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Codes with Locality for Two Erasures
N. Prakash, V. Lalitha and P. Vijay Kumar

Abstract

In this paper, we study codes with locality that can recover from two erasures via a sequence of two local,
parity-check computations. By a local parity-check computation, we mean recovery via a single parity-check equation
associated to small Hamming weight. Earlier approaches considered recovery in parallel; the sequential approach
allows us to potentially construct codes with improved minimum distance. These codes, which we refer to as locally
2-reconstructible codes, are a natural generalization along one direction, of codes with all-symbol locality introduced
by Gopalan et al, in which recovery from a single erasure is considered. By studying the Generalized Hamming
Weights of the dual code, we derive upper bounds on the minimum distance of locally 2-reconstructible codes and
provide constructions for a family of codes based on Turán graphs, that are optimal with respect to this bound. The
minimum distance bound derived here is universal in the sense that no code which permits all-symbol local recovery
from 2 erasures can have larger minimum distance regardless of approach adopted. Our approach also leads to a
new bound on the minimum distance of codes with all-symbol locality for the single-erasure case.

I. INTRODUCTION

A primary goal in distributed data storage is the efficient repair of a failed node. While regenerating codes [1]
aim to minimize the amount of data download needed to carry out node repair, codes with locality [2] seek to
minimize the number of nodes accessed during node repair. The focus of the present paper is on codes with locality.

Let C denote an [n, k, dmin] linear code having block length n, dimension k and minimum distance dmin. Where
the minimum distance is not relevant, we will simply refer to C as an [n, k] code. The ith code-symbol ci, 1 ≤ i ≤ n,
of the code C is said to have locality r if this symbol can be recovered by accessing at most r other code symbols
and performing a linear computation. Equivalently, there exists a row in the parity-check matrix H of the code of
Hamming weight ≤ (r+1), whose support includes i. A systematic code in which all the k message symbols have
locality r is said to have information locality r. The minimum distance dmin of a code with information locality r
is upper bounded [2] by

dmin ≤ n− k −
⌈
k

r

⌉
+ 2. (1)

The pyramid-code construction in [3] yields optimal codes for all {n, k, r} with field size O(n). The authors of
[2] also introduce the notion of all-symbol locality in which all code symbols, not just the message symbols, have
locality r. They show the existence of codes with all-symbol locality that achieve the bound in (1) when (r+1) | n,
but leave open the question as to whether it is possible to derive a tighter bound in the all-symbol-locality case, for
general {n, k, r}. The all-symbol-locality property is preferable in applications as it permits a uniform approach to
storage-system design. Codes with locality also go by the name locally-repairable [4], locally-reconstructible [5]
and locally-recoverable codes [6].

A. Handling Multiple Erasures

There is current practical interest in the handling of multiple erasures as simultaneous node failures are not
uncommon, given the increasing trend towards replacing expensive servers with low-cost commodity servers, the
presence of “hot” nodes etc. Several approaches to the multiple-erasure case in the context of codes with locality
can be found in the literature.
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The authors of [7] handle multiple erasures by protecting each message symbol with a local code of length
≤ r + δ − 1 and minimum distance ≥ δ, and derive the upper bound

dmin ≤ n− k + 1−
(⌈

k

r

⌉
− 1

)
(δ − 1). (2)

Pyramid codes, are once again shown to be optimal. This notion of locality is extended to the case when all code
symbols are so protected and the existence of optimal codes with all-symbol locality is shown for the case when
(r+δ−1)|n. Codes having the capability of locally recovering a failed node in the presence of any δ−1 other node
failures are also considered in [8]. Constructions based on partial geometry are provided and their rates computed.

A third approach to handling multiple erasures is presented in [9] in which the authors seek to protect each of
the k message symbols by δ− 1 support-disjoint local parities, each of length ≤ r+1. The following upper bound
is derived:

dmin ≤ n− k + 1−
(⌈

(k − 1)(δ − 1) + 1

(r − 1)(δ − 1) + 1

⌉
− 1

)
, (3)

and the existence of optimal codes is established for the case when n ≥ k(r(δ− 1)+1). The setting is extended to
codes with all-symbol locality for handling 2 erasures, as well. A square-code construction that achieves the bound
in (3) for restricted values of the code dimension k is presented. A related setting appears in [6], where once again
δ−1 support-disjoint local parities are used for the protection of all code symbols. Here however, the local parities
are permitted to have different lengths. A key feature of this work is that the authors provide constructions of codes
in which the code alphabet is small, on the order of the code length. Lower bounds to the minimum distance of
the codes constructed are also provided.

A common underlying theme of the prior approaches in [7], [8], [9], [6] is that they implicitly assume the
need for the recovery of multiple erased symbols in parallel. However, the need for locality does not preclude a
sequential approach such as is adopted here. The sequential approach places a less-stringent requirement on the code
and potentially allows us to construct codes with improved minimum distance while still enabling local recovery
from erasures. In addition, the minimum distance bound derived here is universal in the sense that no code which
permits all-symbol local recovery from 2 erasures can have larger distance regardless of approach adopted. The
exact formulation and our approach to solving the problem are presented in Section III.

