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Abstract—We consider a source that would like to communi-
cate with a destination over a layered Gaussian relay network. We
present a computationally efficient method that enables to select a
near-optimal (in terms of throughput) subnetwork of a given size
connecting the source with the destination. Our method starts by
formulating an integer optimization problem that maximizes the
rates that the Quantize-Map-and-Forward relaying protocol can
achieve over a selected subnetwork; we then relax the integer
constraints to obtain a non-linear optimization over reals. For
diamond networks, we prove that this optimization over reals is
concave, while for general layered networks we give empirical
demonstrations of near-concavity, paving the way for efficient
algorithms to solve the relaxed problem. We then round the
relaxed solution to select a specific subnetwork. Simulations using
off-the-shelf non-linear optimization algorithms demonstrate ex-
cellent performance with respect to the true integer optimum for
both diamond networks as well as multi-layered networks. Even
with these non-customized algorithms, significant time savings
are observed vis-à-vis exhaustive integer optimization1.

I. INTRODUCTION

Consider a source that would like to communicate with a
destination over a (potentially large) wireless Gaussian relay
network. Using all the network relays for this purpose can be
wasteful in terms of resources; instead, we would like to only
use a certain number of relays, i.e., a subnetwork of a fixed
size. To this end, this paper addresses the following question:
How do we select the best (in terms of throughput) subnetwork
of a given size in a computationally efficient manner?

In a sense, we are interested in generalizing routing over
physical layer cooperation networks: In routing, we select the
best one (or k) path(s) over which to forward the information
from a source to a destination; over physical layer cooperation
networks, the corresponding operation would be selecting the
best subnetwork (of a given size). This is a conceptually
simple, but computationally a hard optimization problem.

Our objective function should facilitate the selection of a
subnetwork that enables the highest throughput. This would
be the subnetwork that has the largest information-theoretic
capacity; however, determining the capacity explicitly remains
an unsolved problem till date. We resort instead to approx-
imate schemes, such as Quantize-Map-and-Forward (QMF)
[2] and Noisy Network Coding (NNC) [7], that are proved
to achieve all rates within a constant additive gap (inde-
pendent of the channels in the network) from the cutset
upper bound on capacity for arbitrary single-source single-
destination wireless relay networks. We are encouraged in
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this choice by the fact that initial concerns about the additive
gap affecting QMF/NNC performance at moderate SNRs have
also been addressed in [11], [4], with appropriate choices of
quantizer distortions demonstrating excellent moderate SNR
performance. We thus focus our attention on QMF/NNC-based
relay networks and hence, use the achievable rate expressions
for these schemes [7], or indeed their close siblings–the cutset
upper bound expressions on network capacity (which differ
from the QMF/NNC rates by a mere constant), as the network
objective functions for our problem.

At its core, subnetwork selection is an integer optimization
problem: To every relay R in a network W having N relays,
we assign an integer selection variable θR that takes value 1 if
R is selected and 0 if R is not selected. In the corresponding
objective function, the incoming and outgoing channels to and
from the relay R are weighted by θR. An optimal subnetwork
thus corresponds to the integer tuple {θR}R∈W of size N
that maximizes the weighted objective function subject to a
subnetwork size constraint of the form

∑
R∈W θR = K.

A trivial solution to the above integer optimization problem
requires an exhaustive search over the possibly exponentially
many tuples that satisfy the constraint.

Our main contribution is a method that enables to find an
approximate solution to this problem efficiently, and consists
of the following steps: (i) We relax the integer constraints on
the selection parameters θR, allowing them to be reals in the
interval [0, 1], while all other constraints remain unchanged.
(ii) We prove that the relaxed optimization problem thus
obtained is always concave for diamond networks and almost
concave for general layered networks, facilitating efficient
algorithms for solving the relaxed problem. (iii) We round the
relaxed solution by choosing the top K values in the relaxed
optimum to obtain a selection tuple {θR}R∈W .

