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Abstract—This paper establishes the capacity region of a class channel, however, does not belong to any class of channels
of broadcast channels with random state in which each chante with known capacity region (se€![3] for classes of broadcast
component is selected from two possible functions and each .pannels with known capacity). Also, very little is known
receiver knows its state sequence. This channel model doestn . . .
fit into any class of broadcast channels for which the capaojt about the capacity region of the b_roadcast <_:hanne| with
region was previous|y known and is useful in Studying wirelss random State knOWn Only at the receivers. Previous Work on
communication channels when the fading state is known onlyta this setting has focused mainly on the Gaussian fading BE wit
the receivers. The capacity region is shown to coincide witthe superposition coding [4], time division with power contfg],

UV outer bound and is achieved via Marton coding. and a superposition of binary inputs motivated by a capacity

I. INTRODUCTION achieving strategy for a layered erasure broadcast chifjnel
Even when the fading BC is degraded and superposition
coding is optimal, Gaussian input distribution is not in gexi
optimal and capacity remains unknown [7].

The 2-receiverbroadcast channel with two determinis-
tic channel states (or BC-TDCS in short) is a discrete

memoryless broadcast channel with random state ? There has been more work on the broadcast channel with
S, p(s)p(yr, y2l, 5), V1 x W), vxihereS = (51,52) € {1,2}*, " causal and noncausal state information known at the transmi
ps,(1) = p1,ps, (2) = L=p1 = prandps, (1) = p2,p5,(2) = yor | [8], the capacity region of the deterministic BC when
p2, and the outputs the state is known noncausally at the transmitter is estadxi.

A(X) S =1, In [9], this result is extended to semideterministic BC, @nd
1= £(X) if S =2 is shown that the capacity region does not enlarge when the
2 e state is also known at the receivers.
Vo — fi(X) if Se =1, There has also been work on the setting in which the state
2= f2( X)) if So=2 is known at the receivers and onlyrictly causally at the

o . . transmitter. In [[10], [[11], the capacity region of the bipar
for some deterministic functiong and f» of the inputX. As  erasure broadcast channel with state under this setting is

an example of a BC-TDCS, consider the following. established. INT12] it is shown via two examples that dirict
Example 1 (Blackwell channel with staté [1])The functions causa! state_ information at the transmitter can enlarge the
1 and f» for this example are depicted in Figufk 1. .ca.pacny region of the broadc_ast cha_nnel with .state. In [1],
it is shown that the scheme in_]12] is a special case of a
O—0 0 0 straightforward adaptation of the feedback scheme in [Li3¢
; Blackwell broadcast channel with state in Examiple 1 is also
X 2 filX) Xx 2 f2(X) " introduced and an achievable rate region is establishedh whe
1 T~ 1 1 1 p1 = p2 = 0.5 (and the state in known at the receivers and
strictly casually at the transmitter).
Fig. 1. The deterministic components of the Blackwell ctenwith state. In this paper we establish the capacity region of the

In this paper, we consider the setup in which the send@f-TDCS when the state is known only at the receivers.
wishes to transmit an independent messagee [1 : 25| Achievability is established using Marton codirig [14]. The
to receiverj € {1,2} and receiver knows the state sequence,key observ_atlon is that t_he _auxmary random variables & th
S™ but the sender does not. We define achievable rate pAff&rton region characterization, andl, are always set to
(Ry, Ry) in the standard way 2] and the capacity regibas /1:./2: X, or 0. In particular if the channel fronX to Y, is
the closure of the set of all achievable rate pairs. more likely to be f, than the channel fromX to Y5, then

It is easy to see that the capacity region of this channidf1;Uz) are set to(X,0), (@, X), or (f1, f2). The converse
is the same as that of the broadcast channel with ifput 'S established by showing that the Marton inner bound with

and outputs(Y;, S1) and (Y2, S»). This equivalent broadcasttNese extreme choices of auxiliary random variables cdexi
’ ’ with the UV outer bound [15].

