ1(δ) andτ2(δ) that converge to0 asδ → 0.

B. Proofs of Theorem 1

Direct Part: Let q be such thatI(q,W ) = SWp
. For

arbitrarily fixed ν > 0, we use Lemma 1 by settingMn =
en(I(q,W )+2ν) andCn = en(I(q,W )+ν). Then, by the law of
large number, we haveρ(Cn,Wn

p ) → 0. Sinceν > 0 can be
arbitrary, we complete the proof.

Converse Part: For arbitrary0 < ε < 1, suppose

lim inf
n→∞

R(n, ε|pn) < SWp
.

Then, there existν > 0 and a codeCn such thatρ(Cn) ≤ ε
and

1

n
logMn ≤ SWp

− 3ν (19)

for infinitely manyn. For q ∈ P(X ), we denote

D(W‖Wp|q) :=
∑

a

q(a)D(Wa‖Wp).

From Lemma 4, if we takeδ sufficiently small, we have

D(W‖Wp|Px) ≥ SWp
− ν (20)

for everyx /∈ An(δ).
By applying Lemma 3 forα = νn, we have

ρ(Cn,Wn
p )

≥ |Bn|
Mn

(1 − γn) +
∑

i∈Bc
n

1

Mn

Wn
xi
{Wn

xi
− eνnMnW

n
p ≥ 0}

−e−νn − γn. (21)

Here, the third term and the forth term converge to0. From
(19), the second term is further lower bounded by

∑

i∈Bc
n

1

Mn

Wn
xi

{

1

n
log

Wn
xi

Wn
p

≥ SWp
− 2ν

}

(a)

≥
∑

i∈Bc
n

1

Mn

Wn
xi

{

1

n
log

Wn
xi

Wn
p

≥ D(W‖Wp|Pxi
)− ν

}

,

where(a) follows from (20). Here, note that

EWn
xi

[

1

n
log

Wn
xi
(Y )

Wn
p (Y )

]

= D(W‖Wp|Pxi
) (22)

and

VWn
xi

[

1

n
log

Wn
xi
(Y )

Wn
p (Y )

]

=
VPxi

,Wp

n
(23)

≤ maxq Vq,Wp

n
, (24)

whereEWn
xi

andVWn
xi

are the expectation and the variance
with respect toY ∼ Wn

xi
. Thus, by using Chebyshev’s

inequality, we have

Wn
xi

{

1

n
log

Wn
xi

Wn
p

≥ D(W‖Wp|Pxi
)− ν

}

≥ 1− maxq Vq,Wp

ν2n
.

Consequently, from (21), we haveρ(Cn,Wn
p ) → 1,

which contradict with ρ(Cn,Wn
p ) ≤ ε. Thus, we have

lim infn→∞ R(n, ε) ≥ SWp
.

C. Proofs of Theorem 2

Direct Part: Let q be such thatI(q,W ) = SWp
and

Uq,W = U−
q,W (or Uq,W = U+

q,W ). For arbitrarily fixed
ν > 0, we use Lemma 1 by settinglogMn = nI(q,W ) +
√

nUq,WQ−1(ε − ν) + log n and logCn = nI(q,W ) +
√

nUq,WQ−1(ε− ν). Then, by the central limit theorem, we
haveρ(Cn,Wn

p ) ≤ ε for sufficiently largen. Sinceν > 0 can
be arbitrary, we complete the proof of (9).

Converse Part: We only prove2 the case withε < 1/2.
Suppose

lim inf
n→∞

√
n
(

R(n, ε|pn)− nSWp

)

<
√

V −
p,WQ−1(ε).

Then, there existsν > 0 and a codeCn such thatρ(Cn) ≤ ε
and

logMn ≤ nSWp
+
√

nV −
p,WQ−1(ε)− 3ν

√
n (25)

for infinitely manyn. From (17) of Lemma 5, if we takeδ
sufficiently small, we have

√

VPx,Wp
Q−1(ε) ≥

√

V −
p,WQ−1(ε)− ν (26)

for everx /∈ An(δ).
By applying Lemma 3 forα = ν

√
n, we have

ρ(Cn,Wn
p ) ≥

|Bn|
Mn

(1− γn) +
∑

i∈Bc
n

1

Mn

Wn
xi
{Wn

xi
− eν

√
nMnW

n
p ≥ 0}

−e−ν
√
n − γn. (27)

2For ε > 1/2, we replaceV −

p,W
in (26) by V +

p,W
, which follows from

(18) of Lemma 5 by notingQ−1(ε) < 0 for ε > 1/2.



