
ar
X

iv
:1

40
1.

67
38

v1
  [

cs
.IT

]  
27

 J
an

 2
01

4

Capacity Region of the Broadcast Channel with
Two Deterministic Channel State Components

Hyeji Kim and Abbas El Gamal
Department of Electrical Engineering

Stanford University
Email: hyejikim@stanford.edu, abbas@ee.stanford.edu

Abstract—This paper establishes the capacity region of a class
of broadcast channels with random state in which each channel
component is selected from two possible functions and each
receiver knows its state sequence. This channel model does not
fit into any class of broadcast channels for which the capacity
region was previously known and is useful in studying wireless
communication channels when the fading state is known only at
the receivers. The capacity region is shown to coincide withthe
UV outer bound and is achieved via Marton coding.

I. I NTRODUCTION

The 2-receiverbroadcast channel with two determinis-
tic channel states (or BC-TDCS in short) is a discrete
memoryless broadcast channel with random state(X ×
S, p(s)p(y1, y2|x, s),Y1×Y2), whereS = (S1, S2) ∈ {1, 2}2,
pS1

(1) = p1, pS1
(2) = 1−p1 = p̄1 andpS2

(1) = p2, pS2
(2) =

p̄2, and the outputs

Y1 =

{

f1(X) if S1 = 1,

f2(X) if S1 = 2,

Y2 =

{

f1(X) if S2 = 1,

f2(X) if S2 = 2

for some deterministic functionsf1 andf2 of the inputX . As
an example of a BC-TDCS, consider the following.

Example 1 (Blackwell channel with state [1]). The functions
f1 andf2 for this example are depicted in Figure 1.
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Fig. 1. The deterministic components of the Blackwell channel with state.

In this paper, we consider the setup in which the sender
wishes to transmit an independent messageMj ∈ [1 : 2nRj ]
to receiverj ∈ {1, 2} and receiverj knows the state sequence
Sn
j but the sender does not. We define achievable rate pairs

(R1, R2) in the standard way [2] and the capacity regionC as
the closure of the set of all achievable rate pairs.

It is easy to see that the capacity region of this channel
is the same as that of the broadcast channel with inputX
and outputs(Y1, S1) and (Y2, S2). This equivalent broadcast
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channel, however, does not belong to any class of channels
with known capacity region (see [3] for classes of broadcast
channels with known capacity). Also, very little is known
about the capacity region of the broadcast channel with
random state known only at the receivers. Previous work on
this setting has focused mainly on the Gaussian fading BC with
superposition coding [4], time division with power control[5],
and a superposition of binary inputs motivated by a capacity
achieving strategy for a layered erasure broadcast channel[6].
Even when the fading BC is degraded and superposition
coding is optimal, Gaussian input distribution is not in general
optimal and capacity remains unknown [7].

There has been more work on the broadcast channel with
causal and noncausal state information known at the transmit-
ter. In [8], the capacity region of the deterministic BC when
the state is known noncausally at the transmitter is established.
In [9], this result is extended to semideterministic BC, andit
is shown that the capacity region does not enlarge when the
state is also known at the receivers.

There has also been work on the setting in which the state
is known at the receivers and onlystrictly causally at the
transmitter. In [10], [11], the capacity region of the binary
erasure broadcast channel with state under this setting is
established. In [12] it is shown via two examples that strictly
causal state information at the transmitter can enlarge the
capacity region of the broadcast channel with state. In [1],
it is shown that the scheme in [12] is a special case of a
straightforward adaptation of the feedback scheme in [13].The
Blackwell broadcast channel with state in Example 1 is also
introduced and an achievable rate region is established when
p1 = p2 = 0.5 (and the state in known at the receivers and
strictly casually at the transmitter).

In this paper we establish the capacity region of the
BC-TDCS when the state is known only at the receivers.
Achievability is established using Marton coding [14]. The
key observation is that the auxiliary random variables in the
Marton region characterization,U1 andU2, are always set to
f1, f2, X , or ∅. In particular if the channel fromX to Y1 is
more likely to bef1 than the channel fromX to Y2, then
(U1, U2) are set to(X, ∅), (∅, X), or (f1, f2). The converse
is established by showing that the Marton inner bound with
these extreme choices of auxiliary random variables coincides
with the UV outer bound [15].