Numerical evaluations with random channel sets demon-
strate: (a) ≥ 98% of the integer optimum value is attained
by our algorithm (using off-the-shelf non-linear optimization
solvers) with a probability of 0.97 for networks of size 20
nodes, and (b) The time taken by our algorithm is less than that
of an exhaustive integer optimization by factors of more than
450 for a network of N = 30 nodes. The empirically observed
running time is polynomial in N for diamond networks and
sub-exponential for multilayer networks.

It is to be noted that this relaxation approach outlined above
is not merely restricted to the QMF/NNC-rate type objective
functions, but can be used as a general tool for selection with
any given metric; for example, we also apply our algorithm on
the capacity approximation expression for diamond networks



proposed in [8] and demonstrate the results obtained.
Related Work: Previous work on relay selection in wire-

less networks can be divided into three categories: (i) The work
of [12] and the references therein propose algorithms to select
the single best relay (in terms of cooperative diversity) in one-
layer networks. (ii) The work of [3] and the references therein
analyse the performance of heuristics for selecting a subset of
relays (again, from a single layer of relays) for Amplify-and-
Forward (AF) based protocols. (iii) Recent work by [1] proves
upper bounds on multiplicative and additive gaps for AF-based
relay selection, primarily for diamond networks. The work of
[8] proves general multiplicative lower bounds on the the rate
achievable by a subset of relays in a diamond network.

This paper is organized as follows: Section II details the
communication model and explains the problem formulation.
Section III illustrates our solution strategy for diamond net-
works, while Section IV deals with the more involved problem
of multilayer networks. Finally, Section V provides numerical
evaluations that illustrate the benefits of our approach.

II. MODEL AND FORMULATION

A. Communication Model

We consider a full-duplex layered wireless network W
containing L layers of nodes. The source is the singleton node
in layer 0, while the destination is the singleton node in layer
L − 1. For ease of exposition, all the intermediate layers are
assumed to have exactly n nodes, although our techniques
can handle any configuration. As shown in Fig. 1, each signal
path from the source to the destination in a layered network
gets relayed by exactly the same number of hops. We assume
all nodes to have a single antenna. The signal flow over this
network can then be written as:

Y l+1
i =

n∑
j=1

hlijX
l
j + Zl+1

i (1)

where Y l+1
i denotes the received signal at node i ∈ [1 : n]

in layer l + 1 (l ∈ [0 : L − 2]), hlij denotes the complex
channel coefficient from node j in layer l to node i in
layer l + 1, X l

j denotes the transmitted signal from node
j ∈ [1 : n] in layer l and Zl+1

i denotes the i.i.d zero mean
complex Gaussian noise at the receiver i in layer l + 1. For
our network, we have a per node power constraint, given
by E[|X l

j |2] ≤ 1. We also normalize the noise powers to
unity, i.e., Zi ∼ i.i.d CN (0, 1). Notice that these per node
signal flow equations can be coalesced into per layer equations
involving vectors and matrices as follows:

Yl+1 = HlXl + Zl+1 (2)

where Yl+1 = [Y l+1
1 , Y l+1

2 , . . . , Y l+1
n ]T , Xl =

[X l
1, X

l
2, . . . , X

l
n]T , Hl is the MIMO channel

matrix from Xl to Yl+1 with Hl(i, j) = hlij and
Zl+1 = [Zl+1

1 , Zl+1
2 , . . . , Zl+1

n ]T .

B. Capacity Outer bounds and Rate Expressions

Since the capacity of such networks cannot be characterized,
the gap from the traditional cutset upper bound on capacity
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Fig. 1. The Gaussian full-duplex layered network with L layers having n
relays each, except the first and last one.

[2] is often used as a metric to evaluate the performance of a
given relaying protocol over such networks.

