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Abstract—A passive adversary can eavesdrop stored content
or downloaded content of some storage nodes, in order to
learn illegally about the file stored across a distributed storage
system (DSS). Previous work in the literature focuses on code
constructions that trade storage capacity for perfect security. In
other words, by decreasing the amount of original data that it
can store, the system can guarantee that the adversary, which
eavesdrops up to a certain number of storage nodes, obtains
no information (in Shannon’s sense) about the original data. In
this work we introduce the concept of block security for DSS
and investigate minimum bandwidth regenerating (MBR) codes
that are block secure against adversaries of varied eavesdropping
strengths. Such MBR codes guarantee that no information about
any group of original data units up to a certain size is revealed,
without sacrificing the storage capacity of the system. The size of
such secure groups varies according to the number of nodes that
the adversary can eavesdrop. We show that code constructions
based on Cauchy matrices provide block security. The opposite
conclusion is drawn for codes based on Vandermonde matrices.

I. INTRODUCTION

A. Background

In recent years, the demand for large-scale data storage
has grown explosively, due to numerous applications in-
cluding large files and video sharing, social networks, and
back-up systems. Distributed Storage Systems (DSS) store
a tremendous amount of data using a massive collection of
distributed storage nodes. Applications of DSS include large
data centers and P2P storage systems such as OceanStore [1],
Total Recall [2], and Dhash++ [3] that deploy a huge number
of storage nodes spread widely over the Internet. Since any
storage device is individually unreliable and subject to failure,
redundancy must be introduced to provide the much-needed
system-level protection against data loss due to storage node
failure.

The simplest form of redundancy is replication. By storing
n identical copies of a file at n distributed nodes, one copy
per node, an n-duplication system can guarantee the data
availability as long as no more than (n − 1) nodes fail.
Such systems are very easy to implement and maintain, but
extremely inefficient in storage space utilization, incurring
tremendous waste in equipment, building space, and cost for
powering and cooling. More sophisticated systems employing
erasure coding based on maximum distance separable (MDS)
codes [4] can expect to considerably improve the storage
efficiency. However, a DSS based on MDS codes often incurs
considerable communication bandwidth during node repair: a
replacement node has to download the whole file to recover
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Fig. 1: Example of a DSS with an eavesdropper.

the content of just one node. To overcome the disadvantages
of both replication and erasure codes, regenerating codes were
proposed for DSS in the groundbreaking work of Dimakis et
al. [5]. In this work, we only consider regenerating codes for
DSS and limit ourselves to minimum bandwidth regenerating
(MBR) codes with exact repair [5].

In practice, one important aspect in the design of a DSS
code is its security. As the storage nodes can well be located
at different places, and new nodes join the network all the time
to replace failing nodes, it is possible that at a certain point,
some nodes might be compromised by some unauthorized
party, referred to as an adversary. The adversary can be either

• active, i.e. controlling the node, modifying the data, and
sending erroneous data to other nodes [6], [7], [8], [9],
or

• passive, i.e. knowing the data stored in the node and
observing all communication between this node and the
other nodes, in order to learn illegally the content of the
file stored by the DSS [7], [10], [11], [12], [13].

In this work, we focus on the security of DSS codes against
the second type of adversary, the passive adversary. We also
refer to this type of adversary as eavesdropper. We illustrate
in Fig. 1 a scenario where the adversary can observe all data
stored in one storage node. The data file is split into five
data units f = (f1, f2, f3, f4, f5). Originally there are four
storage nodes. At a certain time, Node 4 fails. Node 5 comes
in to replace Node 4 (repair). If the content of this node
is eavesdropped by Eve, then Eve can obtain the values of
two units f4 and f5 explicitly. The same thing happens when
Eve eavesdrops any node among the three nodes 1, 2, and 3.
Therefore the system is not secure against an adversary who
can eavesdrop one storage node.
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B. Related Work

Hereafter we follow the standard notation in the regenerat-
ing code literature (see Section II). In their pioneering work,
Dimakis et al. [5] established that the maximum file size
to be stored in a DSS D(n, k, d) must satisfy the following
inequality

M≤
k∑
i=1

min{(d− i+ 1)β, α}. (1)

A construction of optimal regenerating codes with exact repair
at the MBR point for all n, k, d was proposed by Rashmi
et al. [14]. When the stored contents of some ` nodes are
observed by an adversary Eve, Pawar et al. [6], [7] showed
that the maximum file size to be stored satisfies

Ms ≤
k∑

i=`+1

min{(d− i+ 1)β, α}, (2)

provided that Eve gains no information (in Shannon’s sense)
about the file. This type of security is often referred to
as perfect security or strong security in the literature. The
parameter ` is called the adversarial strength. The authors [6],
[7] also provided an optimal code construction, based on
complete graphs, for the case d = n−1 that attains the bound
(2). We later argue that an extension of their construction based
on regular graphs [15] also produces optimal perfectly secure
codes for all d with nd even (see Remark 6). Under the same
adversary model, Shah et al. [11] constructed optimal codes
that attain the bound (2) for all d. The authors used product-
matrix codes in their construction.

Comparing (1) and (2), it is clear that in order to achieve
the perfect security against an adversary which eavesdrops `
storage nodes, the storage capacity of the system has to be
decreased by an amount of

∆M =M−Ms =
∑̀
i=1

min{(d− i+ 1)β, α}.

Therefore, perfect security is obtained at the cost of lowering
the storage capacity. Additionally, according to the security
scheme studied thereof, one has to specify beforehand the
strength of the adversary, i.e. the number of storage nodes
it can eavesdrop, and then modify the input accordingly to
obtain the perfect security. When the strength of the adversary
exceeds the specified threshold, nothing is guaranteed on the
security of the system. In many practical storage systems,
perfect security is either too strict and might not be even
necessary, or too costly (too much wasted space in the system)
and might not be affordable. Hence weaker security levels at
lower costs would be preferred in many practical scenarios.

C. Our Contribution

In order to address the aforementioned issues with perfect
security, we propose to use a broader concept of security from
the network coding literature, namely, block security [16],
[17], [18] (also known as security against guessing). A code
is b-block secure against an adversary of strength `, if the

adversary, which accesses at most ` storage nodes, gains no
information about any group of b data units. In the language
of information theory, the mutual information between the
eavesdropped content and any group of b original data units
is zero. The concept of block security describes nicely a
hierarchy of different levels of security against eavesdropping.
Depending on the adversarial strength, a block secure system
can provide a range of different levels of security, from the
weakest level to the strongest level:
• 1-block security (also referred to as weak security) im-

plies that no individual data unit is revealed,
• 2-block security implies that no information on any group

of two data units is revealed,
• · · · ,
• M-block security, where M is the total number of data

units (the file size), implies the perfect security, i.e. no
information about the original data is revealed.

If the system is weakly secure, although the adversary gains
some information about the file, it cannot determine each
particular data unit. For instance, if the file is a movie and
the data units are movie chunks, then the adversary obtains
no information about each individual chunk, and hence cannot
play the movie. Furthermore, if the system is b-block secure
against an adversary of strength `, even when the adversary
can access some ` storage nodes and on top of that, gain
knowledge on some other b − 1 data units via some side
channel, it still cannot determine each particular data unit.

