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Abstract

The identification (ID) capacity region of the two-receiver broadcast channel (BC) is shown to be
the set of rate-pairs for which, for some distribution on the channel input, each receiver’s ID rate does
not exceed the mutual information between the channel input and the channel output that it observes.
Moreover, the capacity region’s interior is achieved by codes with deterministic encoders. The results are
obtained under the average-error criterion, which requires that each receiver reliably identify its message
whenever the message intended for the other receiver is drawn at random. They hold also for channels
whose transmission capacity region is to-date unknown. Key to the proof is a new ID code construction
for the single-user channel. Extensions to the BC with one-sided feedback and the three-receiver BC are
also discussed: inner bounds on their ID capacity regions are obtained, and those are shown to be in

some cases tight.

1 Introduction

In Shannon’s classical transmission problem the encoder transmits a message from a message set M of size |M]|
over a discrete memoryless channel (DMC) W (y|z), and the receiver guesses the transmitted message based on
the channel’s outputs. The guess can be any of the | M| messages in the set M, and the receiver thus faces a
hypothesis-testing problem with | M| hypotheses. Loosely speaking, we say that a transmission scheme is reliable
if, irrespective of the transmitted message m, the receiver guesses correctly with high probability. Ahlswede and
Dueck’s identification-via-channels problem [I] is different. Here the encoder sends an identification (ID) message
from a set M, and | M| receiving parties observe the channel outputs. Each party is focused on a different message
m’ € M. The m’-focused receiving party must guess whether or not Message m’ was sent. It thus faces a hypothesis-
testing problem with only two hypotheses. Loosely speaking, we say that an identification scheme is reliable if, for
every possible transmitted ID message m € M and for every m’ € M (possibly equal to m), the m’-focused
receiving party guesses correctly with high probability. That is, if m’ equals the transmitted ID message m, then
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the m/-focused receiving party guesses with high probability that m’ was sent, and otherwise it guesses with high
probability that m’ was not sent |1

In Shannon’s problem the number of messages that can be transmitted reliably is exponential in the number of
channel uses, and the transmission rate is thus defined as the logarithm of the number of transmission messages
normalized by the blocklength n. In Ahlswede and Dueck’s ID problem the number of identifiable messages is double-
exponential, and the ID rate is thus defined as the iterated logarithm of the number of ID messages normalized
by n. The suprema of achievable rates for the two problems are identical: both the transmission and the ID capacity
equal C, where C' = maxp I(P,W) [1H3].

The two problems also differ in the role of randomization at the encoder. Whether or not stochastic encoders are
allowed does not influence the transmission capacity. However, stochastic encoders are essential for achieving the
ID capacity. Such encoders associate with each ID message a distribution on the channel-input sequence and send
ID Message m by generating the channel-input sequence according to the distribution associated with m. If we onl
allow deterministic encoders, then the number of identifiable messages grows only exponentially in the blocklength
Throughout this paper we allow stochastic encoders, but for our main achievability result (Theorem [IT]) they are

unnecessary.

The present paper studies identification via a two-receiver broadcast channel (BC) W (y, z|x) whose transmitting
terminal is Terminal X and whose receiving terminals are )V and Z. The sender wishes to send two ID messages,
one to each receiving terminal. The received sequence at Terminal ) is observed by different parties, each of which
is focused—among all the possible ID messages intended for Terminal }Y—on a different ID message. Likewise for
Terminal Z. We show that the ID capacity region of the BC is the set of rate-pairs for which, for some distribution
on the channel input, each receiver’s ID rate does not exceed the mutual information between the channel input
and the channel output that it observes (Theorem [I0)). The converse we provide is a strong converse.

Our results are obtained under the average-error criterion. Under this criterion, the ID messages My and
Mz to the two receiving terminals are assumed to be independent with each being uniform over its message set
(My or Mz), and each receiver must identify the message intended for it reliably in expectation over the ID
message intended for the other receiving terminal. Loosely speaking, we thus say that an identification scheme
is reliable under the average-error criterion if the following two requirements are met: 1) for all (possibly equal)
my, my, € My, if the ID message that is sent to Terminal ) is my and the ID message that is sent to Terminal Z
is drawn uniformly over Mz, then the m/,-focused receiving party guesses correctly with high probability whether

or not my is equal to mj,; and 2) likewise for all mz, m’z € Mz

IThe corresponding error events are called missed identification and wrong identification: a missed identification occurs if m’ = m
and the m/-focused receiving party guesses that m’ was not sent, and a wrong identification occurs if m’ # m and the m’-focused
receiving party guesses that m’ was sent. The identification scheme is reliable if the maximum probabilities of missed and wrong
identification are small, where the maximum is w.r.t. m for the probability of missed identification and w.r.t. the distinct pair m, m’

for the probability of wrong identification.
2For ID codes with deterministic encoders, the ID rate is defined as the logarithm of the number of ID messages normalized by n,

and the supremum of all achievable ID rates is the logarithm of the number of distinct probability mass functions (PMFs) W (-|z) on

the channel output that are induced by the different channel-input symbols z € X [dJ.
3The average-error criterion for identification via the BC should not be confused with the average-error criterion for identification

via the DMC. On the DMC the average-error criterion requires that for every m’ € M the probability of wrong identification associated
with the pair m, m’ be small on average over all possible realizations m # m’ of the transmitted ID message. Han and Verdi showed
that under this criterion the ID capacity is infinite whenever C' > 0 [3]. This holds because the stochastic encoder can associate the

same distribution on the channl-input sequence with an infinite number of ID messages while guaranteeing that the probability of



Identification via the BC was previously studied in [4H7] under a different criterion, namely, the maximum-error
criterion. Under this criterion each receiver must identify its message reliably irrespective of the realization of the
ID message intended for the other receiver. Loosely speaking, we thus say that an identification scheme is reliable
under the maximum-error criterion if for all transmitted ID message-pairs (my, mz) € My x Mz the following
two requirements are met: 1) for every mf, € My (possibly equal to my), the m/,-focused receiving party guesses
correctly with high probability whether or not my is equal to m4,; and 2) likewise for every m’;- focused receiving

party at Terminal Z.

The maximum-error ID capacity region of the BC is still unknown (but see [7] and our discussion in Section @
of the case where an additional constraint is imposed on the decay to zero as a function of the blocklength of the
probability of error). Clearly, the average-error ID capacity region is an outer bound, but whether this bound is
tight is unknown. To-date, the best known inner bound on the maximum-error ID capacity region of the BC is
the “common-randomness capacity region” of the BC [7]. This inner bound is achieved by a common-randomness
ID code, which—like that of [§] for the DMC—uses a transmission code to establish common randomness between
the encoder and each decoder. As we shall see, the average-error ID capacity region of the BC typically exceeds
this inner bound (Remark [24]), but this, of course, does not imply that it exceeds the maximum-error ID capacity
region. We do know that the capacity regions differ when only deterministic encoders are allowed, because, unlike
the maximum-error ID capacity region (or, for that matter, the single-user channel), all rate-pairs in the interior
of the average-error ID capacity region can be achieved by deterministic encoders (Remark [[2). This is perhaps
not surprising, because to each receiver such a deterministic encoder appears stochastic: the transmitted sequence
depends not only on the ID message addressed to it but also on the random ID message (of positive rate) addressed

to the other terminal.

To derive our capacity region, we introduce a new capacity-achieving ID code construction for the single-user
channel. Our coding scheme for the BC builds on this by making it appear to each receiver as though we were using
an instance of the new single-user ID code on its marginal channel. We next describe the new single-user coding
scheme, which is reminiscent of [I] but with an important twist that is key to our results. We then describe our
scheme for the BC.

For a DMC W(y|x) the new scheme can be described as follows: Fix an input distribution P, an ID rate
R < I(P,W), and some blocklength n. The scheme associates with each ID message m a multiset we call “the m-th
bin” and whose elements are n-tuples (not necessarily distinct) of channel inputsl To send the m-th ID message,
the (stochastic) encoder sends a random element of this bin. At the receiver’s side, the m/’-focused receiving party
guesses that m’ was sent if at least one element of the m/-th bin is jointly typical with the received n-tuple of

channel outputs. To construct the bins we use a random coding argument, with each bin having expected size e”R,

missed identification and the average (but not the maximum) probability of wrong identification be small at each receiving party. The
average-error criterion for the BC, which we consider in this paper, is different: For Terminal ) it requires that the probability of wrong
identification associated with any distinct pair my, m’y € My be small; the term “average” refers to the fact that the probabilities of
missed and wrong identification at Terminal ) are defined on average over all possible realizations mz € Mz of the ID message that
is sent to Terminal Z. Likewise for Terminal Z.

4A multiset is a generalized set that allows multiple instances of its elements, e.g., {1,2,3,4} and {1,1,2,3,4,4,4} are different
multisets. The size of a multiset is the number of elements that it contains. The size of the multiset {1, 2, 3,4} is thus four and that of
{1,1,2,3,4,4,4} is seven. If X is chosen uniformly at random from a multiset, then P[X = z] is proportional to the number of instances
of z in the set. For example, if X is chosen uniformly at random from the multiset {1,1, 2, 3,4,4,4}, then P[X = 1] = 2/7.



where R exceeds the ID rate R, but is smaller than I(P, W),

R< R < I(P,W). (1)

The bins are constructed at random from a size e™%7 multiset that we call “pool” and whose elements are

n-length input sequences. Here Rp can be any number exceeding R, possibly even exceeding I(P, W), so, by (),

R<I(P,W) and R< R< Rp. (2)

We construct every bin by randomly selecting its elements from the pool, with the n-tuples in the pool being selected

—n(Rp=R)  Since the pool is of size e™"f*?, each

for inclusion in the m-th bin independently each with probability e
bin is a multiset of expected size e™?. The elements of the pool are drawn independently ~ P™. As we shall see,
the generated ID code is with high probability reliable (Section 2).

Our above scheme is reminiscent of the one in [I]: every ID message is associated with a bin, and in both schemes
the bins are chosen at random from a pool. The main difference is that in our scheme the pool need not constitute
a codebook that is reliable in Shannon’s sense. Indeed, our pool is of size e™*?, where Rp can exceed I(P, W) or
even C. This flexibility in choosing Rp will be critical on the BC.

The scheme we propose for the BC W (y, z|x) is motivated by the single-user scheme. Denote by Wy (y|z) =

2. Wy, z|z) and Wz(z|z) =3, W(y, 2|z) the marginal channels. Fix an input distribution P, positive ID rates

0 < Ry < I(P,Wy),
0< Rz <I(P,Wz),

and some blocklength n. We first consider the receivers’ side, because in their decoding the receivers follow the
single-user scheme. Like the single-user scheme, the scheme for the BC associates with each ID message my € My a
multiset we call the my-th bin and whose elements are n-tuples of channel inputs, and likewise with each ID message
mz € Mz. The m'y—focused receiving party at Terminal ) guesses that m’y was sent if at least one element of the
mY,-th bin is jointly typical with the sequence it observes, and likewise at Terminal Z. The encoding, however, is
different from the single-user scheme. In fact, our encoder for the BC is deterministic: it maps each ID message-pair
(my,mz) to an n-tuple of channel inputs we call the “(my,mz)-codeword.” (The (my,mz)-codeword is in the
intersection of the my-th and the mz-th bins, whenever the intersection is not empty.) We design the codewords
and the bins using a random coding argument.

Our goal in designing the codewords and the bins is that to each receiver it would appear as though its intended
ID message were sent over its marginal channel using the single-user scheme. More precisely, we want the following
to hold: 1) if the ID message that is sent to Terminal ) is my € My and the ID message that is sent to Terminal Z
is drawn uniformly over M z, then the transmitted codeword is nearly uniformly distributed over the my-th bin (in
terms of Total-Variation distance); and 2) likewise for mz € Mz. If 1) and 2) hold, then to each receiver it nearly
appears as though we were using an instance of the new single-user ID code on its marginal channel: if we view
the ID message that is sent to Terminal Z as uniformly-drawn, then the encoder communicates with Terminal )
“essentially” using our reliable single-user scheme, and likewise with Terminal Z. To prove that the design goal can
be met, we shall use a random coding argument.

The bins are constructed as in the single-user scheme: We construct all the bins—those associated with an ID

message my € My or mz € Mz—from a multiset we call pool. The pool has size "7 and each bin associated



with an ID message my € My or mz € Mz has expected size enBy or e”RZ, respectively. The pool and the bins

are generated as in the single-user construction, and Rp, Ry, and Rz meet similar constraints, so

Ry < I(P, Wy) and Ry < Ry < Rp,
Rz <I(P,Wz) and Rz < Rz < Rp.

Additionally, we impose the constraint
Rp < Ry + RZ. (3)

(The constraints can all be met, because Ry and Rz, and thus also I(P,Wy) and I(P,Wz), are positive.) The
additional constraint ([B) has no counterpart in the single-user setting. It restricts the size of the pool in order
to guarantee that with high probability the my-th bin and the mz-th bin intersect and that consequently the
(my,mz)-codeword will be in both bins. If the (my,mz)-codeword is not in this intersection, then, to at least one
of the two receivers, it won’t appear as though the n-tuple of channel inputs were drawn uniformly over the bin
associated with its intended ID message. And if this happens to too many pairs (my,mz), our scheme will fail.

As to the design of the codewords, if the my-th and the mz-th bins intersect, then we draw the (my,mz)-
codeword uniformly at random from the intersection, and otherwise we draw it uniformly at random from the pool.
As we shall see, the generated ID code meets our design goals with high probability (see Section B} key to the
proof is that the size of each bin is exponential in n while the cardinalities of My and M z are double-exponential).

The flexibility afforded by our single-user scheme to choose a pool of size e™*?, where Rp can be larger than
I(P,Wy) or I(P,Wz), is crucial to our BC scheme. To see why, consider for now a BC W (y, z|x) and an input
distribution P for which

I(P,Wz) < I(P,Wy).

If the pool had been of size e™*? for some Rp < I(P,Wz), then at most exp(exp(nI(P, Wz))) different bins could
have been constructed from the pool, and the BC scheme would have thus failed for Ry > I(P,Wz), because in
this case the number of possible ID messages intended for Receiver ) would have exceeded the number of different
bins. The pool rate Rp must therefore exceed I(P, Wz), and hence the pool cannot consist of a codebook that is
reliable in the Shannon sense on the marginal channel Wz (z|z). It is the possibility of choosing Rp > I(P,Wz)

that allows our BC scheme to achieve every rate-pair (Ry, Rz) satisfying
0< Ry <I(PWy) and 0<Rz<I(P,Wz), (4)

even when Ry > I(P,Wz).

The average-error criterion, which we consider in this paper, is suitable whenever the receivers’ ID messages are
independent and uniform over their supports. As we shall see, we can adapt our coding scheme to solve for the
capacity region of a more general scenario where the receivers’ ID messages are not independent but have a common
part. In this scenario the ID message intended for Terminal ) is a tuple comprising a private message of rate Ry and
a common message of rate R, and likewise for Terminal Z H The common messages are identicial, and the private

messages are independent, uniformly distributed on their supports, and independent of the common message. We

50ne can view the common-message setting of the transmission problem via the BC as a scenario where the encoder conveys one

message to each receiver, but each receiver’s message comprises a private and a common part.



assume that all rates are positive and require that each receiver identify its message reliably in expectation over
the other receiver’s private message. For this scenario, we show that the ID capacity region of the BC is the set of

rate-triples (R, Ry, Rz) satisfying
0<R,Ry < I(P,Wy) and 0<R,Rz<I(P,Ws) (5)

for some input distribution P (Theorem BII)H Comparing (@) and @) we see that the common message appears
to come for free at all rates up to min{I(P, Wy),I(P,Wz)}. This can be explained as follows. The ID rate is the
iterated logarithm of the number of ID messages normalized by the blocklength n, and for n sufficiently large and

for all nonnegative real numbers R; and Rs
exp(exp(nRy)) exp(exp(nRs)) ~ exp(exp(nmax{R1, Ra})).
Comparing ([Bl) and @) we see that the common message appears to come for free at all rates up to
min{I(P, Wy), I(P, Wz)}

A reason for this is that the ID rate of a pair of ID messages is not equal to the sum of the messages’ ID rates.
We also discuss extensions to the BC with more than two receivers and the two-receiver BC with one-sided
feedback: We inner-bound the ID capacity region of the three-receiver BC (Theorem 27)) and show that the bound
is tight if no receiver is “much more capable” than the other two (see Remark 29 for more details). The ID capacity
region of the two-receiver BC with one-sided feedback is established for the case where the channel outputs are

independent conditional on the channel input (Corollary B9)).

The rest of this paper is structured as follows. We conclude this section with some notation and with the
concentration inequalities that we shall need. Section [2] is dedicated to the new ID code for the DMC. Section
studies identification via the BC. Section ] compares the average- and the maximum-error criterion. The extensions

are presented in Section [ and the paper concludes with a brief summary.

1.1 Notation and Terminology

On the single-user channel we denote the channel-input alphabet by X and the channel-output alphabet by ). On
the two-receiver BC X is the channel-input alphabet, ) is the channel-output alphabet at Terminal ), and Z is
the channel-output alphabet at Terminal Z. All these alphabets are finite. We write (X, W (y|z),Y) or W (y|z) for
a DMC of transition law W (y|x) and (X, W (y, z|z),Y x Z) or W (y, z|z) for a BC of transition law W (y, z|x). We
denote the marginal channel of the BC W(y, z|z) to Terminal Y by Wy (y|z), i.e., Wy(y|z) = >, W(y, z|z); and
likewise Wz (z|z) = 3_, W(y, z|z).

Random variables are denoted by upper-case letters and their realization or the elements of their supports by
lower-case letters, e.g., Y denotes the random output of the DMC and y € ) a value it may take. The terms pool
and bin are used for indexed multisets of n-tuples from A”. Pools and bins are denoted by calligraphic letters, and
in boldface if they are random, e.g., P denotes a random pool and P a possible realization. Sequences are denoted

by boldface lower- or upper-case letters depending on whether they are deterministic or random, e.g., P(j) denotes

6The assumption that R > 0 is not needed; it only ensures that there is a common message. The assumption that Ry, Rz > 0 is,

however, needed: if Ry, say, is zero, then the imposed average-error criterion will turn into a maximume-error criterion for Receiver Z.



the j-th n-tuple in the random pool P, and x is an n-tuple from X™. The positive integer n € N stands for the
blocklength, and, unless otherwise specified, sequences are of length n. We denote the positive real numbers by RT
and the nonnegative real numbers by R, so Rf = R* U {0}.

Variables that occur at Time ¢ have the subscript ¢, so Y; is the Time-i channel output. Sequences of variables
that occur in the time-range j to ¢ bear a subscript j and a superscript ¢, where the subscript 7 = 1 may be dropped,
e.g., Y} denotes the forth and fifth output, and Y™ denotes all the outputs through Time n.

The set of PMFs on X is denoted & (X), and its generic element P. If the input X of the channel W (y|z) is of
PMF P, then P x W denotes the joint distribution of X and the channel output Y, i.e.,

(P xW)(z,y) = P()W(ylz), zeX,yec),

and PW denotes the corresponding distribution of Y, i.e.,

(PW)(y) = > (P xW)(xz,y) =Y P@)W(ylx), yed.

TeEX TeEX
The set of e-typical sequences of length n w.r.t. P is denoted 72(71)(P)7 ie.,

‘ N(zlx)

ﬁ(")(P)z{xeX": —P(x)‘ geP(ac),VacEX},

where N(z|x) is the number of components of the n-tuple x that equal z. We often write 7™ instead of ﬁ(")(P)
when P is clear from the context. The empirical type of an n-tuple x € X™ is denoted Px, so Px(z) = N(z|x)/n, z €
X, and T1§") is the set of all elements of X™ of empirical type P. We denote the set of n-types on X™ by T'™), so

™ = {PeP(X): TS +#0}.

For a given DMC W (y|x) and for every x € X™ and P € (X)), we denote by 7™ (P x W|x) the set of n-tuples
y € V" that are jointly e-typical with x w.r.t. P x W | i.e.,

TP x Wix) = {y € Y": (x,y) € TP x W)},

Similarly, for a given BC W (y, z|z), 74 (P x Wy|x) is the set of n-tuples y € Y™ that are jointly e-typical with x
w.r.t. P x Wy, ie.,
TP x Wylx) = {y € Y": (x,y) € T"(P x Wy)};

and 7™ (P x Wz|x) is the set of n-tuples z € Z™ that are jointly e-typical with x w.r.t. P x Wx.
A generic probability measure on a measurable space (Q,F) is denoted P. If P; and Py are two probability

measures on the same measurable space (€2, F), then the Total-Variation distance d(IP1,P2) between Py and Ps is

d(]P)l, PQ) = iur})-Pl[A] - PQ[A]
S

We shall only encounter measurable spaces (£2, F) for which  is finite and F = 2. On such spaces

d(Py,Py) = % > Py (w) = Pa(w)].

weN



1.2 Some Useful Bounds
We use the following multiplicative Chernoff bounds (see, e.g., [9, Theorems 4.4 and 4.5])@

Proposition 1. If Si,...,S, are independent binary random variables and

then for all0 < < 1
P E Si <(1=06)u| <ex e (6a)
i v p ,

< exp{_}, (65)

Sexp{—%u}. (7)

Proposition 2. [10, Theorem 2/ If S1,...,S, are independent random wvariables satisfying S; € [a;, bi], i €
{1,...,n}, where a;, b; € R, then for allt >0

Pl%Z(Si_E[Si]) Zf] SGXP{—%}- (8)

i=1 i=1

and for all § > 1

P[i&-z (1+40)u

We make frequent use of Hoeffding’s inequality:

More general versions of this inequality can be found in [I1, Corollary 2.4.7] or [12] Theorem 3.24].

2 A Capacity-Achieving ID Code for the DMC

In this section we present our capacity-achieving ID code for the DMC (X, W(y|:c),y) We begin with the basic
definitions of an ID code [I] and with the capacity theorem.

Definition 3. Fiz a finite set M, a blocklength n € N, and positive constants A1, Ao. Associate with every ID
message m € M a PMF @Q,, on X" and an ID set D,, C Y™. The collection of tuples {Qm,Dm}mem is an
(n, M, A1, A2) ID code for the DMC W (y|x) if the maximum probability of missed identification

Pmissed-ID = ;ﬂeaj\)fl(QmWn)(Yn ¢ Dm) (9)
and the mazximum probability of wrong identification

Purong-ID = Iax max (QuW™)(Y"™ € Dyy) (10)

"The bound (@) is not stated in [9]. Tt is, however, a direct consequence of [9, Theorem 4.4] and the fact that

S/1+80 <e™/3 §>1.



satisfy

Pmissed-1D S )\1; (11)
Pwrong-ID S )\2- (12)

A rate R is achievable if for every positive A1 and Ay and for every sufficiently-large blocklength n there exists an

(n, M, A1, A2) ID code for the DMC with

Lloglog|M| >R if R >0,
M| =1 ifR=0.

The ID capacity C' of the DMC is the supremum of all achievable rates.

The ID capacity was established in [ILB]: Ahlswede and Dueck [I] proved the direct part and a soft converse,
which holds for error probabilities that decay exponentially in the blocklength. The strong converse, which holds
for all probabilities of missed and wrong identification satisfying A\ + Ay < 1, is due to Han and Verdu [3].

Theorem 4. [I, Theorem 1] and [3, Theorem 2] The ID capacity C of the DMC W (y|x) is
C:mgXI(P,W). (13)

Fix any positive ID rate R satisfying
0<R< ngXI(P, W), (14)

and let M be a size-exp(exp(nR)) set of possible ID messages. We assume that maxp I(P, W) is positive, because
rate R = 0 is always achievable (see Definition [B]). We next describe our random code construction and show that,
for every positive A\; and A2 and for every sufficiently-large blocklength n, it produces with high probability an
(n, M, A1, A2) ID code for the DMC W (y|x).

Code Generation: Choose a PMF P on X for which
R<I(P,W),
and fix an expected bin rate R and a pool rate Rp satisfying
R<R<I(P,W) and R < Rp. (15)

Draw e"#7 n-tuples ~ P" independently and place them in a pool P. Index the n-tuples in the pool by the elements
of a size-e"” set V, e.g., {1,...,e"#”} and denote by P(v) the n-tuple in P that is indexed by v € V. Associate
with each ID message m € M an index-set V,, and a bin B,, as follows. Select each element of V for inclusion in
V., independently with probability e‘”(RP_R), and let Bin B,,, be the multiset that contains all the n-tuples in the
pool that are indexed by V,,,
B, ={P(v),veEVy,}.

(Bin B,, is thus of expected size e"é.)