A standard practice is to use inputs Xj at every network
node that are picked from an i.i.d complex Gaussian distribu-
tion, i.e., Xj ∼ i.i.d CN (0, 1). This is precisely the strategy
used to prove the constant gap performance of the QMF and
NNC schemes in [2], [7], and in view of these results, the
following modified version of the cutset upper bound, termed
C̄iid in [2], with the above-mentioned inputs is of interest:

C̄iid = min
Ω

L−1∑
l=0

log det
(
I + Hl

ΩH
l†
Ω

)
(3)

Here, Hl
Ω denotes the MIMO channel matrix from Xl

Ω to
Yl+1

Ωc and Ω denotes a cut in the network as shown in Fig.
1. For uniformity in dimensions, we choose to represent Xl

Ω,
Yl+1

Ωc and Hl
Ω as n×1, n×1 and n×n matrices respectively,

by inserting zeroes in the appropriate rows and columns as
dictated by the index of elements in Ω or Ωc.

It is important to note that the achievable rate for the
NNC scheme in [11] using i.i.d Gaussian vector quantizers
of distortion ∆ at each node is fundamentally related to the
C̄iid expression, while additionally factoring in the quantization
loss. The NNC rate for our network as per [11] is given by

RNNC = min
Ω

{
L−1∑
l=0

log det

(
I +

Hl
ΩHl†

Ω

1 + ∆

)
− |Ωc| log

(
1 + ∆

∆

)}
(4)

We will later argue that the differences in (3) and (4) do
not substantially affect our optimization algorithm, and for the
sake of clarity, we will proceed to define the subnetwork se-
lection problem using the expressions for C̄iid in the remainder
of this section.

C. Subnetwork Selection

We want to select an optimal subnetwork Wopt
S of W that

maximizes the subnetwork’s C̄iid (or RNNC) expression over
all subnetworks WS with the following size constraint: WS

contains Kl relays (Kl ≥ 1) in layer l ∈ [1 : L − 2]. For
this purpose, we first define a set of n× n diagonal selection
matrices, Sl, for each layer l ∈ [1 : L − 2] of the form
Sl = diag(

√
θl1,
√
θl2, . . . ,

√
θln) such that θli ∈ {0, 1} and



∑n
i=1 θli = Kl. For a given subnetwork, the matrices Sl will

have θli = 1 iff relay i ∈ [1 : n] in layer l is in the subnetwork
and θli = 0 otherwise. The reason for using a square root in
the expressions will become clear in the next section.

For a given WS , the subnetwork’s C̄iid is given as:
C̄S,iid = min

Ω
IS,Ω (5)

where

IS,Ω =

L−1∑
l=0

log det
(
I + Hl

S,ΩH
l†
S,Ω

)
(6)

Here, Hl
S,Ω denotes the (still n × n) MIMO channel matrix

from Xl
S,Ω to Yl+1

S,Ωc where Xl
S,Ω = SlX

l
Ω and Yl+1

S,Ωc =

Sl+1Y
l+1
Ωc . In this setting, Hl

S,Ω can be related to Hl
Ω as:

Hl
S,Ω =


SlH

l
ΩSl+1, l ∈ [1 : L− 2]

H0
ΩS1, l = 0

SL−1H
L−1
Ω , l = L− 1

(7)

Essentially, Hl
S,Ω is obtained from Hl

Ω by replacing with 0, the
rows (resp. columns) indexed by the relays in layers l (resp.
l + 1) that are not selected. This way, we retain an n × n
channel matrix at each layer l that is equivalent in terms of
singular values to the Kl×Kl+1 channel matrix at that layer.

Now, the problem of finding Wopt
S essentially reduces

to optimally selecting the set of diagonal integer selection
matrices {Sl}{l∈[1:L−2]}. This integer optimization problem
can be stated as:
{Sopt

l }{l∈[1:L−2]} = arg max
{Sl}{l∈[1:L−2]}

tr(S2
l )=Kl

C̄S,iid ({Sl}) (8)

where the trace condition is equivalent to
∑n
i=1 θli = Kl.