Our result is significant for several reasons:
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• It establishes the capacity region of a new class of broad-
cast channels—our setting does not belong to any class
of broadcast channels with previously known capacity
region.

• It establishes the capacity region of a nontrivial class of
broadcast channels with state known at the receivers—a
setting with very few known results.

• It provides yet another class of broadcast channels for
which Marton coding is optimal.

• Our channel model can be used to approximate certain
fading broadcast channels in high SNR (see Example 2
in Section II).

II. CAPACITY REGION OF THEBC-TDCS

Without loss of generality, assumep1 ≥ p2. We now state
the main result of this paper.

Theorem 1. The capacity region of the BC-TDCS(X ×
S, p(s)p(y1, y2|x, s),Y1×Y2) with the state known only at the
receivers is the convex hull of the set of all rate pairs(R1, R2)
such that

R1 ≤ I(U1;Y1 |S),
R2 ≤ I(U2;Y2 |S),

R1 +R2 ≤ I(U1;Y1 |S) + I(U2;Y2 |S)− I(U1;U2)

(1)

for somep(x) and either(U1, U2) = (f1, f2), (U1, U2) =
(X, ∅), or (U1, U2) = (∅, X).

Achievability follows immediately since (1) is contained in
Marton’s rate region. The converse is proved in Section III.

Now consider the following more explicit characterization
of the capacity region which we will use in the examples and
the converse.

Proposition 1. The capacity region of the BC-TDCS with the
state known only at the receivers is the convex hull of the
union of four rate regions:

R1 = {(R1, R2) : R1 ≤ C1, R2 = 0},
R2 = {(R1, R2) : R1 = 0, R2 ≤ C2},
R3 = {(R1, R2) : R1 ≤ p1H(f1) + p̄1I(f1; f2),

R2 ≤ p̄2H(f2 |f1)
for somep(x) ∈ P1},

R4 = {(R1, R2) : R1 ≤ p1H(f1 |f2),
R2 ≤ p2I(f1; f2) + p̄2H(f2)

for somep(x) ∈ P2},

(2)

whereCj = maxp(x) I(X ;Yj |S) for j = 1, 2, and

P1 = {argmax
p(x)

p1H(f1) + p̄1I(f1; f2) + λp̄2H(f2 |f1) :

for somep̄1/p̄2 ≤ λ ≤ 1},
P2 = {argmax

p(x)

p1H(f1 |f2) + λp2I(f1; f2) + λp̄2H(f2) :

for some1 ≤ λ ≤ p1/p2}.
Proof: Let C andC0 denote the region defined in (1) and

in (2), respectively. All we need to show is thatC0 = C. First

note that we can expressC as the convex hull of the union of
the four regions:

R
′
1 = {(R1, R2) : R1 ≤ I(X ;Y1 |S), R2 = 0 for somep(x)},

R
′
2 = {(R1, R2) : R1 = 0, R2 ≤ I(X ;Y2 |S) for somep(x)},

R
′
3 = {(R1, R2) : R1 ≤ I(f1;Y1 |S),

R2 ≤ I(f2;Y2 |S)− I(f1; f2)

for somep(x)},
R

′
4 = {(R1, R2) : R1 ≤ I(f1;Y1 |S)− I(f1; f2),

R2 ≤ I(f2;Y2 |S)
for somep(x)}.

(3)

Clearly R1 = R′
1, R2 = R′

2, R3 ⊆ R′
3, andR4 ⊆ R′

4. Thus,
C0 ⊆ C. We now show that every supporting hyperplane of
C intersectsC0, i.e., for everyλ ≥ 0, there exists a rate pair
(R1, R2) ∈ C0 such thatR1+λR2 = max(R1,R2)∈CR1+λR2.

