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Abstract—We study the problem of channel resolvability for second-order rate of channel resolvability for the worgtuin
fixed i.i.d. input distributions and discrete memoryless clannels distribution.
(DMCs), and derive the strong converse theorem for any DMCs  pg yagt of this paper is organized as follows: we introduce
that are not necessarily full rank. We also derive the optima - - .
second-order rate under a condition. Furthermore, under tre .the pro,b'em setting of Cha_mnel resolvability and. main "BSl_Jl
condition that a DMC has the unique capacity achieving input in Section[D). Then, we will show proofs of main results in
distribution, we derive the optimal second-order rate of ctannel  Sectior1ll. We conclude in Sectién]V and discuss open prob-

resolvability for the worst input distribution. lems. The proofs of technical lemmas are given in appendices

Il. FORMULATION AND RESULTS

A. Problem Formulation

We study the problem of channel resolvability introduced gqop 5 given input distributiorp, € P(X™) on X" and
by Han-Verdd [[1] (see alsd_[[2, Sec. 6.2]). In addition tg given channelV : = — W,, the goal of the channel

theoretical interest as a random number generation problegko|vability problem (for DMCs) is to approximate the auttp
channel resolvability has a lot of applications in problevhs yistripution

information theory. First, channel resolvability can besdis
to show the converse coding theorem for identification via Wy, (y) == Z pn(2)W5 (y),
channels, and this direction of research has been exténsive zEX™

studied by many researchefS [1] [3]] 4] [5]! [6]. Secondyz(y) = W, (y)-- W, (y.) is the nth independent ex-
channel resolvability can be used as a building block @énsion ofi#” with input vectorz. Throughout the paper, we
wiretap channel code§][7].[8]./[9].[[5]._[10]. Third, chagin assume that alphabets are finite. More precisely, a channel
resolvability can be used as a building block of channgésolvability codeZ,, of size|C,| = M, is a set of codewords
simulation, which in turn can be used as a building block @f — {x1,...,xy,} C X", and we are interested in
certain coding problems (ed. [11[, [12], 113],]14], [1516]). approximatinglV,,, by

Despite its importance, our understanding of channel re- M,
solvability is far from complete even for discrete memosgle We = Z Lwn .
channels (DMCs). For instance, the optimal rate of channel Rt M,
resolvability for fixed i.i.d. input distribution is not known. ) L _
In [1], Han-Verdl showed it is less than or equal to the mutulf thls.paper, _th_e appr_OX|mat|on error is evaluated by the
information I (p, W), and they also showed an example suchP'malized variational distance:
that this bound iswot tight [1, Example 1]. In[[1l7], Han-Verd p(Crs Wy ) = lIIWc W, |
showed thaf (p, W) is indeed the optimal rate for the class of e 2 " b
channels calledull rank. In this paper, we derive the optimalFor a given0 < ¢ < 1, we define the minimum size of the
rate (cf. [2)) for any channels that are not necessarilyréulk. random number needed to approximéitg, by
In fact, we derive even stronger result, i.e., the stronyerse 1
theorem. R(n,e|py) := inf {— log |Cp : p(Cpy Wy, ) < 5} .

Once we have established the strong converse theorem, RN
the next step is the second-order asymptotics [18]] [19)/e also consider the worst input distribution case:
[20]. In this paper, we also derive the optimal second-order . . n
rate of channel resolvability under a condition (df_J(10)). Rust(n,€) i= sup{R(n, £lpn) : pn € P(X™)},
Furthermore, under the condition that a DMC has the uniquéere the supremum is taken over all distributionsl@hthat
capacity achieving input distribution, we derive the omtim are not necessarily i.i.d.

|. INTRODUCTION
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B. Fixed I.1.D. Input Distribution Then, we define the following four quantities:

First, we consider the case in which the input distribut®en i +
) U = U 5 5
fixed asp,, = p™ for nth i.i.d. extension op € P(X). When pW qegl(ap?(W) oW ©®)
the transition vector§W,. }.cx are linearly independent, the Uw = min U, w, (6)
channelW is called full rank. For full rank channels, the ’ a€V(p:W)
following result is known. Voitw = max  Vo.w,, (7)
Proposition 1 ([], [17]): For a full rank channB] we have B acvip. )
Vow = min Vaw,- (8)
hnghmsup R(n,elp™) = I(p, W), 1) wVe W)

n—r00

whereI(p, W) is the mutual information for the input distri- Theorem 2 (Second Order Asympitotics for Fixed p): We
ave

bution p.
When a channel is not necessarily full rank, more than one i ny_ g
q € P(X) satisfyingW, = W,, may exist. Thus, we introduce P \/ﬁ( (. £[p") W )
the following quantity: ) Uty Q '(e) €>1/2 o
Sw, =min{I(q, W) :q € P(X), W, =W,}. ) - VU@ ) =<1/2
In general, Sy, is strictly smaller than/(p, W), as is illus- . _ .
trated by the following example. provided that/ ;. > 0. Furthermore, if
Example 1 ([1]): ForX ={0,1,e} andy = {0,1}, let W D(W,|W,) = Sw, Vo € X (10)
be given by
andV, 5, > 0 hold, we have
Wo(0) =1, Wi(1)=1, We(0)=We(1)=1/2. |
li , S
Let p be such thatp(0) = p(1) = 1/2. Then, we have nl—>n<§o\/_( (n.€) = Sw,)
I(p,W) =1 but Sy, = 0. Vi@ Me) e>1)2
We can derive the following refinement of Propositidn 1. = . (11)
Theorem 1 (First Order Asymptotics for Fixed p): For any VVew®@ (€) e<1/2
0 <e <1, we have T 1
VU T wQ () €>1)2
lim R(n,elp") = S 3 - e / ’ (12)
lim R(n,e[p") = Sw,. ©) UywQ '(e) e<1/2
Fon an input distributions, let where
W (y) ] /°° 1 { t?}
U,w = )W, (y) |lo —I(qg, W Qa) := exp |——| dt.
= e ) 102 55~ ) @ [ e -3
and Remark 1: In the converse part, we are going to prove the
5 inequality > in (). It should be noted that the condition in
o W (y) (I0) is not only used as a matching condition for (11) (12)
Vaw, = ;q(I)WI ) [IOg Wo(y) (WI|W”)] ’ to coincide, but it is crucially used in the converse proof. |

fact, the inequality> in (Id) does not hold in general since
whereD(-||-) is the KL divergence. Foy satisfyingiV, = ,,, the inequality
Ugw andV, w, = Vg w, are the unconditional information
variance and conditional information variance respebtive ,/VPTWQ‘l(a) > U;WQ‘l(a)
[20]. In such a case, we have

may hold fore > 1/2, which contradicts the achievability part.

Vow, < Ugw, () Remark 2 When channelV is a noiseless channel, the

channel resolvability problem reduces to the source resolv

and the equality hold if and only if ability problem [21, Sec. 2]. In this case, since the chamnel

D(W,|W,) = I(q, W) Vz s.t. q(z) > 0. full rank, V(p, W) is the singleton{p}. We also havesyy, =
H(p), VJr = Vow =0, and U, _UJr = U, w
Let Although thls case is not covered by TheorEin 2 the second

order asymptotics for this case is already known to[bé [22]
V(p,W):={qeP(X): I(q,W) = Sw,, Wy =W,}.

limsup v/n (R(n,elp") — H(p)) = /Uy Q™ (o).

1The full rank condition is only needed in the converse gari.[1 n—00



C. Worst Input Distribution I1l. PROOFS OFMAIN RESULTS

Next, we consider the worst input distribution case. Let A. Preliminaries for Proofs

The purpose of this section is to prepare lemmas that
will be used for the achievability part and the converse,part
respectively. To save space, we introduce a notation that is
usually used in quantum information (eg.[23]). For a fumti
A on), let {A > 0} indicates the sef{y : A(y) > 0}.
Then, for a non-negative functio® on ) (not necessarily

Cw :=max{I(p, W) :p e P(X)}

be the channel capacity ®. The following result is known.