III. RELAXED APPROXIMATION–DIAMOND NETWORKS

We first illustrate our relaxation approach for (approxi-
mately) solving the above optimization problem in (8) by
taking the simplest example of an n-relay diamond network.
In this network, there is a set of n relays in layer 1, while layer
0 and layer 2 contain the source and destination nodes respec-
tively. For this network, we essentially have only 1 selection
matrix, S1 = diag(

√
θ11,
√
θ12, . . . ,

√
θ1n) corresponding to

the relays in layer 1 that we have to optimize.
For purposes of simplification, we make the following abuse

of notation in the remainder of this section: (i) θ1i ← θi since
there is only 1 layer of relays; (ii) h0

i1 ← h0
i to denote the

channels from the source (indexed as node 1 in layer 0) to
relay i; (iii) h1

1i ← h1
i to denote the channels from relay i (in

layer 1) to the destination (indexed as node 1 in layer 2).
Specializing (8) for the diamond network, where we wish

to select the optimal subnetwork having K1 relays, we have:
{θopti }i∈[1:n] = arg max

{θi}i∈[1:n]∈{0,1}:∑n
i=1 θi=K1

C̄dia
S,iid ({θi}) (9)

where

C̄dia
S,iid({θi}) = min

Ω

{
log(1 +

∑
i∈Ω

θi|h0
i |2) + log(1 +

∑
i∈Ωc

θi|h1
i |2)

}
(10)

A. Relaxing the Integer Program

For an approximate solution to the integer program in (9),
we first relax the constraints in the problem as follows: Instead
of using the integer θi’s lying in the discrete set {0, 1}, we
replace them with real variables θ̃i’s that lie in the interval
[0, 1]. With this relaxation, the following theorem holds:

Theorem 3.1: The optimization problem, defined as:

{θ̃opti }i∈[1:n] = arg max
{θ̃i}i∈[1:n]∈[0,1]:∑n

i=1 θ̃i=K1

C̄dia
S,iid

(
{θ̃i}

)
(11)

where C̄dia
S,iid ({.}) is defined in (10), is concave maximization

problem in {θ̃i}i∈[1:n]

Proof: Observe that the constraints on θ̃i are linear.
Hence, it remains to show that C̄dia

S,iid is concave in {θ̃i}i∈[1:n].
To this end, observe that for a given cut Ω, (1+

∑
i∈Ω

θ̃i|h0
i |2)

and (1+
∑
i∈Ωc

θ̃i|h1
i |2) are affine functions of {θ̃i}i∈[1:n]. Hence,

log(1 +
∑
i∈Ω

θ̃i|h0
i |2) and log(1 +

∑
i∈Ωc

θ̃i|h1
i |2) are concave in

{θ̃i}i∈[1:n], and so is their sum. Moreover, since the point
wise minimum of concave functions is also concave, we can
conclude that C̄dia

S,iid is concave in {θ̃i}i∈[1:n], which proves the
theorem. Notice here the significance of using a square root
in the diagonal entries of the selection matrices, which lead
to the affine functions inside the log terms.

Theorem 3.1 ensures the existence of a polynomial time
algorithm (in the number of relays n) that solves the relaxed
optimization problem in (11), for example using the interior
point method for concave maximization, provided there exists
a polynomial time algorithm to find C̄dia

S,iid.
Finding C̄dia

S,iid a priori consists of evaluating 2n terms
corresponding to the cuts Ω and then taking a minimum, which
takes exponential time. However, it was shown in [10], that
the mutual information terms inside the minimization of C̄dia

S,iid

are submodular in the sets Ω. Since submodular minimization
can be accomplished using only a polynomial (in n) number
of evaluations of the mutual information terms [9], (11) can
be solved in polynomial time.