B. Other Related Work

Explicit constructions of optimal codes with all-symbol locality for the single erasure case are provided in [10],
[11], respectively based on Gabidullin maximum rank-distance and Reed-Solomon codes. Families of codes with
all-symbol locality with small alphabet size (low field size) are constructed in [6]. Locality in the context of non-
linear codes is considered in [4]. Codes with local regeneration are considered in [12], [13], [14]. Studies on the
implementation and performance evaluation of codes with locality can be found in [5], [15].

Section II provides background on generalized Hamming weights (GHW). Our formulation and approach to the
problem are outlined in Section III. An important connection between the k-cores of [2] and GHW is made in
Section IV. The upper bound on dmin and optimal code constructions can be found in Sections V and VI respectively.
The final section, Section VII presents the analogous dmin bound for the single-erasure case. The proofs of most
statements appear in the Appendix.

II. GENERALIZED HAMMING WEIGHTS

Definition 1: The ith, 1 ≤ i ≤ k, GHW [16], [17] of an [n, k] code C is the cardinality of the minimum support
of an i-dimensional subcode of C, i.e.,

di(C) = di = min
D<C

dim(D)=i

|supp(D)| , (4)

where D < C, is used to denote a subcode D of C and supp(D) , ∪c∈Dsupp(c).

It is well known that

dmin(C) = d1 < d2 < . . . < dk = n. (5)
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The complement of the set {di, 1 ≤ i ≤ k}, in [n], will be termed as the set of gap numbers (more simply, gaps)
of the code C and denoted by {gi, 1 ≤ i ≤ n− k}, i.e.,

{gi, 1 ≤ i ≤ n− k} = [n] \ {di, 1 ≤ i ≤ k}. (6)

Similarly, let {d⊥j , 1 ≤ j ≤ n − k} and {g⊥i , 1 ≤ i ≤ k} denote the GHWs and gaps of the dual code C⊥. The
lemma below [16] relates the GHWs of C to the gaps of C⊥.

Lemma 2.1:

di = (n+ 1)− g⊥k−i+1, 1 ≤ i ≤ k,
dmin(C) = d1 = (n+ 1)− g⊥k .

We also note that if B0 < C⊥, then di(B0) ≥ di(C⊥), which implies that g⊥k ≥ gk(B0). We thus obtain:

dmin(C) ≤ n+ 1− gk(B0). (7)

III. APPROACH AND RESULTS

Our focus in this paper, is on codes with all-symbol locality for the two-erasure case.

Definition 2: A code C will be said to be locally 2-reconstructible with locality r, if for any pair of code-symbol
erasures, there exists a sequence of two local (and linear) parity-check computations that can be used to recover
the erased symbols. By a local parity-check computation, we mean recovery via a parity whose support covers the
coordinate being recovered and involves at most r other code symbols.

Note that under the above definition, it is permissible that the symbol recovered by the first local parity belong to
the set of r symbols accessed by the second local parity. The families of all-symbol locality codes constructed in
[7], [8], [9] for the case δ = 3 may all be regarded as examples of locally 2-reconstructible codes. In the sequel, we
will refer to a locally 2-reconstructible code with locality r simply as a locally reconstructible code. Our principal
results are an upper bound on the minimum distance of locally reconstructible codes and optimal constructions for
a large class of code parameters. The steps involved in the derivation of the upper bound on dmin are outlined
below.

Given a locally reconstructible code C, let B0 denote the subcode of the dual code C⊥, spanned by all codewords
c ∈ C⊥ of Hamming weight less than or equal to r + 1, i.e.,

B0 = span
(
c ∈ C⊥, |supp(c)| ≤ r + 1

)
. (8)

a) Step 1: We first establish that the dimension b of B0 satisfies the lower bound b ≥ 2n
r+2 .

b) Step 2: Next, we observe from (7) that the minimum distance of the code C satisfies dmin(C) ≤ n+1−gk(B0).
c) Step 3: We then obtain a lower bound on the kth gap of B0 of the form gk(B0) ≥ γk, leading to the desired
upper bound dmin(C) ≤ n+ 1− γk. This step makes use of the lower bound on the dimension b of B0, derived
in Step 1.

The same sequence of steps is also applied in Section VII to the case of codes with all-symbol locality for the
single-erasure case. This results in a new bound on dmin for this class of codes, tighter in general than that given
by (1).

A. Optimal Constructions

We provide code constructions that are optimal with respect to the bound on dmin given above in Step 3 whenever
the block length n is of the form n = (r+β)(r+2)

2 , 1 ≤ β ≤ r, with β|r. The steps involved are described below.

a) Step 1: We begin by constructing a code B0 such that (i) the code formed by the null space of B0 possesses
the locally reconstructible property, (ii) dim(B0) = b = 2n

r+2 , and (iii) the lower bound on the kth gap is also
achieved, i.e., gk(B0) = γk. Our construction of B0 is based on Turán graphs [18], depends only on code length n
and locality parameter r, and is independent of the dimension k of the desired code C.
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b) Step 2: Given the code B0, it turns out that it is always possible to find an [n, k] code C such that B0 is a
subcode of C⊥, gk(C⊥) = gk(B0) and this code C is then the desired locally reconstructible code. It has the best
possible minimum distance given by dmin(C) = n+ 1− γk.