Proposition 2 ([]): For any0 < ¢ < 1, we have

lim Rust(n,¢) = Cyy. normalized),_we denot®{A > 0} := Z_ye{AZO} P(y).
n—00 The following lemma guarantees existence of a good chan-
Let nel resolvability code.
Lemma 1 (Theorem 2 of [5]): For anyg, € P(X™) such
VW) :={peP(X):I(p,W)=Cw} that W, = W, and any real numbe€,, there exists a
channel resolvability codé,, such that

be the set of all capacity achieving input distribution (OAl

It is well known that the output distributiod’,- for any CAID P(Crs Wy,.)
p* is unique. Let us introduckill support CAID condition: < an YW WD — CuW,, > 0} + % %
D(W,|W,.) = Cy  Va € X. (13) !
In the converse part, we are going to use the argument of
Under this condition, we find that the typical sequence. L&, 5 be the set of typical sequences,
i.e., |Py(a) —p(a)] < Va € X and, in addition, nar € X
Sw,. = Cw (14)  with p(a) = 0 occur inz, whereP, is the type of sequence

_ ) We also define the sty s(x) of W-typical sequences given
+ — k)
holds. Moreover,V, [ ;. and V, ;. defined in [J') and[{8) 2, i.e., |Poy(a,b) — Pa(a)Wa(b)] < 6 Y(a,b) € X x Y and,

coincide with the cond|t|onal variances that appear in tqﬁ addition, P, (a,b) = 0 wheneveriV, (b) = 0, where P,
- a — Y Ty
channel coding problems: is the joint type of(x, y). For the output distribution, we also

+ define the set of typical sequencési, s. For anyd > 0, it
Vip = max V,w,, . P
peV(IV) is well known that[[24, Lemma 2.12]
Vﬁ - V n
w pergl(ri}l/) 2 p"(Tps) = 1—1m,
W (T > 1=,
Theorem 3 (Second Order Asymptotics for the Worst Case): WP (Tw,5) = 7 n
Suppose that the full support CAID condition is satisfied We(Tws(x)) 2 1-mVeed
(cf. (13)). Then, we have for some~,, such thaty, — 0 asn — co.
lim sup /n (Rust(n,€) — Cw) Let
e An(8) = {x : |[Wp, (b) — W, (b)| > 2|X]|0 for someb € V}
\/ WQ g) €= 1/2 L .
< (15) be the set of all sequences such that the output distribution
ViwQ 7l (e) e<1/2 Wp, is not close tolW,. For such sequences, we have the
following property.
and Lemma 2: For x € A,(d), we haveTy,s(z) C Ty, , for
- = |X|4.
1lnn—l>l<>%f Vi (Ruse(n,€) = Ow) The following will be used as a key lemma in the converse
ViQt >1/2 part. _ -
> wQ (e e=z1/ (16) Lemma 3: For a given channel resolvability codg,, let
VipQ@ () e<1/2 B, ={i:xz; € A,(6)}. Then, for anya > 0 and sufficiently

largen, we have
provided thatl/;, > 0.

Remark 3: It should be noted thaf(14) is not true in generaP(C”’ W)

In fact, the channel in Exampld 1 does not sati$fyl (14). It = |B | )+ Z _Wn W — MW > 0}
should be also noted thdf {14) is slightly weaker condition ~— M, B o r=
than [13). These conditions are needed only in the converse ~ _,

part, and for the achievability part of Theoréin 3, we need not T
to assume neithef (I13) ndr_(14). for some~,, such thaty, — 0 asn — ooc.



The following two lemmas are also used in the conversand

part.
) Wa (Y) V.. .w,
Lemma 4: Supposer ¢ A, (6). Then, we have " - =i
Vi, log Wi(Y) n (@3)
E Po(a)D(Wa|Wp) +7(5) = Sw, max, Vo w,

< = (24)

for somer(d) such thatr(§) — 0 asé — 0.

Lemma 5: Supposel[(0) holds and ¢ A, (). Then, we where EWn and VW;; are the expectation and the variance
have with respect toY ~ W,.. Thus, by using Chebyshev's

inequality, we have

Ve, w, +71(0) = V3, (17) —
Ve, w, —12(0) < Vi (18) W;{ log i > D(W|Wy|Pr,) — }
for somer; (6) and72(0) that converge t® asd — 0. maxquq W
Z _ P
B. Proofs of Theorem[T vin
Direct Part: Let ¢ be such that/(¢,W) = Sw,. For Consequently, from [(21), we have(C,, W) — 1,
arbitrarily fixed > 0, we use Lemmall by setting/,, = which contradict with p(Cn, W) < e. Thus, we have
en@W)+2v) and C,, = enI(@W)+v) Then, by the law of liminf, . R(n,c) > Sw,. [
large number, we have(C,, W;') — 0. Sincer > 0 can be
arbitrary, we complete the proof. [ |

) C. Proofs of Theorem
Converse Part: For arbitrary0 < ¢ < 1, suppose 2

Direct Part: Let ¢ be such that/(¢,W) = Sw, and
Uw = Uy (or Uyw = U, W) For arbltranly fixed
v >0, we use Lemmﬂl by settm]@gMn = nl(q,W) +

1irginf R(n,elp™) < Sw,.