We investigate the security of the two main existing MBR
code constructions [19], [15], [14]. Recall that either Vander-
monde matrices or Cauchy matrices are often used in these
constructions. We prove the following
• Vandermonde-based codes are not block secure,
• Cauchy-based regular-graph codes [19], [15] are inher-

ently block secure,
• Cauchy-based product-matrix codes [14] are inherently

block secure.
Based on these results, we are able to conclude that using
Cauchy matrices rather than Vandermonde in these construc-
tions of MBR codes automatically guarantees weaker levels of
security compared with perfect security, but most importantly,
without any loss on the storage capacity of the system. We also
show that with Cauchy-based constructions of perfectly secure
codes [10], [7], [11], certain security level is still guaranteed
even when the adversarial strength surpasses the security
threshold. More specifically, in addition to being perfectly
secure against adversaries of strength not exceeding a specified
threshold λ, the codes remain to be block secure against an
adversary of strength ` > λ as long as ` < k (Fig. 2). The
level b of block security gradually decreases as the adversarial
strength ` increases. When ` ≥ k, the whole file is revealed.

λ k0

perfect block whole file revealed

`n

Fig. 2: Security of a Cauchy-based system as the adversarial
strength ` varies.
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The paper is organized as follows. In Section II, we discuss
the concept of block security for distributed storage systems.
We analyze the security of regular-graph codes and product-
matrix codes in Section III and Section IV, respectively. We
conclude the paper in Section V.

II. BLOCK SECURITY FOR DISTRIBUTED STORAGE
SYSTEMS

We denote by Fq the finite field with q elements. Let [n]
denote the set {1, 2, . . . , n}. Let ut denotes the transpose of
a vector u. For an m×n matrix M , for i ∈ [m] and j ∈ [n],
let M i and M [j] denote the row i and the column j of M ,
respectively. We define below standard notions from coding
theory (for instance, see [20]).

The (Hamming) weight of a vector u ∈ Fnq is the
number of the nonzero coordinates of u. For the vectors
u = (u1, u2, . . . , un) ∈ Fnq and v = (v1, v2, . . . , vn) ∈ Fnq ,
the (Hamming) distance between u and v is defined to be the
number of coordinates where u and v differ, namely,

d(u,v) = |{i ∈ [n] : ui 6= vi}|.

A k-dimensional subspace C of Fnq is called a linear [n, k, d]q
code over Fq if the minimum distance of C ,

d(C )
4
= min

u∈C , v∈C , u6=v
d(u,v) ,

is equal to d. Sometimes we may use the notation [n, k]q or just
[n, k] for the sake of simplicity. The vectors in C are called
codewords. It is easy to see that the minimum weight of a
nonzero codeword in a linear code C is equal to its minimum
distance d(C ). A generator matrix G of an [n, k]q code C is
a k×n matrix whose rows are linearly independent codewords
of C . Then C = {yG : y ∈ Fkq}. The well-known Singleton
bound states that for any [n, k, d]q code, it holds that d ≤
n−k+1. If the equality is attained, the code is called maximum
distance separable (MDS).

Let F = (F1, F2, . . . , FM), where Fi’s (i ∈ [M]) are inde-
pendent and identically uniformly distributed random variables
over Fq . We assume that the file to be stored in the system is
f = (f1, f2, . . . , fM) ∈ FMq , a realization of F . We call M
the file size and each fi a (original) data unit.

We denote by D(n, k, d) a typical DSS with n storage nodes
where the file can be recovered from the contents of any k out
of n nodes, and to repair a failed node, a new node (referred
to as a newcomer) can contact any d nodes to regenerate
the content of the failed node. We refer to d as the repair
degree. Additionally, each node stores α coded units, i.e. α
linear combinations of data units fi’s. In the repair process, a
newcomer downloads β coded units from each of d live nodes.
Suppose that β = 1 (data striping is used for larger β). At the
MBR point, we have [19], [14]

M = kd−
(
k

2

)
, α = d.

Following the adversarial attack model proposed by Pawar et
al. [10], [7], we suppose that the adversary can observe the

stored contents of some ` nodes. Let Ci denote the random
vector over Fαq that represents the stored content at Node i.

Definition 1 ([10], [7]). A DSS D(n, k, d) together with its
coding scheme is called perfectly secure against an adversary
of strength λ (λ < k) if the mutual information

I(F ,∪i∈ECi) = 0,

for all subsets E ⊆ [n], |E| ≤ λ.

Definition 2. A DSS D(n, k, d) together with its coding
scheme is called b-block secure against an adversary of
strength λ (λ < k) if the mutual information

I(∪j∈BFj ,∪i∈ECi) = 0,

for all subsets B ⊆ [M], |B| ≤ b, and for all subsets E ⊆ [n],
|E| ≤ λ.
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Fig. 3: Different levels of security.

We illustrate in Fig. 3 different levels of security for DSS.
For instance, in Fig. 3(c), as long as the adversary accesses the
stored content of only one node, it cannot deduce any linear
combination of two units. Therefore, the system is 2-block
secure against an adversary of strength one. In Fig. 3(d), by
using a randomly generated variable r, as long as the adversary
accesses the stored content of only one node, it cannot deduce
any linear combination of the data units, and hence gains no
information at all about the stored file. Hence in this case,
the system is perfectly secure against an adversary of strength
one.

It is straightforward that M-block security is equivalent
to perfect security, where M is the file size. Hence, perfect
security can well be regarded as the highest level of block
security. However, perfect security is not given for free. One
has to trade some storage capacity for perfect security (see
Section I-B). In fact, in the perfectly secure code constructions
presented in [10], [7], [11], part of the file has to be replaced
by randomly generated variables, hence reducing the useful
storage space of the system. By contrast, lower levels of block
security can be achieved at essentially no cost, as we later
present in Section III and IV. This advantage of block security
makes the concept attractive to practical storage systems,
where the storage redundancy has to be minimized to maintain
a competitive price for the storage service.

Under the assumptions that
• the data units are all independent and identically uni-

formly distributed random variables over Fq ,
• the coding scheme is linear,
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the b-block security given in Definition 2 is equivalent to
the requirement that no linear combination of at most b data
units can be deduced by the adversary. The following lemma
specifies a necessary and sufficient condition for the block
security of DSS.

Lemma 3. Let f = (f1, f2, . . . , fM) ∈ FMq be the stored file
and Ef t represent the coded units that the adversary obtains
by observing ` storage nodes. Let CE be the linear error-
correcting code generated by the rows of the matrix E, and
d(CE) be its minimum distance. Then the adversary cannot
deduce any nontrivial linear combination of any group of at
most b data units if and only if b ≤ d(CE)− 1.

A rigorous proof of Lemma 3 can be found in the Appendix.
We discuss below the intuition behind the proof of this lemma.
As the adversary obtains Ef t, it can linearly transform these
coded symbols by considering the product αEf t, where α
is some coefficient vector. Since αE is a codeword of CE ,
its weight is at least d(CE) if it is a nonzero codeword. In
other words, if αE 6= 0 then it has at least d(CE) nonzero
coordinates. As a result, αEf t is a linear combination of at
least d(CE) data units. Therefore, by linearly transforming the
eavesdropped coded units Ef t, the adversary cannot produce
a nontrivial linear combination of d(CE) − 1 data units or
less.