This proof is an instance of a more general result that is important in its own right and which can potentially be
applied in other situations as well. It combines the notion of a k-core introduced in [2] with the GHW structure of
a code to enable construction of the best possible code of a given dimension when the code is linearly constrained.
This is discussed in more detail in the next section.

IV. k-CORES AND CONNECTION WITH GHWS

Definition 3 ([2]): Given a linear code B0, a set S ⊆ [n], |S| = ` is termed an `-core of B0 if supp(c) * S,
∀c ∈ B0.

The above definition is equivalent to saying that rank (G′|S) = `, for any S which is an `-core of B0, where G′

denotes a generator matrix of B⊥0 . The lemma below was used in [2] to show the existence of all-symbol locality
codes when (r + 1)|n, and will also prove very useful here.

Lemma 4.1 ([2]): Let B0 denote an [n, t] code over Fq. Then for any k such that k ≤ n − t, there exists an
[n, k] code C over Fq such that
(a) B0 < C⊥, and
(b) any S which is a k-core of B0 is also a k-core of C⊥,
whenever q > knk.

In the following theorem, we obtain an expression for the minimum distance of the code whose existence is
guaranteed by the above lemma.

Theorem 4.2: Let B0 denote an [n, t] code and let C denote an [n, k] code, k ≤ n− t, such that
(a) B0 < C⊥, and
(b) any S which is a k-core of B0 is also a k-core of C⊥.
The minimum distance of the code C is given by

dmin(C) = n+ 1− gk(B0). (9)

Proof: See Appendix A.

Note from (7) that the minimum distance of the code C, whenever B0 < C⊥, cannot be any larger than n+ 1−
gk(B0). In addition to showing that the kth gap of C⊥ is same as that of B0, it is possible to identify all the GHWs
of C⊥ in terms of the GHWs of B0. This is stated in the following theorem.

Theorem 4.3: Let B0 denote an [n, t] code and let C denote an [n, k] code, k ≤ n− t, such that
(a) B0 < C⊥, and
(b) any S which is a k-core of B0 is also a k-core of C⊥.
The generalized Hamming weights of C⊥ are given by

di(C⊥) =

{
di(B0), 1 ≤ i ≤ gk(B0)− k

i+ k, gk(B0)− k + 1 ≤ i ≤ n− k . (10)

Proof: See Appendix B.

An illustration of (10) is given in Fig. 1 with parameters n = 15, t = 5 and k = 8. We see that the largest gap
of C⊥ is same as the kth gap of B0. Moreover the GHWs of C⊥ which appear to the left of the kth gap are exactly
same as those of B0.
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Fig. 1. Relation between GHWs of C⊥ and B0, with n = 15, t = 5 and k = 8. GHWs are indicated by an ‘X’, gaps by a blank.

V. MINIMUM DISTANCE BOUND FOR LOCALLY RECONSTRUCTIBLE CODES

In this section, we will obtain upper bounds on the GHWs of the subcode B0, as defined in (8). This in turn
will establish a lower bound on the kth gap gk(B0) from which we will obtain an upper bound on the minimum
distance of C. We begin with a characterization of a locally reconstructible code.

Lemma 5.1: Let Ai denote the collection of all the local parities which cover the code symbol ci, 1 ≤ i ≤ n.
Code C is locally reconstructible iff (i) |Ai| ≥ 1 and (ii) Ai 6= Aj , ∀i, j, i 6= j.

Proof: Straightforward.

The parallel recovery of two code symbols ci and cj is possible iff Ai * Aj and Aj * Ai. In the event that
Ai ( Aj , cj can be recovered first through a local computation not involving ci and having recovered cj , ci can
then be recovered.

Theorem 5.2: The dimension of the subcode B0 defined in (8) is lower bounded by

dim(B0) ≥
2n

r + 2
. (11)

Proof: See Appendix C.

Corollary 5.3: The rate of any code C which is locally reconstructible is upper bounded by

k

n
≤ r

r + 2
. (12)

The following lemma will be used to establish upper bounds on the GHWs of B0.

Lemma 5.4: Let T be any set such that |T | = n ≥ r + 1 and let Si, 1 ≤ i ≤ b be subsets of T such that (i)
∪bi=1Si = T and (ii) |Si| = r + 1,∀i ∈ {1, 2, . . . , b}. Define

fm = min
I⊆[b]
|I|=m

|∪i∈ISi| , 1 ≤ m ≤ b. (13)

Then, ∀m ∈ [b], fm ≤ em, where the {em} are obtained recursively as follows:
eb = n, (14)

em−1 = em −
⌈
2em
m

⌉
+ (r + 1), 2 ≤ m ≤ b. (15)

Proof: See Appendix D.