Lemma 1. Every supporting hyperplane ofC intersectsC0,
i.e., for all λ ≥ 0,

max
(R1,R2)∈C

R1 + λR2 = max
(R1,R2)∈C0

R1 + λR2.

The proof of this lemma is in Appendix A.
To complete the proof we use the following.

Lemma 2. [16] Let R ∈ Rd be convex andR1 ⊆ R2 be two
bounded convex subsets ofR, closed relative toR. If every
supporting hyperplane ofR2 intersectsR1, thenR1 = R2.

Example 1 (continued)The capacity region of the Blackwell
channel with state known only to the receivers is the convex
hull of the union of:

R
′
3 = {(R1, R2) : R1 ≤ H(α0)− p̄1ᾱ1H(α0/ᾱ1),

R2 ≤ p̄2ᾱ0H(α1/ᾱ0)

for someα0, α1 ≥ 0, α0 + α1 ≤ 1}, and

R
′
4 = {(R1, R2) : R1 ≤ p1ᾱ1H(α0/ᾱ1),

R2 ≤ H(α1)− p2ᾱ0H(α1/ᾱ0)

for someα0, α1 ≥ 0, α0 + α1 ≤ 1}.

To show this, we evaluateR′
3 andR′

4 in (3) and note that the
rate pairs(C1, 0) = (1, 0) ∈ R′

3 and (0, C2) = (0, 1) ∈ R′
4.

Hence,C is the convex hull of the union ofR′
3 andR′

4. The
capacity region with state for(p1, p2) = (0.5, 0.5), (0.7, 0.3),
and (1, 0) is plotted in Figure 2. For(p1, p2) = (0.5, 0.5),
the two channels are statistically identical, hence the capacity
region coincides with the time-division region. For(p1, p2) =
(1, 0), the channel reduces to the Blackwell channel with no
state [17]. For(p1, p2) in between these two extreme cases,
the capacity region is established by our theorem.

Next consider the following example which is motivated by
deterministic approximations of wireless channels.
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Fig. 2. Capacity region of the Blackwell channel with the state.

Example 2 (Finite-field BC-TDCS). Consider the BC-TDCS
with the state known only at the receivers withX =
[

X1 X2

]T
:

Y1 =

{

h11X1 + h12X2 if S1 = 1,

h21X1 + h22X2 if S1 = 2,

Y2 =

{

h11X1 + h12X2 if S2 = 1,

h21X1 + h22X2 if S2 = 2,

(4)

where the channel matrix is full-rank,Y1 = Y2 = X1 = X2 =
[0 : K − 1], and the arithmetic is over the finite field.

To compute the capacity region, first note thatC1 = logK
andC2 = logK. Thus,

R1 = {(R1, R2) : R1 ≤ logK,R2 = 0},
R2 = {(R1, R2) : R1 = 0, R2 ≤ logK}.

To evaluateR3 andR4, we computeP1 andP2. Since

p1H(f1) + p̄1I(f1; f2) + λp̄2H(f2 |f1)
= p1H(f1) + p̄1H(f2) + (λp̄2 − p̄1)H(f2 |f1)
≤ (p1 + λp̄2) logK

for p̄1/p̄2 ≤ λ ≤ 1 with equality if X ∼ Unif([0 :
K − 1]2), P1 =

{

Unif([0 : K − 1]2)
}

. Similarly, P2 =
{

Unif([0 : K − 1]2)
}

. Note that whenX is uniform,H(f1) =
H(f2) = H(f1|f2) = H(f2|f1) = logK. Hence,

R3 = {(R1, R2) : R1 ≤ p1 logK,R2 ≤ p̄2 logK},
R4 = {(R1, R2) : R1 ≤ p1 logK,R2 ≤ p̄2 logK},

and the capacity region is

C = co{(0, 0), (logK, 0), (0, logK), (p1 logK, p̄2 logK)}.
Figure 3 plots the capacity region for(p1, p2) =

(0.5, 0.5), (0.7, 0.4), and(1, 0). For (p1, p2) = (0.5, 0.5), the
two channels are statistically identical and the capacity region
coincides with the time-division region. For(p1, p2) = (1, 0),

the capacity region is{(R1, R2) : R1 ≤ logK, R2 ≤
logK} because the channel matrix is full-rank. For(p1, p2)
in between these two extreme cases, the capacity region is
established by our theorem.
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Fig. 3. Capacity region of the Finite Field BC-TDCS.