On the other hand, as the adversary can choose an appro-
priate vector α so that αE has weight exactly d(CE), it can
always determine the value of a linear combination of a certain
group of d(CE) data units. Thus, the adversary cannot deduce
any nontrivial linear combination of any group of at most b
data units only if b ≤ d(CE)− 1.

III. ON THE SECURITY OF REGULAR-GRAPH CODES

We briefly describe the regular-graph codes constructed by
Rashmi et al. [19] and El Rouayheb et al. [15] below.

Let G be a d-regular graph on n vertices u1, u2, . . . , un.
Then each vertex of G is adjacent to d edges. Therefore,
let e1, e2, . . . , end/2 be all nd/2 edges of G. Let G be an
(nd/2) × M matrix over Fq satisfying the MDS property:
any M rows of G are linearly independent. Then M data
units f1, f2, . . . , fM are encoded into nd/2 coded units by
the transformation ct = (c1, . . . , cnd/2) = Gf t. Node i stores
cj if and only if the edge ej is adjacent to the vertex ui. As G
is d-regular, each node stores exactly α = d coded units cj’s.
Any set of k nodes together provide kd −

(
k
2

)
= M distinct

coded units cj’s, hence can recover the whole file thank to
the MDS property of the encoding matrix G. When Node i
fails (i ∈ [n]), the newcomer contacts Node j if ui and uj are
adjacent in G. Since G is d-regular, there are d such nodes. For
such a Node j, the newcomer downloads β = 1 coded unit
cs if es is the edge connected ui and uj . These d coded units
cs are distinct as they correspond to d distinct edges adjacent
to ui, and form the content of the failed node. The newcomer
simply stores these d coded units and the repair process for
Node i is done.

A. Cauchy-Based Regular-Graph Codes Are Block Secure

A Cauchy matrix is a matrix of form
(

(xi + yj)
−1
)
m×n

,
where xi’s and yj’s are elements of Fq that satisfy xi+yj 6= 0
for all i ∈ [m] and j ∈ [n]. A Cauchy matrix has a special
property that any submatrix is again a Cauchy matrix. It is well
known that any square Cauchy matrix is invertible. Therefore,
any square submatrix of a Cauchy matrix is invertible. This is
a crucial property that makes codes based on Cauchy matrices
block secure.

Theorem 4. A DSS D(n, k, d) equipped with a regular-graph
regenerating code [15] based on a Cauchy matrix is b-block
secure against an adversary of strength ` (` < k), where

b =
(
kd−

(
k

2

))
−
(
`d−

(
`

2

))
= (k− `)

(
d− k + `− 1

2

)
.

Note that nd must be even according to the code construction.

Proof: Note that according to the code construction [19],
[15], an adversary that accesses ` nodes obtains `d −

(
`
2

)
distinct coded units. Therefore, the adversary obtains Ef t,
where E is a submatrix of the encoding matrix G, consisting
of `d−

(
`
2

)
rows of G. Note that E has kd−

(
k
2

)
columns. As

G is a Cauchy matrix, any square submatrix of size `d−
(
`
2

)
of E is also a Cauchy matrix, and hence invertible. Therefore,
the rows of E generates an MDS code of length kd−

(
k
2

)
and

dimension `d−
(
`
2

)
[20, Ch. 11]. It is also well known that such

an MDS code has minimum distance (kd−
(
k
2

)
)−(`d−

(
`
2

)
)+1.

Applying Lemma 3, the proof follows.

For instance, according to Theorem 4, for n = 7, k = 5,
d = 6, the degradation of the block security level of a Cauchy-
based regular-graph code is illustrated in Fig. 4. Note that the
file size is M = 5× 6−

(
5
2

)
= 20.
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Fig. 4: Degradation of the security level for D(7, 5, 6) with
a Cauchy-based regular-graph code as the adversarial strength
increases.

The corresponding construction of perfectly secure
codes [10], [7] is completely the same as the one described

4



at the beginning of this section, except that a subset of data
units has to be replaced by a subset of randomly generated
variables and that the encoding matrix G has to be either
Vandermonde or Cauchy (or more generally, a (transposed)
generator matrix of a nested MDS code). Suppose that the
Cauchy matrix is used in this construction. Treating the
random variables as data units, we can apply Theorem 4 and
show that even when the adversarial strength surpasses the
specified threshold, although the code is no longer perfectly
secure, it is still block secure. Hence we have the following
corollary.

Corollary 5. Consider a DSS D(n, k, d) equipped with the re-
generating code proposed in [10], [7], [15], which is perfectly
secure against an adversary of strength at most λ. Suppose
that in the construction of the regenerating code, a Cauchy
matrix is used. Then when the adversarial strength ` (` < k)
surpasses the threshold λ, the code is no longer perfectly
secure, but is still b-block secure, where

b =
(
kd−

(
k

2

))
−
(
`d−

(
`

2

))
= (k− `)

(
d− k + `− 1

2

)
.

For example, for a DSS D(7, 5, 6) as in Fig. 4, suppose that
the specified security threshold is λ = 2, then the degradation
of the security is depicted in Fig. 5. Note that now the file
size has to be decreased to Ms = 9, according to (2).

`

b

adversarial strength
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cu

ri
ty

le
ve

l

1 2 3 4

2

5

9

5O

n = 7, k = 5, d = 6,Ms = 9

perfect

block

threshold λ = 2

Fig. 5: Degradation of the security level for D(7, 5, 6) with
a perfectly secure Cauchy-based regular-graph code as the
adversarial strength increases.

Remark 6. The construction of optimal perfectly secure codes
with uncoded exact repair was proposed by Pawar et al. [10],
[7] for the case d = n − 1. We argue below that the same
construction, i.e. replacing data units by random units and
using nested MDS codes, based on regular-graphs [15] also
provides optimal perfectly secure codes for all d with nd even.
That is why we mention both constructions in Corollary 5.
Indeed, as β = 1 and α = d, the bound (2) reduces to

Ms ≤ (k − `)
(
d− (k + `− 1)/2

)
. (3)

According to the construction in [15], eavesdropping on `
nodes reveals R = `d −

(
`
2

)
distinct coded units. Hence,

`d −
(
`
2

)
data units has to be replaced by random units.

Therefore, the number of data units that can be stored securely
using a nested MDS code is

Ms =M−R

=
(
kd−

(
k

2

))
−
(
`d−

(
`

2

))
= (k − `)

(
d− (k + `− 1)/2

)
,

which matches the bound (3). Hence the regular-graph
codes [15] are optimal perfectly secure code for every d with
nd even.

B. Vandermonde-Based Regular-Graph Codes Are Not Block
Secure

We present below an example of a Vandermonde-based
regular-graph code [19], [15] that is not block secure and
briefly explain the reason behind it.