Reveal the pool P, the index-sets {Vy, bmem, and the corresponding bins {B,;, }mem to all parties. The encoding
and decoding are determined by

C= (Pa {vm}mEM)- (16)



For the purpose of illustration, the pool and the bins are depicted in Figure [l As mentioned in Section [I our
code is similar to the one in [I]: every ID message is associated with a bin, and in both schemes the bins are chosen
at random from a pool. The main difference is that in our scheme the pool need not constitute a codebook that is

reliable in Shannon’s sense. Indeed, our pool is of size e"*?, where Rp can exceed I(P, W) or even C.

bin B,, )
o
bin Bg bin B\M\
bin B, pool P

Figure 1: ID code construction for the DMC.

Encoding: To send ID Message m € M, the encoder draws some V uniformly at random from V,, and
transmits the sequence P(V'). ID Message m is thus associated with the PMF

1

Q) =557

Y lap@), XEX", Vn#0. (17)
vEVm
If V,, is empty, then the encoder chooses V = v* and transmits P(v*), where v* is an arbitrary but fixed element
of V, so

Qm(X) = lx:P(v*)a X € Xn, Vm = (Z) (18)

Decoding: In this section 7" is short for ﬁ(n)(P x W), and the function §(-) maps every nonnegative real
number u to uH (P x W). The decoders choose € > 0 sufficiently small so that 28(¢) < I(P, W) — R. The m’-focused
party guesses that m' was sent if, and only if, (iff) for some index v € V,, the n-tuple P(v) in Bin B, is jointly
e-typical with the channel-output sequence Y, i.e., iff (P(v), Y") € 72(") for some v € V,,». The set D,,,s of output

sequences that result in the guess “m’ was sent” is thus

D, = {y €YV":3v eV, st. (P(v),y) € 7;(”)} (19)
= J TP xWP(@)). (20)
vEV ./

Analysis of the Probabilities of Missed and Wrong Identification: We first note that C (together with
the fixed blocklength n, the fixed element v* of V, and the chosen €) fully specifies the encoding and guessing rules.
That is, the randomly constructed ID code {Qn, D }mem is fully specified by C. Let P be the distribution of
C, and let E denote expectation w.r.t. P. Subscripts indicate conditioning on the event that some of the chance

variables assume the values indicated by the subscripts, e.g., Py, denotes the distribution conditional on V,, = Vi,
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and Ey _ denotes the expectation w.r.t. Py,_ .

The maximum probabilities of missed and wrong identification of the randomly constructed ID code {Q.n, D }rmem

are the random variables

Prissed-1D = geﬁ(QmWn)(Yn ¢ Dm)a (213‘)
Purong-p = max max (QuW")(Y" € D). (21b)

They are fully specified by C. How we upper-bound these probabilities depends on the size of the index-sets and of
their pairwise intersections. For every distinct pair m, m’ € M denote the intersection of the index-sets V,, and
vm’ by vm,m’v S0

Vot = Vin 0 Vi (22)

The expected size of Vv is en(2R—Fp) (= e”RPe_Q”(RP_R)) and is thus, by (3], exponentially smaller than the
expected size of the index-sets V,,, and V,,/, which is e"®. The following lemma upper-bounds the probability that
the size of the index-sets deviates from its mean e"® or that the pairwise intersections are large compared to enkt,
To state the lemma, we first introduce the set G,, comprising the realizations { Vi, }me s of the index-sets { Vi, }mem

satisfying that for every distinct pair m, m’ € M the following three inequalities hold:

Vinl > (1 = 8,)e" (23a)
V| < (14 6,)e" R, (23b)
V| < e™(Bmp/2)Hlog2 (23¢)
where p is fixed and satisfies
0 <pu<min{Rp — R,R— R}, (24)
and
5 = e 2, (25)

Lemma 5. The probability that {Vm }mer is not in G, converges to zero as the blocklength n tends to infinity:
nan;OP[{Vm}meM ¢ g#} =0. (26)
Proof. See Appendix [Al O

To prove that for every choice of A1, A2 > 0 and n sufficiently large the collection of tuples {Qu, D }men 18
with high probability an (n, M, A1, A2) ID code for the DMC W (y|z), we prove the following stronger result:

Claim 6. The mazimum probability of missed identification, Ppnissed-1D, and the maximum probability of wrong
identification, Pyrong-1D, of the randomly constructed ID code {Qu, D }mem converge in probability to zero expo-
nentially in the blocklength n, i.e.,

37> 0s.t. lim P[max{Puissed-1D, Pwrong-i0} = € 7] = 0. (27)

n—o0

11



Proof. Fix some p satisfying (24)), and choose 6, as in (25). We upper-bound Ppissed-10 and Puyrong-1p differently
depending on whether or not {V,} is in G,,, where {V, } is short for {V, },em. If {V.} ¢ G,., then we upper-bound
them by one to obtain for every 7 > 0

P [maX{Pmissed—IDa Pwrong—ID} > e_nT}

S ]P)[{vv} ¢ g,u} + Z ]P)[{vv} = {VV}] ]P){V,,} [maX{Pmissed-ID; Pwrong—ID} Z efn'r] . (28)
{Voteg,
By Lemma [f] the first term on the RHS converges to zero as the blocklength n tends to infinity, and it thus suffices
to show that

L.l i >e " =0.
37> 0st. lim s Py, y [max{ Pnissed-10, Purong-10} > € "7] =0 (29)

Remark 7. As we shall see, [29)) does indeed hold, and we could have therefore simplified our random code con-
struction considerably by drawing only the pool P at random while fizing the index-sets {V, } € G,,. This is correct,
but the main purpose of our random code construction for the DMC is to pave the way for the one for the BC, and

there we shall need to draw the indezx-sets at random.

Henceforth we assume that n is large enough so that the following two inequalities hold:

(1—6,)e" > 1, (30a)
O + e/ FHo82 < 1 /9 (30b)

where 6, is defined in (28). (This is possible, because d,, converges to zero as n tends to infinity and R, x> 0.)

To establish (29]), we first show that
d7r>0s.t. lim max P Prjssed-iD > € 7| =0, 31
n—00 {V,} €6, {V,,}[ ssed-ID } ( )
and we then show that

d7r>0s.t. lim max P Pyrone-ip > € 7| = 0. 32
i e (v} [Prrong-1n ] (32)

The Union-of-Events bound, (1), and (32)) imply ([29) and hence [21).

To conclude the proof, it remains to establish (BI]) and ([B2]). We start by establishing ([BI). To this end fix any
realization {V, } in G,,. Rather than directly upper-bounding the maximum over m € M of (Q,,W™)(Y"™ ¢ D,,)
under Py, we first consider (Q,,W")(Y" ¢ D,,) for a fixed m € M. (This o(C)-measurable random variable
with support [0,1] can be viewed as the probability—associated with the randomly constructed ID code—that
the m-focused party erroneously guesses that m was not sent.) By (23al) (which holds because {V,} € G,) and
([30al), Vy, is nonempty, and Q,, is hence given by (7). This implies that Py, j-almost-surely the random variable
(QmW™) (Y™ ¢ D,y,) is upper-bounded by

@nW™)(Y" & D)

a 1
= > Vo Y Laep) W(Y" ¢ Diilx) (33)
x€X"| m VEVm
(b
< ﬁ > wr(Y" g TP x WP(©)[P(), (34)
m VEVm,
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where (a) follows from (IT); and (b) follows from (20), which implies that Py, 1-almost-surely
TP x W[P(v)) € Dy v € Vi

There is an inequality in (b), because the m-focused party may guess correctly even if y is not jointly typical with
P(v): it also guesses correctly when y is jointly typical with P(v") for some v in V,,, other than v.
Let

B = (Px W) (X", Y") ¢ T4V, (35a)
o, = max{2,, 67”“/2}, (35b)

and note that (35L) implies that
O — B > e 22, (36)

Moreover, since 3, decays exponentially and u > 0, there must exist a positive constant 7 > 0 and some 7y € N for
which

an <e " n>n. (37)

Under Pyy,; the [0, 1]-valued random variables

A —

veV
are IID and have mean f,, because the pool was drawn independently of the index-sets, so {P(v)}v cy are 1ID
~ P" also under Py, y. Consequently, Hoeffding’s inequality (Proposition ) implies that
1 n n n
P [y 3 W TP < WP () 20
vEVm
<e2 Vi | (0t —Bn)? (38)
< exp{—(l - 5n)e"(R_“)_1°gQ}, W} egu, (39)

where in the second inequality we used (23a) (which holds because {V,} € G,) and (36). Having obtained (B39)
for every fixed m, we are now ready to tackle the maximum over m and prove @BI)): for every 7 > 0 and 1y € N

satisfying (B7) and for all n exceeding 7

P Pmisse - > -
. Py, [Puisseatn > ¢
(a)
< max Py} [Puissed1d > an] (40)
{V.} €6,
®  nex Py, [3m e M: (QuW™)(Y" ¢ D) > an) (41)
{Vo}eg,
(©)
< max Y Pu [(QuWM)(Y" ¢ D) > oy (42)
{V.}€6, meM
(d) 1
< max Py |—— S wr(y" ¢ 7 (P x WP ‘Pv > an 43
s, B o[y 5w ) @
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(%) Z exp{—(l B 5n)en(R—u)—log2} (44)

meM
f) -
< M| exp{_en(R—u>—2log2} (45)
9 0 (n = o0), (46)

where (a) holds by ([37), because n exceeds 1; (b) follows from (2Ial); (¢) follows from the Union-of-Events bound;
(d) follows from (B34)); (e) holds by B9); (f) follows from (B0H), which implies that d, < 1/2; and (g) holds because
IM| = exp(exp(nR)) and u < R — R.

Having established (B1l), it remains to establish ([B82]) in order to conclude the proof. To this end fix any realization
{Vu} in G,,. We begin by upper-bounding (Q,,W")(Y"™ € D,,/) under Py, y for fixed distinct m, m’ € M. Later
we will maximize over such m, m’. (The o(C)-measurable random variable (Q,,W"™)(Y™ € D,,,/) with support [0, 1]
can be viewed as the probability—associated with the randomly constructed ID code—that the m’-focused party
erroneously guesses that m’ was sent when in fact m was sent.) By (23a) (which holds because {V,} € G,) and
(B0al), V,, is nonempty, and Q,, is hence given by (7). This implies that Py, j-almost-surely the random variable
(QmW™) (Y™ € D,y) is upper-bounded by

QW™ (Y™ € D)

o 1

@y o 3" Licpiy W'(Y" € Dy lx) (47)
xeX™ m VEV

= S WY € Do |P(0) (48)
|Vm| VEV

®) ,

< pf;’?' ﬁ Y WY €D [P), (49)

veVm\Vm’m/

where (a) follows from ([IT); and (b) holds because
wm (Yn € D,

P(v)) <1, veV.

We consider the two terms on the RHS of ({9) separately, beginning with |V, m/|/|Vm|. Because {V,} € G,
a n(R—pu/2 +log 2
|Vm7m/| (<) e (R—p/2) ~g (2) e,n#/2+2log2’ (50)
Vil (1 —6,)enk

where (a) follows from (23al) and ([23d); and (b) follows from (B0D), which implies that d,, < 1/2. We next consider
the second term in ([@9)), namely,

€ > WY € Do |P(v)).
[Vin] VEVI\V,, s

The cardinality of Dy, is Pyy, j-almost-surely upper-bounded by
(@)

Pl 2| U 702 < WP
VeV,
veEV,,/
2 (14 8,)enBHWIPISO), %)
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where (a) follows from [20); and (b) follows from
TP x Wx)| < e"HWIP)H6() ¢ xm,

and from (23D]) (which holds because {V,} € G,,).

Let
o = (14 8,)enI(PW)=R=25(0)) (53a)
K = max{27yn, e_"”/Q}, (53b)
and note that (53D) implies that
Fon — n > 722, (54)

Fix a realization D,/ of D, for which Py, y[Dy = Dpy] > 0. From (20) it follows that all output sequences
in D,, are of approximate type PW, i.e., that

Dy C TV (PW). (55)

And from (B2)) it follows that
1Dy | < (1 + 8, ) BHHWIP)F6(e)) (56)
The next computation is under Py, y p ,, where we condition not only on {V,} = {V,} but also on D,,s = Dy,

The n-tuples in the pool {P(U)}UGV\V )
the pool was drawn independently of the index-sets, and because by ([20) D, depends only on {P(v)}

that are not indexed by Vy,» are IID ~ P™ also under Py, y p _,, because

vEV, '
Hence, under Py, y p , the [0, 1]-valued random variables

{wr(v" e Dp[PW)}

vEV\V,,r

are IID of mean

E{V,/},Dm/ |:Wn (Yn S Dm/ P(’U)):|
(@) n
= (PW)(y) (57)
yeD,,
(%) Dy | e~ HEPW)=3(6)) (58)
(0) =
< (1+5n)€7n(I(P,W)7R725(6)) (59)
d
(:) Tns (60)

where (a) holds because D,y = D,y and {P(v)} are IID ~ P™ under Py y p ,; (b) holds because

vEV\V,,,1
(PW)"(y) < e "UHPW)=0) ¢ ¢ 70 (PW),
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and by (BH); (¢) follows from (BH); and (d) holds by (B3a). Consequently, Hoeffding’s inequality (Proposition [2)
implies that

1 n n
Py, | >, W'Y €Dw|P@)) >k
[Vin \ V| VEVIM\V,, ./

(a)

< exp{—2 Vi \ Vi | (Fn — ’yn)Q} (61)
(d)

< eXp{—|Vm \ Vm,m’| efn,uflog2} (62)
(c) 5

< exp{—en(fom=21e2L (Y} € G, Py, [P = D] >0, (63)

where (a) holds because Vy, \ Vinm is a subset of V \ V,,,/; (b) follows from (B4); and (c) follows from

d = ~ (e) -
|Vm \ Vm,m" (>) (1 _ 5n)enR _ en(Rf,u/Q)JrlogQ > eanlogQ, (64)

where (d) is due to (23a) and ([23d) (which hold because {V,} € G,,), and (e) is due to ([B0L). By (63) and because
[Vin \ Vin,m?| < [Vin|, the probability that the second term in (@9) exceeds k,, is upper-bounded by

1
Py, [m > Wh(Y"EDw[P() > 'fn]

’UGVm\VmYm/
1
<Pipy|— W (Y™ € Dy |P(0)) > ki 65
<P | Gy ﬂ&% s (v) = # ] (65)
1 n n
=Y P[P = D] Ppy,yp,, U Vo] > WY €D |P(v) >k (66)
D, AT €V \ Vo
< eXp{—e"(R_“)_QlogQ}, W} €gG,.. (67)

Having obtained ([#9)), (B0), and ([@7) for every fixed distinct m, m/, we are now ready to tackle the maximum

over m, m’ and prove (32): Let
Wy = e—nu/2+210g2 + K, (68)

and note that, by (B3), because pu > 0, because d,, converges to zero as n tends to infinity, and because 20(e) <

I(P,W) — R, there must exist a positive constant 7 > 0 and some 7y € N for which
wnp <e " n>n. (69)

For every 7 > 0 and 1y € N satisfying ([G9) and for all n exceeding 7

V.36, Pv,} [Purongn > €77}
(a)
< Py, [Parongtd > Wn 70
< s Pory [Povonso 2 ) "
2 max By, [3mm’ € M, m £ s (@uIV)(Y™ € D) 2 ) (71)
v €Y
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(©)
< max Z Z ]P){V,,} [(Qmwn)(yn € Dm/) > wn] (72)
{Vv.}eG, mEM m/2m

(d) ] 1 nln
= Viyes > D Pw }[ Vi +W > WY €D |P(v)) an] (73)
Y M meMm/#£m m VEVm\V
< max Z Z ) m| > ¢ nH/2+2log2
{Voyedu meMm’#m |
+ Vman Z Z .} l Z wm (Y" e Dm/ P(U)) > Kn] (74>
Vedeon eMmrzm vevm\vm,m/
)] ~
< |M|26Xp{7€n(R ) 210g2} (75)
“@ (n — 00), (76)

where (a) holds by ([69), because n exceeds no; (b) follows from (2ID); (c) follows from the Union-of-Events bound;
(d) follows from {@3); (e) follows from (68]) and the Union-of-Events bound, (f) holds by (B0) and (@7); and (g)
holds because |M| = exp(exp(nR)) and u < R — R. O

3 Identification via the BC

In this section we establish the ID capacity region of the two-receiver BC (X, W (y, z|x),) x Z) under the average-
error criterion, which requires that each receiver identify the message intended for it reliably in expectation over
the uniform ID message intended for the other receiver. We begin with the basic definitions of an average-error 1D
code for the BC W (y, z|z):

Definition 8. Fix finite sets My and Mz, a blocklength n € N, and positive constants )\%}, /\%), A2 \Z. Associate
with every ID message-pair (my,mz) € My x Mz a PMF Qpyym. on X", with every my € My an ID set Dp,,, C
Y, and with everymz € Mz an ID set D,,, C Z™. The collection of tuples {me,mz;pmyapmz }(my,mz)e/v(yx/v(z
is an (n, My, Mz, X N A, )\22) ID code for the BC W (y, z|x) if the mazimum probabilities of missed identifica-

tion at Terminals Y and Z

1

Prmissed.D = ety Mz] mZ;Z(me,mZ W™ (Y" ¢ Dy, ), (77a)
Phissedn = mgle%\)flz |/\/11y| myEZMy (me7m2 Wn) (Zn ¢ sz) (77)
satisfy
Prissedp < AT (78a)
Prissed-p < A (78b)
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and the mazximum probabilities of wrong identification at Terminals Y and Z

1

Y _ n n
= max max — — g my.mz=W J(Y" € Dpr ), 79a
pwrong—ID my€eMy m’y;émy |MZ| i (Q y,mz ) ( y) ( )

1

zZ n n
= ma ax —— E: my.mzW") (Z™ € Dy 79b
pwrong—ID mIZHG/\)ElZ mi,n;é'r)?iz |My| e (Q y,mz ) ( z) ( )

satisfy

pgv)rong—ID S )‘%}’ (800’)
pvzvrong-ID < )‘22 (801))

A rate-pair (Ry, Rz) is called achievable if for every positive )\%), )\%), A2 and A5 and for every sufficiently-large
blocklength n there exists an (n, My, Mz, /\%2, /\%2, A2, )\22) ID code for the BC with

%10g10g|My| > Ry if Ry >0,
Myl=1  if Ry =0,

%10g10g|Mz| >Rz if Rz > 0,
Mz =1 if Rz =0.

The ID capacity region C of the BC is the closure of the set of all achievable rate-pairs.
Equivalently, we can define an ID code for the BC W (y, z|x) as follows:

Remark 9. Given a collection of PMFs {Qm% on X™, define the mixture PMFs on X™

mz }(My,mz)EMyXMz

1
Qmy = ——— Z Qmy,msz, my € My, (81a)
|MZ| mzeEMz
1
sz = W Z Qm;y,’mza mz S MZ. (81[))
my€EMy

The collection of tzfples {me’m'Z7DTny7DmZ}(my,wz)EM)}XMz‘ is an (n,My,Mz,)\%;,/\%),/\lz,/\QZ) D cod'e for
the BC W (y, z|z) if, and only if, (iff) the following two requirements are met: 1) {me,Dmy}myeMy is an
(n,/\/ly,)\%},)\%}) ID code for the marginal channel Wy (y|z); and 2) {QmZ’DmZ}m26Mz is an (n,/\/lz,)\lz,)\QZ)
ID code for Wz(z|x).

Our main result is a single-letter characterization of the ID capacity region of the BC:

Theorem 10. The ID capacity region C of the BC W (y, z|z) is the set of all rate-pairs (Ry, Rz) € (R{)? that for
some PMF P on X satisfy

Ry < I(P,Wy), (82a)
Rz < I(P,Wz). (82b)

We prove the direct part in Section Bl and the converse part in Section In fact, we shall establish the

following stronger results:
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Remark 11. The ID capacity region C of the BC Wy, z|x) is achievable even if we require that the mazimum
probabilities of missed and wrong identification decay exponentially in the blocklength n. And for all sufficiently-
large n, rate-pairs outside this region can be achieved only if )\%} + )\%} + A2+ 25 > 1.

Proof. This follows from Claims [[4] and [IH] ahead. O

In contrast to transmission via the BC, Theorem [[0limplies that for identification via the BC there is no trade-off
between Receiver ) and Receiver Z’s rate. An intuitive explanation for this is that in transmission via the BC the
message to the other receiver hurts because it is like noise, whereas here this effect is offset by the benefits afforded

by randomization.

Recall that to achieve the ID capacity of a DMC requires stochastic encoders; deterministic encoders cannot

achieve any positive ID rate [I]. On the BC this is not true:

Remark 12. Every rate-pair in the interior of the ID capacity region C of the BC W (y, z|x) can be achieved using

ID codes with deterministic encoders.

Proof. The encoder we construct in Section B Ilahead to prove the direct part of Theorem [I0is deterministic: it maps

every ID message-pair to a channel-input sequence that is fully determined by the random code construction. [

As a corollary to Theorem [I0, we next observe that the ID capacity region of the BC is convex. This requires
proof, because the ID rate is the iterated logarithm of the number of ID messages normalized by the blocklength n,

and we therefore cannot invoke a time-sharing argument [4, Remark 2].
Corollary 13. The ID capacity region of the BC Wy, z|x) is convez.

Proof. 1t suffices to show that the rate region in Theorem [1(0]is convex. Given two PMFs P)((0 ) and P)((1 ) on X and
some « € [0,1], let Py be the Bernoulli distribution with parameter «; let the transition law Px |y be P)((U); and
draw (U, X) ~ Py x Px|y. Denote the resulting law of X by Px. Then,

al (PP, Wy) + (1 — a) (P, Wy)

= I(Pxjv, Wy|Pv) (83)
< I(Pyx,Wy) (84)
@ I(Px, Wy), (85)

where (a) holds since U, X, and Y form a Markov chain in that order. Likewise,

al (PP Wz) + (1 — ) [(PY,Wz) < I(Px,Ws). (86)
Inequalities (8] and (B6) combine to prove that the rate region in Theorem [I0 is convex. O

We next prove Theorem [[0 Section B.I] establishes the direct part and Section a strong converse.
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3.1 The Direct Part of Theorem

In this section we prove the direct part of Theorem [I0 by fixing any input distribution P € £(X) and any positive
ID rate-pair (Ry, Rz) satisfying

0< Ry < I(P, Wy), (87&)
0< Rz < I(P,Wz) (87b)

and showing that the rate-pair (Ry, Rz) is achievable. We assume that both I(P,Wy) and I(P, Wz) are positive;
when they are not, the result follows from Theorem @l Let My be a size-exp(exp(nRy)) set of possible ID messages
for Terminal ), and let Mz be a size-exp(exp(nRz)) set of possible ID messages for Terminal Z. We next describe
our random code construction and show that, for every positive )\%} , /\%) , AZ and A\ and for every sufficiently-large
blocklength n, it produces with high probability an (n, My, Mz, XY N N, )\22) ID code for the BC W (y, z|z).
The scheme that we propose builds on our code construction for the single-user channel in Section 2] by making it

appear to each receiver as though we were using an instance of the single-user ID code on its marginal channel.

Code Generation: Fix an expected bin rate Ry for Terminal ), an expected bin rate Rz for Terminal Z,

and a pool rate Rp satisfying

Ry < Ry <I(P,Wy), (88a)
Rz < Rz <I(P,Wz), (88h)
Ry < Rp, (88c)
Rz < Rp, (88d)
Rp < Ry + Rz. (88e)

This is possible by [87). Draw e"f” n-tuples ~ P" independently and place them in a pool P. Index the n-tuples
in the pool by the elements of a size-e"%7 set V, e.g., {1,...,e"#”} and denote by P(v) the n-tuple in P that is
indexed by v € V. For each receiving terminal ¥ € {), Z} associate with each ID message my € My an index-set
Vi, and a bin B,,, as follows. Select each element of V for inclusion in V,,, independently with probability
e‘”(RP_R“’), and let Bin B,,, be the multiset that contains all the n-tuples in the pool that are indexed by V,,,,

B, = {P(), vE Vn,}.