Connection to wireless channels: Consider the following fad-
ing broadcast channel

Yj = H
†
jX+ Zj for j = 1, 2, (5)

where† denotes the conjugate-transpose,X =
[

X1 X2

]T ∈
C2×1,E[X†

X] ≤ P , Zj ∼ CN (0, 1) and the noise sequences
Zji, j = 1, 2 andi ∈ [1 : n], are i.i.d. In addition, forj = 1, 2,

H
†
j =

{

[h11 h12] if Sj = 1 w.p. pj,

[h21 h22] if Sj = 2 w.p. p̄j,

where the channel matrix is inC2×2 and is full rank.
We now show that the degrees of freedom (DoF) of this

fading Gaussian broadcast channel, obtained by dividing the
maximum sum-rate bylogP and taking the limit, isp1 + p̄2.

Since the variance of the noiseZj is bounded, the DoF of
channel in (5) is equal to that of the BC-TDCS withYj =

H
†
jX for j = 1, 2 [12]. We show that the DoF is achieved

whenU1 = f1 andU2 = f2 are independent and Gaussian
with variancesαP andβP for someα, β > 0 such that

[

X1

X2

]

=

[

h11 h12

h21 h22

]−1 [
U1

U2

]

satisfy the power constraint. First note that for(R1, R2) ∈ C,

max lim
P→∞

R1 +R2

logP

= max
p(X)

lim
P→∞

p1H(f1) + p̄2H(f2) + (p̄1 − p̄2)I(f1; f2)

logP
.

(6)

Now we show that each term in (6) is maximized
with the chosen input. First,limP→∞ p1H(f1)/ logP =



limP→∞ p1 log(αP )/ logP = p1. Now we show that
p1 = max limP→∞ p1H(f1)/ logP . Since Var(f1) =
Var(h11X1 + h12X2) = |h11|2γP + |h12|2γ̄P + (h∗

11h12 +
h∗
12h11)ρ

√
γγ̄P for some0 ≤ γ, ρ ≤ 1 due to the power

constraint,H(f1) ≤ log(|h11|2γ + |h12|2γ̄ + (h∗
11h12 +

h∗
12h11)ρ

√
γγ̄) + logP . Hence,limP→∞ p1H(f1)/ logP ≤

p1. Similarly, limP→∞ p̄2H(f2)/ logP is maximized and is
equal top̄2, and limP→∞(p̄1 − p̄2)I(f1; f2)/ logP is maxi-
mized and is equal to0. Thus, the following holds:

max
p(X)

lim
P→∞

p1H(f1) + p̄2H(f2) + (p̄1 − p̄2)I(f1; f2)

logP

= p1 + p̄2,

and the DoF of the fading Gaussian BC in (5) isp1 + p̄2.

III. PROOF OF THECONVERSE

The UV bound for the broadcast channel with state known
at the receivers states that if a rate pair(R1, R2) is achievable,
then it must lie in the intersection of the regions

R̄1 = {(R1, R2) : R1 ≤ I(U1;Y1 |S),
R2 ≤ I(X ;Y2 |S),
R1 + R2 ≤ I(U1;Y1 |S) + I(X ;Y2 |U1, S)

for somep(u1, x)},
R̄2 = {(R1, R2) : R1 ≤ I(X ;Y1 |S),

R2 ≤ I(U2;Y2 |S),
R1 + R2 ≤ I(U2;Y2 |S) + I(X ;Y1 |U2, S)

for somep(u2, x)}.

Denote this outer bound bȳR.
To establish the converse we show that every supporting

hyperplane of̄R intersectsC.