This work was partially supported by Air Force grant FA95BD1-0124. Our result is significant for several reasons:
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¢ |t establishes the capacity region of a new class of broadlste that we can expressas the convex hull of the union of
cast channels—our setting does not belong to any clake four regions:
of broadcast channels with previously known capaci%/
region. 1 ={(R1, R2): Ry < I(X;Y1]5), Ro = 0 for somep(z)},
e It establishes the capacity region of a nontrivial class &, = {(R1, R2): Ry =0, Ry < I(X;Y>5|S) for somep(z)},
brodcas channels i Sl ol the recevers— = {(f, o) R < (3 415)
e It provides yet another class of broadcast channels for fy < I(f2:V215) = I(f15 f2)
which Marton coding is optimal. for somep(z)},
e Our channel model can be used to approximate certdf} = {(R1, Ra2): Ry < I(f1;Y1]S) — I(f1; f2),
fading broadcast channels in high SNR (see Exarple 2 Ry < I(f2;Y2]5)

in Sectior(T). for somep(x)}.
[l. CAPACITY REGION OF THEBC-TDCS 3)

Without loss of generality, assumg > p,. We now state

. . =R = R C R C R..
the main result of this paper. Clearly Ry = Ry, Ro = Rp, Rg € R3, andRy € Ry. Thus,

Co C €. We now show that every supporting hyperplane of
Theorem 1. The capacity region of the BC-TDC&Y x C intersectsCy, i.e., for every\ > 0, there exists a rate pair
S, p(s)p(y1,y2|z, s), V1 x Vo) with the state known only at the (R1, Ra) € Co such thatR?; +ARy = max(g, r,)cec R1+ARs.

receivers is the convex hull of the set of all rate p&Rs, Ro2) Lemma 1. Every supporting hyperplane df intersectsC,

such that i.e., forall\ >0,
Ry < I(Uy; Y118),
Ry < I(Us; Y3 9), ) XL T AR = T T AR

(Rl,RQ)Ee (Rl,RQ)Geo
Ry + Ry < I(Uy; Y1S) + 1(Uy; Y2|S) — I(Un; Uz)
for somep(x) and either(Ui,Us) = (fi, f2), (U1,U2) =
(X,0), or (U1, U) = (0, X).

Achievability follows immediately sincd{1) is contained i Lemma 2. [L6] Let R € R? be convex and; € X, be two
Marton’s rate region. The converse is proved in Sedfign ”Lbounde_d convex subsets fRf closed relative taR. If every
Now consider the following more explicit characterizatiofUPPOrting hyperplane ks intersectsky, thenR®; = Ro.
of the capacity region which we will use in the examples and m

the converse.

The proof of this lemma is in Appendix]A.
To complete the proof we use the following.

Example 1 (continued)The capacity region of the Blackwell
Proposition 1. The capacity region of the BC-TDCS with thechannel with state known only to the receivers is the convex
state known only at the receivers is the convex hull of theull of the union of:
union of four rate regions:
Ri = {(R1, R2): Ry < C1, Ry = 0},
Ro = {(R1,R2): Ry =0, Ry < Ca},
Rz = {(R1, R2): Ry < p1H(f1) +p1l(f1; f2),
Ry < paH(f2|f1)
for somep(z) € P},
Ry ={(R1,Ra): Ry < p1H(f1]f2),
Ry < poI(f1; f2) + p2H(f2) To show this, we evaluat®; and®) in (@) and note that the
for somep(z) € P}, rate pairs(C1,0) = (1,0) € R and (0,C5) = (0,1) € R}.
_ Hence,C is the convex hull of the union dRy andR). The
whereC; = maxy(,) [(X;Y;]S) for j = 1,2, and capacity region with state fap:, p2) = (0.5,0.5), (0.7,0.3),

Ry = {(R1,Rs): R1 < H(ap) — pranH(ap/ar),
Ry < paaoH (a1 /)
for someag, a; > 0,009 + @1 < 1}, and
4= {(R1,Ra): Ry <pra1H(ag/an),
(2 Ry < H(ai1) — paaoH (a1/ao)
for someag, a1 > 0,9 + a1 < 1}.

Py = {argmax p1H(f1) + prI(f1; f2) + Moo H (fa] f1): and (1,0) is plotted in FigurdR. Forp;,p2) = (0.5,0.5),
p(x) the two channels are statistically identical, hence thexciyp
for somep; /p2 < A < 1}, region coincides with the time-division region. Fgn, p2) =

Py = {argmax p1H (f1| f2) + Ap2I(f1; fo) + Moo H (f2): (1,0), the channel red.uces to the Blackwell channel with no
p(x) state [17]. For(p1,p2) in between these two extreme cases,

for somel < A < p1/po}. the capacity region is established by our theorem.