Let n = 4, k = 2, and d = 3. As β = 1, we have M =
kd −

(
k
2

)
= 5. The encoding matrix G is chosen as a 6 × 5

Vandermonde matrix over F13

G =


1 1 1 1 1
1 3 9 1 3
1 5 12 8 1
1 7 10 5 9
1 9 3 1 9
1 11 4 5 3


An adversary which accesses one node obtains d = 3 distinct
coded units. Suppose these three coded units are G1f

t, G2f
t,

and G5f
t. In other words, the adversary obtains Ef t where

E is the submatrix of G consisting of the first, the second,
and the fifth rows of G. It is straightforward to verify that
the minimum distance of the error-correcting code generated
by the rows of E is one. Therefore, according to Lemma 3,
the code is not even weakly secure (1-block secure) against
an adversary of strength one. More specifically, by applying a
linear transformation vEf t where v = (9, 1, 3), the adversary
obtains f3 = vEf t explicitly.

The reason behind this unwanted behavior of Vandermonde-
based codes can be explained as follows. The block security of
Cauchy-based regular-graph codes (see Proof of Theorem 4)
strictly relies on a very special property of a Cauchy matrix:
every square submatrix of a Cauchy matrix is invertible.
However, a Vandermonde matrix does not have this property.
For example, the 3×3 submatrix of the Vandermonde matrixG
above that consisting of the entries in the first, the second, and
the fifth rows, and in the first, second, and the fifth columns
of G only has rank two. Therefore, the block security of the
corresponding code is no longer guaranteed.

IV. ON THE SECURITY OF PRODUCT-MATRIX CODES

We briefly describe the MBR product-matrix codes con-
structed by Rashmi et al. [14] below.

The file size M = kd −
(
k
2

)
can be rewritten as M =(

k+1
2

)
− k(d − k). Let M be the message matrix of the

following form

M =

(
S T
T t 0

)
,

5



where S is a k× k symmetric matrix and T is a k× (d− k)
matrix. The

(
k+1
2

)
entries in the upper-triangular half of S

are filled up by
(
k+1
2

)
distinct data units drawn from the set

{fi}i∈[M]. The remaining k(d− k) data units are used to fill
up the second k × (d− k) matrix T . The encoding matrix is
Ψ = [Φ ∆], where Φ and ∆ are n × k and n × (d − k)
matrices, respectively, chosen in such a way that

1) any d rows of Ψ are linearly independent,
2) any k rows of Φ are linearly independent.

Then Node i stores d entries of row i of the matrix ΨM . The
encoding matrix Ψ is often chosen as a Vandermonde matrix
or a Cauchy matrix. Details on the file reconstruction and node
repair processes can be found in [14].

A. Cauchy-Based Product-Matrix Codes Are Block Secure

Our main result in this section is to prove that the Cauchy-
based product-matrix code [14] is (k−`)-block secure against
an adversary of strength at most ` < k. Note that if k nodes are
eavesdropped, the whole file will be reconstructed. Thus the
block security level of the Cauchy-based product-matrix codes
is d− (k+`−1)/2 times lower than that of the Cauchy-based
regular graph-codes (see Theorem 4).

Theorem 7. In the construction of an MBR product-matrix
code [14] for a DSS D(n, k, d), if the encoding matrix Ψ is a
Cauchy matrix then the code is (k − `)-block secure against
an adversary of strength ` (` < k).

Sketch: To facilitate our discussion, we label the data
units by the index set

I = {(i, j) | 1 ≤ i ≤ k and i ≤ j ≤ d}. (4)

We assume that the M elements of I are always listed in the
lexicographic order: (1, 1), (1, 2), . . ., (1, d), (2, 2), (2, 3), . . .,
(2, d), . . ., (k, k), (k, k+1), . . ., (k, d). For ξ = (i, j) ∈ I, we
often write fξ or f(i,j) interchangeably. Also, for (i, j) ∈ I,
both the (i, j)-entry and the (j, i)-entry ofM are f(i,j). Again,

f = (f(1,1), . . . , f(1,d), f(2,2), . . . , f(2,d), . . . , f(k,k), . . . , f(k,d))

is the vector in FMq that represents the file stored in the
system. Suppose the encoding matrix Ψ is a Cauchy matrix.
We assume that the adversary can access some ` storage nodes
and E is the submatrix of Ψ consisting of the corresponding
` rows of Ψ. Hence the adversary obtains

H = EM . (5)

This is regarded as a collection of d linear systems with
unknowns fξ’s, ξ ∈ I. In order to apply Lemma 3, we have
to transform these systems into a single linear system with
unknown f . Let E = (bj,ξ)j∈[d],ξ∈I be a (d`) ×M block
matrix where

bj,ξ =

{
E[i], if ξ = (i, j) or ξ = (j, i),

0, otherwise,
(6)

and 0 denotes the all-zero vector in F`q . Recall that E[i] de-
notes the column i of E. Let H = (H[1]t,H[2]t, . . . ,H[d]t)t.

The proofs of the following two lemmas can be found in the
Appendix.

Lemma 8. The systems (5) are equivalent to the following
system

H = Ef t. (7)

Lemma 9. The linear code generated by the rows of the matrix
E has minimum distance k − `+ 1.

Combining these two lemmas and Lemma 3 (applied to E
instead of E), we deduce that the code is (k−`)-block secure
against adversaries of strength ` (` < k).

For instance, according to Theorem 7, for n = 7, k = 5,
d = 6, the degradation of the block security level of a Cauchy-
based product-matrix code is illustrated in Fig. 6. Note that
the file size is M = 5× 6−

(
5
2

)
= 20.

`

b

adversarial strength

se
cu

ri
ty

le
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l

1 2 3 4

2

5

5

20

O

n = 7, k = 5, d = 6,M = 20

block security

Fig. 6: Degradation of the security level for D(7, 5, 6) with a
Cauchy-based product-matrix code as the adversarial strength
increases.

Similar to Corollary 5, we can establish that if Cauchy
matrices are used in the construction of perfectly secure
product-matrix codes [11], the codes remain (k − `)-block
secure even when the adversarial strength ` surpasses the
specified threshold for perfect security (` < k). For example,
for a DSS D(7, 5, 6) as in Fig. 6, suppose that the specified
security threshold is λ = 2, then the degradation of the security
is depicted in Fig. 7. Note that now the file size has to be
decreased to Ms = 9, according to (2).

B. Vandermonde-Based Product-Matrix Codes Are Not Block
Secure

The Vandermonde-based product-matrix codes are not 1-
block (weakly) secure against an adversary of strength k− 1.
Indeed, consider the example from the original paper on
product-matrix codes in Fig. 1, Section IV [14]. In that
example, k = 3. By observing two nodes, Node 1 and Node
6, the adversary obtains two linear combinations f7 + f8 + f9
and f7 + 6f8 + f9. From these two, the adversary can deduce
f8. Hence, the code used in this example, which is based

6



ℓ

b

adversarial strength

se
cu

ri
ty

le
ve

l

1 2 3 4

2

5

9

5O

n = 7, k = 5, d = 6,Ms = 9

perfect

block

threshold λ = 2

Fig. 7: Degradation of the security level for D(7, 5, 6) with
a perfectly secure Cauchy-based product-matrix code as the
adversarial strength increases.

on a Vandermonde matrix, is not weakly secure against an
adversary of strength two. The Cauchy-based code, however,
is weakly secure against an adversary of strength two.