B. Rounding the Relaxed θ̃i’s

Clearly, since the feasible set for (11) is a superset of
(9), the relaxed optimal value will be greater. However, the
{θ̃opti }i∈[1:n] can have fractional values that do not correspond
to an actual subnetwork of size K1. The next step then is to
round the fractional solution of (11) to a discrete solution
that represents a subnetwork selection. Mathematically, a
rounding is a map fR : {θ̃opti }i∈[1:n] 7→ {θseli }i∈[1:n] such that
{θseli }i∈[1:n] ∈ {0, 1} and

∑n
i=1 θ

sel
i = K1. An intuitive way to

perform the rounding in this case would be to set θseli = 1 iff
θ̃opti is among the maximum K1 values in the set {θ̃opti }i∈[1:n]

and set θseli = 0 otherwise.

C. Using RNNC instead of C̄iid for optimization

The relaxation approach illustrated above extends naturally
to the QMF/NNC rate expressions RNNC For this, specializ-



ing (4) to diamond networks, and using relaxed {θ̃i}’s, the
optimization problem can be stated as:

{θ̃opti }i∈[1:n] = arg max
{θ̃i}i∈[1:n]∈[0,1]:∑n

i=1 θ̃i=K1

R̄dia
S,NNC

(
{θ̃i}

)
(12)

where

R̄dia
S,NNC({θ̃i}) = min

Ω


log(1 +

∑
i∈Ω

θ̃ii
|h0

i |
2

K1
) + log(1 +

∑
i∈Ωc

θ̃i|h1
i |2)

−
∑
i∈Ωc

θ̃i log( K1
K1−1

)


(13)

using ∆ = K1 − 1 as in [11]. From Theorem 3.1, we can
straightaway conclude the concavity of (12), since the only
additional terms,

∑
i∈Ωc

θ̃i log
(

K1

K1−1

)
, are linear in {θ̃i}i∈[1:n].

D. Applications in other capacity approximations

For n-relay diamond networks, a simpler and more approx-
imate expression based on point-to-point link capacities has
been proposed for capacity approximation in [8], given by:

C̄dia
P2P = min

Ω

{
max
i∈Ω

log(1 + |h0
i |2) + max

i∈Ωc
log(1 + |h1

i |2)

}
(14)

The inherent advantage of working with (14) is that C̄dia
P2P can

be evaluated in O(n log(n)) time [8], which is faster than the
polynomial time submodular minimization algorithms needed
to evaluate C̄dia

iid or Rdia
NNC. On the flip side, this approximation

is not good for low SNRs and it does not generalize to multi-
layered networks beyond the diamond topology. However,
for diamond networks, we can still apply our relaxation
framework on the C̄dia

P2P expression to get a set of relays that
(approximately) maximizes C̄dia

P2P and see how that selected
set of relays perform in terms of C̄dia

iid or Rdia
NNC. In this case,

the relaxed optimization problem can take the following form:

{θ̃opti }i∈[1:n] = arg max
{θ̃i}i∈[1:n]∈[0,1]:∑n

i=1 θ̃i=K1

C̄dia
S,P2P

(
{θ̃i}

)
(15)

where

C̄dia
S,P2P

(
{θ̃i}

)
= min

Ω

{
maxi∈Ω θ̃i log(1 + |h0

i |2)

+ maxi∈Ωc θ̃i log(1 + |h1
i |2)

}
(16)

Note that unlike (11), (15) is not a concave optimization
problem and in general, non-linear optimization algorithms can
potentially get stuck in local maximas. Nevertheless, owing to
the faster speed in computing C̄dia

S,P2P, it is worth giving this
expression a try, and surprisingly, we show in Section V that
off-the-shelf non-linear optimizers do give good results with
the C̄dia

S,P2P expression used for selection.

IV. RELAXED APPROXIMATION–MULTILAYER NETWORKS

For multilayer networks, the procedure is similar to the
one outlined for diamond networks. The integer optimization
problem over the n(L − 2) variables {θli}i∈[1:n],l∈[1:L−2], as
given in (8), can be relaxed to the corresponding continuous
problem in {θ̃li}’s. Once the relaxed optimization problem is
solved, the optimal fractional solution is rounded to an integer
solution representing a subnetwork of appropriate size.