Note that in Lemma 5.4, since ∪bi=1Si = T , we have that b ≥ n
r+1 and thus setting m = b in (15) and dropping

the ceiling function, we obtain

eb−1 ≤ (1− 2

b
)eb + (r + 1) = (1− 2

b
)n+ (r + 1),

≤ (1− 2

b
)b(r + 1) + (r + 1) = (b− 1)(r + 1). (16)
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The arguments in (16) can be iterated further (with m = b− 1 and so on) and from this it follows that Lemma 5.4
indeed implies the obvious bound fm ≤ m(r+ 1), 1 ≤ m ≤ b. In general the bounds given by Lemma 5.4 will be
tighter than this and will take into account the fact that the total support has cardinality only n.

Theorem 5.5: Let C denote an [n, k] locally reconstructible code and let B0 be the subcode as defined in (8). Set
b =

⌈
2n
r+2

⌉
. Then the first b GHWs of B0, and hence those of C⊥, are upper bounded by dm(B0) ≤ em, 1 ≤ m ≤ b,

where em is as defined by (14) and (15). Furthermore, if ` denotes the unique integer satisfying e` < k+ ` < e`+1,
then the minimum distance of C is upper bounded by

dmin(C) ≤ n+ 1− (k + `). (17)

Proof: Consider a basis of B0 which are composed only of codewords of Hamming weight less than or equal
to r+1. Let {Si, i = 1, . . . , b} denote their supports, where b ≥ 2n

r+2 . The bounds on the GHWs of B0 now follows
directly upon applying Lemma 5.4 to the sets {Si, i = 1, . . . , b}. (Note that if any set Si has cardinality less than
r + 1, one can simply substitute Si with any set S′i such that |S′i| = r + 1, Si ⊆ S′i and then apply Lemma 5.4.).

Given the bounds on the GHWs of B0, the kth gap of B0 is lower bounded by gk(B0) ≥ k+ `, where ` denotes
the unique integer such that e` < k + ` < e`+1 (to see this, assume that first b GHWs are given exactly by the
sequence {em,m = 1, . . . , b} and using this, identify the kth gap). The bound on dmin finally follows from (7).

A code C will be called an optimal locally reconstructible code if it achieves the bound in (17) with equality.

VI. OPTIMAL LOCALLY RECONSTRUCTIBLE CODES

In this section, we will describe a construction for optimal locally reconstructible codes for the case when the
length of the code takes on the form

n =
(r + β)(r + 2)

2
, (18)

with 1 ≤ β ≤ r and β|r. The only restriction on the dimension k is the necessary rate restriction given by
Corollary 5.3, i.e., k ≤ rn

r+2 . As described in Section I, our approach to optimal code construction will involve first
constructing a code B0 which depends only on n, r and is independent of k. The construction of B0 will be based
on Turán graphs and will be such that
(a) B⊥0 is locally reconstructible,
(b) dim(B0) = b = 2n

r+2 = r + β, and
(c) all the b GHWs of B0 achieve the upper bounds given by Theorem 5.5.
Once we have the code B0, the desired [n, k] code is simply the code C, whose existence is guaranteed by Lemma
4.1. It is clear, based on the discussion in Section V and from Theorem 4.3 that this code C will be an optimal
locally reconstructible code.

A. Construction of B0 Using Turán Graphs

Consider a graph with b = 2n
r+2 = r+β vertices. We partition the vertices into x = r+β

β partitions, each partition
containing β vertices. We next place exactly one edge between any two vertices belonging to two distinct partitions.
The resulting graph is known as a Turán graph on b vertices with x vertex partitions. The number of edges in this
graph is x(x−1)β2

2 = n− b and each vertex is connected to exactly (x− 1)β = r other vertices. Let the vertices be
labelled from 1 to b and the edges be labelled from b+ 1 to n, without paying attention to order.

To convert the graph into a code, we proceed as follows. Associate a local parity with each of the b vertices, let
parity p

i
be associated with vertex i, 1 ≤ i ≤ b. Let {i1, i2, . . . , ir} denote all the edges which are incident up on

vertex i. Then, the support Si ⊆ [n] of the local parity p
i

is set at

Si = {i, i1, i2, . . . , ir} (19)

and the codeword ci corresponding to p
i

is identified as the all-1 vector in these r + 1 coordinates (with zeros in
the remaining n − (r + 1) coordinates). Set B0 = span(ci, 1 ≤ i ≤ b). It is easily verified that the code B⊥0 is
locally reconstructible and that its dual B0 has dimension b = 2n

r+2 = r + β. Before proceeding to evaluate the
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GHWs of the code B0 and proving their optimality w.r.t. Theorem 5.5, we first illustrate the construction using two
examples.

Example 1: Consider the parameters r = 3 and β = 1, which implies that the length n = 10. When β = 1,
note that the number of partitions x = r + 1 = 4, and each partition has just one vertex. Thus the total number
of vertices b = r + 1 = 4 and the graph is simply a completely connected graph on b = 4 vertices. The generator
matrix of the code B0 (upto permutation of columns) in this case is given by

H0 =




1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1


 .