(Bin B,,, is thus of expected size e”R“’.) Associate with each ID message-pair (my, mz) € My x Mz an index
Viny,mz as follows. If V,,,, NV, is not empty, then draw V,,,, ;. uniformly over V,,,, N V,,,. Otherwise draw
Viny,mz uniformly over V. Reveal the pool P, the index-sets {me }my My and {Vm Z} the corresponding
bins {Bmy }myEMy and {Bmz }mz M and the indices {Vm

and decoding are determined by

€= (’P7 {me }myEMy7 {vmz }WZEMZ’ {me’mz }(m%mz)eMy XMZ). (89)

mzeMz’

ymz }(my,mz)e/vlyx/vlz to all parties. The encoding

Encoding: To send ID Message-Pair (my,mz) € My x Mz, the encoder transmits the sequence P(V, m. ).
ID Message-Pair (my, mz) is thus associated with the {0, 1}-valued PMF

me,mz (X) = ]]‘X:P(me,mz)7 xe X" (90)
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Note that once the code (89) has been constructed, the encoder is deterministic: it maps ID Message-Pair (my,mz)
to the (my, mz)-codeword P(Vipy, m)-

Decoding: In this section the function §(-) maps every nonnegative real number u to uH(P x W). The
decoders choose ¢ > 0 sufficiently small so that 26(e) < I(P,Wy) — Ry and 26(¢) < I(P,Wz) — Rz. The mh-
focused party at Terminal ) guesses that m), was sent iff for some index v € Vm/y the n-tuple P(v) in Bin Bm/y is
jointly e-typical with the Terminal-) output-sequence Y, i.e., iff (P(v),Y™) € 72(") (P x Wy) for some v € Vi,
The set Dm’y of Terminal-) output-sequences y € Y™ that result in the guess “m), was sent” is thus

D, = |J T (PxWy[P()). (91)
veEV ./
Yy

Likewise, the m/;-focused party at Terminal Z guesses that m/’; was sent iff (P(v), Z") € 7m) (P x Wz) for some

2

v € V.. The set D, of Terminal-Z output-sequences z € Z" that result in the guess “m/; was sent” is thus

D, = |J T"(PxWz|P@)). (92)

vevm/z

Analysis of the Probabilities of Missed and Wrong Identification: We first note that C of (89)) (together
with the fixed blocklength n and the chosen €) fully specifies the encoding and guessing rules. That is, the randomly
constructed ID code

{me7mz"Dmy’DmZ}(my,mz)GMyXMz (93)

is fully specified by C. Let P be the distribution of C, and let E denote expectation w.r.t. P. Subscripts indicate
conditioning on the event that some of the chance variables assume the values indicated by the subscripts, e.g.,
]P’me denotes the distribution conditional on Vi), = V,,,,, and Eymy denotes the expectation w.r.t. Pymy.

The maximum probabilities of missed and wrong identification of the randomly constructed ID code are the

random variables

1

P sean = B T ngz (Quy W) (Y™ ¢ D)), (94a)
Pisedtp = Max ﬁ my;y(me,mz W™ (Z" ¢ D), (94b)
Prong:p = mAx ] M;Z (QunynzW") (Y™ € Do), (94¢)
Piiongp = max By my;y(me,mZ W™ (Z" € Dyr). (94d)

They are fully specified by C, because they are fully specified by the randomly constructed ID code ([@3]), which
is in turn fully specified by C. To prove that for every choice of AY, Ay, AZ, A¥ > 0 and n sufficiently large the
collection of tuples ([@3) is with high probability an (n, My, Mz, XY N NE, /\22) ID code for the BC W (y, z|z), we
prove the following stronger result:
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and P2

wrong-1p Of the randomly constructed ID code

. . =
Claim 14. The probabilities Pr%fissed_ID, P2 ced D> pPY

wrong-ID~

@3)) converge in probability to zero exponentially in the blocklength n, i.e.,
z z -
d7>0s.t. nh—)ngo P |:II1&X{ missed-ID? Pmissed-IDv Pv:\)/)rong-ID5 Pwrong—ID} Z € nT:| =0. (95)

Proof. We will prove that

37 >0s.t. lim ]P’{max{  iasedID? P“meng_m} > 67"7} =0. (96)

n— oo

By swapping £ and Y throughout the proof it will then follow that (@8] also holds when we replace Y with Z, and
[@3) will then follow using the Union-of-Events bound.

To prove ([@6]) we consider for each my € My two distributions on the set V, which indexes the pool P. We fix
some v* € V and define for every my € ./\/ly the PMFs on V

P (v) > e, VEV, (97a)
|MZ| mzEMz °
~ o ’ ]111—11’ if m
P (v) = { Vol Zvrevyy, Lot ATV 20, vE V. (97b)
1y—o+ otherwise,

The latter PMF is reminiscent of the distribution we encountered in (I7)) and ({I8) in the single-user case. The
former is related to the BC setting when we view Mz as uniform over Mz. As we argue next, to establish (@) it
suffices to show that the two are similar in the sense that

3r>0st. lim P[ max d(Pémy),Pé’”y)) > e"T] =0. (98)

n— 00 my€eMy

To see why, let us define for every my € My the PMFs on A™

me( = Z me mz(X), x€&", (99a)
szMz
~ Il ’ lx: v’ if vm @a
Qnmy(x) = |vmy\ 2 EVimy, P(v) v 7 x e X" (99b)
Lx=p(v*) otherwise,

The collection of tuples {me,’Dmy}my e, G be viewed as a randomly constructed ID code for the DMC

Wy (y|x) with maximum probability of missed identification

max (me W”) (Y" ¢ ’Dmy)

my€EMy
1
= max my,mzW")(Y" & Dy, 100
553, @m0 £ o
= Pri}issed—ID (101)

and maximum probability of wrong identification

max  max (meW") (Y" € ’Dm/y)

my€eMy m),#my

1
= max max E Qry m W) (Y" €D, 102
my €My my,#Emy |./\/lZ| mzeMz( yomE )( y) (102)
= Pv%/)rong-ID' (103)
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And {me,’Dmy}myeMy has the same law as the randomly constructed ID code {Q., D tmem of Section
for the DMC W = W, with blocklength n, fixed element v* of V, decoding parameter ¢, size-exp(exp(nRy))
set My of possible ID messages, expected bin rate Ry, and pool rate Rp. (Note that €, Ry, Ry, and Rp
are eligible for the random code construction in Section 2] because ¢ is positive and sufficiently small so that
2¢H (P x Wy) < I(P,Wy) — Ry, and because of (87) and (88).) Let P~

 issed.] denote the maximum

pY
D and Pwrong—ID

probabilities of missed and wrong identification of the randomly constructed ID code {Qmw Dy, }my My ie.,
Pri}issed—ID = Inax (me Wn) (Yn ¢ Dmy)’ (104&)
my€EMy
pPY = Vs W) (Y™ €D, ). 104b
wrong-ID m;nea.‘/\)fly mgljz(ly (Q RY ) ( y) ( )
By Claim [6] on the single-user channel
37> 05t Tim Plmax{ P ns Pongin} = ¢ 7] = 0. (105)
And by definition of the Total-Variation distance
Pr%fissed—ID < Pnjfissed—ID + mi;ne%y d(me W;’ me W;)’ (106&)
Pv;\)/}rong—ID < pv:x)/}rong-ID + max d(me W;’ me W;) . (106b)
my€EMy
For every 71, 19, and 7 < min{7y, 72} we have for all sufficiently-large n,
e 4 e e, (107)

This, combined with the Union-of-Events bound, (I05), and (I06), implies that to establish (@6 it suffices to show
that

37>0st lim P| max d(Qmy W3, Qmy,W3) >e " | =0. (108)

n— 00 my€eMy

Consequently, to prove our claim that (@8] implies (@6), we only have to show that (@8] implies (I08]). To that end,
define the conditional PMF

Pnjy (x[v) = Liep(),  (x,0) € X" x V), (109)

and note that for every my € My,
(Qmy W3 (y) = (Pémy)PxnwWﬁ)(y), yedyr, (110a)
(Quy W) (y) = (Pémy)waWﬁ)(Y), y ey, (110b)

where we used (@7), (@9), and (I09), and in the first equality also [@0). We can now upper-bound d(Q ., W3, Qs w3)
by

d(Quy W3, Quny, W)

_ d(Pém”PXnWW)@,Pémwpxnwwg;) (111)
< a(p B, )
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where the last inequality follows from the Data-Processing inequality for the Total-Variation distance [13, Lemma 1].
From ([I12) we conclude that (O8]) implies (I08]) and hence also (Q6).

Having established that (@8]) implies (@6), it remains to prove ([@8). Before we do that, we give an intuitive
explanation why (@8) holds. Fix my € My and a realization V,,,, of the corresponding index-set V,,,,, and assume
that Vp,, ~ e"y | For every mz € Mz, the probabilitiy that the intersection of V,,,, and V,, is empty is very
small, and if the intersection is nonempty, then, by our random construction of V., and Vi, m, the codeword-
index Vi), m» is drawn uniformly at random from V,,,,. Because V,,,, is exponential in n and the cardinality of Mz
is double-exponential in n, and because, by our random construction of {Vp,, }mzemz and {Viny, ms tmzems, the
codeword-indices { Vi), m > }mzem. are drawn independently of each other, (@8) can be derived using concentration
inequalities.

To prove ([@8)) rigorously, fix some p satisfying
0 < pu< Ry— Ry, (113)
and let
Oop = e""H/2, (114)
Introduce the set H;) comprising the realizations {V, },em, of the index-sets {V, } e, satisfying that
V| > (1—6,)e"B Vi e My. (115)

We upper-bound max,,,em,, d(P‘(,my ),I:"(,my )) differently depending on whether or not {V,} is in /Hff , where
{V.,} is short for {V,}rem,. If{V.} ¢ ’Hfj, then we upper-bound it by one (which is an upper bound on the
Total-Variation distance between any two probability measures) to obtain for every 7 > 0
(my) plmy) —nT
P| max d{Py >, Py, >e

my€EMy

<PV R+ D P[{vu}{vu}}P{vu}[mggﬂayd(Pé””,Pé””)ze"T]. (116)
{Vorery

We consider the two terms on the RHS of (II0) separately, beginning with P[{V,} ¢ HY |. Following the proof
of Lemma [l in Section 2 we will show that P[{V,} ¢ H})] converges to zero as n tends to infinity. This does not
follow from Lemma B because here we require p to satisfy (II3) instead of the more restrictive condition (24 of

Section 2l For every fixed v € My, the "7 binary random variables {1,cy, },ey are IID, and

E [Z L}ev"] =) Ppev,)= enfty (117)

veV veY

Consequently, by the multiplicative Chernoff bound (6al) in Proposition [}

PV, < (1 =62 | =P [Z Loey, < (1—6,)e"™ (118)
veV

< exp{—6. e"éy_logQ} (119)

= exp{—e"(ﬁyfﬂ)flogQ}. (120)
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The Union-of-Events bound thus implies that

P{V,} ¢ HY] < |[My|exp{—enFy—m-los2} (121)
@ 0(n — 00), (122)
where (a) holds because |[My| = exp(exp(nRy)) and by ([II13).

Having established ([I22]), we return to (I16) and conclude the proof of ([@8) by showing that

Ir>0st. i P d(P<my>,15<my>) > e | = 0. 123
P20t fim e P | g d(BPPE) 2o 122

(The proof of ([I23)) ahead exploits the fact that the index-sets {sz}mz e, are drawn at random. Likewise,
when we prove (@6]) with ) replaced by Z, we shall need the fact that the index-sets {me }my cMy ATe drawn at
random. Hence Remark[1) To prove ([I23)), let us henceforth assume that n is large enough so that the following

two inequalities hold:

(1—8,)e" > > 1, (124a)
on < 1/2, (124b)

where 6, is defined in ([I4). (This is possible, because 8, converges to zero as n tends to infinity and Ry > 0.) Fix
any realization {V, } in /Hff . Rather than directly upper-bounding the maximum over my € My of d(P‘(/my ), I:"(/my ))
under Py, y, we first consider d(P‘(,my), I:"(,my)) for a fixed my € My. By (II5) (which holds because {V, } € H})
and ([24al), Vy,,, is nonempty. For every fixed v € V'\ Vy,,, we therefore have that under Py, ; the exp(exp(nRz))

binary random variables {]lv:V are IID and of mean

my,mz }mze/\/lz

E{Vv} [lvzvmyvmz}

=P} [Viny,mz =] (125)

@ 1

= P Vms 0 Vimz =] (126)
1

© Py 1 Vi = 0] (127)

(0 1 —n(Rp—Rz)\|Vmyl

L (1 — e nlitp=hz))Fmy (128)

(d) -

< exp{—e_”(RP_RZ)|me| —nRp} (129)

) - _

< (1—=6,) texp{—(1— O ) By thz=Rp) _ nRy}, veV\Vn, (130)

with the following justification. Equality (a) holds because v & Vi, and Vi, = Viny, Py, y-almost-surely, and
therefore: if Vi, N Vi, # 0, then Vi), 1. # v, and otherwise Vi, m, is uniform over V. Equality (b) holds
because V., is independent of {V, },cnmy, and its distribution w.r.t. Pyy, ; is thus the same as w.r.t. P; (c) holds
because we have selected each element of V for inclusion in V,,. independently with probability e‘”(RP_RZ); (d)
holds because |V| = e™*7 and because

l—xz<e™, zeR; (131)
and (e) holds because 0 < d,, < 1, by [[I3) (which holds because {V,} € H})), and because Ry < Rp. Similarly, for

every fixed v € Vi, we have that under Pry, ) the exp(exp(nRz)) binary random variables {Lo=v,., .. }u_c s
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are IID and of mean

E{VV} []]‘”:me,mz}

=P,y [meamz = U]
(@ 1
= |me|P{VV} [mevmz € me]

= ﬁ (1 — ]P{VV} [me,mz ¢ me})

®» 1 ( V| = [Viny | —n(Rp—Fiz)\Vm )
) 1- | - e~nlRp—R2)) Yoy
Vo o )

1 1 1 _ 5 Vi |
= _ o 1—e n(Rp—Rz) ‘ my
Vo] (|vmy| IVI)( )

(é)[ (1 ey, ), ]

[Vimy| " Vi |

(d) L ~

C { LI (1- 5n)_1 exp{f(l — 5n)e"(R3’+R2_R7’) - TLRy}, 1 , UV E Vmy,
2 Vi |

(132)
(133)

(134)
(135)
(136)
(137)

(138)

where (a) holds by symmetry; (b) holds by [I28), because Vi), = Viny, Py, 1-almost-surely, and hence if Vy,,, N
Vi, =0, then V,,, . is uniform over V, and because |V \ Vp,,,| = [V| — |[Viny|; (¢) holds by [I3I); and (d) holds

by ([II5) (which holds because {V, } € H}). Fix some & satisfying
0 <k <min{Rz, Ry + Rz — Rp},
and let
&, =4 exp{ —enrilog2 } )
By (24L)
0/2> (1= 6,)  exp{—(1 — §,)e" Py HR2=Fr) _ 1.
Consequently, Hoeffding’s inequality (Proposition ) implies that for every fixed v € V' \ Vyy,,,

P o | [ P 0) - B0

-

(@) 1
- Fow l|MZ| Z ]lU:mevMZ z £”‘|

mzeEMz

) o 2
< eXp{Q |Mz] (fn —(1=6p) texp{—(1— O )enfivthiz—Rp) _ TLRy}) }

(c)
< exp{—|Mz| &, /2},

(139)

(140)

(141)

(142)

(143)

(144)

where (a) holds because Vi, = Vin,, Py, 1-almost-surely, because Vi, is nonempty (which holds because {V,} €
’Hfj implies (I15) and by (I24al)), by (@0), and because v ¢ Vy,,,; (b) follows from Hoeffding’s inequality (Proposi-
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tion 2)) and (I30); and (c) holds by (I4I)). Similarly, for every fixed v € V,,,

P[P 0) - B0

-

(a) 1 1

=Py || Lo=Vy oy — 55| = én 145)
{v.} U |MZ| ng/lz Viny,mz |me| 1 (

(b) _ - 2

szem{MA@ﬂ@nuam%mﬁaaméww“@M”nRyD } (146)

(©)

< 2exp{—|Mz|&2/2}, (147)

where (a) holds because Vi, = Viny, Pry, 3-almost-surely, because Vy,.,, is nonempty, by (@7), and because v € Vi,
(b) follows from Hoeffding’s inequality (Proposition]), (I38)), and the Union-of-Events bound; and (¢) holds by (I41]).
The Union-of-Events bound, (I44l), and (I47) imply that

P [0 € Vi [P0 - BP0 2 6
< 2|V]exp{—|Mz|€:/2}. (148)
Therefore,
P,y [d(Pém”apémy)) 2 |V|§n/2:|
(a) m o (m
=Py [Z’P\(/ M (w) = PI™ (v)| > IVlén] (149)
veV
<Py [3v e Vs[RI 0) - B )] 2 6 (150)
(»)
< 2|V|exp{~IMz|&/2}, (W} eH), (151)

where (a) holds by definition of the Total-Variation distance; and (b) holds by (I48).
Having obtained (IE1)) for every fixed my € My, we are now ready to tackle the maximum over my € My and
prove (I23)): By (8TH), (88d), (I39), and (I40) there must exist a positive constant 7 > 0 and some 79 € N for which

VI&n/2<e™, n>no. (152)
For every 7 > 0 and 7y € N satisfying (I52) and for all n exceeding 1

max Py, {3 my € My: d(Py”y), U(V’"y)) > em}

{Vorery
Y nax Piy,y |3my € My: d(P‘Sm”,U‘(;”y)) > V] €,/2 (153)
T reny v -
(2) max Z P{V 1 |:d(P‘(/my), U‘(/my)) > V) gn/2:| (154)
T {v.reHy ¥ v -
my y
(¢)
< 2|V |./\/ly|exp{f|./\/lz|exp{fe””+310g2}} (155)
@0 (n — 00), (156)
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where (a) holds by ([I52), because n exceeds 19; (b) follows from the Union-of-Events bound; (¢) holds by (I51]) and
(@40); and (d) holds because |V| = e"f? | My| = exp(exp(nRy)), |Mz| = exp(exp(nRz)), and by ([39). O

3.2 The Converse Part of Theorem [0

In this section we prove a strong converse to Theorem
Claim 15. For every rate-pair (Ry, Rz), every positive constants )\}}, )\%}, N2 \F satisfying
A H A+ AP+ A7 <1, (157)

and every € > 0 there exists some 1y € N so that, for every blocklength n > ng, every size-exp(exp(nRy)) set My of
possible ID messages for Receiver ), and every size-exp(exp(nRz)) set Mz of possible ID messages for Receiver Z,
a necessary condition for an (n, My, Mz, )\%}, )\%), A2, )\22) ID code for the BC W (y, z|x) to exist is that for some
PMF P on X

Ry <I(P, Wy) + e, (]58@)
Rz <I(P,Wz)+€. (]58b)

To prove Claim [[5] we recall from Remark [d that the following two conditions are necessary and sufficient for

some collection of tuples
{me,mz ) Dmy7 D’ITLZ }(my,mz)GMyXMz

to be an (n,/\/ly,/\/lz, MWoAYAE, /\22) ID code for the BC W (y, z|z): 1) {me,Dmy}myeMy is an (n, My, N, )\%})
ID code for the marginal channel Wy (y|x); and 2) {sz’DmZ}mzeMz is an (n, Mz, AT, A7) ID code for Wz (z|x),
where {Qm,, }myGMy and {Qum. }mz e, are defined in (BI). We shall use these conditions to establish Claim
following Han and Verdd’s proof of the strong converse for identification via the DMC [3]. To that end, we shall

need some terminology and results from [3]. We begin with the following two definitions from [3]:
Definition 16. An (n, M, A1, A\2) ID code {Qm, Dm }mem for the DMC W (y|z) is homogeneous if for every n-type
P on &A™

n 1 n
veM

Definition 17. Given an (n, M, A1, A2) ID code {Qm, D }mem for the DMC W (y|z), define for every n-type P
on X" and m € M the PMF

_Qul)_if x e T8 and Q (TS) > 0,

Qu (T3™)
P00 = ey itxe T and Qn(T4Y) =0, (160
0 if x ¢ T,

The ID code is L-regular if for every n-type P on X™ and m € M satisfying Qpm (TIS")) > 0 the PMF Qﬁ,’f’P) on
TI§") s an L-type.
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Following the line of arguments in [3], we shall construct from {me,Dmy }myEMy and {QmZ,DmZ }mZEMz
homogeneous L-regular ID codes. For the construction we shall need Proposition [I§ and Lemma [[9 ahead. Propo-
sition is a variation on [3| Proposition 3], and Lemma is a generalization of [3, Lemma 1] similar to that

in [I4, Lemma 2].

Proposition 18. For every (n, M, A1, \2) ID code {Qm, Dm}mem for the DMC W (y|z) and for every 6 > log2/n
there exists a subset S of M with

S| > | M| exp{ _ elog(1+n)(1+\?€|)+log5} (161)

for which we can construct from {Qm,Dm}mes @ homogeneous (n,S,N;,Ay) ID code {Q.,, Dm}mes for W(y|z)
with

N = Ay 4 gm0 HlosEm)IA] (162a)
Xy = Ag + 7o HloalFmIA] (162b)
Moreover, if for some €, k > 0
Qm(X"e{xe X" I(Px,W)<R—¢€}) >k meM, (163)
then
Qn (X" e{xeX": I(Pc,W)<R—¢€}) >k meS. (164)

Proof. The proof is essentially that of [3, Proposition 3]. Additionally, we observe the following: if the PMFs
{Qm}mem satisfy [I63), then the PMFs {Q/, }mes, which are constructed in the proof of [3, Proposition 3], satisfy
([I64). For the sake of completeness, we provide a proof in Appendix [Bl O

Lemma 19. For every DMC W (y|z) there exists a positive constant 6y > 0, which depends only on |Y|, and a
continuous, strictly-increasing function p: [0,80] — Ry with p(0) = 0 so that, for every § € (0,8, every e € (0,1),
and every blocklength n > 1o (where g € N depends only on |X|, |V, 6, and €), it holds that for every n-type P on
X™, every PMF @Q on Tlﬁ”) C X", every R > I(P,W) + p(d), and every L = [e"*] there ewists an L-type Q' on
TI§") that satisfies for every subset D of Y™

QWM(Y"eD) < (1+e)(1—e ™) HQW™)(Y™ € D) + e, (165a)
QW™ (Y"eD)>(1—e)(1—e ™) QW™ (Y™ € D) —e ™, (165b)

Proof. The proof is essentially that of [3, Lemma 1] with the differences being pointed out in the proof of [14}
Lemma 2]. For the sake of completeness, we provide a proof in Appendix O

Once we have constructed from {me y Diny, }myEMy and {sz s Dz }mze/\/lz homogeneous L-regular ID codes,
we shall use the following proposition to upper-bound the number of possible ID messages |[My| and |Mz]:

Proposition 20. [3, Proposition 4] Let M be a finite set and A1, Ao positive constants satisfying A1 + Ao < 1.
Every homogeneous L-regular (n, M, A1, A2) ID code for the DMC W (y|x) satisfies

log IM| < n(1 4 n)* Llog|X|. (166)
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Once we have upper-bounded |[My| and |[Mz|, we shall infer from the upper bounds that for every e > 0 and
n sufficiently large the mixture PMF on X"

1
AL, 2 @

(my,’mz)EMy XMz

must assign notable probability mass to some sequence x € X" that satisfies both I(Px,Wy) > Ry — e and
I(Px,Wz) > Rz — €. This implies Claim [[5 because it implies that there must exist some PMF P on X for which
([I58) holds.