. i . Next consider the following example which is motivated by
Proof: Let € andC, denote the region defined ifll (1) andyeterministic approximations of wireless channels.
in @), respectively. All we need to show is thég = C. First



Ry the capacity region is{(Ri,R2): R1 < logK, Ry <

A log K} because the channel matrix is full-rank. Fox,p)
in between these two extreme cases, the capacity region is
established by our theorem.

Ry/log K
A
1,0
1 (1,0)
(0.7,0.4)
0.6 N ‘
(0.5,0.5) "\
Fig. 2. Capacity region of the Blackwell channel with thetesta }
o . 1 > Ri/logK
Example 2 (Finite-field BC-TDCS) Consider the BC-TDCS 0 0.7 1 1/ log
with the ?tate known only at the receivers witk =
[Xl XQ] : Fig. 3. Capacity region of the Finite Field BC-TDCS.

Y, = {hlle +aXs !f S1=1, Connection to wireless channels: Consider the following fad-

ho1 X1 + hoa Xy if 51 =2, 4) ing broadcast channel

Y, = h11 X1 + h12Xo ?f Sz =1, Y; = H;X—i— Z; forj=1,2, (5)

ho1 X1 + hooXo  if S5 =2,

where} denotes the conjugate-transpoXe~= [Xl XQ]T €

where the channel ma_trix is ful!-ran&i,l = yg_ = Xl_ =X = C2¥1 E[X'X] < P, Z; ~ CN'(0,1) and the noise sequences
[0: K — 1], and the arithmetic is over the finite field. Z;;,j=1,2andi € [1: n, are i.i.d. In addition, foj = 1,2,

To compute the capacity region, first note tligt= log K

andCy = log K. Thus, - {[hu hi2] if S; =1 w.p. p;,
IRl — {(RlaRQ): Rl < 10gK, R2 — O}, [h21 h22] if Sj =2 W.p.]_)j,
Rz = {(R1,Ra2): Ry =0, Ry <logK}. where the channel matrix is i62*2 and is full rank.

We now show that the degrees of freedom (DoF) of this
fading Gaussian broadcast channel, obtained by dividieg th
p1H(f1) + p1l(f1; f2) + Moo H(f2| f1) maximum sum-rate bjog P and taking the limit, igp; + ps.

— o H + 3 H(F) + (Noo — 91 H Since the variance of the noisg; is bounded, the DoF of

<I(?1 if;\) )1]: K(fQ) (2 =P H(f2| 1) channel in [(b) is equal to that of the BC-TDCS wilh =

= \P17 AP2) 108 H'X for j = 1,2 [12]. We show that the DoF is achieved
for p1/pa < XA < 1 with equality if X ~ Unif([0 : whenU; = f; andU; = f> are independent and Gaussian

To evaluateR; andR,, we computeP; and P;. Since

K = 1), Pr = {Unif([0: K —1)°)}. Similarly, P, = with variancesxP and 5P for somea, § > 0 such that
{Unif ([0 : K — 1]*)}. Note that wheiX is uniform,H (f;) = X hiy hi] (U
H(f2) = H(f1|f2) = H(fa|f1) = log K. Hence, [ 1] - [ n 12} [ 1]

X, hot  haz Uz

Rz = {(R1,Rz): R1 <p1log K, Ry < polog K},

satisfy the power constraint. First note that {dt;, Rs) € C,
Ry = {(R1, R2): Ry < p1log K, Ry < palog K'},

li R+ Ry
and the capacity region is X P Tlog P
€ = ¢0{(0,0), (log K, 0), (0,log K), (p1 log K, pz log K)}. = max L P +152H(f12) ‘;(ﬁl — ) I(f1; f2)
p(X) P—oo og
Figure [3 plots the capacity region fofpi,p2) = (6)