The objective function in the relaxed version of (8) is the
minimum of 2n(L−2) terms, each of which is a sum of terms
of the form:

I lS,Ω = log det(I + S̃lH
l
ΩS̃

2
l+1H

l†
Ω S̃l)

where S̃l = diag(
√
θ̃l1, . . . ,

√
θ̃ln), tr(S̃2

l ) = Kl and
tr(S̃2

l+1) = Kl+1. In general, the above term is not a concave
function of {θ̃li}i∈[1:n] and {θ̃l+1,i}i∈[1:n]. Empirical evidence
however suggests that it is almost concave.

Firstly, we denote by x, the vector of variables
x = {θ̃l1, . . . , θ̃ln, θ̃l+1,1, . . . , θ̃l+1,n}

Thus I lS,Ω(x) defines a hyper-surface. For a fixed set of
channel coefficients, if this surface is exactly concave, then for
any pair of points x1,x2 ∈ [0, 1]2n such that

∑n
i=1 x

j
i = Kl

and
∑2n
i=n+1 x

j
i = Kl+1 for j = 1, 2 and for every λ ∈ [0, 1],

the following quantity must be always non-negative:
D(x1,x2, λ) = IlS,Ω(λx1+(1−λ)x2)−λIlS,Ω(x1)−(1−λ)IlS,Ω(x2)

In our experiments, we compute the probability Pccv(H
l
Ω)

that a random pair of x1,x2 satisfies D(x1,x2, λ) ≥ 0 for all
values of λ ∈ [0, 1] picked with sufficient granularity (10−3 to
be precise). The individual channel coefficients hlij in each in-
stance were picked i.i.d as follows: 10 log10(|hlij |2) ∼ U [0, 35]
and ∠hlij ∼ U [0, 2π]. Ω was fixed such that all nodes in
layer l were in Ω and all nodes in layer l + 1 were in Ωc

(but the results do not depend on the choice of Ω). The
empirically observed value of this probability, averaged over
several random channel-set instantiations, for different values
of n and Kl = Kl+1 = n/2 are as follows:

n 2 4 ≥ 6

EHl
Ω

[
Pccv(H

l
Ω)
]

0.9876 0.9997 ≈ 1

This demonstrates that I lS,Ω(x) is almost concave, implying
that the relaxed version of (8) also has similar properties.

V. NUMERICAL EVALUATIONS

Algorithms: We evaluate three algorithms for subnetwork
selection. (i) RLX-FULL: the main algorithm corresponding to
the relaxed problem (11) for diamond networks and the relaxed
version of (8) for multilayer networks. (ii) RLX-SMPL: spe-
cific to diamond networks, corresponding to the relaxed prob-
lem (15). (iii) RND: baseline algorithm where a subnetwork of
appropriate size is selected at random. For both RLX-FULL
and RLX-SMPL, the fractional optimum is rounded by picking
the top Ki values in each layer and accordingly selecting the
subnetwork (as described in Section III-B).

Implementation: The implementations (in C++) require two
main modules: (i) A submodular minimization routine that
evaluates C̄S,iid({S̃l}) for a specific set {S̃l}. For this, we used
the C implementation of an algorithm based on the minimum-
norm base [5], shown to be the most efficient general purpose
routine in this regard. (ii) A routine that solves (11) and
the relaxed version of (8). In view of Theorem 3.1, suitable
interior-point based methods can solve (11) in polynomial
time. However, off-the-shelf open source libraries to this end
gave less than satisfactory results in practice. Instead, a Nelder-
Mead simplex-based general purpose non-linear optimization
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routine from the NLopt library is used [6]. Specifically,
the NLOPT_LN_NELDERMEAD function, combined with the
augmented Lagrangian method in NLOPT_AUGLAG_EQ (to
encode the size constraints) was used.

In all our experiments, for a given (n,K1, . . . ,KL−2) size
tuple, we ran each algorithm for several (greater than 105) ran-
dom channel-set instantiations of the network. The individual
channel coefficients hlij in each instance were picked i.i.d as
follows: 10 log10(|hlij |2) ∼ U [0, 35] and ∠hlij ∼ U [0, 2π].