We next establish Claim [[5 proceeding as outlined above. In a first step we shall combine Proposition I8
Lemma [T9, and Proposition B0 to obtain the following lemma:

Lemma 21. For every DMC W (y|x), every ID rate R, and every positive constants A1, A2, €, k satisfying A+ Ao <
Kk < 1 there exists some ny € N so that, for every blocklength n > no and every size-exp(exp(nR)) set M of possible
ID messages, a necessary condition for a collection of tuples {Qm, Dm }mem to be an (n, M, A1, A2) ID code for the
DMC W (y|z) is that

Wl| Z Qm(X" e{xe X" I(P,W)>R—¢€})>1—r— exp{en(R—e/2)}/exp{enR}. (167)
meM

Proof. Choose

K

y= <1 _Mt A2>/2, (168)

and note that v > 0. Pick § > 0 sufficiently small so that it satisfies the requirement in Lemma and so that
p(0) < €/2, where p(-) denotes the same function as in Lemma[I9 and let € = p(d). We henceforth assume that n
is sufficiently large so that the following four inequalitites hold:

log2/n < 0, (169a)

(14 4/4)(1 —e ™)L pe™™ <14 7/2, (169b)

(A1 + Ag 4 2~ 0Hos(4MIXD) i 4 ) (169c)
eXp{en(R—e+e')+10g(1+n)(1+|X\)+log10g\Xl + elog(1+n)(1+|X\)+log6} < eXp{e"(R_G/Q)}. (169d)

Let M be some size-exp(exp(nR)) set, and assume that the collection of tuples {Q., Din e is an (n, M, A1, A2)
ID code for the DMC W (y|x). Pick

IC:{mEM:Qm(X”E{xeX”:I(Px,W)nge})Zn}, (170)

and note that {Qum, Dm }mek is an (n, K, A1, A2) ID code for the DMC W (y|z). By ([I69a)), (I70), and Proposition I8
there exists a subset S of K with

|S| > |IC|eXp{7610g(1+n)(1+‘x|)+10g6} (171)
for which we can construct from {Qm, D }mes a homogeneous (n,S, Aj, \;) ID code {Q),,, D }mes with
N, = Ap + e oHlog(1n) X (172a)

N, = A + e Hlos(1+m)|X] (172b)
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and
QL (X" e{xeX": I(Pc,W)<R—¢€}) >k meS. (173)

For every m € § define the PMF on A"

Q%) : _
Qi) = { Ferrremrert iepmzreqy TP W) S R=6 (174)
0 otherwise,
Let
N A
X{:?l and Ag:f, (175)

1

and note that the collection of tuples {Q" , D, }mes is a homogeneous (n,S, A/, \J) ID code, because for every

distinct pair m, m’ € S

QW™ (Y™ & D) < N, (176a)
(@QuW™)(Y™ € D) < A3 (176b)

By Lemma [I9 there exists some 7, € N, which depends only on |X|, |Y|, d, and =, so that for every n > 1 we
can, for every n-type P on X™ for which
I(P,W)<R—e¢
and for every m € M, approximate the PMF (Q”)(™") on T}gn) by an e B=<t<)_type (Q7)(F) on T}gn) that
satisfies for every subset D of Y™
(@™PWT (Y™ € D) < (L+9/4)(1 =) (@)™ W) (Y™ € D) +e7™ (177)
< (@)™PW™) (Y™ € D) +7/2, (178)

where in the second inequality we used ([I69D). For every m € S define the PMF
Qi) = Qu(TE) @) P (), Per™, xeTs". (179)

By (I79) it holds for every subset D of Y™ that

(Q%W”) Y" € D) Z Q// (n) Q///)(n P)Wn)(Yn € D) (180)
Pecrm
Z Q” n) ( (Q%)(naP)W") (Y" eD)+ 7/2) (181)
PEF(")
= (@) (Y" € D)+ /2 (182)
Let
X=X D and A =N+ L (183)

By ([I82) and because {Q!, Dp, }mes is a homogeneous (n, S, A{, AY) ID code, the collection of tuples {Q" Dy, }mes
is a homogeneous e™B=<+<')_regular (n, S, X", \J") ID code, and by ([I69d), (I72), and (L75)

N4 NI <1 (184)
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Consequently, Proposition 20 implies that

log |S| < n(1 + n)l¥len(B=et<) 1og | x|, (185)

and by (ITI)
|K:| S exp{en(R75+€’)+log(1+n)(1+|X\)Jrloglog\X| + elog(1+n)(1+|X\)+log5} (186)
< exp{e"(R_E/Q)}, (187)

where in the second inequality we used (I69d). We are now ready to conclude the proof:

1
M| > Qu(X"ef{xe X" I(P,W)>R—¢})
| | meM
(a) M| - IK
b
(>) 1—k— exp{e"(R_€/2)}/exp{enR}, n > 1o, (189)

where (a) holds by ([IZ0); (b) holds by ([I&M); and we can let 1y be the smallest integer no smaller than 7 that
satisfies (IGY). O

With Lemma 2] at hand, we are now ready to conclude the proof of Claim by establishing that for every
€ > 0 and n sufficiently large the mixture PMF on X

1
Q = Txa T Aq Qm mz
Myl [Mz] 2 Y

(my mz)eEMyxMz

must assign notable probability mass to some sequence x € X™ that satisfies both I(Px,Wy) > Ry — ¢ and
I(Px, Wz) >Rz —e:

Proof of Claim[I3. Fix ¥, k% > 0 that satisfy the following three: 1) AY + A < x¥; 2) A\ + A5 < «%; and 3)
kY + k% < 1. (This is possible because of ([I57).) By Remark [ and Lemma 2] there must exist some 7}, € N so
that, for every blocklength n > 7, every size-exp(exp(nRy)) set My of possible ID messages for Receiver ), and
every size-exp(exp(nRz)) set Mz of possible ID messages for Receiver Z, the following conditions are necessary
for a collection of tuples

Qs Py Do Y sty

to be an (n, My, Mz, X 0N AF, /\22) ID code for the BC W (y, z|z): the mixture PMFs on X™

1
me = Txs Z Qm mz, My € My, (190&)
|MZ| mz€eM >
1
Qumz = > Qumyms, mz €Mz, (190b)
Myl ey
1
= Txa TAq my,mz 1
Q WG] > Qmy, (190c)

(my,’mz)EMy XMz
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satisfy

Q(Xn S {X e x": I(Px,Wy) > Ry 76})

1 n n.
=] Z Qumy (X" € {x € &™: I(Px, Wy) > Ry —€}) (191)
my€EMy
>1—rY — exp{e"(Ryfe/Q)}/ exp{e"™} (192)

and

QX" e{xe€ X" I(P,Wz) > Rz —€})
1

= 3G mZeZMZ Qmz (X" € {x€ X" I(Px,Wz) > Rz — €}) (193)
>1— K% — eXp{e”(RZ*/Q)}/ exp{e"z . (194)

The Union-of-Events bound, (I92), and (I94]) imply that

QX" e{xeX™: I(P,Wy) >Ry —¢, [(P,Wz) > Rz — €})
>1—rY — k% — eXp{e”(RJ’_E/Q)}/ eXp{e”Ry} - exp{e"(RZ_€/2)}/ eXp{e"RZ }. (195)

Now let 79 be the smallest integer n > nf, for which the RHS of ([I33]) is positive (such an n must exist, because
€ > 0 and k¥ 4+ k% < 1). Then, for every blocklength n > 79 a necessary condition for (I35)) to hold is that for some
PMF P on X ([I58)) holds, and hence Claim [IH] follows. O

4 Average- vs. Maximum-Error Criterion

This section touches on the maximum-error criterion for identification via the BC, which was adopted in [4H7]. We
are primarily interested in whether or not the maximum-error ID capacity region differs from the average-error ID
capacity region. For Shannon’s classical transmission problem this question can be answered in the negative: by
Willems’ result [15] the transmission capacity region of the BC is the same under the average- and the maximum-

error criterion. We begin with the basic definitions of a maximum-error ID code for the BC W (y, z|x):

Definition 22. Fiz finite sets My and Mz, a blocklength n € N, and positive constants )\%}, )\%), A2 \Z. Associate
with every ID message-pair (my,mz) € My x Mz a PMF Qpym, on X", with every my € My an ID set Dy, C
Y, and with everymz € Mz an ID set D,,, C Z™. The collection of tuples {Qm%mZ,Dmy,sz }(my,mz)e/v(yx/v(z
s an (n,/\/ly,/\/lg,)\%}, )\%},)\12,)\22) mazimum-error ID code for the BC W (y, z|x) if the mazimum probabilities of

missed identification at Terminals Y and Z

y o - e ma W) (Y™ & Dy, 196
Ph-missed-ID (my,sz?Ga/\)ElyXMZ (Q y,mz ) ( ¢ )’)7 ( a)
2 = max mvma W) (Z™ & Dy 196b
Pm-missed-ID (my,mz)EMyx Mz (Q y,mz ) ( ¢ z) ( )
satisfy
p%—missed—ID S )\:1)}7 (197&)
pi—missed—ID S )\f’/’, (1971))
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and the mazximum probabilities of wrong identification at Terminals Y and Z

y —
pm—wrong—ID - (my,m;?eaj\)sly X Mz mgljiy (me,mz Wn) (Yn S Dm’y), (198&)
z —
Prm-wrong-ID = (my,mzr)ﬂea/\)sly M mgl;zz(%z (me,mz W") (Z" e Dmlz) (].98[))
satisfy
p%—wrong—ID S )‘:2125 (].9.90,)
pri—wrong—ID < )‘QZ . (] ggb)

A rate-pair (Ry, Rz) is called maximum-error achievable if for every positive X'lv, )\%}, A2, and A2 and for every
sufficiently-large blocklength n there exists an (n,./\/ly,/\/lz,/\%),)\%},/\%,/\g) mazimum-error ID code for the BC
with

%10g10g|My| > Ry if Ry >0,
Myl =1 if Ry =0,

%10g10g|./\43| >Rz if Rz > 0,
Mz| =1 if Rz =0.

The mazimum-error ID capacity region Cn, of the BC is the closure of the set of all maximum-error-achievable

rate-pairs.

While the average-error criterion requires that each receiver identify the message intended for it reliably in
expectation over the uniform ID message intended for the other receiver, the maximum-error criterion requires that
each receiver identify the message intended for it reliably even if the realization of the ID message for the other
receiver assumes the worst possible realization. Consequently, every rate-pair that is maximum-error achievable is
also average-error achievable, and the average-error ID capacity region is thus an outer bound on the maximum-error
ID capacity region. The maximum-error ID capacity region of the BC is still unknown. To-date the best known
inner bound is the common-randomness capacity region Rc,. It is unknown whether this bound is tight.

Theorem 23. [7, Theorem 11] The mazimum-error ID capacity region Cn, of the BC W (y, z|x) contains the
common-randomness capacity region Ry, which is the set of all rate-pairs (Ry,Rz) € (RSF)Q that for some finite
set U and some PMF Py x onU x X satisfy

Ry < I(Py, PxjuWy), (200a)

Rz <min{I(Py, PxjuWy) + I(Px|y, Wz|Pu),I(Px,Wz)}, (200b)
or

Ry <min{I(Py, PxjuWz) + I(Pxu, Wy|Py), I(Px,Wy)}, (201a)

Rz < I(Py, PxjyWz). (201b)

The region R, can be achieved by a common-randomness ID code, which—like that of [§] for the DMC—
uses a transmission code to establish common randomness between the encoder and each decoder. If the BC is
degraded, then Theorem [23] specializes to [5, Theorem 1]. Also for the degraded BC it is unknown whether the

common-randomness inner bound is tight.
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Remark 24. The common-randomness capacity region R¢y is contained in the average-error ID capacity region C,

and the containment can be strict.

Proof. Every maximum-error-achievable rate-pair is also average-error achievable, and hence, by Theorem 23] R, C
Cm C C. To see that R, can be strictly smaller than C, consider the binary-symmetric BC of [16, Example 5.3],
whose marginal channels are both binary symmetric. This BC is degraded, and Theorem 23] thus specializes
to [B) Theorem 1], which we can evaluate as in [I6] Example 5.3 and Section 5.4.2] to conclude that R¢. C C holds

whenever the transition probabilities of the marginal binary-symmetric channels are distinct. O

To-date it is still unknown whether the common-randomness inner bound on the maximum-error ID capacity
region of the BC is tight, i.e., whether C,, = R¢,. Ahlswede argued that it is whenever an additional constraint is
imposed on the maximum probabilities of missed and wrong identification, namely, that they decay like n~7, where
n is the blocklength [7 Section 15]. Since the average-error ID capacity region of the BC is also achievable when
we require that the error probabilities decay exponentially in n (Remark [[T]), we could thus infer from Remark 24]
that, for some BCs and subject to the additional constraint that the maximum probabilities of missed and wrong
identification decay like n~7, the average-error ID capacity region is strictly larger than the maximum-error ID
capacity region.

We hesitate to draw this conclusion, because there seems to be a gap in Ahlswede’s proof: Ahlswede’s proof (that
of the converse part of [7, Theorem 11]) builds on his converse to the single-user ID coding theorem [7, Theorem 9],
which applies when for every blocklength n the maximum probabilities of missed and wrong identification must
not exceed n~7. The proof of [7, Theorem 9] can be roughly sketched as follows: First, it is shown that for every
possible ID message m the PMF @, can be represented by a size-M subset of X™. Then, it is argued that only
few ID messages can have the same representation, and that the ID rate can thus be upper-bounded in terms of the

n
number of possible representations, i.e., in terms of (‘ﬂ ) Since

(PE”) < |xmM = enlog|X| M eXp{elogM}, (202)
it is concluded that for n sufficiently large the ID rate cannot exceed log M/n, where M can be upper-bounded
by [, Lemma 7]. Ahlswede’s converse for the BC is similar (see [7, Section 15]): To upper-bound the ID rate Rz
of Receiver Z, an auxiliary random variable U is introduced, which is uniform over the support My, of the possible
ID messages for Receiver ). As in the proof of [7, Theorem 9], it is shown that for every possible ID message
mz € Mz for Receiver Z the PMF

sz = ! Z me,mz

Myl

can be represented by a size-M subset of My. Like for the single-user channel, it is argued that only few ID
messages for Receiver Z can have the same representation, and that one can thus upper-bound the ID rate Rz
in terms of the number of possible representations, i.e., in terms of (MI/V?’l) From this it is concluded that for n
sufficiently large the ID rate cannot exceed log M/n. There seems to be a gap in this conclusion, because, unlike
X™, the cardinality of My grows doubly-exponentially in n, i.e., |[My| = exp(exp(nRy)), where Ry is the ID rate
of Receiver Y; and it is therefore not clear how to conclude that for n sufficiently large Rz cannot exceed log M/n,
because

("32) = ol = expfenrary = expfenona, (203
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5 Extensions

This section discusses several extensions: identification via the BC with more than two receivers (Section B.1),

identification via the BC with a common message (Section (.2), and identification via the BC with one-sided
feedback (Section [B.3]).

5.1 More than Two Receivers

In this section we study identification via the BC with more than two receivers. As we shall see, it is easy to adapt
the converse of Theorem to this more general scenario, but in the direct part difficulties already arise when
the number of receivers increases from two to three. To keep the exposition simple, we shall thus focus on the

three-receiver BC. We inner-bound its ID capacity region and show that the bound is in some cases tight.

Consider a three-receiver BC of transition law W (y1,y2,ys3|z), and for every k € {1,2,3} let )i denote the
support of the channel output at Receiver k and Wy (yx|x) the marginal channel to Receiver k. We begin with the
basic definitions of an average-error ID code for the BC W (y1, y2, ys|z):

Definition 25. Fix finite sets My, My, and M3, a blocklength n € N, and positive constants
AR AR ke {1,2,3).

Associate with every ID message-triple (m1,ma,ms) € My x Ma X M3 a PMF Qu, myms on X™, and for each
ke {1,2,3} associate with every my € My, an ID set D, C V. Define the mizture PMFs on X"
1

le = TAq 1 Aq le,mz,m‘a m; € M P 204@
|M2| |M3| m;d 3 1 1 ( )

1
sz = T 1 aq le,mg,m‘ 3 ma S M23 (20417)

M| | Ms] m;ng ’

1
ms = Taq 1A A | mi,ma,mszs 1 € Ms. 204c
QS |M1||M2|m§2Q 1,M2,m3 3 3 ( 4)
The collection of tuples {le’m27m37pml7pm2’Dms}(m1,m2,m3)EM1XM2XM3 is an (n, {Mk,)\gk)7)\gk)}ke{l,273})
ID code for the BC W (y1,y2,ys|x) if for each k € {1,2,3} the collection of tuples {Qm,, Dm, mpem, s an

(n,./\/lk,kgk),)\gk)) ID code for the marginal channel Wi (yg|x). A rate-triple (Ry, Re, R3) is called achievable if
for every positive )\gl), )\él), )\§2), )\g), )\gs)’ and )\§3) and for every sufficiently-large blocklength n there exists an
(n, {Mk,Ag’“),)\g’“)}ke{mg}) ID code for the BC with

%loglog|/\/lk| > Ry if Ry >0,

) ke {1,2,3}.
|Mk|:1 if R =0,
The ID capacity region Cs of the three-receiver BC' is the closure of the set of all achievable rate-triples.
Our next result is an outer bound on the ID capacity region of the three-receiver BC:

Theorem 26. The ID capacity region Cs of the BC W (y1, Y2, ys|z) is contained in the set Raop of all rate-triples
(R1, R, R3) € (R{)? that for some PMF P on X satisfy

Ry, < I(P,Wy), Yk € {1,2,3}. (205)

36



Proof. The proof follows along the line of arguments in Section (see Appendix [D] for the details). O

We can adapt the two-receiver broadcast ID code of Section Bl to obtain the following inner bound on the ID

capacity region of the three-receiver BC.

Theorem 27. The ID capacity region Cs of the BC W(y1,y2,ys|x) contains the set R, of all rate-triples
(R1, Ra, R3) € (RT)? that for some PMF P on X satisfy

Ry, < min{I(P, Wi), Y I(P,Wl)}, Vke{1,2,3}. (206)
1€{1,2,3}\{k}

The interior of Ra.ip is achieved by codes with deterministic encoders.

Proof. See Appendix [E] O

By comparing Theorems[I0 and 27 we see that to adapt the broadcast ID code of Section[BIlto the three-receiver

BC we additionally need the constraints

Ry, < Z I(P,W)), VEk € {1,2,3}, (207)
1€{1,2,3}\{k}
which have no counterpart in the two-receiver case. We next explain where we use (207). To this end, we briefly
describe how to extend the random code construction of Section 3.1 to the three-receiver BC. Fix a PMF P on X,
a blocklength n, ID rates Ry, k € {1,2, 3}, expected bin rates Ry, k € {1,2,3}, and a pool rate Rp satisfying

Ry, < Ry < min{I(P,Wy),Rp}, Vk € {1,2,3}. (208)

Draw "7 n-tuples ~ P" independently, index them, and place them in a pool P. For each receiving terminal
k € {1,2,3} associate with each ID message mj; € My, a Bin B,,, by randomly selecting each indexed element

—n(Rp—Rx)  Associate with every ID message-

of the pool for inclusion in B,,, independently with probability e
triple (mq,m2, m3) an n-tuple we call the (my, ma, ms)-codeword as follows. If at least one indexed pool-element is
contained in all three bins B,,,, Bu,,, and B,,,, then draw the (my, ma, ms)-codeword uniformly over the indexed
pool-elements that are contained in all three bins. Otherwise draw the (mi, ms, ms)-codeword uniformly over the
pool. To send ID message-triple (m1, ma, ms), the encoder transmits the (mq, ma, ms)-codeword. For each k € My
the mj-focused party at Terminal k guesses that mj was sent if at least one element of the m/-th bin is jointly
typical with the channel outputs that it observes. Therefore, if the (mq,mz, m3)-codeword is not an element of
Bin B,,,, then the probability that the my-focused party at Terminal & erroneously guesses that mj was not sent
is high.

Note that for every ID message-triple (mj, ma, ms) the expected number of indexed pool-elements that are
contained in all three bins B,,,, Bn,, and B,,, is en(Xioy Be—2Rp) (= enftr H2:1 e_"(R”_Rk)), which is smaller
than one unless

3
2Rp < Ry. (209)
k=1
Therefore, if (209) does not hold, then with high probability the (m1, ma, ms)-codeword is not contained in all three

bins By, Bum,, and B,,,, and our scheme will thus fail. This, combined with (208]), implies that the code can be
reliable only if (207) holds. Note that in the two-receiver scenario the counterpart to ([209) is

Rp < Ry+Rz. (210)

37



Unlike (209) in the three-receiver scenario, ([ZI0) in the two-receiver scenario can be satisfied by choosing Rp suffi-

ciently small and hence without constraining the rate-pair (Ry, Rz).

As the following example shows, the inner bound of Theorem [27] need not be tight:

Example 28. Consider a deterministic BC W (y1, yo2, ys|x) with input X = (X1, Xo, X3), where for each k € {1,2,3}
Xy, is binary, and with output Y = (Y1,Y>,Y3), where

Y =Xk, ke{l,2}, (211a)

Y; = X. (211b)
For this channel the inner bound R, of Theorem [27] evaluates to the set of all rate-triples (R1, Re, R3) € (Ra‘)g
that satisfy

Ry <log2,Vk e {1,2}, (212a)

R3 < 2log?2. (212b)
Since the BC is deterministic, the encoder can compute all outputs from the inputs that it produces, and the ID
capacity region Cs does thus not increase if the encoder if furnished with perfect feedback. Therefore, Theorem
and [T7, Corollary 3], which holds under the mazimum-error criterion, imply that Cs is the set of all rate-triples
(R1, R2, R3) € (RT)? that satisfy

Ry <log2,Vk e {1,2}, (213a)

R3 < 3log2. (215b)

Consequently, Rs.ip € Cs.

The inner bound of Theorem 2T is in some cases tight, e.g., if no receiver is “much more capable” than the other

two:

Remark 29. If the BC W (y1,ya2,ys|z) satisfies for every PMF P on X

2 max I(P,Wi)< Y I(P,Wh), (214)
he{l.2,3} 1e{1,2,3}

then its ID capacity region Cs is the set of all rate-triples (R1, Ra, R3) € (R{J")B that for some PMF P on X satisfy
(@03).
Proof. This follows from Theorems 26l and 27 because for such a BC R3.op, = Rs.ip. O

5.2 A Common Message

In this section we consider the two-receiver BC Wy, z|z) and adapt the coding scheme in Section Bl to solve
for the capacity region of a more general scenario where the receivers’ ID messages need not be independent but
can have a common part. We thus assume that the ID message intended for Terminal ) is a tuple comprising a
private message and a common message, and likewise for Terminal Z. We begin with the basic definitions of an

average-error ID code for the BC W (y, z|z) with a common message:
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Definition 30. Fiz finite sets M, My, and Mz, a blocklength n € N, and positive constants )\%}, )\%}, AENE.
Associate with every ID message-triple (m,my,mz) € M x My x Mz a PMF Qumym- on X", with every
(m,my) € M x My an ID set Dy, m,, C V", and with every (m,mz) € M x Mz an ID set Dy, m, C Z™. Define
the mizture PMFs on X™

1
Q’m,my = m Z Qm,my,mza (m,my) € M x Mya (2150’)
mzEMz
1
Qm,mz = m Z Qm,my,mza (m;mZ) €M x MZ- (215[))
my€EMy

The collection of tuples

{@mmymz: Dimamys Pz} gy 2)e M My x M
is an (n,M,My,MZ,A%}, /\%),)\12,)\22) ID code for the BC W (y, z|x) with a common message if the following two
requirements are met: 1) {Qm’my7Dm’my}(m,my)EM><My s an (n,./\/l X My,)\%},/\g) ID code for the marginal
channel Wy (y|z); and 2) {Qm.mz+Pm,ms (mumz)eMx Mz 15 AN (n, M x Mz,A\f,\3) ID code for Wz(z|z). A
rate-triple (R, Ry, Rz) is called achievable if for every positive XY, XY, A2, and \§ and for every sufficiently-large
blocklength n there exists an (n,M, My, Mz, )\%}, )\%}, A2 )\QZ) ID code for the BC with

Lloglog|M| >R if R >0,
M| =1 ifR=0,

Lloglog|My| > Ry if Ry >0,
My|=1  if Ry =0,

%1oglog|/\/lz| >Rz if Rz >0,
Mz| =1  if Rz =0.

The ID capacity region Cem of the BC with a common message is the closure of the set of all achievable rate-triples.

We restrict our analysis to positive ID rates Ry, Rz, because if to some receiver we send only the common
message, then for the other receiver the imposed average-error criterion will turn into a maximume-error criterion.

Theorem [0 allows for the following generalization:

Theorem 31. The ID capacity region Cen, of the BC W (y, z|x) with a common message and positive private rates
Ry, Rz is the set of all rate-triples (R, Ry, Rz) € (R})? that for some PMF P on X satisfy

R, Ry < I(P, Wy), (2]6@)
R, Rz <I(P,Wz), (216b)
Ry, Rz > 0. (2]60)

The interior of Cem is achieved by codes with deterministic encoders.
Proof. The proof is similar to that of Theorem [I0 (see Appendix [F] for the details). O

Comparing Theorems [B1] and [I0] we see that the common message appears to come for free at all rates up to
min{I(P,Wy),I(P,Wz)}. This can be explained as follows. The ID rate is the iterated logarithm of the number
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of ID messages normalized by the blocklength n, and for n sufficiently large and for all nonnegative real numbers
R1 and R2
exp(exp(nRy)) exp(exp(nRz)) ~ exp(exp(nmax{Ry, R2})).

So far, we assumed that each receiver identifies the common message and its private message jointly. Next, we
assume that each receiver identifies the common message and its private message separately. We begin with the
basic definitions of an average-error ID code for the BC W (y, z|z) with a common message and where each receiver

identifies the common message and its private message separately:

Definition 32. Fiz finite sets M, My, and Mz, a blocklength n € N, and positive constants )\%}, )\%}, A0S
Associate with every ID message-triple (m,my,mz) € M x My x Mz a PMF Qumy,m- on X", with every
m € M ID sets D% C YY" and D,i C Z", with every my € My an ID set D,,,, C V", and with every mz € Mz
an ID set Dy,, C Z™. Define the mizture PMFs on X"

1
m = m,my,mz» GM, 217
1
my = Ta g m,my,mzs € My, 217
Q 2% |M||MZ|mZmZQ My, mz= my y ( )
1
e = (RG] 2 Qromvimer ™2 € Mo (217e)

The collection of tuples
% z
{Qm,my,mz b Dm; Dmy I Dm; sz }(m,my,mz)EMXMyXMz

is an (n,M,My,MZ,)\%;,)\%},Alz,)\QZ) ID code for the BC Wy, z|x) with a common message and where each
receiver identifies the common message and its private message separately if the following four requirements are
met: 1) {Qm’D%}mEM is an (n,./\/l, A, /\%}) ID code for the marginal channel Wy (y|z); 2) {me’Dmy}myEMy
s an (TL,M)},/\%},A%}) ID code for Wy (y|z); 3) {Qm’Di}mEM s an (n,./\/l,/\lz,)\QZ) ID code for Wz (z|x); and 4)
{sz’pmz}mz€/\/{z is an (n,Mg, AP, )\23) ID code for Wz(z|z). A rate-triple (R, Ry, Rz) is called achievable if
for every positive )\%), )\%}, A2, and N2 and for every sufficiently-large blocklength n there exists an

(TL, M7 Mya MZ) A%)a /\%)7 >\127 AQZ)
ID code for the BC with

Lloglog|M| >R if R >0,
M| =1 ifR=0,

%10g10g|My| > Ry if Ry >0,
Myl =1 if Ry =0,

%10g10g|./\43| >Rz if Rz > 0,
Mz|=1 ifRz=0.
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The ID capacity region Cem-s of the BC with a common message and where each receiver identifies the common

message and its private message separately is the closure of the set of all achievable rate-triples.