Then, there exist > 0 and a code’,, such thatp(C,) < ¢

and - VU, w@Q™! 5—1/ + logn and logC,, = nl(q,W) +
. /nU, wQ~1(e —v). Then, by the central limit theorem, we
—log M, < Sw, — 3v (19) havep(Cp, Wy <e for sufficiently largen. Sincer > 0 can
n be arbitrary, we complete the proof @fl (9). [ |
for infinitely manyn. Forg € P(X), we denote Converse Part: We only provB the case withe < 1/2.
Suppose

D(W|[[Wylg) == q(a)D(W,|W,).

liminf \/n (R(n,e|p") — nSw,) < Vow@™ 'e).

From LemmdH, if we také sufficiently small, we have n—o0
D(W||Wp|Py) > Sw, — v (20) Then, there exists > 0 and a code’,, such thatp(C,,) < ¢
and
for everyx ¢ A, (9).
By applying LemmaB3 forx = vn, we have log M, < nSw, + anTWQ_l(E) _su/n (25)
P(Cr, W) o |
B n| for infinitely manyn. From [IT) of Lemmals, if we také
> M, ) + 1;& —W —e"" M, W, >0} sufficiently small, we have
—e " — . (21) Ve, w, QM (e) = \/V, Q@ H(e) — v (26)

Here, the third term and the forth term convergedtd=rom
(19), the second term is further lower bounded by

1 (1. wn

for everz ¢ A, (9).
By applying Lemmd[ forx = v+/n, we have

iesg " P p(Cns W) >
(a) 1 W |B | n n vy/n n
> —wr log — 2L > D(W||Wy|Py,) — v b, A=)+ MW (W2 — VI, W > 0}
i M wy " e "
—e™VT — . (27)

where (a) follows from (20). Here, note that

Wz (Y) 2 B .
Ewn |~ log - D P, 22 ore > 1/2, we replacev in (28) byV , which follows from
W, [ W”(Y) ] (WIWp|Pe.) (22) (@8) of Lemmd by noting) 1(‘:3‘/) < 0 fore > 1/2



From [25), each term in the summation of the second term is V. CONCLUSION

further lower bounded by _ _ _
W As we discussed in Remaitl 1, the optimal second-order

wn {i <1Og T pSw > >V, Q e - 2,/} rate for fixed i.i.d. input distribution is not clear in geaér
“ v wy ") »w One possible answer is that the optimal second-order rate is
(a) always given by[(1l2). This is at least true for noiseless nkan
- . (cf. Remark[®2), but there is no strong evidence in general.
W {L <1Og Wa: nSy ) > JVp, w.Q 7 (e) — V} . Clarifying the optimal second-order rate is an importantife
v wy ! e research agenda. There is also a gap between the achigvabili
(28) and the converse for the worst input distribution case iregan
where (a) follows from (28). Here, we note that (cf. TheoreniB); the gap vanishes only when the channel has

D(W|[Wy|P) = Sw, holds for any sequence because the unique CAID.

of the assumption in[{10). Now, by noting {22) arid1(23),

and by using the central limit theorem_[28) is strictly APPENDIX
larger thane for sufficiently largen. Thus, from [2V), we A proof of Lemma 2

have p(C,, W) > ¢ for sufficiently largen, which is a

contradiction. Thus, we have From the definition ofTw,s(z), y € Tw,s(x) implies
) |Py(b) — Wp,(b)| < 6" Vb € Y. On the other hand, from
liminf v/n (R(n, [p") = nSw,) > 1/V, wQ ' (€), the definition of.A4,,(#), there exist$ € V) such that
which completes the proof of in (I7). The equality between W —W. ()| > 25 30
(I1) and [(IR) follows from the assumption [0[10). [ Wr. (8) o) ' (30)
D. Proof of Theorem[3 Thus, forb satisfying [30),y € Tw,s(z) implies