From (25), each term in the summation of the second term is
further lower bounded by

Wn
xi

{

1√
n

(

log
Wn

xi

Wn
p

− nSWp

)

≥
√

V −
p,WQ−1(ε)− 2ν

}

(a)

≥

Wn
xi

{

1√
n

(

log
Wn

xi

Wn
p

− nSWp

)

≥
√

VPxi
,Wp

Q−1(ε)− ν

}

,

(28)

where (a) follows from (26). Here, we note that
D(W‖Wp|Px) = SWp

holds for any sequencex because
of the assumption in (10). Now, by noting (22) and (23),
and by using the central limit theorem, (28) is strictly
larger thanε for sufficiently largen. Thus, from (27), we
have ρ(Cn,Wn

p ) > ε for sufficiently largen, which is a
contradiction. Thus, we have

lim inf
n→∞

√
n
(

R(n, ε|pn)− nSWp

)

≥
√

V −
p,WQ−1(ε),

which completes the proof of≥ in (11). The equality between
(11) and (12) follows from the assumption in (10).

D. Proof of Theorem 3

Direct Part: Let p∗ be CAID, and letVW = V +
W when

ε < 1/2 (orV −
W whenε ≥ 1/2). From Lemma 1 withqn = pn,

there exists a resolvability code satisfying

ρ(Cn,Wpn
)

≤
∑

x

pn(x)W
n
x

{

log
Wn

x

Wpn

≥ logCn

}

+
1

2

√

Cn

Mn

.

Here, by the change of measure argument, we have

Wn
x

{

log
Wn

x

Wpn

≥ logCn

}

= Wn
x

{

log
Wn

x

Wn
p∗

+ log
Wn

p∗

Wpn

≥ logCn

}

≤ Wn
x

{

log
Wn

x

Wn
p∗

≥ logCn − ξ

}

+Wn
x

{

log
Wn

p∗

Wpn

≥ ξ

}

for any ξ > 0, which implies
∑

x

pn(x)W
n
x

{

log
Wn

x

Wpn

≥ logCn

}

≤
∑

x

pn(x)W
n
x

{

log
Wn

x

Wn
p∗

≥ logCn − ξ

}

+ e−ξ. (29)

Now, for arbitrarily fixedν > 0, let ξ = logn, logMn =
nCW +

√
nVWQ−1(ε − ν) + 2 logn and logCn = nCW +√

nVWQ−1(ε−ν)+log n. Then, by applying the central limit
theorem for eachWn

x
{·} in (29), we haveρ(Cn,Wpn

) ≤ ε for
sufficiently largen. Sinceν > 0 can be arbitrary, we complete
the proof of the direct part.

Converse Part: From the definition of the worst case, we
have

Rwst(n, ε) ≥ R(n, ε|(p∗)n).
Thus, the converse part follows from Theorem 2.

IV. CONCLUSION

As we discussed in Remark 1, the optimal second-order
rate for fixed i.i.d. input distribution is not clear in general.
One possible answer is that the optimal second-order rate is
always given by (12). This is at least true for noiseless channel
(cf. Remark 2), but there is no strong evidence in general.
Clarifying the optimal second-order rate is an important future
research agenda. There is also a gap between the achievability
and the converse for the worst input distribution case in general
(cf. Theorem 3); the gap vanishes only when the channel has
the unique CAID.

APPENDIX

A. Proof of Lemma 2

From the definition ofTW,δ(x), y ∈ TW,δ(x) implies
|Py(b) − WPx

(b)| ≤ δ′ ∀b ∈ Y. On the other hand, from
the definition ofAn(δ), there existsb ∈ Y such that

|WPx
(b)−Wp(b)| > 2δ′. (30)

Thus, forb satisfying (30),y ∈ TW,δ(x) implies

|Py(b)−Wp(b)|
≥ |WPx

(b)−Wp(b)| − |Py(b)−WPx
(b)|

> δ′,

which impliesy /∈ TWp,δ′ .