When each receiver identifies the common message and its private message separately, we can argue similarly as

for the three-receiver BC to obtain the following result:

Theorem 33. The ID capacity region Cem-s of the BC W (y, z|x) with a common message and where each re-
cewer identifies the common message and its private message separately is contained in the set of all rate-triples
(R, Ry, Rz) € (R})? that for some PMF P on X satisfy

R, Ry < I(P, Wy), (2]8@)
R, Rz <I(P,Wz), (218b)
and it contains the set of all rate-tiples (R, Ry, Rz) € (R})? that for some PMF P on X satisfy 2I8) and

Ry < 2I(P,Wz), (219a)
Rz < 2I(P,Wy). (219b)

Proof. Pretend that the common ID message were intended for a third receiver whose marginal channel is time-
invariant but can be either Wy (y|z) or Wz (z|z). Then, we can argue as in Appendices [D and [El to establish the

outer and inner bound, respectively. O

5.3 One-Sided Feedback

In this section we study identification via the BC W (y, z|x) with perfect feedback from at least one receiving terminal.
Feedback from both terminals ) and Z allows the encoder to choose the Time-i channel-input in dependence on
all past channel outputs Y*~! and Z~!: to transmit ID Message-Pair (my,mz) when the past channel inputs are
X! = 2%~! and the past channel outputs are Y~! = 3*~! and Z*~! = 2*~!, the stochastic encoder generates the

Time-i channel-input from a PMF of the form

(i) (:L'|:L'i_1,yi_1,zi_1), r e X.

my,mz

The ID capacity region Cp, of the BC with feedback from both terminals is known and can be achieved by a

common-randomness ID code similar to that of [8]. It does not depend on the error criterion.

Theorem 34. [17, Corollary 3] The ID capacity region Cs, of the BC W (y, z|x) with feedback from both terminals
is the set of all rate-pairs (Ry, Rz) € (R{)? that for some PMF P on X satisfy

Ry < I{(]DVV);)]].maLX]5 I(P,Wy)>0’ (220&)
Rz <H(PWz)l,. 1(pwa)so0- (220b)

Things get more interesting when the encoder is furnished with feedback from only one receiving terminal, say
Terminal ). In this scenario the encoder can choose the Time-i channel-input in dependence on the past Terminal-Y
outputs Y~ !: to transmit ID Message-Pair (my,mz) when the past channel inputs are X*~1 = z~! and the past
Terminal-) outputs are Y*~! = 4*~1, the stochastic encoder generates the Time-i channel-input from a PMF of the
form

QW (e, Y, we .

We use the following basic definitions of an average-error ID code with one-sided feedback from Terminal ):
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Definition 35. Fix finite sets My and Mz, a blocklength n € N, and positive constants )\%}, /\%2, A2 \Z. Associate
with every ID message-pair (my,mz) € My x Mz conditional PMFs

QU (@l ), e lin, (w2 Ly ) e X x X x Y

with every my € My an ID set Dy,,, C V", and with every mz € Mz an ID set D,,, C Z". The tuple

{{me’mz }ie{lv"""}, Drmy, Drme }(myymz)GMy XMz
is an (n,/\/ly,/\/lz, A, )\%},)\12,)\22) ID code for the BC W (y, z|x) with one-sided feedback from Terminal Y if the

mazximum probabilities of missed identification

v § § I I (4) i—1 -1 s
: max Q (x]x* ™7, 1% z;), 221a
Phissed-1D = SEMy |MZ| W S my,mz z| Y ) y(yz| z) ( )
y%Em;}

zZ
Prmissed-ID =

> X Hmemz (il y =W (s, 2ila0) (221b)

m GM M
z z | y| my€EMy xeX™, i=1

yeY™,
2¢ Dy,
satisfy
Prmissed-n < A s (222a,)
Praissed-ID < A1 s (222b)

and the maximum probabilities of wrong identiﬁcation

PYrongip = Max  max >y Hme s (|2 YWy (yil2s), (223a)

my€eMy mi,#m M
hY y mjy,# y| Z| maeMz xex", im1
yGDn/

Yoo > TIOW, s @il y ™ )W (g zilz) (223b)

my€eMy xeX™, i=1

Z
p . = max maX
wrong-TD mzEMz m#mz |My|

yeYy”,
z€D, 1
z
satisfy
pwrong ID < )\2 ’ (2240,)
pwrong—ID < )‘22 (224[))

A rate-pair (Ry, Rz) is called achievable if for every positive )\%}, )\%}, A2 and A5 and for every sufficiently-large
blocklength n there exists an (n, My, Mz, /\%2, /\%2, A2, )\22) ID code for the BC with

Lloglog|My| > Ry if Ry >0,
Myl =1 if Ry =0,
%10g10g|Mz| >Rz if Rz > 0,
Mz =1 if Rz =0.

The ID capacity region Cig, of the BC with one-sided feedback from Receiver Y is the closure of the set of all

achievable rate-pairs.
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One-sided feedback from Terminal ) can be viewed as a special case of noisy feedback from Terminal Z.
The ID capacity of the DMC with noisy feedback is to-date unknown. Inner and outer bounds can be found
in [I4, Theorem 1]. We do not tackle the general problem here, but we adapt the coding scheme in Section B
to inner-bound the ID capacity region of the BC with one-sided feedback, and we show that the bound is tight
whenever the channel outputs are independent conditional on the channel input. In such a scenario feedback from
Terminal ) does not provide the encoder with information about the channel output at Terminal Z. We can adapt
the broadcast ID code of Section Bl to obtain the following inner bound:

Theorem 36. The ID capacity region Ci_g, of the BC W (y, z|x) with one-sided feedback from Terminal Y contains
the set Ri_p-in of all rate-pairs (Ry, Rz) € (RY)? that for some PMF P on X satisfy

Ry S ILI(PVVJ))]].maX]5 I(P,Wy)>07 (225&)
Rz < I(P,Wz). (225b)

The interior of Ri_fp-ib 1S achieved by codes with deterministic encoders.

Proof. A formal proof can be found in Appendix [Gl Here, we provide a rough sketch. To prove the theorem, we
extend the random code construction of Section 3] as follows: Fix an input distribution P € (X)) and any positive
ID rate-pair (Ry, Rz) satisfying

0<Ry< I‘I(PVVy)]lmaxl5 1(P,Wy)>0) (226a)
0< Rz <I(P,Wgz). (226b)

Let M3y be a size-exp(exp(nRy)) set of possible ID messages for Receiver ), and let Mz be a size-exp(exp(nRz))
set of possible ID messages for Receiver Z. Generate an ID code for the marginal channel Wz (z|x) as in Section [2]
and associate with every ID message-pair (my, mz) an n-tuple we call the (my, mz)-codeword as follows. If Bin mz
is not empty, then draw the codeword uniformly over Bin mz, otherwise let it be some arbitrary but fixed pool
element. To send ID Message-Pair (my, mz), the encoder transmits during the first n channel uses the (my,mz)-
codeword. Similarly as in Secion Bl we can show that if the ID message that is sent to Terminal Y is uniform over
its support My, the ID message that is sent to Terminal Z is mz, and Bin mz is not empty, then the transmitted
codeword is nearly uniformly distributed (in terms of Total-Variation distance) over Bin mz. Consequently, by the
analysis in Section [2 and because Rz < I(P,Wz), Receiver Z can identify its ID message reliably after the first n
channel uses.

As to Receiver ), we can show that if the ID message that is sent to Terminal ) is my and the ID message
that is sent to Terminal Z is uniform over its support Mz, then the transmitted codeword is nearly uniformly
distributed over the pool (in terms of Total-Variation distance). Since the pool contains e™f*? n-tuples, which
are drawn ~ P™ independently, the results in [I8] imply that for Rp > I(P,Wy) the distribution of the length-n
Terminal-) output-sequence Y is nearly the product distribution (PWy)™ (in terms of Total-Variation distance).
Therefore, if we choose Rp > I(P,Wy), then the common randomness Y that the encoder and Receiver ) share
after n transmissions is of rate H(PWy). Consequently, we can use the common-randomness argument of [8]
to show that an additional \/n channel uses suffice for Receiver ) to identify its ID message reliably, because
Ry < H (PWy)]lmaxl5 1(P,Wy)>0" To conclude, note that asymptotically v/n additional channel uses cannot decrease
the ID rates. O

As the following example shows, the inner bound of Theorem B8 need not be tight:
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Example 37. Consider a BC W (y, z|x) for which Z = f(Y). On such a channel feedback from Terminal Y is as
good as feedback from both terminals, and the ID capacity region Ci_g, with one-sided feedback from Terminal Y is
thus the ID capacity region Cp, with feedback from both terminals. To see that in general Risip S Cr, consider
for example a binary symmetric BC with identical outputs, whose receiving terminals both observe the output of the

same binary symmetric channel.

Denote the conditional PMF of the Terminal-Z output given the channel input and the Terminal-) output by

Wz(zkﬂ,y), ie.,
= W(y, z|x)
Wa(zlz, y) = o210
=) = Y )

Our next result is an outer bound on the ID capacity region of the BC with one-sided feedback from Terminal ):

(227)

Theorem 38. The ID capacity region Cig of the BC W(y, z|x) with one-sided feedback from Terminal Y is
contained in the set Ri-on of all rate-pairs (Ry, Rz) € (RY)? that for some PMF P on X satisfy

Ry < H(Pwy)]]‘maxp I(P,Wy)>0’
RZ < I(P X Wy, WZ)]]‘maxI:, I(P,WZ)>O’ (228&)

where Wz is defined in (ZX1).
Proof. See Appendix [l O

If the outputs of the BC are conditionally independent given its input, i.e., if W(y, z|z) = Wy (y|lx)Wz(z|z),
then the inner bound of Theorem B0l coincides with the outer bound of Theorem

Corollary 39. The ID capacity region Cig, of the BC W (y, z|z) = Wy (y|x)Wz(z|z) with one-sided feedback from
Terminal Y is the set of all rate-pairs (Ry, Rz) € (R{)? that for some PMF P on X satisfy

Ry < H(PWy)lnaxp 1(P,Wy)>05 (229a)
Rz < I(P,Ws). (229%)

Proof. The direct part follows from Theorem And the converse part follows from Theorem B8 because
W(y, zlx) = Wy(y|z)Wz(z|x) implies that Wz(z|z,y) = Wz(z|z), and hence it holds that for every PMF P
on X

I(P x Wy, Wz) = I(P,Wz). (230)

O

6 Summary

The ID capacity region of the two-receiver BC is the set of rate-pairs for which, for some distribution on the channel
input, each receiver’s ID rate does not exceed the mutual information between the channel input and the output
that it observes. The capacity region’s interior is achieved by codes with deterministic encoders. The results hold

under the average-error criterion, which requires that each receiver identify the message intended for it reliably
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in expectation over the uniform ID message intended for the other receiving terminal. Previously, identification
via the BC was studied under the maximum-error criterion, which requires that each receiver identify the message
intended for it reliably irrespective of the realization of the ID message intended for the other receiving terminal.
Both criteria—average- and maximum-error—consistently extend Ahlswede and Dueck’s identification-via-channels
problem to the broadcast setting.

The average-error criterion is suitable whenever the receivers’ ID messages are independent and uniform over
their supports. As we have seen, our coding scheme can be adapted to solve for the capacity region of a more
general scenario where the receivers’ ID messages are not independent but have a common part. We also discussed
extensions to the BC with more than two receivers and the two-receiver BC with one-sided feedback. In particular,
we obtained the ID capacity region of the three-receiver BC whenever no receiver is “much more capable” than the
other two and that of the two-receiver BC with one-sided feedback whenever the channel outputs are independent
conditional on the channel input.

The question whether for some BCs the average-error ID capacity region can be strictly larger than the maximum-
error ID capacity region remains open. We do know that the ID capacity regions differ when only deterministic
encoders are allowed: under the average-error criterion deterministic encoders can achieve every rate-pair in the

interior of the ID capacity region, but under the maximum-error criterion they cannot achieve any positive ID rates.

A A Proof of Lemma

We use the Union-of-Events bound to show that P[{V.m}mear ¢ Gu| converges to zero. We begin with the events
V| < (1= 6,)e™? and [Vyr| > (1 + 6,)e™". For every v € M the binary random variables {1,¢y, }vev are 11D,

and

E

3 ]lvev,/] =Y Ppev,) ="t (231)

veV veV

Consequently, by the multiplicative Chernoff bounds in Proposition [I]

B[Vl < (1 =80 e"] = Plz Liev, < (1-38,)e"” (22)
veV
< exp{—d2 enfimlos?} (233)
= eXp{—e"(R_“)_logQ}, (234)
and
P([Vaw] = (14 8,) 7| < exp{—en(Rmm—losdy, (235)

As to [V, m| > en(B—n/2)+1082 pote that for every v € V

lvevmmL/ = ]lUEVm lvevm/)

where 1,ey,, and I,cy , are independent because m # m’. Hence, the binary random variables {lvevm o }uev

are IID of mean

E

> lvevm,mf] = Pl € V0] Plv € V] = e"GR-17), (236)

veV veY
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Fix some ¢ satisfying

Rp—R—-p<&{<Rp—R-—pf2, (237)
and let
K = €M%, (238)
Observe that
P |vm m/| > en(f?f,u/2)+log2} (%) P '|vm m/| > en(?R*RP‘Ff)‘FlOg 2:| (239)
®) ¢ -
B[Vl = (14 )R] 210)
=P|> ey, >0+ fin)e”(QR_R”)] (241)
LveY
(¢) <
S eXp{—/ﬁn en(2R—Pup)—10g3} (242)
() R—p)—log3
< eXp{—e”( H)~log }, (243)

where (a) holds because [237) implies that R — Rp + & < —p/2; (b) holds by [238) and because (24) implies that
t < Rp — R, and hence it follows from (@37) that & > 0; (c) follows from the multiplicative Chernoff bound (7))
in Proposition [} and (d) holds by @238) and because [237) implies that —u < R — Rp + £. The Union-of-Events

bound, 234), [238), and ([243) imply that

P[{vm}meM ¢ g#] S |M|(exp{7€n(1~%—u)—log2} + |M| exp{ien(R—M)—log3}) (244)

) (n — 00), (245)

where (a) holds because |[M| = exp(exp(nR)) and by (24).

B A Proof of Proposition 18|

Let £ = {0,...,[e"/2]}, and partition the collection of PMFs {Qy }mem into |£||F(n)‘ subsets so that two PMFs
Q. and @, are in the same subset iff for every n-type P on X™ there exists an £ € L for which

QuTE), Que (T2 € [t 20+ 1672,

Pick a largest subset, say S, and note that S satisfies (I61)):

(n)

S| > M/l (246)
> |M|/exp{(1+ n) ¥ log(1 + e"/2)} (247)
> |M| exp{7elog(1+n)(1+|X\)+log§}7 (248)

where the last inequality holds because €™ > 2. Pick m* € S, and for each m € S define the PMF

Q0 (%) = Qu (TE QWP (x), PeT™ xe T, (249)
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Note that for every m € S
Qu(T8") = Qe (T3V), P eT™, (250)
and therefore
QL (X"e{xeX": I(Px,W)<R—¢€}) =Qun (X" €{xecX": I(Px,IW) <R—¢}). (251)
Consequently, (IG3) implies (IG4). For every m € S we obtain from m* € S that
Qu(TS) =267 < QL (TS) < Quu(TEV) +2¢7™, P eT™, (252)

This implies that for every subset D of )™

QW™ (D) — (QuW™)(D)| < d(Q,,W",QmW™) (253)
(a)
< d(@r, Q) (254)
1 . .

=3 2 2 1@ (T3) = Qu(TE) QG () (255)
Per(n) XET}(,")

S% >oo2e (256)
Pel(n)

S efn6+log(1+n)\2(|, (257)

where (a) follows from the Data-Processing inequality for the Total-Variation distance [I3, Lemma 1]. Hence,
{Q’,,; D }mes is a homogeneous (n, S, A}, \;) ID code for W (y|z), where S satisfies (IGI]) and A}, N\, are defined
in (I62).

C A Proof of Lemma

Let g(-) be the continuous function that maps every nonnegative real number u to

—V2ulogyv2u if u >0,
g(u) = , (258)
0 ifu=0,

and let the function p(-) map every nonnegative real number u to
p(u) = 6u + 2g(3u) + vV3ulog|Y|. (259)

There exists a positive constant dp, which depends only on |)|, satisfying 3dp < 1/64 and that g() is continuous
and strictly increasing on the interval [0, 3dp]. Because g(-) is continuous and strictly increasing on [0, 3do], p(-) is
continuous and strictly increasing on [0, do]. Fix 0 € (0,d¢] and € € (0,1). Let no be the smallest positive integer
satisfying that for all n > ng

e—3n6+log(1+n)|XHy| < e—?mé/Q7 (260&)

e—3n5/2+log2 < efn67 (260b)
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and
2exp{—€%e® 7183 4 nlog | Y| + log(1 + n)|X| Y|} + exp{—3nd/2 + 2log(1 + n)|X||V|} < 1. (261)

Fix a blocklength n > 79, an n-type P on X, a PMF Q on 7'15”) C X™, anonnegative real number R > I(P, W)+ p(d),
and L = [e"]. We next show that there exists an L-type Q' on T;") that satisfies (I63) for every subset D of Y".
The proof is essentially that of [3, Lemma 1]:

Canonical Decomposition into Equitype Channels: For every transition law V(y|z) from X to ) and

every n-tuple x € X" let TISZ)V (x) denote the set of n-tuples y € Y™ for which (x,y) has empirical type P x V, so
Tey () = {y € V" (x.y) € TE ).

Note that ’ va )’ is the same for all x € Tlg and denote it L™, so

VP

(n)
vip =1 Tpxv(®)], xeTp™.

Let Agf) denote the set of all the transition laws V(y|z) from X to ) satisfying LE,RP > 0 and V(ylz) = W(y|z)

whenever P(z) = 0, so
AP ={V e ¥(VX): LY}, > 0 and V(ylz) = W(yla), ¥ (z,y) € X x Y st. P(x) =0},
where ¥ (Y|X) denotes the set of all transition laws from X to ). Define for every V € Agf) the transition law

A iftxe T andy € TV, (%),

Wi (ylx) = ¢ Bir (262)
0 otherwise.
Following the terminology of [3] we call W‘(/7|1P(y|x) an equitype channel, because it connects inputs of type P

to outputs of type PV, and because all positive transition probabilities are the same. The equitype channels

W\(/TB” Ve Agf) are distinct, because each V € Agf) satisfies V(y|z) = W (y|x) whenever P(z) = 0.

Since W"(y|x) depends on the input sequence x € X" and the output sequence y € Y™ only via the type of x
and the conditional type of y given x, we can define
ip = WHTEN (R)x), x e THY
to obtain for every x € T1§") and every y € T;Z)V (x)

(n)

n Cvip
W (ylx) = — (263)
LV\P
= W (). (264)

Note that

S oep=1 (265)

(n)
VeAy
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Since for every pair (x,y) € ’T(") x Y™ there exists exactly one V € Agf) for which y € TISQV( ), we can write

Wh(yl) = > LX), (oy) € TEY < . (266)
veal

Following the terminology of [3] we call this the canonical decomposition into equitype channels of the transition
law W"(y|x) from T1§") to Y™. The canonical decomposition is useful, because it allows us to first focus attention

on each equitype channel separately, and to then take the weighted average (260]) of the resulting approximations.

Estimating the Probability of Inverse Images: For every V € Agf) the subset of n-tuples x € T;") that
are connected to a specific y € Y™ by the equitype channel W‘(,‘gg is denoted Hl(pnx) v(¥), so
pov(y)={xeTp V|P(y|x)> }-

Note that for every PMF Q on Tlg")

n QUHE), (v)
QW 1) () = QUlrpxy ) R ) (267)
LV|P
Lemma 40. [3, Lemma 2] For every V € Agl) and every 0’ > 0 define
(v |p) = {y eV QHY,(v)) > efn(I(P,V)Jr&’)}_
Then, for every n € N
(QW{(;TP) (Gl(;} (V|P)) >1— e~ +Hog(1+n)| X |Y] (268)
Channel Clipping: For every §' > 0 denote
APy ={v e Al DV||W|P) < '},
and define the transition law WI(;,?, from T1§") to Y™ by
W ylx) = Y W 269
P \Y Cvipvp yIx), (269)
VEA(")
where
o)
1 itV eAJ(P),
Eg;l')P ZV’&A(")(P) v/|p (270)
0 otherwise.
As the following lemma shows, WI(DT}), closely approximates the transition law W™ from T}gn) to Y™
Lemma 41. [3, Lemma 3] For every §' > 0, every n-tuple x € T;”), and every subset D of Y™
W(Dlx) > (1 _ o1 +log(1+n)|X| \yl)WI(D%), (D|x), (271a)
W™(Dlx) < W (Dlx) + e~ +los4mI XV, (271b)
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As we argue next, Lemma [4T] reduces the proof to verifying that, whenever n > ng, there exists an L-type Q' on
Tlgn) that satisfies for 6’ = 30 and for every subset D of Y™

QWS (D) < (1 +e)(QWS)) (D) +e /2, (272a)
QWS (D) = (1 — ) (QWSY) (D) — e /2, (272b)
Indeed, 271) and 272]) imply that
(Q/Wn)(p) < (Q/WI(:J),)(D) + e—n6/+log(1+n)|X\ [V (273)
< (L+€)(QWE) (D) + e /2 4 gmnd"Hlos(Lm)|X] 1Y) (274)
1 + € n —nd’ /2 —nd’+log(14+n)|X||Y
< T (@ D) T e B, (275)
and
(QIWn)(D) > (1 _ e—n6'+log(1+n)\2\.’| |y\) (QIWI(DT;S)/) (D) (276)
>(1—¢) (1 _ o' +log(1+n)|X| \y|) (QWI(DHJ)/)(D) o (1 _ g~ o' +Hlog(1+n)|X| D/|)e—n6//2 (277)
> (1—e) (1 _ o0 +log(1+n)|X| M)(QW")(D)

7(1 - 6)(1 . efn6'+log(1+n)\2(| |y\)efn6'+log(1+n)\2(| |y (1 . efn6'+log(1+n)\2(| |y\)efn6'/2. (278)
For ¢’ = 36 we obtain from (260) (which holds because n > 1) that
e8> g’ Hos(1+n) | X||V] | efn6l/27 (279)

and hence that

e™0 > 8 Hog(1+n) X1V (280a)

efnzi > (1 _ 6)(1 _ efn6'+log(1+n)\2(| |y\)efn6'+log(1+n)\2(| |V + (1 _ efn6'+log(1+n)\2(| |y\)efn6'/2. (280b)

Consequently, (I63) follows from [275) and 278). In the following, we let ¢’ = 36 and conclude the proof by showing
that there exists an L-type Q' on T1§") that satisfies (272)) for every subset D of Y.