V. CONCLUSION

We have evaluated the security levels of the two well-known
MBR regenerating codes with exact repair, namely, regular-
graph codes and product-matrix codes, employing a more
general concept of security - block security. Block security
provides weaker levels of security compared with perfect
security, however, does not require a trade-off with the storage
capacity. We established that Cauchy matrices play a vital
role in guaranteeing block security for these MBR codes.
Examining the security levels of known MSR regenerating
codes is an interesting direction for future work.
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APPENDIX

A. Proof of Lemma 3

The only if direction is proved earlier in the discussion
below Lemma 3. It remains to prove the if direction.

Let f̃ be the guessed value (by the adversary) for the
real file vector f . By eavesdropping, the adversary obtains
some linear combinations of the coordinates of f̃ and f ,
namely u = Ef̃

t
= Ef t. We aim to show that for every

nontrivial vector v ∈ FMq of weight less than d(CE), for the
adversary, all possible values for the linear combination vf̃

t

are equally probable. As a consequence, the adversary gains
no information about vf t.

Let v ∈ FMq be any nontrivial vector of weight less than
d(CE) and s̃ an arbitrary element of Fq . It suffices to show
that the system of linear equations{

Ef̃
t
= u

vf̃
t
= s̃

. (8)

always has the same number of solutions f̃ for every choice
of s̃ ∈ Fq . It is a basic fact from linear algebra that the
solution set for the system (8) above, if nonempty, is an affine
space, which is the sum of one solution of (8) and the solution
space of the corresponding homogeneous system. Therefore,
if the system (8) always has at least one solution for every s̃,
then it would have the same number of solutions for every s̃.
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Therefore, it remains to prove that this system always has a
solution for every choice of s̃ ∈ Fq .

Indeed, let s = vf t. Note that s can be different from s̃.
We have {

Ef t = u

vf t = s
. (9)

By subtracting the corresponding equations in the two systems
(8) and (9) and let x = (f̃ − f) be the new unknowns, we
obtain the following system{

Ext = 0

vxt = s̃− s . (10)

It is clear that the system (8) has a solution if and only if the
system (10) has a solution. Hence, it suffices to show that the
system (10) always has a solution for every choice of s̃ ∈ Fq .

We claim that there exists some x ∈ FMq satisfying Ext =
0 and vxt 6= 0. Then it is obvious that

x∗ =
s̃− s
vxt x

would be a solution of (10), and hence the proof would follow.
Indeed, if vxt = 0 for every x satisfying Ext = 0 then v must
belong to the orthogonal complement of the solution space of
the system Ext = 0, which is precisely the row space of E.
However, the row space of E contains no nontrivial vector
of weight less than d(CE). This would cause a contradiction
since we assume from the beginning that v is nontrivial and
has weight less than d(CE). Thus, there must exist some x ∈
FMq satisfying Ext = 0 and vxt 6= 0, as claimed above.

B. Proof of Lemma 8

We can rewrite the systems (5) as

H[j] = E(M [j]), j ∈ [d].

For each j ∈ [d], the above system is equivalent to

H[j] = [bj,ξ1 | bj,ξ2 | · · · | bj,ξM ]f , (11)

where bj,ξ is given by (6), {ξ1, ξ2, . . . , ξM} forms the in-
dex set I defined in (4) in the lexicographic order, and
f = (fξ1 , fξ2 , . . . , fξM) is the stored file. By vertically
concatenating the systems (11) for all j ∈ [d], we obtain (7).

As an example, let k = 3 and d = 5. Then M = 12 and
the index set I is

I = {ξ1, ξ2, . . . , ξ12}
=
{

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4),

(2, 5), (3, 3), (3, 4), (3, 5)
}
.

The the message matrix is

M =


f(1,1) f(1,2) f(1,3) f(1,4) f(1,5)
f(1,2) f(2,2) f(2,3) f(2,4) f(2,5)
f(1,3) f(2,3) f(3,3) f(3,4) f(3,5)
f(1,4) f(2,4) f(3,4) 0 0
f(1,5) f(2,5) f(3,5) 0 0

 .

The file is

f = (f(1,1), f(1,2), f(1,3), f(1,4),f(1,5), f(2,2), f(2,3), f(2,4),

f(2,5), f(3,3), f(3,4), f(3,5)).

The matrixE is (to save space we replaceE[i] by ei, columns
are indexed by ξ1, ξ2, . . . , ξ12)

E =


ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12
e1 e2 e3 e4 e5 0 0 0 0 0 0 0
0 e1 0 0 0 e2 e3 e4 e5 0 0 0
0 0 e1 0 0 0 e2 0 0 e3 e4 e5
0 0 0 e1 0 0 0 e2 0 0 e3 0
0 0 0 0 e1 0 0 0 e2 0 0 e3

.

C. Proof of Lemma 9

Let CE be the error-correcting code generated by the rows
of E. We aim to prove that for every codeword of CE ,
each group of k − ` coordinates can be represented as linear
combinations of the other M − (k − `) coordinates, which
do not belong to the group. As a consequence, if a codeword
cE ∈ CE has weight at most k−`, i.e. it has someM−(k−`)
zero coordinates, then its remaining k − ` coordinate must
also be zero, and hence cE = 0. Therefore, every nonzero
codeword in CE has weight at least k − ` + 1. Hence
d(CE) ≥ k− `+1. This constitutes the most challenging part
in the proof of Lemma 9. The proof of the other direction,
namely d(CE) ≤ k − ` + 1, is almost obvious, as we shall
see later.

We now introduce some necessary notations for the proof
and establish the relationship among them. Let CE be the
error-correcting code generated by the rows of E. Since E is
an `× d Cauchy matrix, CE is a [d, `] MDS code (see Proof
of Theorem 4). Also, any set of ` columns of E generate the
whole column space. Therefore, for any `-subset L of [d] and
any index i ∈ [d] \ L, we have

E[i] =
∑
s∈L

as,i(L)E[s],

for some coefficients as,i(L) ∈ Fq . As a consequence, for any
codeword cE = (cE1 , . . . , c

E
d ) ∈ CE , we have

cEi =
∑
s∈L

as,i(L)cEs (i ∈ [d] \ L). (12)

Note that as any set of ` columns of E is linear independent,
the coefficients as,i(L) are all nonzero and uniquely deter-
mined by E and L. From now on we only consider the case
L ⊂ [k]. We often write ai,j instead of ai,j(L) to simplify the
notation.

For j ∈ [d], let C j be the row space of the matrix Bj =

[bj,ξ1 | bj,ξ2 | · · · | bj,ξM ]. Then CE = C 1 + C 2 + · · ·+ C d

as a sum of spaces. Note that according to the definition of
bj,ξ in (6),
• for 1 ≤ j ≤ k: bj,ξ = E[i] if ξ = (i, j) ∈ I, i.e.

1 ≤ i ≤ j, or ξ = (j, i) ∈ I, i.e. j + 1 ≤ i ≤ d,
• for k < j ≤ d: bj,ξ = E[i] if ξ = (i, j) ∈ I, i.e.