Lemma 3. For all λ ≥ 0,

max
(R1,R2)∈R̄

R1 + λR2 = max
(R1,R2)∈C

R1 + λR2. (7)

Proof: To prove the lemma for0 ≤ λ ≤ 1, consider
maximizingR1 + λR2 over (R1, R2) ∈ R̄1.

For anyp(u1, x), R1+λR2 such that(R1, R2) ∈ R̄1 is max-
imized whenR1 = I(U1;Y1|S) andR2 = I(X ;Y2|U1, S) =
H(Y2|U1, S). Thus,

max
(R1,R2)∈R̄1

R1 + λR2 = max
p(u1,x)

I(U1;Y1 |S) + λH(Y2 |U1, S)

= max
p(x)

{

H(Y1 |S) + max
p(u1|x)

{λH(Y2 |U1, S)−H(Y1 |U1, S)}
}

= max
p(x)

{

p1H(f1) + p̄1H(f2) + max
p(u1|x)

{(λp̄2 − p̄1)H(f2 |U1)

+ (λp2 − p1)H(f1 |U1)}
}

. (8)

For a fixedp(x) only the last two terms in (8) depend on
p(u1|x). We now consider different ranges of0 ≤ λ ≤ 1.

• If 0 ≤ λ ≤ p̄1/p̄2, then for any fixedp(x),

(λp̄2 − p̄1)H(f2 |U1) + (λp2 − p1)H(f1 |U1) ≤ 0

with equality if U1 = X . Thus, (8) can be rewritten as

max
(R1,R2)∈R̄1

R1 + λR2 = max
p(x)

p1H(f1) + p̄1H(f2)

= max
(R1,R2)∈R1

R1 + λR2

• If p̄1/p̄2 < λ ≤ 1, then for any fixedp(x),

(λp̄2 − p̄1)H(f2 |U1) + (λp2 − p1)H(f1 |U1)

= (λ − 1)H(f1 |U1)

+ (λp̄2 − p̄1)(H(f2 |f1, U1)−H(f1 |f2, U1))

≤ (λp̄2 − p̄1)H(f2 |f1)
with equality if U1 = f1. Thus, (8) can be rewritten as

max
(R1,R2)∈R̄1

R1 + λR2

= max
p(x)

p1H(f1) + p̄1I(f1; f2) + λp̄2H(f2 |f1)

= max
(R1,R2)∈R3

R1 + λR2.

Thus,max(R1,R2)∈C R1 + λR2 ≥ max(R1,R2)∈R̄R1 + λR2

for 0 ≤ λ ≤ 1. Equality in the lemma holds becauseC ⊆ R̄.
The proof forλ > 1 follows similarly (see Appendix B).

The proof of the converse is completed using Lemma 2.

IV. CONCLUSION

We established the capacity region of the BC-TDCS channel
when the state is known only at the receivers. This channel
does not belong to any class of broadcast channels for which
the capacity was previously known. There are several open
problems that would be interesting to explore further, includ-
ing: What is the capacity region of the BC-TDCS with com-
mon message when the state is known only at the receivers?
What is the capacity region when each channel component is
selected from a set of more than two deterministic channel
states?
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APPENDIX A
PROOF OFLEMMA 1

We prove the lemma for0 ≤ λ ≤ 1. The proof forλ > 1
follows similarly. First we show that for0 ≤ λ ≤ 1,

max
(R1,R2)∈C

R1 + λR2 = max
i=1,2,3,4

{

max
(R1,R2)∈R′

i

R1 + λR2

}

(a)
= max

i=1,3

{

max
(R1,R2)∈R′

i

R1 + λR2

}

(b)
=

{

max(R1,R2)∈R1
R1 + λR2 if 0 ≤ λ ≤ p̄1/p̄2,

max(R1,R2)∈R3
R1 + λR2 if p̄1/p̄2 < λ ≤ 1.