Required Fineness of Approximations for the Clipped Channel: For every V € Ag@(P) we can upper-
bound I(P,V) in terms of I(P, W):

Lemma 42. [3, Lemma 4] If \/D(V||W|P) < 1/8, then
[I(P,V) = I(P,W)| < 29(D(V||W|P)) + /D(V|[W|P)log Y], (281)

where g(-) is defined in ([253).
For every V' € A((;,l)(P) the lemma, the fact that &' = 34 satisfies /&' < 1/8, and the fact that g(-) is strictly

increasing on [0, §’] imply that
I(P,V)+28 < I(P,W)+ p(d). (282)
Hence, if y € G((;,l)(V|P) for some V € A((;,l) (P), then the definitions of G((;,l)(V|P) and HI(an)V(y) imply that

Q(HJ(;QV(Y)) > eI (PW)+p(8)—d") (283)
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The L-type Approximation Q’: We next show by random construction that the desired L-type Q" on T1§")
exists. Draw L n-tupes ~ @ independently and place them in a pool P. Note that P C Tlgn). Index the n-tuples
in the pool by the elements of a size-L set V, e.g., {1,..., L}, and denote by P(v) the n-tuple in P that is indexed
by v € V. Define the L-type Q' on T}gn) by

1
== Z le—p(), XEAX™ (284)
veY

Lemma 43. [3, essentially Lemma 5] With positive probability the L-type Q' on TIS satisfies for every V € A(n)( P)

Q'(HYy(v)) < 1+ 0QHE)(y), yeG(VIP), (2850)
Q(HY, () > (1 - 0Q(HS),(¥), yeG(V|P), (285b)
QW) (V" \ GO (VIP)) < em'/2, (285¢)

Proof. We use the Union-of-Events bound to show that with positive probability Q' satisfies ([285]) for every V €
A((;f) (P). We begin with (285a) and (285h). For every V € AE;@(P) and y € GE;7)(V|P)

P[Q’(Hé"2v<y>) > (1+ 9Q(HE), (v))] (286)
Zlmefz;:gv > (1+9Q(Hpy (v ))1 (287)

UEV
< exp{-Q(HE), (1) 1/3) (285)
(2 eXp{ 62 n6'710g3}, (289)

where (a) is due to ([284); (b) follows from the multiplicative Chernoff bound (Gh) in Proposition [} and (c¢) holds
by 283) and because L > ¢! (PW)+r(9) By the Union-of-Events bound and because ’G§7)(V|P)‘ < |y

P[3y € GLUVIP): Q(HEL, () = (1+ QHE) ()] (290)
< eXp{—eQe”‘sLlog3 + nlog|V|}. (291)

Similarly, the multiplicative Chernoff bound (Gal) in Proposition [I] and the Union-of-Events bound imply that for
every V € A(")( P)

P[3y € GP(VIP): @ (HEL, () < (1= 9Q(HE, (v)] (292)
< exp{—626"5/_1°g2 + nlog|Y|}. (293)

As to ([285d), for every V € A((;,Z)( P)
E[(Q W) 0\ 6y <V|P>>} (254)

XEX™ yGy"\G((;,L)(V\P) UGV

=> X 1 LS QW (vix) (296)

xXeX" yEy"\G((;,L)(V\P) veV

51



= (QWyIL) (" \ G5 (V|P)) (207)
< efn(; +log(1+n)|X| |y\7 (298)

where the last inequality is due to Lemma 0l Hence, Markov’s inequality implies that

P(QWY}) (7" \ GEA(VIP)) = e /2] < emnd/2tositmIX Y], (299)

Because ‘A((;?)(P)‘ < (1 +n)!*Y and by the Union-of-Events bound, [Z91), @93), and ([Z99), the probability that
there exists a V € A((;,L)(P) for which Q' does not satisfy [285]) is upper-bounded by

exp{feQe"‘;/*log3 + nlog |Y| +log(1 + n)| X[ Y|} + exp{feQe"‘y*log2 + nlog || +log(1 + n)|X] |V}
+exp{—nd'/2+ 2log(1 + n)|X||V|} < 1, (300)

where the inequality holds because ' = 34, by (2&1]), and because n > 1. O

Fix a realization Q' of the random L-type Q' on T that satisfies (28] for all V € A(")( P). (By Lemma 43

such a realization must exist.)

Approximation of QWI(D"(S)/ by Q' Wg?,: It remains to show that the L-type Q' on T1§") satisfies (272). For
every V € A(7)(P) andy € Gg7)(V|P)

@ Q' (HS)(y))

QW) () = o) (301)
Lyp
(n)
Ly p
1+ 9@ ). (303)

where (a) and (c¢) follow from [267); and where (b) holds because Q' satisfies ([285). For every V € Agl)(P) and
subset D of Y™ we thus have

(QWyp) (D > & (Q W) (DN GE(VIP)) + (QWYL) (D0 (0 \ G (VIP))) (304)
< (@QWE)(@NGEWVIP) + (@ W) (7 \ G (VIP)) (305)

(2 (1+e) (QW‘(/’TP) (DNGS(V|P)) + e/ (306)

Lo (QWYp) (D) + e/, (307)

where (a) follows from the law of total probability; (b) and (d) are due to the monotonicity of probability; and (c)
holds by [B03) and because Q' satisfies ([288]). Similarly,

(1—e)(QW}),)(D) <@ Wip) (D) + (1= &) (QW{) (V" \ G5 (V| P)) (308)
(b) (Q W‘(,TZD)( )+ (1 — 6)67n5’+10g(1+n)|XHy| (309)
(Q W) (D) + e m'/2, (310)
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where (a) follows from the law of total probability, the monotonicity of probability, and the fact that Q" satisfies
[288); (b) is due to Lemma [0 and (c¢) holds because ¢’ = 3 and by ([260al) (which holds because n > ng). On
account of (269), we can now conclude the proof of ([272) by computing the weighted average of ([B07) and (BI0)

wrt. Ve A((;,l) (P) and with the weights being {EE/n\)P}veA(")(P)‘
5/

D A Proof of Theorem

We prove the following strong converse:
Claim 44. For every rate-triple (R1, Ra, R3), every positive constants
k k
AR AP ke {1,2,3)
satisfying

3
Z(AYC) + A;@) <1, (311)

k=1
and every € > 0 there exists some 19 € N so that, for every blocklength n > ng, every size-exp(exp(nRi)) set
My of possible ID messages for Receiver 1, every size-exp(exp(nRz)) set Ma of possible ID messages for Re-
ceiver 2, and every size-exp(exp(nRs)) set M3 of possible ID messages for Receiver 3, a necessary condition for an
(n, {Mk,)\gk),Ag’“)}ke{l,m}) ID code for the BC W (y1,y2,ys|x) to exist is that for some PMF P on X

Ry, < I(P,Wy) + ¢, Vk € {1,2,3}. (312)

Proof. The proof is similar to that of Claim 5l Fix £, k(®) k®) > 0 that satisfy

AR AP < k™) v e {1,2,3), (313a)
3
> s <1 (313b)
k=1

(This is possible because of (311]).) By Lemma[2T]there must exist some 7 € N so that, for every blocklength n > ny,
every size-exp(exp(nRy)) set M1 of possible ID messages for Receiver 1, every size-exp(exp(nRz)) set My of possible
ID messages for Receiver 2, and every size-exp(exp(nR3)) set M3 of possible ID messages for Receiver 3, the following

is necessary for a collection of tuples

{le,mQ,mg ’ Dml ’ sz ’ Dm3 }(m1,’m2,m3)€M1 X Mz X M3

to be an (n, {M, )\gk), )\gk)}ke{1’273}) ID code for the BC W (y1, y2, y3|x): the mixture PMFs on A"
1

Qm, = GG mzm Qumymaims, M1 € My, (314a)
Qm, = m mlz;ns Qumymimy, M2 € Mo, (314b)
Qum, = m mlz;w Qumympimy, M3 € Ms, (314c¢)

= w2, O o

mi,ma,M3
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satisfy

Q(X™e{x e X" I(Px,Wi) > Rj, — €})
1

- e (X7 X" [(Pe,Wy,) > Ry — 315

T X QX e R e AT IR > R ) @15)
my €My

>1—r® — eXp{e”(Rk_ﬁ)}/exp{e"R’“}, ke{1,2,3}. (316)

The Union-of-Events bound and (BI6) imply that

QX" e{xeX™: I(P,Wi) > Rr —¢,Vk € {1,2,3}})
3

>1- Z(n(k) + exp{e"(R’F‘/Q)}/exp{e"Rk}). (317)
k=1

Now let 19 be the smallest integer n > 7 for which the RHS of [BIT) is positive (such an n must exist, because
€ > 0 and Zz:1 x*) < 1). Then, for every blocklength n > 79 a necessary condition for [BI7) to hold is that for
some PMF P on X (3I2)) holds, and hence Claim (4] follows. O

E A Proof of Theorem

The proof is similar to that in Section Bl We prove Theorem 27] by fixing any input distribution P € £(X) and
any positive ID rate-triple (Ry, Ra, R3) satisfying

0< Ry < min{I(P, W), Y. I(P, Wl)}, Vke{1,2,3} (318a)
1€{1,2,3}\{k}
and showing that the rate-triple (Ry, Re, R3) is achievable. We assume that
I(P,Wy), ke{1,2,3}

are all positive; when they are not, the result follows from Theorem [[0l For each k € {1,2,3} let M}, be a size-
exp(exp(nRy)) set of possible ID messages for Terminal k. We next describe our random code construction and
show that, for every positive

AR AR ke {1,2,3)

and every sufficiently-large blocklength n, it produces with high probability an (n, {My, )\gk) , )\gk) Freg 11273}) ID code
for the BC W (y1, y2, ys|z).
Code Generation: Fix expected bin rates
Ry, ke{1,2,3}

and a pool rate Rp satisfying

Rn.< R, < min{I(P, W), Y. I(P, Wl)}, (319a)
1€{1,2,3}\{k}
Ri. <  Rp, (319b)
2Rp < > Ry (319¢)
ke{1,2,3}
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This is possible by (BI8). Draw e"*? n-tuples ~ P" independently and place them in a pool P. Index the n-tuples
in the pool by the elements of a size-e"%% set V, e.g., {1,...,e"#7} and denote by P(v) the n-tuple in P that is
indexed by v € V. For each receiving terminal k € {1, 2,3} associate with each ID message mj € My, an index-set
Vm, and a bin B,,, as follows. Select each element of V for inclusion in V,,, independently with probability

e’”(RP’Rk), and let Bin B,,, be the multiset that contains all the n-tuples in the pool that are indexed by V,,,,

B, ={P(),veE Vp,}

(Bin By, is thus of expected size e”m.) Associate with each ID message-triple (mq,ma, m3) € My X My X M3 an

index Vi, my,ms as follows. If Vi, NV, NV, is not empty, then draw Vi, m, m, uniformly over V,,, NV, NV,
Otherwise draw Vi, m,,m, uniformly over V. Reveal the pool P, the index-sets

{v'mk‘}mke/\/lk? ke {17253}7

the corresponding bins
{Biwtppennr ke{1,2,3),

and the indices {le,m%ms to all parties. The encoding and decoding are determined by

}(m11m27m3)€M1XM2 X M3
¢= (,P7 {vml }’m1€/\/l1’ {vm2 }’WQEMQ’ {VmS }’mse/\/ls’ {leam27m3}(m1,m2,m3)€M1 XM XMs) ' (320)

Encoding: To send ID Message-Triple (my,ma, m3) € M; X Ma X Maj, the encoder transmits the sequence
P(Viny ma,ms)- ID Message-Triple (mq, ma,mg) is thus associated with the {0, 1}-valued PMF

Qi mams (X) = ]lx:P(le,mZ,mg)v x € X" (321)
Note that once the code ([B20) has been constructed, the encoder is deterministic: it maps ID Message-Triple (my, ma, ms)

to the (mq,mz, mg)-codeword P (Vi ms.ms)-

Decoding: In this section the function §(-) maps every nonnegative real number u to uH (P x W). The
decoders choose € > 0 sufficiently small so that

20(e) < I(P,Wy) — Ry, k€ {1,2,3}.

For each k € {1,2,3} the mj-focused party at Terminal k guesses that mj was sent iff for some index v € V,,/
the n-tuple P(v) in Bin B, is jointly e-typical with the Terminal-k output-sequence Y}y, i.e., iff (Pv), Y1) €
7 (P x Wy) for some v € V. The set D, of Terminal-k output-sequences yy € (Vx)" that result in the guess

“mj, was sent” is thus

D, = (J T (PxWi|P(v)), ke{1,23}. (322)

uevmgc

Analysis of the Probabilities of Missed and Wrong Identification: We first note that C of ([B20)
(together with the fixed blocklength n and the chosen €) fully specifies the encoding and guessing rules. That is,

the randomly constructed ID code

{Qmimz.mys Pimss Py Do }(ml,mQ,ms)eMl X Mg x Ms (323)
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is fully specified by C. Let P be the distribution of C, and let E denote expectation w.r.t. P. Subscripts indicate
conditioning on the event that some of the chance variables assume the values indicated by the subscripts, e.g.,
Py,,, denotes the distribution conditional on Vy,, = Vi, and Ey,, denotes the expectation w.r.t. Py, .

The maximum probabilities of missed and wrong identification of the randomly constructed ID code are the
random variables

(k) 1 3 ny (v
Pmissed—ID = max (leymmmsw )(Yk,l ¢ Dmk)v (324&)
my €My |MJ| |M@| () EM, X Mo

P = max max ————— E Qi ma,ms W Y, € D, ), 324b
wrong-ID mi €My mi, . |M]| |M¢| ) E)EMjXME( 1,M2,m3 )( k,1 k) ( )

where k € {1,2,3} and ¢, j is the pair of elements of {1,2,3}\ {k} that satisfies ¢ < j. They are fully specified by
C, because they are fully specified by the randomly constructed ID code (823]), which is in turn fully specified by
C. To prove that for every choice of

AR A S0, ke {1,2,3)

and n sufficiently large the collection of tuples ([B23) is with high probability an (n, {My, )\gk), )\gk)}ke{1’273}) D
code for the BC W (y1, y2, ys|z), we prove the following stronger result:

Claim 45. The probabilities

P P

missed-ID’ * wrong-ID>

ke{1,23}

of the randomly constructed ID code [B23]) converge in probability to zero exponentially in the blocklength n, i.e.,

: (k) k —nT
37> 0s.t. nh_{go]P) |:k61?1?gf3}{Pmissed—ID’ Pvgzrz)ng—ID} >e :| =0. (325)
Proof. We will prove that
o 1 1 —NnT
37> 0s.t. nl;rr;QP{max{aniised_ID, P\E/rzmg_m} >e } =0. (326)

By swapping 1 and 2 or 3 throughout the proof it will then follow that [326) also holds when we replace 1 with
2 or 3, respectively, and (323 will then follow using the Union-of-Events bound. To prove ([328) we consider for
each my; € M; two distributions on the set V, which indexes the pool P. We fix some v* € V and define for every
my1 € My the PMFs on V

1
P () = ————— LoV, momas UV EV, (327a)
v |M2| |M3| (mz,mg)ez./\/lzx/\/ls pr

1 .
W—Wu| ZU/EVWLI ]]-’U:U/ lf vml 7& ®7

1,—p* otherwise,

P (v) = vev. (327h)

The latter PMF is reminiscent of the distribution we encountered in (7)) and (I8) in the single-user case. The
former is related to the three-receiver BC setting when we view the pair (M, M3) as uniform over Mg x Ms. Like
the proof of Claim [[4] to establish (28] it suffices to show that the two PMFs are similar in the sense that

n—00 m1EM1

37> 0st. lim P[ max d(P‘(,ml),P‘(,ml)) > e"T] =0. (328)
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Establishing (328) requires more work than establishing ([@8) in the proof of Claim [[4 The reason for this is
that—unlike the index-sets { V. }mze/\/lz of Section BI}—the intersections { Vi, N Vi, }(mz,mg)EMQXMs
independent. To overcome this difficulty, we shall first view only M3 as uniform over Mg while fixing My = m for

are not

some my € Ms. Later, we shall view also M5 as uniform over M.
We define for every pair (my, mg) € M; x My the PMFs on V

P(m1 mz) Z ]111 Vs mgm v E V’ (329&)
|M3| mzEMs .
~ e ’ ]111:11’ if vm1 N vmg (Z)a
B (5) = { TPl 2w €V v P ev. (329b)
1,—p+ otherwise,

The latter PMF is reminiscent of the distribution in (327h). The former is related to the three-receiver BC setting
when we view M3 as uniform over Ms, and for every m; € M, it relates to the distribution in ([B27al) through

1
P (v) = ST P (w), weV. (330)
|M2| mo€Mo

For every m; € My define the PMF on V

1 ~
pim plmima) . 331
(v) = |M2|meZM % (v), veV (331)

We can now upper-bound d(P‘(/ml), [:)‘(/ml)) by

APy, )
(a)

< d(P‘(/ml),P‘(/ml)) + d(Péml),Péml)) (332)

® 1 . . i

< S d(prd B ) v a( P, PEMY), (333)
|M2| moEMo

where (a) follows from the Triangle inequality; and (b) holds because

APy, )

©) 1 m1 S (m1
93P @) - P w) (334)
veY
1 N
< Z‘ oo BT ) - BT ) (335)
maEMo
e) 1 mi,ma H(m1,m2
22 R [P () — P () (336)
| 2| maEMa
) 1 (m1,m2) Hlmi,ma2)
D= a( P plmima)) 337
|./\/l2| Z ( 1% 1% ) ( )
moEMo

where (¢) and (f) hold by definition of the Total-Variation distance; (d) holds by [B30) and ([B31)); and (e) follows
from the Triangle inequality. For every 71, 72, and 7 < min{ry, 72} we have for all sufficiently-large n,

eI e < e (338)
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This, combined with the Union-of-Events bound and (B33), implies that to establish [B28) it suffices to show the

following two:

. 1 (m1,m2) PHlmi,ma) —nr| _

37 >0s.t. nlgI;OP{mrlne%l M| . gEM d(Pv Py ) >e =0, (339a)
i H(m1) pH(ma) > e T | =

37 >0 s.t. nlgr;@l?{mrpe%al d(PV P ) >e } 0. (339b)

We next establish ([339), beginning with ([B39al). For every fixed ID message-pair (m1,mz) € My X My the pair
(P‘(/ml’m2), P‘Sml’mZ)) of (329) has the same law as the pair (P‘(,my), 13‘(,7“3’)) of @) in Section B.J] with expected
bin rates Ry =R+ Ry — Rp and Rz = Rg, pool rate Rp, rate Rz = Rg, index-set V, and where my € My.
(To see this, note that the index-sets V,,, N V;, and V,,,, are constructed by selecting each element of V for
inclusion in Vi, N Vi, or Vi, respectively, independently with probability e n2Rp—Ri-R2) — o—n(Rp—Ry)
(= e’”(RP’Rl)e*"(RP*m)), and that for every ms € Mz and mz € Mz the indices Vin, mom, and Vi, ;. are
of the same law.) To establish ([B39a)), we can thus adopt some of the arguments leading to (O8) in the proof of
Claim [I4

Let d,, be positive and converge to zero as n tends to infinity, and let us henceforth assume that n is large enough

so that the following two inequalities hold:
(1 =, )en(Frtfa=fir) >, (340a)
on < 1/2. (340b)

(This is possible, because §,, converges to zero as n tends to infinity and, by (B19), Ri+ Ry — Rp > 0.) For every
(m1,mg) € My x My we upper-bound d(P‘(,ml’mZ), P‘(/WI’WZ)) differently depending on whether or not

Vi, N Viny| > (1 = 8,,)en(FrtRe=Rp) (341)

If (340)) does not hold, then we upper-bound it by one (which is an upper bound on the Total-Variation distance
between any two probability measures) to obtain

1 (m1,ma)  p(mi,ms)
max —— d(P 1,T2 ,P 1, 2)
m1EM;y |M2| mgg\/lz v v

: o
< AV AV | < (1 =6, n(Ri+R2—Rp)
< max Tl {me € Moz Vi, 0V < (1= e }

+ max d( pomme), péml,m)) L

342
(ml,mz)EMlxMQ ( )

[Ving Wiy |> (16, )en (R1tR2—Rp) -

This, combined with the Union-of-Events bound and [B38) (which holds for every 71, 72, and 7 < min{7, 72}, and
for all sufficiently-large n) implies that to establish ([B39al) it suffices to show the following two:

d7 > 0s.t. lim IP’[ max

1 ~ ~
N Vi, NV | < (1= )t iemfrl b > o7 = 0, (343
n— oo mipEMy |M2| HmQ €M |v ' v 2| n ( )e }‘ = ’ ( a)

d7>0s.t. lim P|:( max d(P‘(/m1,m2),p‘(/m1,m2))]l

n—00 my,ma)EMiXMs

Vs Wy | > (1=6, ) e (Rt o= Rp) 2 e_m} =0.(343b)

We next establish ([343), beginning with (3430). As in ([I39), fix some « satisfying

O0< k< min{Rg, R1 + RQ + Rg — QRP}, (344)
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and let
€n = dexp{—emrlos2}, (345)
By (340L)
)2 > (1= 6,) Vexp{—(1 — §,)e"(FatRetfs=2Rp) _p(Ry 4 Ry — Rp)}. (346)
For a fixed pair (m1, ma) € M; x My fix any realization Vy,, N Vy,, of the intersection V,,, N V,,, satisfying that
Vg N V| > (1 = 8,,)en(BatRa=Rr) (347)
The line of arguments leading to (IZ1]) in the proof of Claim [[4] implies that
Py, v, [d(Pl(/ml’mZ)apx(/mhm)) > |V|€n/2]
<2V exp{—|M3|§721/2}, Vi, N V| > (1 — 6n)e”(R1+R2_R7’). (348)
By (B19d), (344)), and ([B45]) there must exist a positive constant 7 > 0 and some 79 € N for which
VI€n/2<e™, n>np. (349)

For every 7 > 0 and 7y € N satisfying (349) and for all n exceeding 7

F (ml,mameaﬁlmzd(Pémlm)’Pémhm))]llvmmvm2\><176n>e"<é1+érﬂv> e
(%) |M1| |M2| \vmlmvmz|>(1I?i)§e"<é1+ﬁ2*%) Pvmlmvm [d(P‘(/ml’W), P‘(/mlm)) = e—’”} (350)
(2 MM Ivmlmvm\>(1Ii1§f§en<f%1+1'%27R7>>IEDV"”W"L2 [d(P‘(/ml’m),P‘(/ml’mZ)) S |V|§n/2] (851)
< 2 V] |My| | Mo exp{—[Ms| exp{—e™ + 3log2}}

D0 (n — c0), (352)
where (a) follows from the Union-of-Events bound; (b) holds by ([B49), because n exceeds no; (c¢) holds by ([B48) and
(345); and (d) holds by ([B44)), because |V| = "7 and because |M},| = exp(exp(nRy)), k € {1,2,3}.

Having established (343h) for every &, that converges to zero as n tends to infinity, we return to ([B343) and
conclude the proof of ([339a)) by establishing (343a) for some d,, that converges to zero as n tends to infinity. To
that end, fix some p satisfying

0<p< R —Ry, (353)

and let
ay, = e_n”/2_ (354)

Introduce the set /Hf}) comprising the realizations {V, },ea, of the index-sets {V, }, e, satisfying that

V| > (1— an)e™, Vv e M;. (355)
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We upper-bound
ng € Ms: |vm1 N vm2| < (1 _ 5n)€n(R1+R2*RP)}‘

differently depending on whether or not {V,} is in H;(Ll), where {V,} is short for {V,}oen,- T {V.,} ¢ /Hf}), then
we upper-bound it by |Ma] to obtain for every 7 > 0

IP’[ max WlM{mg EMo: [V, N V| < (11— 5n)e"(R1+R2_RP)H > e"”}
2

mi1EM1
<P[WreHP]+ > P[{v.}={W}]
W, renty
x Py, [m?lgzl @\{mg € Ma: Vi, NV, | < (1= 8, FatRa=Rr)Y | > e—’”} (356)

We consider the two terms on the RHS of (B56) separately, beginning with P[{V,} ¢ 7—[,(})]. By the line of
arguments leading to (I2Z2) in the proof of Claim [I4]

P{V,} ¢ HD] < |My|exp{—en(Fa-mlog2} (357)

@0 (n = o), (358)

Z

where (a) holds because |M;| = exp(exp(nR)) and by (B53).
Having established (B58]), we return to ([B56]) and conclude the proof of ([43a) by showing that

d7 >0 s.t.

1 ~ -~
li P — Vs N Vi, | < (1 = 8, )eFtia=Bp)Y 1 > o=n7 | — g (359
s, Pou | e gyl {ma € Mt Mo, Vol < (1= 0)e iz e (359

To prove ([B59), let us henceforth assume that n is large enough so that the following two inequalities hold:

(1 — ap)e™™ > 1, (360a)
an < 1/2, (360D)

where a,, is defined in (B54). (This is possible, because o, converges to zero as n tends to infinity and R; > 0.)