1 ≤ i ≤ k.
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Therefore, when j ≤ k, the matrix Bj has precisely d nonzero
columns, which are the same as d columns of E. On the other
hand, when j > k,Bj has precisely k nonzero columns, which
are the same as the first k columns of E. Hence, for each
codeword cj = (cjξ1 , . . . , c

j
ξM

) ∈ C j and each ξ ∈ I, we have

cjξ =

{
cEi,j , if ξ = (i, j) or ξ = (j, i),

0, otherwise,
(13)

where
• (cE1,j , c

E
2,j , . . . , c

E
d,j) is a codeword of CE , if 1 ≤ j ≤ k,

• (cE1,j , c
E
2,j , . . . , c

E
k,j) is a codeword of CE restricted on

the first k coordinates, if k < j ≤ d.
Since CE = C 1 + C 2 + · · · + C d, for each codeword
(cEξ1 , c

E
ξ2
, . . . , cEξM) ∈ CE and each ξ ∈ I, we have

cEξ =

{
cEj,j , if ξ = (j, j),

cEi,j + cEj,i, if ξ = (i, j) and i < j.
(14)

Note that cEi,j is the ith coordinate of a codeword cEj =
(cE1,j , c

E
2,j , . . . , c

E
d,j) of CE and cEj,i is the jth coordinate of

another codeword cEi = (cE1,i, c
E
2,i, . . . , c

E
d,i) of CE .

Due to (12), for every `-subset L of [k] and for every j ∈ [d]
we have

cEi,j =
∑
s∈L

as,ic
E
s,j , for i ∈ [d] \ L. (15)

We now prove that d(CE) ≤ k − `+ 1.
• If d > k then d(C j) = k− `+ 1, for every j > k, j ≤ d.

Indeed, according to the definition, C j is the row space
of the matrix Bj . Moreover, according to the discussion
above, for j > k, the matrix Bj has precisely k nonzero
columns, which are the same as the first k columns of E.
These k nonzero columns form an `× k Cauchy matrix,
which in turn generates a [k, `] MDS code of minimum
distance k − ` + 1 (see Proof of Theorem 4). As other
columns of Bj are all-zero columns, we conclude that
d(C j) = k − `+ 1. As CE = C 1 + C 2 + · · ·+ C d as a
sum of spaces, we deduce that d(CE) ≤ k − `+ 1.

• If d = k, then similar argument applies to C j for any
j ∈ [k].

Thus, in both cases, d(CE) ≤ k − `+ 1.
We now proceed to the most important part of the proof

of Lemma 9. Our goal is to show that d(CE) ≥ k − ` + 1.
Let cE = (cE(1,1), c

E
(1,2), . . . , c

E
(k,d)) be any codeword of CE .

Let U be any subset of k − ` elements of the index set
I = {(1, 1), (1, 2), . . . , (k, d)}. We prove below that the
coordinates of cE indexed by the elements of U can be
represented as linear combinations of the coordinates indexed
by the elements of U = I \ U . According to the discussion
at the beginning of the proof of Lemma 9, this implies that
d(CE) ≥ k − ` + 1. It suffices to show that for every index
(s, t) ∈ U , the corresponding coordinate cE(s,t) can be written

as a linear combination of cE(i,j)’s where (i, j) ∈ U . We divide
the proof into different cases, depending on whether s = t

or s 6= t. Three additional lemmas are introduced below to
tackle those cases separately. We henceforth drop E from the
notation cE to simplify the presentation.

Lemma 10. Let c = (c(1,1), c(1,2), . . . , c(k,d)) be an arbitrary
codeword of CE . Suppose that (t, t) ∈ U (t ∈ [k]). Then there
exists an `-subset L of [k] such that

c(t,t) =
∑
i∈L

ai,t(L)c∗(i,t) −
∑
i≤j

i,j∈L

ai,t(L)aj,t(L)c(i,j), (16)

where
c∗(i,t) =

{
c(i,t), if i ≤ t,
c(t,i), otherwise.

Moreover, none of the indices (i, t) (or (t, i)) and (i, j) are in
U for every i ∈ L and j ∈ L.

According to Lemma 10, c(t,t) can be written as a linear
combination of the coordinates of cE indexed by the elements
in U , which is precisely what we want to show. Hence the case
(s = t, t) ∈ U is settled.

Proof of Lemma 10: We first construct an appropriate
subset L such that none of the sub-indices of the terms in the
right-hand side of (16) belong to U . Once such a subset is
chosen, we proceed to prove that (16) indeed holds.

Elements Count
Starts with t (t, u1), (t, u2), . . . , (t, ua = t) a
Ends with t (s1, t), (s2, t), . . . , (sb = t, t) b
Not starts nor ends with t (p1, q1), (p2, q2), . . . , (pc, qc) c

TABLE I: All elements of U - Case 1.

We list all elements of U in Table I. Note that as the element
(t, t) is counted twice, we have |U | = k − ` = a+ b+ c− 1.
It is straightforward that if L does not contain any element in
the ’bad’ set

L∗ = {u1, . . . , ua = t} ∪ {s1, . . . , sb−1} ∪ {q1, . . . , qc},

then none of the sub-indices of the terms in the right-hand side
of (16) belong to U , as desired. As |L∗| ≤ a+ (b− 1) + c =
k− `, the set [k] \L∗ has cardinality at least `. Therefore we
can choose a legitimate L by taking an arbitrary subset of `
elements of [k] \ L∗.

We now show that (16) holds for L chosen as above. By
(14) and (15) we have∑

i∈L
ai,tc

∗
(i,t) =

i 6=t

∑
i∈L

ai,t(c
E
i,t + cEt,i)

=
∑
i∈L

ai,tc
E
i,t +

∑
i∈L

ai,tc
E
t,i

= cEt,t +
∑
i∈L

ai,t(
∑
j∈L

aj,tc
E
j,i)

= c(t,t) +
∑
i∈L

∑
j∈L

ai,taj,tc
E
j,i

= c(t,t) +
∑
i∈L

∑
j∈L

ai,taj,tc
E
i,j ,

(17)
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where in the last transition, the indices i and j are swapped.
Also by (14) we have∑

i≤j
i,j∈L

ai,taj,tc(i,j)

=
∑
i=j

i,j∈L

ai,taj,tc(i,j) +
∑
i<j

i,j∈L

ai,taj,t(c
E
i,j + cEj,i)

=
∑
i=j

i,j∈L

ai,taj,tc
E
i,j +

∑
i<j

i,j∈L

ai,taj,tc
E
i,j +

∑
i<j

i,j∈L

ai,taj,tc
E
j,i

=
∑
i=j

i,j∈L

ai,taj,tc
E
i,j +

∑
i<j

i,j∈L

ai,taj,tc
E
i,j +

∑
j<i

i,j∈L

ai,taj,tc
E
i,j

=
∑
i∈L

∑
j∈L

ai,taj,tc
E
i,j ,

(18)

where the second to last transition is done by swapping the
indices i and j in the third sum. Combining (17) and (18) we
finish the proof of the Lemma 10 .

We now consider (s, t) ∈ U where s 6= t. We examine
another two cases, depending on whether t ≤ k or t > k.