(0.5,0.5),(0.7,0.4), and (1,0). For (p1,p2) = (0.5,0.5), the
two channels are statistically identical and the capaeigian Now we show that each term in[J(6) is maximized
coincides with the time-division region. Fép;,p2) = (1,0), with the chosen input. Firstlimp_,oo p1H(f1)/logP =



limp_,oo p1 log(aP)/logP = p;. Now we show that
p1 = maxlimp_,.p1H(f1)/logP. Since Var(f,) =
Var(h11 X7 + h12X2) = |h11|2’7P + |h12|2’7p + (hi1h12 +
hish11)p/A7P for some0 < ~,p < 1 due to the power
Constraint,H(fl) < 1Og(|h11|2’7 + |h12|2’? + (hflhlg +
hishi11)p/A7) + log P. Hence,limp_, o p1 H(f1)/log P <
p1. Similarly, limp_, o, p2H(f2)/log P is maximized and is
equal tops, andlimp_, o (p1 — P2)I(f1; f2)/log P is maxi-
mized and is equal t6. Thus, the following holds:

e lim p1H(f1) +p2H(f2) + (P1 — p2)I(f1; f2)
p(X) P—oo lOgP

= Pp1 + P2,
and the DoF of the fading Gaussian BC [ih (5)pis+ p-.

IIl. PROOF OF THECONVERSE

The UV bound for the broadcast channel with state known

at the receivers states that if a rate gdis, R») is achievable,
then it must lie in the intersection of the regions

R1 ={(R1,R2): Ry < I(U1; Y119),
Ry < I(X:Ya|S),
Ri+ Ry < I(U1;Y115) + 1(X;Y2|Un, S)
for somep(uy,x)},

Ry = {(Ry1, Ra): Ry < I(X;Y1]9),
Ry < I(Us;Y21S),
Ri+ Ry < I(U2;Y2|5) + 1(X;Y1|Ua, S)
for somep(usg, x)}.

Denote this outer bound bR.
To establish the converse we show that every supporti
hyperplane ofR intersectsC.

Lemma 3. For all A > 0,

max Rl + )\RQ = max R1 + )\RQ (7)
(R1,R2)€ER (R1,R2)€C
Proof: To prove the lemma fob < X\ < 1, consider
maximizing Ry + ARy over (Ry, Ry) € Ry.
For anyp(u1,z), R1+ARy such tha{ Ry, Ry) € R; is max-
imized whenR;, = I(Uy;Y1]S) and Ry = I(X; Y2|Uq, S) =
H(Y»2|Uy, S). Thus,

max  R; + ARy = max I(U;Y1|S) + AH(Y2|Uq, S)

(R1,R2)€Ry p(u1,z)

= max {HM1S) + max {AH (Y|, §) — HW|U), S)}}
(T p(ur|x

= m(a§< {pH(f1) +Dp1H(f2) + l(fna‘X){()\ﬁz — p1)H(f2|Uh)
p(z p(uy|x

+ (Ap2 —p1)H(f1|U1)}}. 8)

with equality if U; = X. Thus, [8) can be rewritten as
max _ Ry + ARg = maxp1 H(f1) + p1H(f2)
(R1,R2)ER,y p(z)
= max Ri+ ARy
(R1,R2)€R,

e If p1/p2 < A <1, then for any fixedv(z),

(Ap2 — p1)H (f2|U1) + (Ap2 — p1)H (f1|U1)
= A= 1H(f1|U1)
+ (Ap2 — p1)(H (f2| f1,Ur) — H(f1|f2,Uh))
< (Ap2 — p1)H(f2] f1)
with equality if U; = f1. Thus, [8) can be rewritten as

max Rl + /\RQ
(R1,R2)€R,

= Igl(gile(fl) + p1I(f1; f2) + Ap2H (f2] f1)

= max Rq+ ARs.
(R1,R2)ER3
Thus, MAaX(R,,R,)eC Ri + ARy > maxg, Rr,)eR Ry + A}EQ
for 0 < X < 1. Equality in the lemma holds becauSeC R.
The proof for\ > 1 follows similarly (see AppendikB). B
The proof of the converse is completed using Leniina 2.

IV. CONCLUSION

We established the capacity region of the BC-TDCS channel
when the state is known only at the receivers. This channel
does not belong to any class of broadcast channels for which
the capacity was previously known. There are several open
problems that would be interesting to explore further, udel
ing: What is the capacity region of the BC-TDCS with com-
mon message when the state is known only at the receivers?
What is the capacity region when each channel component is
selected from a set of more than two deterministic channel
states?
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APPENDIXA
PrROOF OFLEMMA [1]

We prove the lemma fof < A < 1. The proof forA > 1
follows similarly. First we show that fob < A < 1,

max R;+ AR = max { max Ry + )\Rg}
(R1,Rz2)€C 1=1,2,3,4 * (Ry,R2)ER]
@ max { max Ry + )\Rg}
=1 (R1,R2)ER]

(i) MAX (R, Ry)ER; Ri+ARyif 0< A< 1_71/1327
MAaX(R, Ry)eR; Ri+ AR, if ]51/]52 < A<1.