Fix any realization {V,} in /Hfbl). Rather than directly upper-bounding the maximum over m; € M;j of
1 (B4 By
Ty (2 € Mai Vi, N Wis] < (1= y)en e finny|

under Py, y, we first consider

_1 ~ ~
g] {2 € Mo Vo, 0V, < (1~ §p)en (Rt Re=Rp) Y|

for a fixed my € M;. By (B55) (which holds because {V,} € Hf})) and (B60al), V,,, is nonempty. For every fixed
my € My we therefore have that under Pyy, 3 the [V, | binary random variables {L;eva }uev are IID and of
mean

Eq,) [Loev,, | = e "(RP—F2), (361)
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Fix some A satisfying

0 <A< Ri+Rs— Rp, (362)
let
B, = e "2, (363)
and let
5n =, + ﬂn - anﬂnv (364)

where ay, is defined in ([B54]). Note that ¢, satisfies
1—=0p = (1—an)(1 - Bn). (365)

Because «,, and f3,, are positive, smaller than one, and converge to zero as n tends to infinity, also d,, is positive,
smaller than one, and converges to zero as n tends to infinity. For every mo € Ms the multiplicative Chernoff
bound (6al) implies that

Ew.y []llvmlnvmz|§(1—6n)e"<él+’§2*3?>]

=Py [V, 0 V] < (1= g )en (it o= ite)] (366)

(a) i

< IED{v,,}[ Z lvevM < (1 - ﬁn)|Vm1|€_n(Rp_R2)] (367)
VEVmq

(b) _

< exp{—B2(1 — oy, et fzmfip)—los2} oy 1 e (L) (368)

where (a) holds by ([B55) (which holds because {V,} € H,(})) and (B6H); and (b) holds by (B6I), (6a), and ([B55). By
B62), B63), and because a,, converges to zero as n tends to infinity, there must exist a positive constant 7 > 0 and
some 7 € N for which

exp{—B2(1 — an)e"(RlJrRZ_RP)_IOgQ} <e /2, n>n. (369)

Since the exp(exp(nRz)) binary random variables

n -
{ Vi Vg [S(A=dp)erFrtfia=fe) f o,

are IID, Hoeffding’s inequality (Proposition [2]) implies that for every 7 > 0 and 79 € N satisfying ([869) and for all
n exceeding ng

1 ~ ~
Py, [w!{m € Mo [V, 1V, | < (1= gy )enRrtfa=lim)y | > ]
1 —NnT
= IEI){VV} TAA T Z ]l‘ym NV | <(1=8,)en(R1+R2—Rp) >e (370)
|M2| moEMo ! :
<exp{—|Mole™"7/2}, (W} eH, (371)

where in the last inequality we used (B68) and (B69).
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Having obtained BTI)) for every fixed m; € M, we are now ready to tackle the maximum over m; € Mj and
prove ([B43al): For every 7 > 0 and 7y € N satisfying (B69) and for all n exceeding 79

1 L
P TAAT EMs: [V NV | < (1 = 6,)e"FatEe—Rp)1| > o—n7
{Vﬁlgiy D | €80 TMy| [{m2 2t [V, o1 = ( Je H>e
(a)
< |My|exp{—|Mz|e " /2} (372)
Y0 (n = 00), (373)

where (a) follows from the Union-of-Events bound and B71]); and (b) holds because |[My| = exp(exp(nRy)), k €
{1,2}. This concludes the proof of ([B43) and hence that of (B39al).

Having established (339al), we return to (339) and conclude the proof of Claim @5 by establishing (339h]). To that
end, we argue similarly as when establishing ([@8)) in the proof of Claim [[4 Recall that ’Hf}) is the set comprising
the realizations {V,} of the index-sets {V,} satisfying ([B53]), where p is defined in B53) and «,, in ([B54). We
upper-bound d(l—:"(,ml), 15‘(/m1)) differently depending on whether or not {V,} is in /Hfbl). If{V.,} ¢ /HE}), then we
upper-bound it by one (which is an upper bound on the Total-Variation distance between any two probability

measures) to obtain for every 7 > 0

e sy, (B P) =]
<SPV ALY Y PV = P | e a(BOVRE) 2] )
WV rend

This and (B358) imply that to establish (339L) it suffices to show that

. A(m1) ~(m1))> —-nT| _
3r>0st lm omax Py {mrlnea/\)flld(Pv P > e } 0. (375)

To prove ([B73), let us henceforth assume that n is large enough so that (B60) holds. Fix any realization {V,} in
’HE}). Rather than directly upper-bounding the maximum over m; € M; of d(ls‘(/ml),ls‘(/ml)), we first consider

d(l—:"(/ml), I:"(/ml)) for a fixed m; € My. By B55) (which holds because {V,} € H") and @6Ua), V,n, is nonempty.
We therefore have that under Py,

~ 1

P () = Loy, vEV, 376
1% (U) |Vm1| ,U,GZV v ( a‘)

PO () = L > _Loevi v, Lo |, veV (376b)
v Ml | 25, \ Vi AV [VT T Ym0 e o |

where for every fixed v € V the exp(exp(nRz)) [0, 1]-valued random variables

{ Loev,, Vo,

€ mlVme g P -
Vo AV V1T Vet }

maEMoa
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are IID and have mean

iy (1 (1= et =Ry Ve i € Vo, \ {07,
S (14 (V| = 1)(1 = emmEe= APl iy e v, 0 {0, 1)
(1 — e~n(Rp=F2))Vmil if v € {v*} \ Vins,
0 ifvéVp, U{v*},
where we used that
Py} Vs (1 Vi, = 0] = (1 — e f)) P (378)
and that for every my € Ms the [0, 1]-valued random variables
]]-UGleﬂvm2
Viny N Vm,| V1 -
are IID and sum to
luevm NVm
D T AV VT~ s a79)

'Uev’ﬂLl

With 1) at hand, we can establish ([B73]) essentially along the line of arguments leading to (I23)) in the proof of
Claim [T4 O

F A Proof of Theorem [31]

The proof consists of a direct and a converse part.

F.1 The Direct Part of Theorem [31]

The proof of the direct part is similar to that in Section [l We prove the direct part of Theorem [3] by fixing any
input distribution P € &(X) and any positive ID rate-triple (R, Ry, Rz) satisfying

0 < R, Ry < I(P,Wy), (380a)
0<R, Rz < I(P,Wz) (380b)

and showing that the rate-triple (R, Ry, Rz) is achievable. The restriction to positive rates Ry and Rz is that of
Theorem BIl Moreover, we assume that R is positive; when it is not, the result follows from Theorem [0 Let M
be a size-exp(exp(nR)) set of possible common ID messages, let My be a size-exp(exp(nRy)) set of possible ID
messages for Terminal ), and let Mz be a size-exp(exp(nRz)) set of possible ID messages for Terminal Z. We
next describe our random code construction and show that, for every positive )\%} , )\%} , A, and A5 and for every
sufficiently-large blocklength n, it produces with high probability an (n, M, My, Mz, X'lv , X%} AN ) ID code for
the BC W (y, z|x).
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Code Generation: Fix an expected bin rate Ry for Terminal ), an expected bin rate Rz for Terminal Z,

and a pool rate Rp satisfying

R, Ry < Ry <I(P,Wy), (381a)
R,Rz< Rz <I(P,Wz), (381b)
Ry < Rp, (381c)

Rz < Rp, (381d)

Rp < Ry + Rs. (381e)

This is possible by ([B80). Draw e"*? n-tuples ~ P" independently and place them in a pool P. Index the n-tuples
in the pool by the elements of a size-e"%% set V, e.g., {1,...,e"#”} and denote by P(v) the n-tuple in P that is
indexed by v € V. For each receiving terminal ¥ € {)), Z} associate with each ID message-pair (m, my) € M x My
an index-set Vy, m, and a bin By, ,, as follows. Select each element of V for inclusion in V,, m, independently
with probability e’”(RP’R‘I’), and let Bin B,, ,,, be the multiset that contains all the n-tuples in the pool that are
indexed by Vi mu,

Bm,mq, = {P(’U), (S vm,m\p}

(Bin B, my is thus of expected size enfe .) Associate with each ID message-triple (m, my,mz) € Mx My x Mz an
index Vinmy,mz as follows. If Vi, my, NV is not empty, then draw Vi, iy, m uniformly over Vo, iy, N Vi o -

Otherwise draw Vi, .m,,m. uniformly over V. Reveal the pool P, the index-sets and

m’my}(m,my)eMxMy and {Bm’mZ}(m,mz)EMXMZ’
to all parties. The encoding and decoding are determined by

{vm,my }(m,my)EM XMy

the corresponding bins {B and the

{Vm,mz }(m,mz)EMXMz”
indices {V;,,

my,mz J(m,my,mz)EMxXMyxMz
C = (P; {vWﬁmy}(m,my)EMxMy7 {vm,mz}(m,mz)eMxsz {Vm’my’mz}(mymy,mz)EMXMyXMz)' (382)

Encoding: To send ID Message-Triple (m,my, mz) € M x My x Mz, the encoder transmits the sequence
P(Vinmy,mz). ID Message-Triple (m,my, mz) is thus associated with the {0, 1}-valued PMF

Qm,my,mz (X) = ]]‘X:P(Vm,my,mz)7 xe X" (383)

Note that once the code ([B82) has been constructed, the encoder is deterministic: it maps ID Message-Triple (m, my, mz)
to the (m,my, mz)-codeword P(Viy my ms)-

Decoding: In this section the function §(-) maps every nonnegative real number u to uH(P x W). The
decoders choose € > 0 sufficiently small so that 26(e) < I(P,Wy) — Ry and 28(¢) < I(P,Wz) — Rz. The (m/, my,)-
focused party at Terminal J guesses that (m’,m},) was sent iff for some index v € Vyys s, the n-tuple P(v) in
Bin By, is jointly e-typical with the Terminal-} output-sequence Y™, i.e., iff (P(v),Y") € ﬁ(n)(P x Wy) for
some v € leﬁmry. The set Dm/,m’y of Terminal-) output-sequences y € Y™ that result in the guess “(m’,m),) was
sent” is thus

Dopmy, = | T(PxWy|P@)). (384)
VEV 1 ot
Yy

m’,m

64



Likewise, the (m', m/;)-focused party at Terminal Z guesses that (m’, m’;) was sent iff (P(v), Z™) € 7 (PxWz)
for some v € vm’m'z' The set ’Dm/’m/Z of Terminal-Z output-sequences z € Z™ that result in the guess “(m’,m’)
was sent” is thus

Dy, = |J T(PxWz[P@)). (385)
UEV ’

’
m’,m
zZ

Analysis of the Probabilities of Missed and Wrong Identification: We first note that C of ([B82)
(together with the fixed blocklength n and the chosen €) fully specifies the encoding and guessing rules. That is,
the randomly constructed ID code

{Qmnmy.mz, Pmmy, Pimm }(m,my,mz)e./\/l XMyXxMz (386)

is fully specified by C. Let P be the distribution of C, and let [E denote expectation w.r.t. P.

The maximum probabilities of missed and wrong identification of the randomly constructed ID code are the

random variables

1

PYedp = (mﬁmﬁle%wwy M2 mZ;MZ(Qm,my,mZ W™ (Y™ ¢ Dipmy), (387a)
Plised1n = o X ﬁ my;y(Qm,my,sz") (Z" ¢ D), (387b)

wrong D = (I L o oy /\/112| ngz(Qm,my,mz W) (Y™ € Do sy ), (387¢)
Plnstd = o B8t BT, 25, (@rmsma W) € Puv). - (570

They are fully specified by C, because they are fully specified by the randomly constructed ID code ([B86]), which is in
turn fully specified by C. To prove that for every choice of AY, Ay, Af, A§ > 0 and n sufficiently large the collection
of tuples ([B80) is with high probability an (n, M, My, Mz, MW 0 A2 )\22) ID code for the BC W (y, z|z), we prove
the following stronger result:

pPY and PZ

Claim 46. The probabilities P>, . n, PZ wrong-1D * wrong-ID

missed-1D?

BRE) converge in probability to zero exponentially in the blocklength n, i.e.,

of the randomly constructed ID code

d7 >0 s.t. nh—>H;o P [maX{Pn:)l}issed_IDa Prfissed-IDv Pv:x)/}rong-ID’ Pv%rong-ID} > e—n‘r:| =0. (388)
Proof. We will prove that
37> 05t Tim Plmax{ P in: Pongin} = ¢ 7| = 0. (389)

n— 00 wrong-

By swapping Z and Y throughout the proof it will then follow that ([B89) also holds when we replace Y with Z,
and (B88) will then follow using the Union-of-Events bound.
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To prove ([B89) we consider for each my € My two distributions on the set V, which indexes the pool P. We
fix some v* € V and define for every my € My the PMFs on V

1

P () = > Leviym,. VEV, (390a)
|MZ| mzeEMz vE
~ o ’ ]111—11’ if m,m
P‘(/m,my)('U) _ v > Vi, Lo=v' H Vimmy, #0, ve. (390b)
1y—o+ otherwise,

The latter PMF is reminiscent of the distribution we encountered in (I7)) and (I8) in the single-user case. The
former is related to the common-message BC setting when we view Mz as uniform over Mz. Like the proof of
Claim [T to establish (B88]) it suffices to show that the two are similar in the sense that

Ir>0st lm P|  max (PP > e’”} =0, (391)

n—»00 (m,my)eMxMy

which follows essentially along the line of arguments leading to (@8] in the proof of Claim [I4l O

F.2 The Converse Part of Theorem [31]

We prove the following strong converse:

Claim 47. For every rate-triple (R, Ry, Rz), every positive constants /\%2, )\%}, A2, NS satisfying
A H A+ AP+ A7 <1, (392)

and every € > 0 there exists some ng € N so that, for every blocklength n > ng, every size-exp(exp(nR)) set
M of possible common ID messages, every size-exp(exp(nRy)) set My of possible ID messages for Receiver ),
and every size-exp(exp(nRz)) set Mz of possible ID messages for Receiver Z, a mecessary condition for an
(n,M,My,Mz, Y, )\%},)\12,)\22) ID code for the BC W (y, z|x) to exist is that for some PMF P on X

R, Ry < I(P,Wy) +e¢, (393a)
R, Rz < I(P,Wz) +e. (393b)

Proof. The proof is similar to that of Claim Fix x”, k% > 0 that satisfy the following three: 1) \Y + \Y < &Y
2) AZ + )5 < k%; and 3) k¥ + k% < 1. (This is possible because of ([392).) By Lemma 21] there must exist some
1y € N so that, for every blocklength n > nj, every size-exp(exp(nR)) set M of possible common ID messages,
every size-exp(exp(nRy)) set My of possible ID messages for Receiver Y, and every size-exp(exp(nRz)) set Mz
of possible ID messages for Receiver Z, the following conditions are necessary for a collection of tuples

{Qm7my7mz’Dm’my’Dm7mz}(m,my,mz)EMXMyXMz

to be an (TL,M,My,Mz,)\%}, /\%},)\12,)\22) ID code for the BC W(y, z|x): for

, 1
Ry(n) = - log log (| M] |My|), (394a)

, 1
Riz(n) = —loglog(| M| [Mz]) (394b)
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the mixture PMFs on X"

1
Qm,my = Tas 1 Z Qm,my,mzv (mamy) S M X Myv (3953‘)
Mz
mzeEMz
1
Qm,mz = W Z Qm,my,mza (m)mz) S M X MZ) (395b)
my€EMy
1
Q= > Qrm.my.m= (395¢)
IMIIMy[[Mz] (mymy,mz)EMx My x Mz
satisty
Q(X™ e {x e &X™: I(P,Wy) > Ry(n) — ¢})
1
. Z Qmymy (X" € {x € X™: I(P,Wy) > Ry(n) — €}) (396)
MM
m,my hY%
>1—rY — exp{e"(R/y(”)*E/Q)}/ exp{e"R/y(”)} (397)
and

Q(X™ e {xe€ X" I(P,Wz) > R%(n) — €})

1
- o (X7 € {x € X" [(Pe,Wz) > Rla(n) — 398
(mmz)EMXMz
>1-r% - exp{e”(R,Z(")fe/Q)}/ exp{e"R/Z(”)}. (399)

The Union-of-Events bound, (897), and ([399) imply that

Q(X" e{xeX": I(Pg,Wy) > R/y(n) — €, [(P,Wz) > Rz(n) — 6})
>1-—kY — k% — eXp{e”(R,y(")*C/Q)}/ exp{e"R/y(”)} - exp{e"(R/Z(”)fé/Q)}/ eXp{e”R,Z(”)}. (400)

Now let 79 be the smallest integer n > nf, for which the RHS of ({@00) is positive (such an n must exist, because
e >0 and ¥ + k% < 1). By [394)

Ry (n) > max{R, Ry}, (401a)
R’(n) > max{R, Rz}, (401b)

and hence Claim (7] follows: for every blocklength n > 7y a necessary condition for (00) to hold is that for some
PMF P on X (B93) holds. O

G A Proof of Theorem

We prove Theorem Bl by fixing any input distribution P € (X)) and any positive ID rate-pair (Ry, Rz) satisfying

0 < Ry < HPWY) Lo 1(p w0 (402a)
0< Rz <I(P,Wz) (402b)
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and showing that the rate-pair (Ry, Rz) is achievable. We assume that maxp I(P, Wy), H(PWy), and I(P,Wz)
are all positive; when they are not, the result follows from Theorem [] and [§]. Let My be a size-exp(exp(nRy))
set of possible ID messages for Terminal ), and let Mz be a size-exp(exp(nRz)) set of possible ID messages for
Terminal Z. We next describe our random code construction and show that, for every positive AY, AY, AZ, A5 and
for every sufficiently-large n, it produces with high probability an (n + v, My, Mz, )\%) , )\%} JAELNE ) ID code for
the BC W(y, z|z) with one-sided feedback from Terminal ). A rough description of the coding scheme that we
propose can be found in Section

Code Generation: Fix an expected bin rate Rz for Terminal Z , a pool rate Rp, and a transmission rate Ry

for Terminal Y satisfying

Rz < Rz <I(P,Wz), (403a)
I(P,Wy) < Rp, (403b)

Rz < Rp, (403c)

0< Ry < mgxI(P, Wy). (403d)

This is possible by [@02). Draw e"*? n-tuples ~ P" independently and place them in a pool P. Index the n-tuples
in the pool by the elements of a size-e"*? set V, e.g., {1,...,e"™"}, and denote by P(v) the n-tuple in P that
is indexed by v € V. Associate with each ID message mz € Mz an index-set V,,, and a bin B,,. as follows.
Select each element of V for inclusion in V,, . independently with probability e~n(Rp—Rz ), and let Bin B,,, be the

multiset that contains all the n-tuples in the pool that are indexed by V., .,

B, ={P),vEVpn,}

(Bin B, is thus of expected size e"éz.) Associate with each ID message-pair (my,mz) € My x Mz an index
Viny,mz as follows. If V., is not empty, then draw V;,,, m uniformly over V,, .. Otherwise let Vi,,,, m. = v*, where
v* is an arbitrary but fixed element of V. Let {( fr gbk)} keN be a sequence of blocklength-k, rate—f%y transmission
codes for the marginal channel Wy satisfying that the maximum error probability €, converges to zero as the
blocklength k tends to infinity. (By (403d) such a transmission-code sequence exists.) For the code construction
we use the blocklength-\/n transmission code (f, s, . /), which we denote by (f, ¢). Denote the size-2VT Ry et of

possible transmission messages by U, so f: U — xXVr o ¢ YV 5 Y, and
-y )
e = max W37 (Y7 ¢ 74 (w)| 1), (404)

Associate with each pair (y,my) € Y™ x My a transmission message Uy(my) by drawing the transmission mes-
sages independently and uniformly over &. Reveal the pool P, the index-sets {Vm Z}
bins {Bmz}szMz’ the indices {Vm

messages { Uy (my) } (y,my)eYrx My

€= (P Voo Visen oy mrentg s O D00 g sy ) (409

s M the corresponding

yvmz}(my 2 )EMay X M the transmission code (f,¢), and the transmission

to all parties. The encoding and decoding are determined by

Encoding: To send ID Message-Pair (my,mz) € My x Mz, the encoder transmits the sequence P(V,,, m )0
f(Uyn(my)). Note that once the code (@F) has been constructed, the encoder is deterministic: The encoder first
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maps ID Message-Pair (my,mz) to the (my,mz)-codeword P(V},,, m.), which it transmits during the first n
channel uses; it then observes the first n channel outputs Y™ at Receiver ) through the feedback link; from Y™
and ID Message my, the encoder computes the (Y, my)-transmission-codeword f (Uyn (my)), which it transmits

during the remaining 1/n channel uses.

Decoding: In this section the function §(-) maps every nonnegative real number u to uH(P x W). The
decoders choose € > 0 sufficiently small so that 35(e) < H(PWy) — Ry and 20(¢) < I(P,Wz) — Rz. The mh-
focused party at Terminal ) guesses that m’y was sent iff the Terminal-) output-sequence Y TV" satisfies that the
decoding function ¢ maps Y::l‘/ﬁ to the (Y™, m),)-transmission-message Uyn (m?,), i.e., iff (b(YTZfl‘/E) = Uyn(m}).

“m’y was sent” is thus

The set ’Dm/y of Terminal-) output-sequences y € Y™V that result in the guess
D _ n+n . nt+yvny U / 406
my, =Y €V O (Yniy ") = Uyn(my) |- (406)

The m/;-focused party at Terminal Z guesses that m’; was sent iff for some index v € Vi, the n-tuple P(v) in
Bin B,,,, is jointly e-typical with the first n channel outputs at Terminal-Z, i.e., iff (P(v), 2") € ﬁ(n)(P x Wz) for
some v € V,,, . The set D, of Terminal-Z output-sequences z € Z"tV7 that result in the guess “m/y was sent”

is thus

D, = < U 7P x WzyP(u))> x ZVn, (407)

vevm/z

Analysis of the Probabilities of Missed and Wrong Identification: We first note that C of (405) (to-
gether with the fixed n and the chosen €) fully specifies the encoding and guessing rules. Let P be the distribution of
C, and let E denote expectation w.r.t. P. Subscripts indicate conditioning on the event that some of the chance vari-
ables assume the values indicated by the subscripts, e.g., IP’me denotes the distribution conditional on Vi), = Vi,

and Ey,, =~ denotes the expectation w.r.t. Py, .

The maximum probabilities of missed and wrong identification of the randomly constructed ID code are the

random variables

1
y o n{ n Vil n+yn .
Pmissed—ID - mLHGa/\)Ely |MZ| ng\/lz yg;my Wy (y ‘P(Vm)}va))Wy (ynJrl f(Uy (my))), (408&)
1 n n
Prfissed—ID = mgleaj\%lz |My| Z w (Z ¢ sz ‘P(meymz))a (408b)

my€eMy

1 n n n
ijvjmng_m: max  max m Z Z W)’}(y"’P(Vm%mz))W{(ynif f(Uyn(my))), (408c)

my €My ml,#m
Y y my#Emy szszE’Dm/y

> W(Z" €Dy,

my €My

Z —
Piiong. D = max — max

mzEMz m#mz |My|

P(Viy ). (4084)

They are fully specified by C. To prove that for every choice of AY, AY, A%, A > 0 and n sufficiently large the
constructed code is with high probability an (n +/n, My, Mz, A\, A\, A\f, AF) ID code for the BC W (y, z|z) with

one-sided feedback from Terminal ), we prove the following stronger result:
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Claim 48. The probabilities Pﬁiissed_m, Pn%issed_m, Pgmng_m, and meng_m satisfy
F{kn}nen s-t. nhHH;O Kkn = 0 and nan;OP[max{Pnjfissed_ID,ijv)rong_ID} > nn] =0, (409a)
37> 0st. lim P[maX{PIfissed_ID, PZ. .} > e—’”} = 0. (409b)
n—o0

Proof. We begin with (@095)). To prove (@09h) we consider for each mz € Mz two distributions on the set V, which
indexes the pool P. We define for every mz € Mz the PMFs on V

m 1
P (v) = )l > leevy ., VEV, (410a)

myeEMy

Vsl 2vrev,,, Lo=w if Vs #0,

1,—p* otherwise,

P (v) = vev. (410D)

The latter PMF is reminiscent of the distribution we encountered in (7)) and (I8) in the single-user case. The
former is related to the BC setting when we view My as uniform over My. Like the proof of Claim[I4] to establish
([@09) it suffices to show that the two are similar in the sense that

37> 0st. lim P[ max d(P‘(,mZ),P‘(,mZ)) > e"”} =0. (411)

n— 00 mzEMz

To establish ([@I1]), we adapt the line of arguments leading to ([@8) in the proof of Claim[I4l Fix some p satisfying
0<pu<Rz—Rz, (412)
and let
bp = e /2, (413)
Introduce the set ’Hf comprising the realizations {V, }, e, of the index-sets {V, } e, satisfying that

V| > (1= 6,)e"E= v e Mz. (414)

We upper-bound max,, ;e d(P‘(/mZ ),P‘(/mz )) differently depending on whether or not {V,} is in H7,

{V.} is short for {V,}oems. I {V.} ¢ H7, then we upper-bound it by one (which is an upper bound on the
Total-Variation distance between any two probability measures) to obtain for every 7 > 0

where

]P{ max d(P‘(/mZ),p‘(/mz)) > e—ﬂ

mzEMz

<PV} eHI]+ Y P[{vu}{vu}JP{m[mgle%zd(Pé“%Pé“))ze-”]. (415)
{VoeH?