A. Accuracy Results

For each random channel-set instantiation, we compute the
ratio Calg/Cexh, where Calg (resp. Cexh) denotes C̄S,iid({S̃l})
of the optimal subnetwork selected by our algorithms (resp. by
exhaustive search). Naturally, with this metric, the higher the
Calg/Cexh ratio, the better is the accuracy of the algorithm.

Fig. 2(a) plots the complementary c.d.f. of Calg/Cexh for
the three algorithms over diamond networks. The number of
relays is n = 20 and the subnetwork size is K1 = 10. Clearly,
RLX-FULL produces subnetworks that have throughput equal
or very close to the exhaustive optimal most of the time. Some
sample values read off from the curve are as follows

RLX-FULL RLX-SMPL RND
Pr{Calg/Cexh ≥ 0.98} 0.9697 0.1679 0.0345
Pr{Calg/Cexh ≥ 0.94} 0.9983 0.6349 0.2724
Pr{Calg/Cexh ≥ 0.90} 0.9995 0.8782 0.5617

It is clear from the above that both RLX-FULL and
RLX-SMPL perform significantly better than RND.

For multilayer networks (performance shown in Fig. 2(b)),
experiments were performed for two different configurations:
In the first one, marked as 2× 10 in Fig. 2(b), there are two
intermediate layers of n = 10 nodes each and K1 = K2 = 5.
In the second configuration, marked as 4×5 in Fig. 2(b), there
are 4 intermediate layers of 5 nodes each with a staggered
size constraint of K1 = 2,K2 = 4,K3 = 2,K4 = 3. Again,
in both configurations, we see that the complementary c.d.f
of RLX-FULL consistently outperforms that of RND and the
benefits increase significantly at higher accuracies (i.e., higher
Calg/Cexh ratios).
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Fig. 3. log(E[Talg ]) vs log(N ). A slope of δ ⇒ running time of O(nδ)

B. Time Complexity

To measure the time efficiency of our algorithms, we
construct the following configurations: (i) A diamond network
with N relays, from which we select N/2 relays, and (ii) A
layered network with having 2 intermediate layers of N/2
relays each, and we select N/4 relays from each layer.

For eachN , we perform a large number of experiments with
random channel-set instantiations and plot the average value
of Talg/Texh in Fig. 2(c), where Talg (resp. Texh) denotes the
running time of our algorithms (resp. exhaustive search).

For the diamond network with N = 30, RLX-FULL is more
efficient than an exhaustive search by a factor of 460, while
for RLX-SMPL, this factor is more than 2.1× 106. This is
primarily due to the much faster O(N logN ) computation
time of C̄dia

P2P (in RLX-SMPL) w.r.t that of the submodular
minimization routine for C̄dia

S,iid. For the multilayer confugura-
tion, RLX-FULL gives time saving factors of more than 50
and 440 for N = 28 and 32 respectively.

While it is difficult to theoretically analyze the time com-
plexity of a Nelder-Mead simplex-based algorithm for our
problem, in Fig. 3 we give an empirical demonstration of time
complexity for our implementations, where we plot log(Talg)
(averaged over random channel-set instances) vs log(N ) for
the two configurations above.

For the diamond network, a fairly linear behavior is ob-
tained, with slopes of approximately δ = 5.0 and δ = 2.6



for RLX-FULL and RLX-SMPL, implying that their running
time is approximately O(N 5.0) and O(N 2.6) respectively. For
the two-layered configuration, the slope is not constant, but
a slowly growing function of N (about 1.1 logN to a first
approximation). Nevertheless, this is still the first systematic
sub-exponential complexity (≈ O(N 1.1 logN )) algorithm for
(approximately) solving the original integer optimization prob-
lem for multilayer networks, providing significant time savings
w.r.t an exhaustive search (Fig. 2(c)). Also, with customized
solvers (as opposed to the general purpose routines used here),
further complexity gains are expected.
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