Note that the sum of the four rows of H0 gives a local parity having support {4, 7, 9, 10}. Thus we see that the code
B0 guarantees that any code symbol is covered by two support disjoint local parities. In general, when β = 1, the
construction gives (r, δ = 3)c all-symbol locality codes, with length n = (r+1)(r+2)

2 (see Section I for a definition
of (r, δ)c codes).

Example 2: In this example, let β = r = 3, which implies that the length n = 15. When β = r, we get a
bipartite graph with r vertices on each of the two partitions. The generator matrix of the code B0, which is the
span of 6 codewords, is given (up to permutation of columns) by

H0 =


1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

 .

It can be verified that any non-trivial linear combination (resulting in vectors other than those appearing in the
rows of H0) of the 6 vectors results in a codeword whose Hamming weight ≥ 5. As a result, each of the code
symbols {c4, c8, c12, c13, c14, c15} is covered by only one local parity and thus parallel decoding of two erased
symbols may not always be possible. For instance, if symbols c3, c4 get erased, we must necessarily decode c3 first
before decoding c4.

The Turán graph construction, when β = r is closely related to the square code construction presented in [9].
The square code construction was used to guarantee two support disjoint parities for each code word symbol. For
the current example, the closest relative from the square code family has length 16 and has one more local parity (in
addition to those described by B0) covering the coordinates {4, 8, 12, 16}. A second local parity which covers c16
can be obtained as a linear combination of all the 7 parities, and this will be a parity on the support {13, 14, 15, 16}.

B. Generalized Hamming Weights of the Constructed Code B0
Theorem 6.1: Consider the code B0 obtained via the Turán graph construction along with support sets {Si, 1 ≤

i ≤ b = r+β}, as described in (19), associated to the b local parities {p
i
}. Then the sets {Si, 1 ≤ i ≤ b = r+β}

achieve the upper bounds given in Lemma 5.4 with equality, i.e., ∀m ∈ [b], fm = em, where fm is as described
by (13) and em is as defined recursively by (14) and (15).

Proof: See Appendix E.

We use the following lemma to argue that the mth GHW of B0 is indeed given by fm i.e, any other m dimensional
subspace of B0 (i.e, other than those generated by m subsets of the basis vectors) will have a support whose
cardinality is no less than fm.

Lemma 6.2: Let D denote an [n, t] linear code and let {v1, . . . ,vt} be a basis for the code D. Also, let Ri =
supp(vi) and suppose that the sets {Ri} are such that
(a) |Ri ∩Rj | ≤ 1, ∀i, j, i 6= j,
(b) any element ` ∈ [n] belongs to at most two sets among the sets {Ri}, and
(c) |Ri\ ∪tj=1

j 6=i
Rj | ≥ 1.
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Then the generalized Hamming weights of the code D are given by

dm(D) = min
I⊆[t]
|I|=m

|∪i∈IRi| , 1 ≤ m ≤ t. (20)

Proof: See Appendix F.

We now note that Lemma 6.2 is readily applicable to the code B0 obtained via the Turán graph construction.
From this we conclude that the GHWs of this code B0 achieve the upper bounds given by Theorem 5.5.

VII. A NEW UPPER BOUND ON MINIMUM DISTANCE FOR THE SINGLE ERASURE CASE

The approach described in Section V directly applies to the setting of codes with all-symbol locality which can
handle single erasures. This results in a new upper bound on dmin for this class of codes which is in general tighter
than that given by (1). Let C be an [n, k, dmin] code having (r, δ = 2) all-symbol locality, i.e., any code symbol is
covered by a local parity. As with locally reconstructible codes, consider the subcode B0 of C⊥ which is obtained as
the span of all codewords of Hamming weight less than or equal to r+1, i.e., B0 = span

(
c ∈ C⊥, |supp(c)| ≤ r + 1

)
.

It is easy to see that dim(B0) ≥ n
r+1 . Lemma 5.4 can now be applied to this B0 which enables us to upper bound

the GHWs of B0 and in turn, upper bound the minimum distance of C.

Theorem 7.1: Let b =
⌈

n
r+1

⌉
. Then, the first b generalized Hamming weights of the subcode B0 defined above

are upper bounded by dm(B0) ≤ em, 1 ≤ m ≤ b, where em is as recursively defined by eb = n, and

em−1 = em −
⌈
2em
m

⌉
+ (r + 1), 2 ≤ m ≤ b. (21)

Furthermore, if we let ` to denote the unique integer such that e` < k + ` < e`+1, the minimum distance of the
all-symbol locality code C is upper bounded by

dmin(C) ≤ n+ 1− (k + `). (22)

Proof: Similar to the proof of Theorem 5.5.