Lemma 11. Let c = (c(1,1), c(1,2), . . . , c(k,d)) be an arbitrary
codeword of CE . Suppose that (s, t) ∈ U and t ∈ [k]. Then
there exists an `-subset L of [k] such that s ∈ L, t /∈ L, and

c(t,t) =
∑
i∈L

ai,t(L)c∗(i,t) −
∑
i≤j

i,j∈L

ai,t(L)aj,t(L)c(i,j), (19)

where

c∗(i,t) =

{
c(i,t), if i ≤ t,
c(t,i), otherwise.

Moreover, for every i ∈ L and j ∈ L, none of the indices (i, t)
(or (t, i)), except (s, t), and (i, j), except (s, s), are in U .

As a consequence of Lemma 11, c(t,t) can be written as a
linear combination of c(s,t), c(s,s), and the coordinates of cE

indexed by the elements in U . As noted before, the coefficient
of c(s,t), namely as,t, is nonzero. Therefore, c(s,t) can also
be written as a linear combination of c(t,t), c(s,s), and the
coordinates of cE indexed by the elements in U . Moreover,
according to Lemma 10, if (t, t) ∈ U then c(t,t) can be written
as a linear combination of the coordinates of cE indexed
by the elements in U . Similar assertion holds for c(s,s) if
(s, s) ∈ U . Thus, we conclude that c(s,t) can be written as
a linear combination of just the coordinates of cE indexed by
the elements in U . Hence the case (s, t) ∈ U , s 6= t ≤ k is
settled.

Proof of Lemma 11: We first construct an appropriate
subset L such that s ∈ L, t /∈ L, and none of the sub-indices
of the terms in the right-hand side of (19) belong to U , except
for (s, t) and (s, s). Once such a subset is chosen, the proof
that (19) indeed holds is the same as that of Lemma 10. We
divide the proof into four sub-cases, depending on whether
(s, s) ∈ U and/or (t, t) ∈ U .

Sub-case 2-1: (s, s) /∈ U , (t, t) /∈ U . We list all elements of
U in Table II.

Elements Count
Starts with s (s, t1), (s, t2), . . . , (s, ta = t) a
Ends with s (r1, s), (r2, s), . . . , (rb, s) b
Starts with t (t, u1), (t, u2), . . . , (t, uc) c
Ends with t (s1 = s, t), (s2, t), . . . , (sd, t) d
Not starts/ends with s,t (p1, q1), (p2, q2), . . . , (pe, qe) e

TABLE II: All elements of U - Sub-case 2-1.

Note that as the element (s, t) is counted twice, we have
|U | = k − ` = a + b + c + d + e − 1. The ’bad’ set to be
excluded is

L∗ = {t1, . . . , ta = t} ∪ {r1, . . . , rb} ∪ {u1, . . . , uc}
∪ {s2, . . . , rd} ∪ {q1, . . . , qe}.

As |L∗| ≤ a + b + c + (d − 1) + e = k − `, the set [k] \ L∗
has cardinality at least `. Moreover, s ∈ [k] \ L∗. Therefore
we can choose a legitimate L by taking an arbitrary subset of
` elements of [k] \ L∗ that contains s.

Sub-case 2-2: (s, s) ∈ U , (t, t) ∈ U . We list all elements of U
in Table III. Note that as the elements (s, t), (s, s), and (t, t)

Elements Count
Starts with s (s, t1 = s), (s, t2), . . . , (s, ta = t) a
Ends with s (r1 = s, s), (r2, s), . . . , (rb, s) b
Starts with t (t, u1), (t, u2), . . . , (t, uc = t) c
Ends with t (s1 = s, t), (s2, t), . . . , (sd = t, t) d
Not starts/ends with s,t (p1, q1), (p2, q2), . . . , (pe, qe) e

TABLE III: All elements of U - Sub-case 2-2.

are counted twice, we have |U | = k−` = a+b+c+d+e−3.
The ’bad’ set to be excluded is

L∗ = {t2, . . . , ta = t} ∪ {r2, . . . , rb} ∪ {u1, . . . , uc−1}
∪ {s2, . . . , sd−1} ∪ {q1, . . . , qe}.

As |L∗| ≤ (a− 1) + (b− 1) + (c− 1) + (d− 2) + e < k − `,
the set [k] \ L∗ has cardinality greater than `. Moreover,
s ∈ [k] \ L∗. Therefore we can choose a legitimate L by
taking an arbitrary subset of ` elements of [k] \ L∗ that
contains s.

Sub-case 2-3: (s, s) ∈ U , (t, t) /∈ U . We list all elements of
U in Table IV. Note that as the elements (s, t) and (s, s) are

Elements Count
Starts with s (s, t1 = s), (s, t2), . . . , (s, ta = t) a
Ends with s (r1 = s, s), (r2, s), . . . , (rb, s) b
Starts with t (t, u1), (t, u2), . . . , (t, uc) c
Ends with t (s1 = s, t), (s2, t), . . . , (sd, t) d
Not starts/ends with s,t (p1, q1), (p2, q2), . . . , (pe, qe) e

TABLE IV: All elements of U - Sub-case 2-3.

counted twice, we have |U | = k − ` = a+ b+ c+ d+ e− 2.
The ’bad’ set to be excluded is

L∗ = {t2, . . . , ta = t} ∪ {r2, . . . , rb} ∪ {u1, . . . , uc}
∪ {s2, . . . , sd} ∪ {q1, . . . , qe}.
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As |L∗| ≤ (a− 1) + (b− 1) + c+ (d− 1) + e < k− `, the set
[k] \L∗ has cardinality greater than `. Moreover, s ∈ [k] \L∗.
Therefore we can choose a legitimate L by taking an arbitrary
subset of ` elements of [k] \ L∗ that contains s.

Sub-case 2-4: (s, s) /∈ U , (t, t) ∈ U . We list all elements of
U in Table V. Note that as the elements (s, t) and (t, t) are

Elements Count
Starts with s (s, t1), (s, t2), . . . , (s, ta = t) a
Ends with s (r1, s), (r2, s), . . . , (rb, s) b
Starts with t (t, u1), (t, u2), . . . , (t, uc = t) c
Ends with t (s1 = s, t), (s2, t), . . . , (sd = t, t) d
Not starts/ends with s,t (p1, q1), (p2, q2), . . . , (pe, qe) e

TABLE V: All elements of U - Sub-case 2-4.

counted twice, we have |U | = k − ` = a+ b+ c+ d+ e− 2.
The ’bad’ set to be excluded is

L∗ = {t1, . . . , ta = t} ∪ {r1, . . . , rb} ∪ {u1, . . . , uc−1}
∪ {s2, . . . , sd−1} ∪ {q1, . . . , qe}.

As |L∗| ≤ a + b + (c − 1) + (d − 2) + e < k − `, the set
[k] \L∗ has cardinality greater than `. Moreover, s ∈ [k] \L∗.
Therefore we can choose a legitimate L by taking an arbitrary
subset of ` elements of [k] \ L∗ that contains s.

Thus, we complete the proof of Lemma 11.

Lemma 12. Let c = (c(1,1), c(1,2), . . . , c(k,d)) be an arbitrary
codeword of CE . Suppose that (s, t) ∈ U , s 6= t, and t > k.
Then there exists an `-subset L of [k] such that

c(s,t) =
∑
i∈L

ai,t(L)c∗(i,s) +
∑
i∈L

ai,s(L)c(i,t)

−
∑
i≤j

i,j∈L

(
ai,t(L)aj,s(L) + ai,s(L)aj,t(L)

)
c(i,j)

(20)

where

c∗(i,s) =

{
c(i,s), if i ≤ s,
c(s,i), otherwise.