The equality in(a) holds because

max
(R1,R2)∈R′

3

R1 + λR2

= max
p(x)

I(f1;Y1 |S) + λI(f2;Y2 |S)− λI(f1; f2)

≥ max
p(x)

I(f1;Y1 |S)− I(f1; f2) + λI(f2;Y2 |S)

= max
(R1,R2)∈R′

4

R1 + λR2, and

max
(R1,R2)∈R′

4

R1 + λR2

= max
p(x)

λp2H(f1) + λp̄2H(f2) + (p1 − λp2)H(f1 |f2)

≥ max
p(x)

λp2H(f1) + λp̄2H(f2) = max
(R1,R2)∈R′

2

R1 + λR2.

To derive the equality in(b) note that

max
(R1,R2)∈R′

1

R1 + λR2 = max
p(x)

{p1H(f1) + p̄1H(f2)},

max
(R1,R2)∈R′

3

R1 + λR2

= max
p(x)

{p1H(f1) + p̄1H(f2) + (λp̄2 − p̄1)H(f2 |f1)}.

For 0 ≤ λ ≤ p̄1/p̄2, max(R1,R2)∈R′

1
R1 + λR2 ≥

max(R1,R2)∈R′

3
R1 + λR2, and for p̄1/p̄2 < λ ≤ 1,

max(R1,R2)∈R′

3
R1 + λR2 ≥ max(R1,R2)∈R′

1
R1 + λR2.

Finally, (b) holds since max(R1,R2)∈R′

3
R1 + λR2 =

max(R1,R2)∈R3
R1 + λR2 for p̄1/p̄2 < λ ≤ 1 andR′

1 = R1.
Thus, for 0 ≤ λ ≤ 1, max(R1,R2)∈C0

R1 + λR2 ≥
max(R1,R2)∈C R1+λR2. Finally, equality holds becauseC0 ⊆
C.

APPENDIX B
PROOF OFLEMMA 3 FORλ > 1

For λ > 1, we consider the equivalent maximization
problem:max(R1,R2)∈R̄2

λ−1R1 +R2 for λ−1 < 1.
For anyp(u2, x), among the(R1, R2) ∈ R̄2, λ−1R1+R2 is

maximized whenR2 = I(U2;Y2|S) andR1 = H(Y1|U2, S).
Thus,

max
(R1,R2)∈R̄2

λ−1R1 +R2

= max
p(u2,x)

λ−1H(Y1 |U2, S) + I(U2;Y2 |S)

= max
p(x)

{

H(Y2 |S) + max
p(u2|x)

{λ−1H(Y1 |U2, S)

−H(Y2 |U2, S)}
}

= max
p(x)

{

p2H(f1) + p̄2H(f2)

+ max
p(u2|x)

{(λ−1p̄1 − p̄2)H(f2 |U2)

+ (λ−1p1 − p2)H(f1 |U2)}
}

. (9)

For a fixedp(x), only the last two terms in (9) depend on
p(u2|x). We now consider different ranges ofλ > 1.

• If λ > p1/p2, then for any fixedp(x),

(λ−1p̄1 − p̄2)H(f2 |U2) + (λ−1p1 − p2)H(f1 |U2) ≤ 0

with equality if U2 = X . Then, (9) can be expressed as

max
(R1,R2)∈R̄2

R1 + λR2 = max
p(x)

λp2H(f1) + λp̄2H(f2)

= max
(R1,R2)∈R2

R1 + λR2.

• If 1 < λ ≤ p1/p2, then for any fixedp(x),

(λ−1p̄1 − p̄2)H(f2 |U2) + (λ−1p1 − p2)H(f1 |U2)

= (λ−1 − 1)H(f2 |U2)

+ (λ−1p1 − p2){H(f1 |f2, U2)−H(f2 |f1, U2)}
≤ (λ−1p1 − p2)H(f1 |f2)

with equality if U2 = f2. Then, (9) can be expressed as

max
(R1,R2)∈R̄2

R1 + λR2

= max
p(x)

p1H(f1 |f2) + λp2I(f1; f2) + λp̄2H(f2)

= max
(R1,R2)∈R4

R1 + λR2.

Thus,max(R1,R2)∈C R1 +λR2 ≥ max(R1,R2)∈R̄R1 +λR2

for λ > 1. Finally, equality holds becauseC ⊆ R̄.
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