Direct Part: Let p* be CAID, and letVyy = Vi, when
e < 1/2(orVy;, whene > 1/2). From Lemmall withy,, = p,,,
there exists a resolvability code satisfying

p(cn7 an)
n 1 /C, which impliesy ¢ T, s [ |

%
< E:p"(m)W;l {logw—m ZlOgCn}+§ TR
z Pn n

[Py (b) — Wy (b)]|
> [Wp,(b) = W,(0)| — [Py(b) — W, (b)]
>

B. Proof of Lemma[3
Here, by the change of measure argument, we have &

Wwn First, we divideWV into typical part and non-typical part
Wy {10g W; > log On} asW, = W + W}, where
w W in n
= Wy {log Wi + 1ogW—p > log Cn} Wiy) = W, (Ylly € Tw, 5],
" - — Wiy) = Wi ylly ¢ Tw, s,
< Wpilog =2 >logCp — & ¢ + Wy qlog = > . L . .
- {Og Wy — ©8 5} {Og Wp., — 5} where ¢’ is specified in Lemm&l2, andl[-] is the indicator
for any ¢ > 0, which implies function. Then, for sufficiently large, we have
an(m)ww {1ogW—:n > logCn} 5||ch - Wyl
N wn (;) atin > n atirn >
San(w)W;’ {log Z > log Cy — 5} +e7€.(29) > We {We, —e I/I/p >0} — VYP {We, —e VAVp >0}
. Wy > We, (We, — e*W >0} — W {We, — e*W' >0}
Now, for arbitrarily fixedv > 0, let & = logn, log M,, = _W;(yn)
nCyw + VnViyQ (e —v) + 2logn andlog C,, = nCy + (b) A
VnViwQ (e —v)+logn. Then, by applying the central limit > W, {We, — "W >0} —e ™ — 7y, (31)

theorem for eachiv’{-} in (29), we havep(C,,, W), ) < ¢ for o o _
sufficiently largen. Sincer > 0 can be arbitrary, we completewhere (a) follows form the definition of the variational dis-

the proof of the direct part. m tance, andb) follows from
Converse Part: From the definition of the worst case, we . . .
have Wy{We, — Wy >0} < e *We, {We, — W, >0}
< e

Rust(n,e) > R(n,el(p*)™).

Thus, the converse part follows from TheorEmn 2. and W (y") = W (T4, 5/) < 7 for sufficiently largen.



Furthermore, we have Since the righthand side df (86) is a linear programming, by
. the perturbation analysis [R5, Sec. 5.6.2], we have

ch{ch - eO‘WZ? > 0}
min a)D(W,||W,

M. M, €0 (5) q(a)D(We | Wp)
— Z ﬁwg Wy, —e*M,W, >0 “

— My — > i D(We||[Wy) — (6

: o > i q(a)D(Wa [Wy) — 7(3)

(C) M, 1 . B S a 6
> YW {wa ey =0} = Sw, —7(9)

=1 . for somer(d) such thatr(6) — 0 asd — 0. [
- _;; EW% {Ww "MWy = 0} D. Proof of Lemma[B

1 o Since [1D) holds, we havié(p, W) = Q(0), whereQ(d) is
+Y 7 Ve {Wmi — e MW > 0}1 (32)  defined by[(3b). Thus, we have

icBe T
V", = min V, , V', = max V, .
where(c) follows from the fact that PW T eg() MM PW T eoio) MM

M, We also have

{”;i _eaMn”;;l > 0} - § ”;j _eaMn”;? >0 Ve,.w, > min Vyw,, (37)
j=1 e qeQ(s) 7

V < m V, 38

holds for each. PaWp = HEG) oW (38)

Now, we evaluate each term ¢f {32) separately. Since ¢ . ¢ A,(5). Since the righthand sides df{37) ardl(38)

An(9) for i € B”'_ fro.m Lgmmaﬂz, we havel'(y) = 0 for are linear programmings, we can show the statement of the
y € Tw,s(zx;), which implies

lemma in the same reason as Lenima 4. ]
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