In order to compare the upper bound given by (22) with that given by (1), we note the bound given by (1) can
be obtained by first upper bounding the GHWs of B0 by

dm(B0) ≤ m(r + 1), 1 ≤ m ≤ b− 1, and db(B0) ≤ n, (23)

where b =
⌈

n
r+1

⌉
, and then calculating the kth gap based on these bounds. But from the discussion in Section V

(see (16)), we know that the bounds on GHWs of B0 given by Theorem 7.1 are, in general, tighter than the bounds
in (23) and hence we conclude that the minimum distance bound given by (22) is also tighter, in general, than
that given by (1). We would, however, like to remark that it is always possible [6] to achieve a minimum distance
which is at most one less than that suggested by the upper bound in (1). In Fig. 2, we plot the two bounds as a
function of dimension k, for the case when n = 18 and r = 3.
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APPENDIX A
PROOF OF THEOREM 4.2

Let B0 denote an [n, t] code and let C denote an [n, k] code, k ≤ n− t, such that
(a) B0 < C⊥, and
(b) any S which is a k-core of B0 is also a k-core of C⊥.
We claim that for any set S ⊆ [n], |S| = gk(B0), there exists S′ ⊆ S, |S′| = k such that S′ is a k-core of B0.
Supposing that this is true, it then means that for any set S ⊆ [n], |S| = gk(B0), rank (G|S) = k. Clearly, this would
imply that dmin(C) ≥ n− |S|+1 = n− gk(B0) + 1. However, since dmin(C) = n− gk(C⊥) + 1 ≤ n− gk(B0) + 1,
we conclude that dmin(C) = n+ 1− gk(B0).

We will now prove our claim that for any set S ⊆ [n], |S| = gk, there exists S′ ⊆ S, |S′| = k such that S′ is
a k-core of B0. Toward this, let C′ denote the code B0 shortened to the set S. We note that dim(C′) ≤ gk − k.
To see why this is true, if we suppose that dim(C′) > gk − k, then it will imply that dgk−k+1(B0) ≤ gk, where
dgk−k+1(B0) denotes the (gk − k + 1)th Generalized Hamming weight of B0. But this contradicts the fact that the
number of GHWs of B0 till gk is exactly gk − k and hence we get that dim(C′) ≤ gk − k. Now, let ρ denote the
dimension of C′ and let H ′ = [Iρ|Pρ×(gk−ρ)] denote a generator matrix of C′, up to permutation of columns. If T
denotes the support of the matrix Pρ×(gk−ρ), then any S′ ⊆ T , |S′| = k is k-core of B0.

arXiv:1301.3791
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APPENDIX B
PROOF OF THEOREM 4.3

Let B0 denote an [n, t] code and let C denote an [n, k] code, k ≤ n− t, such that
(a) B0 < C⊥, and
(b) any S which is a k-core of B0 is also a k-core of C⊥.
Note that Theorem 4.2 implies that gk(C⊥) = gk(B0). This determines the last n − gk(B0) GHWs of C⊥ and are
given by

di(C⊥) = i+ k, gk(B0)− k + 1 ≤ i ≤ n− k. (24)

Assuming that gk(B0)− k ≥ 1, it now remains to be proved that

di(C⊥) = di(B0), 1 ≤ i ≤ gk(B0)− k, (25)

i.e., the first gk(B0) − k GHWs of C⊥ are exactly same as those of B0. Toward this, we first note that any set S
which is a b-core of B0 is also a b-core of C⊥, for any b such that b < k. This is because for any S which is a
b-core of B0 (b < k), there exists a k-core S′ of B0 such that S ⊆ S′. We also claim that for any set S ⊆ [n],
|S| = gb, there exists S′ ⊆ S, |S′| = b such that S′ is a b-core of B0. Proof is similar to the claim regarding k-cores
which appeared in the proof of Theorem 4.2.

We will now prove (25) via induction starting at i = 1. Let us denote ` = gk(B0)− k. Note that

k > (d1(B0)− 1) + (d2(B0)− d1(B0)− 1) + . . .+ (d`(B0)− d`−1(B0)− 1). (26)

Now, suppose that d1(C⊥) ≤ d1(B0) − 1. Clearly any S such that |S| = d1(B0) − 1 is an |S|-core of B0. From
(26), we see that d1(B0)− 1 < k and hence S is also an |S|-core of C⊥. But this contradicts the assumption that
d1(C⊥) ≤ d1(B0)− 1 and hence we conclude that d1(C⊥) = d1(B0). Next, assume that di(C⊥) = di(B0), for some
i such that 1 ≤ i ≤ `− 1. We will now prove that di+1(C⊥) = di+1(B0). We consider the following cases:
(a) di+1(B0) = di(B0) + 1. In this case, note that

di(B0)
(i)
= di(C⊥) (27)
(ii)
< di+1(C⊥) (28)
(iii)

≤ di+1(B0) (29)

= di(B0) + 1, (30)

where (i) follows from the induction hypothesis and (ii) follows from (5). This then implies that (iii) must
be an equality, i.e., di+1(C⊥) = di+1(B0).

(b) di+1(B0) > di(B0) + 1. In this case, if we let m = di+1(B0)− (i+ 1), note that

gm(B0) = di+1(B0)− 1. (31)

Now, if S is any set such that |S| = gm(B0), then there exists S′ ⊆ S, |S′| = m and S′ is an m-core of B0.
From (26), we see that m < k and hence S′ is also an m-core of C⊥. Now, without loss of generality, suppose
that di+1(C⊥) = di+1(B0) − 1. Also, let D denote an (i + 1)-dimensional subcode of C⊥ having support SD
such that |SD| = di+1(C⊥). Note that for any set T ⊆ SD such that |T | = |SD| − i = m, one can find a
non-zero vector in D whose support is fully contained within T and hence there cannot exist an m-core of C⊥
within SD. However, we know that this is not true and hence we conclude that di+1(C⊥) = di+1(B0).