Moreover, for every i ∈ L and j ∈ L, none of the indices
(i, t), (i, s) (or (s, i)), and (i, j), are in U .

According to Lemma 12, for (s, t) ∈ U , s 6= t, t > k,
the coordinate c(s,t) can be written as a linear combination of
the coordinates of cE indexed by the elements in U , which is
precisely what we want to show. Hence this very last case is
settled. As a consequence, the proof of Lemma 9 also follows.

Proof of Lemma 12: We first construct an appropriate
subset L such that none of the sub-indices of the terms in
the right-hand side of (20) belong to U . Once such a subset
is chosen, we proceed to prove that (20) indeed holds. We
consider two sub-cases, namely (s, s) ∈ U and (s, s) /∈ U .
Note that as t > k, according to the definition of I in (4),
(t, t) is not a valid index, and hence we do not have to
consider the element (t, t).

Sub-case 3-1: (s, s) /∈ U . We list all elements of U in
Table VI. Since t > k, note that there is no valid index
of the form (t, u), according to the definition of I in (4).
Note that as the element (s, t) is counted twice, we have

Elements Count
Starts with s (s, t1), (s, t2), . . . , (s, ta = t) a
Ends with s (r1, s), (r2, s), . . . , (rb, s) b
Ends with t (s1 = s, t), (s2, t), . . . , (sc, t) c
Not starts/ends with s,t (p1, q1), (p2, q2), . . . , (pd, qd) d

TABLE VI: All elements of U - Sub-case 3-1.

|U | = k − ` = a+ b+ c+ d− 1. It is straightforward that if
L does not contain any element in the ’bad’ set

L∗ = {t1, . . . , ta−1} ∪ {r1, . . . , rb} ∪ {s1, . . . , sc}
∪ {q1, . . . , qd},

then none of the sub-indices of the terms in the right-hand
side of (20) belong to U , as desired. Note that here we do
not have to exclude t, because we are about to choose L as
a subset of [k] whereas we already assume that t /∈ [k] for
this case. As |L∗| ≤ (a − 1) + b + c + d = k − `, the set
[k] \ L∗ has cardinality at least `. Therefore we can choose
a legitimate L by taking an arbitrary subset of ` elements of
[k] \ L∗.

Sub-case 3-2: (s, s) ∈ U . We list all elements of U in
Table VII. Since t > k, note that there is no valid index
of the form (t, u), according to the definition of I in (4).
Since the elements (s, t) and (s, s) are counted twice, we have

Elements Count
Starts with s (s, t1 = s), (s, t2), . . . , (s, ta = t) a
Ends with s (r1 = s, s), (r2, s), . . . , (rb, s) b
Ends with t (s1 = s, t), (s2, t), . . . , (sc, t) c
Not starts/ends with s,t (p1, q1), (p2, q2), . . . , (pd, qd) d

TABLE VII: All elements of U - Sub-case 3-2.

|U | = k− ` = a+ b+ c+ d− 2. The ’bad’ set to be excluded
is

L∗ = {t1, . . . , ta−1} ∪ {r2, . . . , rb} ∪ {s2, . . . , sc}
∪ {q1, . . . , qd}.

Note that here we do not have to exclude t, because we are
about to choose L as a subset of [k] whereas we already
assume that t /∈ [k] for this case. As |L∗| ≤ (a − 1) + (b −
1) + (c− 1) +d < k− `, the set [k] \L∗ has cardinality larger
than `. Therefore we can choose a legitimate L by taking an
arbitrary subset of ` elements of [k] \ L∗.

Thus, in both cases we can always find an `-subset L of [k]
such that none of the sub-indices of the terms in the right-hand
side of (20) belong to U . We now show that (20) holds for L
chosen as above. Instead of ai,j(L), we simply write ai,j as
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there is no possible confusion. Using (14) and (15) we have∑
i∈L

ai,tc
∗
(i,s) +

∑
i∈L

ai,sc(i,t)

=
∑
i∈L

ai,t(c
E
i,s + cEs,i) +

∑
i∈L

ai,s(c
E
i,t + cEt,i)

=
∑
i∈L

ai,tc
E
i,s +

∑
i∈L

ai,tc
E
s,i +

∑
i∈L

ai,sc
E
i,t +

∑
i∈L

ai,sc
E
t,i

= cEt,s +
∑
i∈L

ai,tc
E
s,i + cEs,t +

∑
i∈L

ai,sc
E
t,i

= c(s,t) +
∑
i∈L

ai,tc
E
s,i +

∑
i∈L

ai,sc
E
t,i

= c(s,t) +
∑
i∈L

∑
j∈L

ai,taj,sc
E
j,i +

∑
i∈L

∑
j∈L

ai,saj,tc
E
j,i

= c(s,t) +
∑
i∈L

∑
j∈L

aj,tai,sc
E
i,j +

∑
i∈L

∑
j∈L

aj,sai,tc
E
i,j ,

(21)

where in the last transition, we swap the indices i and j. We
now calculate the remaining sum in the right-hand side of (20).
We first split it into two sums and transform each individually.
The first sum is∑

i≤j
i,j∈L

ai,taj,sc(i,j)

=
∑
i=j

i,j∈L

ai,taj,sc(i,j) +
∑
i<j

i,j∈L

ai,taj,sc(i,j)

=
∑
i=j

i,j∈L

ai,taj,sc
E
i,j +

∑
i<j

i,j∈L

ai,taj,s(c
E
i,j + cEj,i)

=
∑
i=j

i,j∈L

ai,taj,sc
E
i,j +

∑
i<j

i,j∈L

ai,taj,sc
E
i,j +

∑
j<i

i,j∈L

aj,tai,sc
E
i,j ,

(22)

where in the last transition, we swap the indices i and j.
Similarly, the second sum is∑

i≤j
i,j∈L

ai,saj,tc(i,j)

=
∑
i=j

i,j∈L

ai,saj,tc
E
i,j +

∑
i<j

i,j∈L

ai,saj,tc
E
i,j +

∑
j<i

i,j∈L

aj,sai,tc
E
i,j .

(23)

Combining (22) and (23) and grouping suitable sums together
we deduce ∑

i≤j
i,j∈L

(ai,taj,s + ai,saj,t)c(i,j)

=
∑
i∈L

∑
j∈L

aj,tai,sc
E
i,j +

∑
i∈L

∑
j∈L

aj,sai,tc
E
i,j .

(24)

From (21) and (24) we derive (20), hence complete the proof
of Lemma 12.

By Lemma 10, Lemma 11, and Lemma 12, we show that for
every codeword cE = (cE(1,1), c

E
(1,2), . . . , c

E
(k,d)) of CE , every

k− ` coordinates of cE can be written as linear combinations
of the remaining M − (k − `) coordinates. Thus the code
CE has minimum distance at least k − `+ 1. As we already
establish that this code has minimum distance at most k−`+1,
the proof of Lemma 9 follows.
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