We consider the two terms on the RHS of (IH) separately, beginning with P[{V,} ¢ H7]. By the line of
arguments leading to (I2Z2) in the proof of Claim

P{V.} ¢ H7] < |Mg|exp{—e"(éz_“)_1°g2} (416)
0 (n— o0), (417)
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where (a) holds because |Mz| = exp(exp(nRz)) and by ([@I2]).
Having established (@I, we return to (@I5) and conclude the proof of [@II]) by showing that

37> 0s.t. nh_{rolo {VE%%)’}{{E Py, y [mgle%\)ftz d(p‘(/mz)’ p‘(/mz)) > e—nr] =0. (418)

To prove [#I8), let us henceforth assume that n is large enough so that the following two inequalities hold:

(1= )"z > 1, (419a)
6 <1/2, (419b)

where 4, is defined in [@IJ). (This is possible, because 8, converges to zero as n tends to infinity and Rz > 0.) Fix
any realization {V,} in 7. By ([@#Id) (which holds because {V,} € H7) and @IJa), Vy,. is nonempty. For every
fixed v € V we therefore have that under Pyy, 3 the exp(exp(nRy)) binary random variables {]lvzvmyymz }my My
are IID and of mean

1 .
m lf’UGVmZ,

(420)
0 ifvéVn,.

With (@20) at hand, we can establish (@I8]) essentially along the line of arguments leading to (I23)) in the proof of
Claim [T4

Having established (@090), we return to ([@09) and conclude the proof by establishing ([@0Ja)). We first observe
that if the ID message that is sent to Terminal Z is drawn uniformly over M z, then the ID code that is used to send
the ID message intended for Receiver ) is similar to the common-randomness ID code [8 Section IV] for the DMC
Wy (y|z) with perfect feedback. The difference is that—unlike the common-randomness ID code [8]—the common
randomness Y is not generated by drawing the first n channel inputs X" ~ P", irrespective of the ID message
that is sent to Receiver ). Instead, if the ID message that is sent to Receiver ) is my and the ID message that is

sent to Receiver Z is drawn uniformly over Mz, then X" is drawn from the PMF on X"

m 1 n
P (x) = e Y Py .) XEAX™ (421)

mzEMz

As we argue next, the reasoning of [§] nevertheless applies.

The maximum probability of missed identification satisfies the upper bound

PI:Ijl)iSSed—ID

(a) 1 n{ n n n n
2 omax e > WPV )WY (117
b Y 2 mzEMz Y¢Dimsy,

S WPy )W (Y'Y ¢ 67 Uy () | £ Uy () ) (423)

mzEMzy eYyn

F (U (my))) (422)

(b) a 1
= max +——
my€EMy |MZ|

© 1

< max —— > > WY [PViymz)) evn (424)
my€eMy |MZ| maEMz y eyn

= €/, (425)
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where (a) holds by ([@08a); (b) holds by @0d); and (c) holds by ([@04)). This, combined with the Union-of-Events
bound and the fact that € 5 converges to zero as n tends to infinity, implies that to establish (409a)) it suffices to
show that

3 {kn}nen s.t. nlgrgo kn = 0 and nlin;o P[Pg’mng_m > k| = 0. (426)
Before we establish ([@20]), we first show that
F{ )\ }nen s.t. nhﬂn;o An =0 and HILH;OP{mAIPE%y d(PXny Wy, (PWy) ) > )\n] = 0. (427)

(This is useful, because, if the ID message that is sent to Receiver ) is my and the ID message that is sent to
Terminal Z is drawn uniformly over Mz, then we generate the common randomness Y ~ P)(gtfy )WJ’}, whereas the
common-randomness ID code [§] for the DMC Wy (y|z) with perfect feedback generates the common randomness
Y™ ~ (PWy)™ irrespective of my € My.) For every my € My define the PMF on V

1
P () = T, . veEV, 428
Vv ( ) |MZ| mz;/lz mewng ( )

let Uy denote the uniform distribution on V, define the conditional PMF
Pyny(x[v) = Ix—p), (x,0) € X" %V, (429)
and note that for every my € My
(PEW3) ) = (P Py W) (v), ¥ € V™ (430)
This implies that d(P)(g:y)Wj}, (PWy)™) satisfies the upper bound

a(PEEWy, (PWy)")
(@)

< d(PEW3L Uy Prapy W3 ) + d(Uy oy W3, (PWy)") (431)
®
< (P Py W3, Uy Pyapy W3 ) + d(Uy Py W3, (PW)") (432)
© o
< d(P‘(, ) Uv) +d(Uy Poy W3, (PWy)"),  my € My, (433)

where (a) follows from the Triangle inequality; (b) holds by [@30); and (c) follows from the Data-Processing inequality
for the Total-Variation distance [I3, Lemma 1]. In [18] it is shown that by (403D

E [d(UVPXnWWJ’}, (PWy)")} S0 (n— o). (434)

Consequently, Markov’s inequality implies that
3{Anbnen st lim A, =0 and lim P[d(UVPXWWJTJ, (PWy)") > An} —0. (435)
This, combined with ([@33]) and the Union-of-Events bound, implies that to establish [@27) it suffices to show that

F{ A\ }nen s-t. le An =0 and lim IP’[ max d(P‘(,my), Uv) > )\n] =0. (436)

n— o0 my€eMy
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Fix some A satisfying
0 <A< Rz, (437)

and let
&n = exp{—e™}. (438)

For every v € V the exp(exp(nRz)) binary random variables {]]"U:me,mz }mze./\/lz are IID and have mean 1/|V].
Consequently, Hoeffding’s inequality (Proposition 2)) and the Union-of-Events bound imply that for every fixed
veyV

P[’P‘(/my)(v) — Uy (v)

)

1
—P||—— T, _E[1,_ > ¢, 439
< 2exp{-2|Mz|&}, veV, (440)

where the first equality holds because Uy (v) and E [lv:me | both equal 1/[V|. This, combined with the Union-

,mz
of-Events bound, implies that

P[Ev eV ]Pé’"y)(v) —Uy()| > én}

<2[V|exp{-2|Mz|€}. (441)
Consequently,
pla(F™ o) 2 Mier2] (412
< P[Z\P&W(v) ~ Uy ()] 2 |v|§n] (443)
=

< P[av ev: ‘PS’W)(U) - Uv(’U)‘ > gn] (444)
<2V expf-2 M| €2}, (445)

where (a) holds by definition of the Total-Variation distance; and (b) holds by ([@41). Having obtained ([@4%]) for
every fixed my € My, we are now ready to tackle the maximum over my € My and prove ([@30) and hence [@27):

]P’{Elmy € My: d(P\(/my),Uv) > |V|§n/2}

I RO (446)
my€EMy

0)

< 2[V[|[Mylexp{-2|Mz|&}} (447)

“o(n - o0), (448)

where (a) follows from the Union-of-Events bound; (b) holds by (@43); and (c) holds because |V| = "7 |My| =
exp(exp(nRy)), [Mz| = exp(exp(nRz)), and by @37) and (Z38).
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We next conclude the proof of Claim M8 by establishing ([@28]). To that end, we use ([@27), which allows us to
follow Ahlswede and Dueck’s line of arguments [§]. We begin by upper-bounding

1
m Z Z WLV ) |P mymz))Wy (n+1

mzeMzyeD, m,

(U (m))

for fixed distinct my, mj, € My. Later we will maximize over such my, mj,. For every fixed distinct my, mf, € My

i, 55 S0P (1)

mz ZzZYy /

@ Z (P(my) )( )W\F(Y‘/_E(b ‘f ))) (449)
y'eyr

< Z (P my) )(yl)]lUy/(m'y):Uy/(my)
y'eyr

+ 30 (PURIW) ()W (VYT 67 (U (my) ’f (my))) (450)

y'eyn

(2 Z Ly, (mi,)= U/(my)(P)(("Zy’W;)(y’)ﬂﬁ, (451)
y'eyn

where (a) holds by [#06]) and ([@21]); (b) follows from the monotonicity of probability and the Union-of-Events bound,;
and (c) holds by @4). Let T™ be short for 7. (PWy). The first term in [@5I) satisfies the upper bound

> luy«m'y):uy/(my)(P;(ﬁy)Wﬁ)(y’) (452)
y'eyn

(P)(g:y)wn) (Y"e {y € V" Uy(m)) = Uy(my)}) (453)

2Py (Y7 e fy € V7 Uylmb) = Uy(my)} ) +a( PE W3, (PWy)") (454)

< (PWy) (Y7 € {y € TO: Uylmb) = Uy(my)} ) + (PW)" (¥ ¢ TL)

+d( )y (PWy)”), (455)

—~
=

where(a) holds by definition of the Total-Variation distance; and (b) follows from the monotonicity of probability and
the Union-of-Events bound. Using ([2T), that €,/ converges to zero as n tends to infinity, and that (PWy)" (Y" ¢
72(")) decays exponentially in n, we obtain from [@&1]), (@55), and the Union-of-Events bound that to establish (426))
it suffices to show that

I{kn}nen s.t. lim K, =0 and
n—o0

lim P|3my,m), € My, my #mi: (PWy)" (Y" e{ye T Uy(my) = Uy(my)}) > nn} =0. (456)

n—oo

Fix some p satisfying
0 < p< HPWy)— Ry —30(e), (457)

and let
oy, = max{2/|U|, 67"’)/2}. (458)
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The binary random variables {]lUy(m/y):Uy(my)}y cyn are IID with mean

E|1 ml, )= m = o0 e )" 459
[ Uy (m},)=Uy ( y)} U yey (459)
Consequently, Hoeffding’s inequality (Proposition [2)) implies that

P[Elmy,my € My, my #mb,: (PWy)" (Y" e{ye T Uy(my) = Uy(my)}) > an}

=P [3 my,m’y S My, my 7é m'y: Z (PWy)n(Y)]lUy(my):Uy(m'y) > an] (460)
yeT™

(i) Z Z l Z (PWy)" (¥) Lty (my)=Uy (m3) = O‘n‘| (461)

my€EMy my;émy yeTe(")
2
(b) 2(a, — 1/|U
g |My|2exp{— (o = 1/1U4)) } (462)
yerm (PWy)™(y))
(;) My? eXp{_en(H(pWy)fpf&i(e))flog?} (463)
@ (n — o0), (464)

where (a) follows from the Union-of-Events bound; (b) follows from {@59)) and Hoeffding’s inequality (Proposition [2);
(¢) holds by (45])) and because

(PWy)n(y) S e_n(H(PWlV)_‘S(E)),
(70| < enHPW)+5(0), (465)

and (d) holds because |[My| = exp(exp(nRy)) and by @510). Since «, of ([@5]) converges to zero as n tends to
infinity, this implies ([@56]) and hence concludes the proof. O

H A Proof of Theorem

H.1 A Useful Lemma

Lemma 49. [19, Lemma 4.1] For some DMC W (y|x), let P be some distribution of the pair (X™,Y™) of length-n

input- and output-sequence satisfying that
P[(X",Y") = HIP’ =o|(XTLYT) = (@ y T Wi, (xy) € X x VT (466)
and for every pair (x,y) € X™ x V" define the PMF on X
P*Y (g Z]P’ (XTLY"h) =@y Y], zea. (467)

Then, for any v >0
X1V

ny?

P|3(2,y) € X x Vi [Pxoynla,y) = P @W(yla)| = VWGl v| < 0, (468)

where Pxn yn is the empirical type of the pair (X™,Y™), so Pxn yn(z,y) = N(z,y| X", Y™)/n, (z,y) € X x ).
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Proof. For every pair (z,y) € X x ) define the binary random variables
Ef’y = ]].(Xi,yi):(m,y) =1x,=zly,—y, i€ [1 : TL] (469)
with mean

E[EY| X" v

Wg [E [Lx,—aLyimy | X7, V7Y ’XH, YH] (470)
YR {]1X o By [Ty | X1, YV 1}‘)@ Lyi- 1} (471)
O B[y, W (yle)| XL, Y] (472)
=P[X; = 2| X" Y W(ylz), (473)

where (a) follows from ([#69) and the Tower property of conditional expectation; (b) holds because 1x,—, is o(X;)-

measurable and because 1x,_, is zero unless X; = x; and (c¢) holds by {66). Define the centered random variables
EMY = EPY —E[EPY|XTLY Y, e (linl (474)
By ([EGT) and [@T3)

ZEW N(z,y| X", V") —nPX" Y (2)W(y|z). (475)

As we shall see, the centered random variables {Ef’y}ie[l are uncorrelated and of variance E [(E{Y)?] < W (y|z).

n]
Consequently, Chebyshev’s inequality implies that

and (6]) thus follows from (IIZEI) and the Union-of-Events bound:

]P’{El (z,y) € X x Y: }Pxnyyn(:c,y) — PXn’Yn(:c)W(ykc)} > /W (y|x) }

W) ]<i, (z,9) € X x V), (476)

= [ z,y) €EX X Y: w — PX" Y (@)W (ylx)| > VW (y|z) } (477)
[ T,y) € X X Y: Z > W(y|z) ] (478)
X1 )
e (479)

To conclude the proof, it remains to show that the centered random variables {Ewy} are uncorrelated and

~ [1:n]
of variance E[(E;")?] < W (y|z). We first prove the former: For every [, k € [1 : n] satisfying | < k

E[E7YBp] @ E[R[EYERY| X1, vE1]] (480)
(b) {Ez,yE[Ez,y‘Xk 1 Yk IH (481)
@ (452)
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where (a) follows from the Tower property of conditional expectation; (b) holds because E;"" is o(X!, Y!)-measurable
and | < k —1; and (c) holds by (@74). Having established that the centered random variables {Ef e Clim] BTE

uncorrelated, it remains to show that their variance is upper-bounded by W (y|z). For every i € [1 : n]

E[(Er)’] @R[ (B — B[V X,y 1)) (483)
Og [IE [(EPY —E[BPY XLy )Y X Y“H (484)
©g [P[XZ- = 2| XL YW (ylr) (1 - PLX, = 2 X1, Yifl]W(y|z))} (485)
< W), (156)

where (a) holds by ([@T4); (b) follows from the Tower property of conditional expectation; (¢) holds because (E;¥)? =
E{"Y (which holds by [@83)), because E[E;Y| X =1, Vi~1] is ¢(X'~!,Y'~!)-measurable, and by @Z3); and (d) holds
because conditional probability cannot exceed one. O

H.2 A Proof of Theorem [38

If maxp I(P, Wy) = 0, then the transition law Wy (y|x) does not depend on z, and hence AY 4+ XY > 1 whenever
Ry > 0. Likewise, if maxp I(P, Wz) = 0, then A\ + A2 > 1 whenever Rz > 0. Consequently, if suffices to prove

the following strong converse:
Claim 50. For every rate-pair (Ry, Rz), every positive constants )\%}, )\%}, A2 \E satisfying
MW AHAN +A7 + 07 <1, (487)

and every € > 0 there exists some ny € N so that, for every blocklength n > ng, every size-exp(exp(nRy)) set My of
possible ID messages for Receiver Y, and every size-exp(exp(nRz)) set Mz of possible ID messages for Receiver Z,
a necessary condition for an (n,/\/ly,./\/lz,)\%}, )\%},)\12,)\22) ID code for the BC W (y, z|x) with one-sided feedback
from Terminal Y to exist is that for some PMF P on X

Ry < H(PWy) +-e, (488a)
Rz < I(P x Wy, Wz) +e, (488b)

where W is defined in @27).

Proof. Suppose that the collection of tuples

{{le)yva}iE{l,...,n}’ Dmyvpmz}

(my,mz)EMyxMz

is an (n, My, Mz, A A NZ, )\22) ID code for the BC W (y, z|z) with one-sided feedback from Terminal ). For
every pair (my, my) € My x Mz define the PMF on ™ x Y™

me,mz (Xay) = HQ%)y,mz (‘Ti|‘ri_1’ yi_l)Wy(yiLri)’ (Xay) € X" x ", (489)
i=1
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and note that @y, m is the distribution of the pair (X™,Y ™) of length-n input- and output-sequence if ID Message-
Pair (my, mz) is sent. Introduce the BC W (y, z|z,§) whose outputs are the outputs of the BC W (y, z|z) and whose
inputs are the input and the output at Receiver Y of the BC W (y, z|z), so

Wy, 2|z, §) = 1,—gWz (2|2, ), (2,5,1,2) EX XY XY X Z. (490)

(The marginal channels of the BC W(y, z|z,y) are 1,—z and Wz(zkp, ¥).) Because

{{@2Yictr. oy P D)

(my,mz)EMyxMz

is an (n,My,MZ, )\%), )\%}, A2, )\22) ID code for the BC W (y, z|z) with one-sided feedback from Terminal ), the

collection of tuples {me,mz7Dmy7sz }(my,mz)eMyxMz is an (n,./\/ly,/\/lz, /\%), )\%}, AZ, /\22) ID code for the BC

W (y, z|z, §) without feedback. To prove Claim (0l we can thus adopt some of the arguments in the proof of Claim T3l
Fix some € > 0, and choose p € (0,1/2) sufficiently small so that

z 2
M—l—,umax{logm,logu} < €. (491)
1 1

(This is possible, because plogp converges to zero as p tends to zero.) Introduce the set K, comprising the
realizations (x,y) € X™ x V" of the pair (X", Y™) that satisfy the following two conditions:

I(PX7Ya Wy) > Ry ez (4928‘)
I(Pyy,Wz) > Rz — p, (492b)

where Py y is the empirical type of the pair (x,y). Moreover, introduce the set L., comprising the realizations
(x,y) € X™ x Y™ of the pair (X™,Y"™) that for some PMF P on X satisfy the following two conditions:

|[I(Pyy, Wy) — H(PWy)| < e—p, (493a)
[[(Pyy, Wz) — I(P x Wy, Wz)| < € pu. (493b)

As we shall see, there exists some 79 € N so that for every blocklength n > 1y the mixture PMF on X™ x Y™

Q ; Z me,mz (494>

Myl Mz (my,mz)eMyxMz

satisfies
QUX™Y™) eK,NLe,) >0. (495)

By (d92) and (@93)) the intersection I, N L ,, contains only realizations (x,y) € X™ x Y™ of the pair (X", Y™) that
for some PMF P on X satisfy the following two conditions:

H(PWy) > I(Pxy,Wy) — €+ > Ry — €, (496a)
I(P x Wy, Wz) > I(Pxy,Wz) —e+pu> Rz —e. (496b)

This implies that for every blocklength n > 79 a necessary condition for ([#95]) to hold is that for some PMF P on
X ([@88) holds, and hence Claim [0 follows.
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It remains to establish ([@35). We begin by upper-bounding the probability Q((X", Y™ ¢ IC#). Fix kY, k% >0
that satisfy the following three: 1) AY + XY < #%; 2) Af + A5 < x%; and 3) x¥ + k% < 1. (This is possible because
(if/(M)) Because {me’mz’Dmy’DmZ}(my,mz)EMyXMz is an (n, My, Mz, Mo AE, A7) ID code for the BC
W (y, z|x, §) without feedback, (I95]) in the proof of Claim [[H] implies that there must exist some 7} € N so that for
every blocklength n > n))

< kY + k% +exp{e"FyT1/D Y Jexp{ et} 4 exp{enFz71/2) ) fexp{en = . (497)

Having established (497)), we conclude the proof of (@95 by showing that the probability Q((X mY"™) ¢ L #)
satisfies the upper bound

XY
nu?

This implies ([@95), because, combined with the Union-of-Events bound and (@97, it implies that

QUX™ Y™ ¢ Ley) < (498)

QX™,Y™) € Ky Ley)
>1-Q((X™Y") ¢ Ky) —QUX™,Y") ¢ Le ) (499)

31v)(3
>1-—rY — k% — exp{en(Ry_“/Q)}/exp{e"Ry} — eXp{e"(RZ_“/Q)}/exp{e"RZ} — 7|X| M

500
e (00)

and we can let g be the smallest integer n > n( for which the RHS of (BO0) is positive (such an n must exist,
because p > 0 and k¥ + k% < 1).

To conclude the proof of Claim (0] it remains to establish (@98)). For every pair (my,mz) € My x Mz define
for every (x,y) € X" x V" the PMF on X

n

X 1 7
Prdmz (@) == QG m.(0), z€X, (501)

=1

and introduce the set Le2 ™% comprising the realizations (x,y) € X™ x V" of the pair (X",Y™) that satisfy the

following two conditions:

[1(Pey, Wy) = H(PEY ., Wy)| < e =, (502a)
[[(Pay, Wz) — I(PXY .. x Wy, Wz)| < e—p. (502b)

By comparing (B02) and (493]) we see that
E?EJ’WZ - ‘C€7M’ (my,mz) S My X Mz. (503)
This, combined with ([@94)), implies that

QUX™Y™) ¢ Ley)

1
= AL A Z me,mz ((Xn; Yn) ¢ Ee,,u) (504)
|My| |MZ| (my,mz)EMyxMz
< max Qmymz (X", Y") ¢ LT, (505)

- (my,’mz)EMy XMz
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and to establish ([@9]) it thus suffices to show that

noyny g pmymzy o 1PV
me,mz ((X ,Y ) ¢ ‘Ce,u7 ) < T/ﬂ, (my,mz) € My X MZ. (506)
To that end, let
I
V= —— (507)
X1V

and for every (my,mz) € My x Mz introduce the set N);">"™# comprising the realizations (x,y) € X™ x " of
the pair (X™,Y™) satisfying that

‘Px,y(may) _P:r(bg,mz(x)wy(y|x)‘ <v Wy(y|.’L') v, V(.’L',y) eX x). (508)
As we shall see,
Nwyome C Lryme, (509)

and to establish (506 it thus suffices to show that

X 3 y 3
Quny s (X7, Y™ & N2 < % (my,mz) € My x Mz. (510)
But this in an immediate consequence of Lemma @9 in Appendix [H1} For every pair (my,mz) € My x Mz
the PMF Qumy, m, of @89) is of the form (466), and by comparing (B0I) to {HET) we see that Py ., is the

corresponding PMF P*¥Y on X of (467). Consequently, (B08) and Lemma A9 imply that

Qumy,mz (X", Y") g NJ>M2)

ReInd

e (511)
X 3 3

< % (my,mz) € My x Ms, (512)

where the last inequality holds by (B0T]).
Having established (5I0]), we can now conclude the proof of Claim B0 by establishing (B09). To that end, fix any
pair (x,y) € N/>"#. By (G08) (which holds because (x,y) € N,"™>"™%)

Pry(@,9) € [PAY s @Wy(yle) £ VW) ], (2,) € X x V. (513)

my,mz

Consequently, d(Px,y, PXY x Wy ) satisfies the upper bound

my,mz

d(nyy, Py X Wy)

my,mz
(a) 1 N
L2 [Pa@y) - P @)Wy (yle)| (514)
(z,y)eX xY
1
<3 Y. VWllo)v (515)
(z,y)eXxy
1
= 5 VWylyla) |X] Y] v (516)
(¢)
< w2, (xy) ENTYTE, (517)
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where (a) holds by definition of the Total-Variation distance; (b) holds by (EI3); and (¢) holds by (B0OT) and because
VWy(ylz) < 1. Using this we can upper-bound d(Py,y x W,P oy ms X Wy X W) by

d(Pey x W, PXY . x Wy x W)

my,mz
1 e N . i
=5 > | Py (2, )W (9, 2], §) = PXY o ()W (i)W (3, 21, §)] (518)
(2,5,y,2) EXXYXYXZ
1 X ~ ey ~
=3 Z Py (@,9) = PRY o @Wy (i) > Wiy, 2|2,9) (519)
(z,§)EX XY (y,2)EYXZ
1 N i
=3 > }Px,y(xvy) Py o (@) Wy(g]z) | (520)
(z,5)€X x
<u/2, (%, ) ENME, (521)

Consequently, the Data-Processing inequality for the Total-Variation distance [13, Lemma 1] implies that

d(Py, Py o Wy) < p/2,  (x,y) € N2, (522a)
d(P 7yI/VYz,( m’g mz X Wy)Wz) S M/2, (X, y) e /\/Z”yvmz_ (522b)

This, combined with the fact that entropy is continuous, implies that

[1(Prys Wy) = H(PXY 1 W)
D |H(By) — HPES 0 W) (523)
(2) ulog % (524)
(2 e—p,  (xy) e N2, (525)

where (a) holds because Wy (y|z, §) = 1,=5; (b) holds by (52Zal), [20, Lemma 2.7], and the fact that u < 1/2; and
(c) holds by (@91). Similarly,

[I(Pry, Wz) = I(P5Y ., x Wy, W)

my,mz
(a)

< |H(PeyWz) — H((PXY s x W)W2)| + Y | Pry(@,3) — P, (2) Wy ()| H(Wz(-|2,5))  (526)

my,mz
z,y
®) |Z|
< plog — +2d(Pxy, P ., X Wy)log|Z]| (527)
© ZP]?
< plog u (528)
(d)
<e—p, (xy) eNY™ME, (529)

where (a) holds by definition of mutual information and the Triangle inequality; (b) holds by (522h)), [20, Lemma 2.7],
the fact that u < 1/2, because the uniform distribution maximizes entropy, and by definition of the Total-Variation

distance; (¢) holds by (BIT); and (d) holds by (@31). From (G02), (520), and (G29) we conclude that (B09) holds. O
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