APPENDIX C
PROOF OF THEOREM 5.2

Consider the code

B0 = span
(
c ∈ C⊥, |supp(c)| ≤ r + 1

)
(32)
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and let B = {c1, . . . , cb} denote a basis for B0 such that |supp(ci)| ≤ r + 1, ∀i ∈ [b]. Also, let Si = supp(ci).
Define the quantity

si =

∣∣∣∣∣Si\ ∪
b
j=1
j 6=i

Sj

∣∣∣∣∣ , 1 ≤ i ≤ b. (33)

We claim that for the code C to be locally reconstructible, it must necessarily be true that si ≤ 1,∀i ∈ [b]. To see
this, suppose that for some i, si ≥ 2 and let {`1, `2} ⊆ Si\ ∪bj=1

j 6=i
Sj . Then, if A`1 and A`2 , respectively denote all

the local parities covering the code symbols c`1 and c`2 , it would mean that A`1 = A`2 . This is because B is a
basis and any linear combination whose support contains `1 will also contain `2. The claim now follows by noting
from Lemma 5.1 that the code cannot be locally reconstructible unless A`1 6= A`2 .

In order to proceed and complete the proof of the theorem, we note that n−∑b
i=1 si code symbols are covered

by more than one of the sets Si, i ∈ [b] and hence it must be true that

b∑

i=1

si + 2

(
n−

b∑

i=1

si

)
≤ b(r + 1) (34)

=⇒ 2n−
b∑

i=1

si ≤ b(r + 1) (35)

=⇒ 2n− b ≤ b(r + 1) (36)

=⇒ b ≥ 2n

r + 2
, (37)

where (36) follows since si ≤ 1, ∀i ∈ [b].

APPENDIX D
PROOF OF LEMMA 5.4

We will prove the lemma via induction, starting at m = b and decrementing m at each step. Clearly fb ≤ eb = n.
Now assuming that for some m, 2 ≤ m ≤ b, fm ≤ em, we will prove that fm−1 ≤ em−1. Without loss of generality,
let {Si, 1 ≤ i ≤ m} be such that | ∪mi=1 Si| = fm. Define

si =

∣∣∣∣∣Si\ ∪
m
j=1
j 6=i

Sj

∣∣∣∣∣ , 1 ≤ i ≤ m. (38)

Then, noting that n−∑m
i=1 si elements are covered by more than one of the sets Si, i ∈ [m], we get that

m∑

i=1

si + 2

(
fm −

m∑

i=1

si

)
≤ m(r + 1) (39)

=⇒
m∑

i=1

si ≥ 2fm −m(r + 1). (40)

Also, let s∗ = maxi∈[m] si and without loss of generality, assume that s1 = s∗. Note that in this case, s1 ≥
∑m

i=1 si
m .
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Now, if we consider union of the sets {Si, 2 ≤ i ≤ m}, we get that

| ∪mi=2 Si| = fm − s1 (41)

≤ fm −
∑m

i=1 si
m

(42)

≤ fm −
2fm −m(r + 1)

m
(43)

=
m− 2

m
fm + (r + 1) (44)

≤ m− 2

m
em + (r + 1) (45)

= em −
2em
m

+ (r + 1), (46)

(47)

which implies that fm−1 ≤ em − 2em
m + (r + 1). Finally, noting that fm−1 is an integer, we get that

fm−1 ≤ em −
⌈
2em
m

⌉
+ (r + 1) = em−1 (48)

APPENDIX E
PROOF OF THEOREM 6.1

Consider any set of m parities, say {p
1
, . . . , p

m
} having supports S1, . . . Sm. Note that by our construction the

parity p
i

corresponds to the vertex i in the Turán graph. The cardinality of union of the supports S1, . . . Sm can be
calculated from the graph as |∪mi=1 Si| = m+ |E|, where E is the set of all the edges in the graph with at least one
of the end points being a vertex belonging to the set [m]. The quantity |E| can be equivalently be computed by
first counting the number of edges in the graph restricted to the remaining vertices {m+1,m+2, . . . , r+ β} and
then subtracting it from the total number of edges in the original graph. Thus, for calculating fm, it is sufficient to
find a restricted graph on r+ β−m vertices having the maximum number of edges. Let r+ β−m = ux+ v, 0 ≤
u ≤ β − 1, 0 ≤ v ≤ x − 1. Then, it is easy to see that the number of edges in a restricted graph on r + β −m
vertices is maximized if the restricted graph consists of u+ 1 vertices each from any v out of the x partitions and
u vertices each from the remaining x− v partitions.