B. Proof of Lemma 3

First, we divideWn
p into typical part and non-typical part

asWn
p = Ŵn

p + W̃n
p , where

Ŵn
p (y) := Wn

p (y)1[y ∈ TWp,δ′ ],

W̃n
p (y) := Wn

p (y)1[y /∈ TWp,δ′ ],

where δ′ is specified in Lemma 2, and1[·] is the indicator
function. Then, for sufficiently largen, we have

1

2
‖WCn

−Wn
p ‖1

(a)

≥ WCn
{WCn

− eαŴn
p ≥ 0} −Wn

p {WCn
− eαŴn

p ≥ 0}
≥ WCn

{WCn
− eαŴn

p ≥ 0} − Ŵn
p {WCn

− eαŴn
p ≥ 0}

−W̃n
p (Yn)

(b)

≥ WCn
{WCn

− eαŴn
p ≥ 0} − e−α − γn, (31)

where (a) follows form the definition of the variational dis-
tance, and(b) follows from

Ŵn
p {WCn

− eαŴn
p ≥ 0} ≤ e−αWCn

{WCn
− eαŴn

p ≥ 0}
≤ e−α

andW̃n
p (Yn) = Wn

p (T
c
Wp,δ′

) ≤ γn for sufficiently largen.



Furthermore, we have

WCn
{WCn

− eαŴn
p ≥ 0}

=

Mn
∑

i=1

1

Mn

Wn
xi







Mn
∑

j=1

Wn
xj

− eαMnŴ
n
p ≥ 0







(c)

≥
Mn
∑

i=1

1

Mn

Wn
xi

{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

=
∑

i∈Bn

1

Mn

Wn
xi

{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

+
∑

i∈Bc
n

1

Mn

Wn
xi

{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

, (32)

where(c) follows from the fact that

{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

⊂







Mn
∑

j=1

Wn
xj

− eαMnŴ
n
p ≥ 0







holds for eachi.
Now, we evaluate each term of (32) separately. Sincexi ∈

An(δ) for i ∈ Bn, from Lemma 2, we havêWn
p (y) = 0 for

y ∈ TW,δ(xi), which implies

TW,δ(xi) ⊂
{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

.

Thus, the first term is lower bounded as
∑

i∈Bn

1

Mn

Wn
xi

{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

≥
∑

i∈Bn

1

Mn

Wn
xi
(TW,δ(xi))

≥ |Bn|
Mn

(1− γn) (33)

for sufficiently largen. On the other hand, since
{

Wn
xi

− eαMnW
n
p ≥ 0

}

⊂
{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

,

the second term is lower bounded as
∑

i∈Bc
n

1

Mn

Wn
xi

{

Wn
xi

− eαMnŴ
n
p ≥ 0

}

≥
∑

i∈Bc
n

1

Mn

Wn
xi

{

Wn
xi

− eαMnW
n
p ≥ 0

}

. (34)

Finally, by combining (31)-(34), we have the desired bound.

C. Proof of Lemma 4

Let

Q(δ) := {q : |Wq(b)−Wp(b)| ≤ 2|X |δ ∀b ∈ Y} . (35)

Then, from the definition ofAn(δ), we have
∑

a

Px(a)D(Wa‖Wp) ≥ min
q∈Q(δ)

∑

a

q(a)D(Wa‖Wp). (36)

Since the righthand side of (36) is a linear programming, by
the perturbation analysis [25, Sec. 5.6.2], we have

min
q∈Q(δ)

∑

a

q(a)D(Wa‖Wp)

≥ min
q∈Q(0)

∑

a

q(a)D(Wa‖Wp)− τ(δ)

= SWp
− τ(δ)

for someτ(δ) such thatτ(δ) → 0 asδ → 0.

D. Proof of Lemma 5

Since (10) holds, we haveV(p,W ) = Q(0), whereQ(δ) is
defined by (35). Thus, we have

V −
p,W = min

q∈Q(0)
Vq,Wp

, V +
p,W = max

q∈Q(0)
Vq,Wp

.

We also have

VPx,Wp
≥ min

q∈Q(δ)
Vq,Wp

, (37)

VPx,Wp
≤ max

q∈Q(δ)
Vq,Wp

(38)

for x /∈ An(δ). Since the righthand sides of (37) and (38)
are linear programmings, we can show the statement of the
lemma in the same reason as Lemma 4.
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