The equality in(a) holds because

Ri1+ ARy

max
(Rl,Rz)EfRé

= gl(gf(fl;yﬂs) + M (f2; Y21S) — M (f1; f2)
I(f1; fo) + M (f2; Y2|S)

R1 + MR-, and

> max I(f1;Y1|5) —

p(x)

max
(Rl,R2)€fRi

Ry + ARy

max
(R] ,Rz)ERQ

= m(a;c Ap2H (f1) + A\p2H (f2) +
p(x

> m(a%( Ap2H(f1) + Ap2H(f2) =
p(z

(p1 — Ap2)H (f1]f2)

R1 + ARs.

max
(Rl,R2)€le2

To derive the equality ir{b) note that

ax Ry + ARo = max{p1 H(f1) + p1H(f2)},
(le%z)xeikg 1 2 I;l(mii{pl (fl) P (f2)}
max R+ A\Rs
(Rl,Rz)Gng
= Tzl(%({le(fl) +p1H(f2) + (Ap2 — p1)H(f2| f1)}

H. G. EgglestoneConvexity. Cambridge University Press, Cambridge,

For 0 < X < P1/po, MAX(R,,Ry)eR, R + ARy >
max (g, p,)ewr, 1 + ARz, and for pi/p2 < A < 1,
MAX(R, Ry)eR, Ri + MRy > MAX(R, Ry)eR] Ri1 4+ ARs.
Finally, (b) holds since max g, r,jex, 1 + ARz
MaX(R,, R,)eRs Ri + ARy for ]_)1/]32 <A<l andell =R;.

Thus, for0 < X < 1, max(g, r,ee, 11 + AR2 >
max(g, r,)ee I21+ARz. Finally, equality holds becaus® C

APPENDIXB
PROOF OFLEMMA BIFOR )\ > 1

For A > 1, we consider the equivalent maximization
problem: MaX(g, R,)eR, N 'Ry + Ry for A1 < 1.

For anyp(uz, z), among thg Ry, Ry) € Ry, A\ R+ Ry is
maximized whenRy = I(Us; Y2|S) and Ry = H(Y1|Us, S).
Thus,

max AN 'R;+ Ro
(Rl,Rz)Eng
= I(naX))\ 1H(Y1|U2, )+I(U2,}/2|S)
pluz,x

max{H(Yg|S) + ma‘x){)\_lH(YﬂUg,S)

— H(Y3|Us, S)}}
:rl?(;i:;({ng f1) + Dp2H(f2)

+pr(gg|>§ﬁ{(A p1 — p2)H(f2|U2)
+ (A 'pr—p2)H(f1|U2)}}. (9

For a fixedp(z), only the last two terms in({9) depend on
p(uz|xz). We now consider different ranges af> 1.

e If XA > p1/ps, then for any fixed(z),
(A1p1 = Do) H (f2|Us2) + (A 'p1 — p2)H(f1]U2) <0
with equality if U; = X. Then, [9) can be expressed as

max _ R; 4+ ARy = max A\paH (f1) + Ap2H(f2)
(R1,R2)ER2 p(z)
= max Ri+ ARs.
(Rl,R2)€fRQ

e If 1 < X < p1/p2, then for any fixedp(z),
(A™'p1 — p2)H (f2|Uz) + (A 'p1 — p2)H
= (AN =D H(f2|Us)

+ (A = po){H(f1| f2, U2) —
< (A o1 = p2)H(f1lf2)
with equality if Uy =

(f1]U2)

H(f2]f1,U2)}

f2. Then, [9) can be expressed as

Ri1 4+ ARy

max _
(R1,R2)€ER2

= r;}(%:;{le(fﬂfz) + /\pzf(fﬁ f2) + )\1_72H(f2)

max
(R] ,R2)€R4

R1 4+ ARs.

ThusamaX(Rl,R2)€C Ri+ ARy > MaX(p, R,)eR Ri + ARy
for A > 1. Finally, equality holds becauseC R.



	I Introduction
	II Capacity Region of the BC-TDCS
	III Proof of the Converse
	IV Conclusion
	V Acknowledgments
	References
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ?? for >1