It is straightforward to see now that the difference fm − fm−1, 2 ≤ m ≤ r + β, is given by

fm − fm−1 = (u+ 1)v + u(x− v − 1) + 1

= v + ux− u+ 1. (49)

The expression in (49) is evaluated for m, 2 ≤ m ≤ r + β and is shown in Fig. 3. For the array given in Fig. 3,
we number the rows from 0 to β − 1 and the columns from 0 to x− 1. Then, the value of fm − fm−1 is simply
the (u, v)th entry in this array.

Now, we will show that the sequence {fm} as defined by (49), satisfies the recursion given in (14) and (15), i.e.,
fr+β = n and

fm − fm−1 =
⌈
2fm
m

⌉
− (r + 1). (50)

Since the sequence {em}, 1 ≤ m ≤ b = r + β is unique (given that em = n), it then follows that fm = em, 1 ≤
m ≤ b = r + β, which will complete our proof. We begin by noting that

fm = n−
m+1∑

i=r+β

(fi − fi−1). (51)
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β rows





1 2 · · · x
x x+ 1 · · · 2x− 1
...

...
(β − 1)x−
(β − 2)

(β − 1)x− (β − 1)x− · · · β(x− 1)
(β − 2) (β − 1) · · ·

︸ ︷︷ ︸
x columns

Fig. 3. fm− fm−1, r+ β ≥ m ≥ 2 of B0 obtained via Turán graph construction, where the sequence of differences are in the descending
order and the matrix has to be read row after row from left to right.

Next, note that the sum
∑m+1

i=r+β(fi−fi−1) can be calculated from the array in Fig. 3 as sum of the first r+β−m
entries, where the entries are read from left to right in each row and the rows are read from top to bottom, i.e.,

m+1∑

i=r+β

(fi − fi−1) =

ux−u+v∑

i=1

i+

u∑

i=1

(ix− i+ 1), (52)

where the first term on the R.H.S counts all the unique elements once and the second term on the R.H.S counts
the repeated terms. Combining (51) and (52), we get that

2fm
m

=
(r + β)(r + 2)− (ux+ v − u)(ux+ v − u+ 1)− u(u+ 1)x+ u(u− 1)

(r + β)− (ux+ v)
(53)

=
[(r + β)− (ux+ v)][(r + 1) + (ux+ v − u)] + (r + β)− ux− vβ + uv

(r + β)− (ux+ v)
(54)

=
[(r + β)− (ux+ v)]q′ + r′

(r + β)− (ux+ v)
, (55)

where q′ = (r + 1) + (ux + v − u) and r′ = (r + β) − ux − vβ + uv. It is straightforward to check that
1 ≤ r′ ≤ (r + β)− (ux+ v), which implies that

⌈
2fm
m

⌉
= q′ + 1 = r + 1 + ux+ v − u+ 1. (56)

Combining (49) with (56), we finally get that

fm − fm−1 =
⌈
2fm
m

⌉
− (r + 1). (57)

APPENDIX F
PROOF OF LEMMA 6.2

Consider an m dimensional subcode D′ of D and let D′ have a basis {u1, . . . ,um}. Without loss of generality,
let us assume that the basis of D′ is obtained as




u1
...

um


 =

[
Im Bm×(b−m)

]




v1
...

vm

vm+1
...
vb




. (58)
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Also, let {R′i, 1 ≤ i ≤ m} denote the supports of the vectors {u1, . . . ,um}. We claim that | ∪mi=1R
′
i| ≥ | ∪mi=1Ri|.

To see this, we consider any element x ∈ ∪mi=1Ri and examine what happens to it when the m linear combinations
are taken. We divide the discussion into the following cases:
(a) x ∈ Ri, i ≤ m and does not belong to any other support set. Clearly, x ∈ R′i.
(b) x ∈ Ri, Rj such that 1 ≤ i < j ≤ m. By assumption, x then does not belong to any other support set and

clearly in this case, x ∈ R′i, R′j .
(c) x ∈ Ri, Rj such that i ≤ m, j ≥ m + 1. Note that x then does not belong to any other support set. Now,

consider the jth column of the matrix [I|B] and let us call it as b. We consider three sub-cases for this situation
based on the column weight of b.

(i) Column weight of b is 0. Clearly, then x ∈ R′i.
(ii) Column weight of b is 1, say b` 6= 0. Suppose, ` 6= i, then x ∈ R′i, R′`. Now if ` = i, the element x need

not be present in R′i. However, for the purposes of counting | ∪mi=1 R
′
i|, we could replace x with y where

y is one of the elements covered only by Rj (note that the such an element exists by assumption). This
works because, if this particular case does occur, we will never again have to seek one of the elements
covered only by Rj . This is because in order for this to happen again it must be true that there exists
another element x′ ∈ Ri ∩ Rj , but this is contrary to our assumption that any two support sets have
intersection at most 1.

(iii) Column weight of b is 2 or more, say b`1 , b`2 6= 0. Without loss of generality if assume that `1 6= i, then
x ∈ S′`1 .

Thus we see that in all the cases we either do not lose the element x or there is another unique element y which
can compensate for x while counting the support cardinality after the linear combinations are taken. Hence we
conclude that | ∪mi=1 R

′
i| ≥ | ∪mi=1 Ri|.
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