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Abstract

Supposex is any exactlyk-sparse vector inCn. We present a class of phase measurement matrixA in C
m×n, and a

corresponding algorithm, called SUPER, that can resolvex up to a global phase from intensity measurements|Ax| with high
probability overA. Here|Ax| is a vector of component-wise magnitudes ofAx. The SUPER algorithm is the first to simultaneously
have the following properties: (a) it requires onlyO(k) (order-optimal) measurements, (b) the computational complexity of
decoding isO(k log k) (near order-optimal) arithmetic operations.

I. I NTRODUCTION

Phase Retrieval: In many applications, it’s difficult to measure the phase information of the underlying signal. Instead, we
recover the signal by its intensity measurements. For instance, in X-ray crystallography, optics [1] and image reconstruction
for astronomy [2], signal/image is reconstructed from the intensity measurements of its Fourier transform.

Let A ∈ Cm×n be used to denote thephase measurement matrix, andx ∈ Cn be used to denote the unknown underlying
signal. Instead oflinear measurements of the formy = Ax as in thecompressive sensingliterature (see, for instance, [3]) in
the phase retrieval problemwe havem non-linear intensity measurementsof the form bi = | < Ai,x > |. Here the indexi
is an integer in{1, . . . ,m} (or [m] for short),Ai is the i-th row of phase measurement matrixA, < · > is the inner product
and |·| is the absolute value.

Problems of this kind have been studied over the last decades. A good survey of some of the algorithms via non-convex
process can be found in [4], [5]. Recently, two convex optimization methods, PhaseLift [6] and PhaseCut [7], have been
proposed by Candèset al. and Waldspurgeret al.. PhaseLift is inspired by finding the low-rank matrix (specifically for the
phase retrieval problem, rank-one matrices) by minimizingthe trace norm (SDP) [8]. PhaseLift is able to reconstructx with
O(n logn) intensity measurements by solving semidefinite programming with high probability. TheAi’s are independently
sampled on the unit sphere ofCn. Later, it’s shown that the number of intensity measurements can be improved toO(n) where
Ai’s are independently and identically distributed with the uniform distribution on the sphere of radius

√
n, or the complex

normal distribution [9]. PhaseCut is inspired by solving max-cut problem via SDP. The decoding complexity for both PhaseLift
and PhaseCut isO

(
n3
)
, which is still computationally costly whenn is large.

Besides SDP-based approach, more computationally efficient algorithms are proposed such as [10], [11]. For instance, in
[11], the number of intensity measurements required isO

(
n log3 n

)
. However, the decoding complexity isO

(
n2 log3 n

)
which

is less than that of SDP-based approach.
Compressive Phase Retrieval: Supposex is “sparse”,i.e., the number of non-zero components ofx is at mostk, which is
much less than the lengthn of x. This assumption is not uncommon in many applications like X-ray crystallography. Then,
given A and b, the goal ofcompressive phrase retrievalis to reconstructx as x̂, where x̂ equalsx up to a global phase.
That is, x̂ = xeιΘ for some arbitrary fixedΘ ∈ [0, 2π). Here ι denotes the positive square root of−1. The reason we allow
this degeneracy in̂x, up to a global phase factor, is that all suchx̂’s result in the same measurement vector under intensity
measurements. If̂x does indeed equalx up to a global phase, then we denote this “equality” asx̂=̂x.

It is shown that4k− 1 intensity measurements suffice to uniquely reconstructx in [12] (for x ∈ Rn) and [13] (forx ∈ Cn).
However, no efficient algorithms is given. Theℓ1-regularized PhaseLift method is introduced in the compressive phase retrieval
problem in [14]. In [15], it is shown that if the number of Gaussian intensity measurements isO

(
k2 logn

)
, x can be correctly

reconstructed viaℓ1-regularized PhaseLift.
The works in [16] and the works by Jaganathanet al. [17], [18], [19] study the case when the phase measurement matrix is

a Fourier transform matrix. In [20], it is explained that SDP-based methods can reconstructx with sparsity up too (
√
n). In

[18], the algorithm based on reweightedℓ1-minimization withO
(
k2 logn

)
phaseless Fourier measurements is proposed to go

beyond this bottleneck. When the phase measurement matrix is allowed to be designed, a matrix ensemble and a corresponding
combinatorial algorithm is proposed in [18] such thatx is correctly reconstructed withO(k logn) intensity measurements in
O(kn logn) time.

To our best knowledge, in the literature, there is no construction of a measurement matrixA and a corresponding reconstruc-
tion algorithm that correctly reconstructsx with an order-optimal number of measurements and with near-optimal decoding
complexity simultaneously.

http://arxiv.org/abs/1401.4269v3
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Notation Definition

x Length-n signal overC with sparsityk
A Dimension-n ×m phase measurement matrix overC.
b Length-m Intensity measurement vector overR+.
Ai The i-th row of phase measurement matrixA for all ∀i ∈ [m].
bi bi = |〈Ai, x〉|, the i-th intensity measurement∀i ∈ [m].
k k = ‖x‖0, the number of non-zero components (sparsity) ofx.

Table I
TABLE OF NOTATION FOR THE MODEL

A. Our Contribution

In this work, we describe a randomized design of the phase measurement matrixA and a corresponding decoding algorithm
achieving the following guarantees:

Theorem 1. (Main theorem) There exists a measurement ensemble{A} and a corresponding decoding algorithm for com-
pressive phase retrieval with the following performance:

1) For everyx ∈ C
n, with probability1− o(1) over the randomized design ofA, the algorithm exactly reconstructsx up

to a global phase;
2) The number of measurementsm = O(k);
3) The decoding complexity isO(k log k).

The rest of this paper is organized as follows. We first present the high-level overview of our algorithm in Section II. In
Section II-C, we introduce the graphs used for measurement structure. Section IV and Section VI contain actual measurement
design. Section V and Section VII discuss the reconstruction algorithm and the performance of it. Section VIII concludes this
paper.

II. OVERVIEW/HIGH-LEVEL INTUITION

Our SUPER algorithm is non-adaptive. There are three phases1 in our decoding algorithm. In the first phase (called seeding
phase), we are able to recover the magnitudes and relative phases of constant fraction of non-zero components ofx. In the
second phase (called geometric-decay phase), there areO(log(log k)) stages. In each stage, we recovery the magnitudes and
relative phases of constant fraction of unresolved non-zero components ofx. In the third phase (called cleaning-up phase), the
remainingO(k/ log k) unresolved non-zero components are decoded.

A. Pieces of the puzzle

We first define some useful terminology.
Singletons:

If a measurementbi involves only a single non-zero component ofx, then we say that such a measurement is asingleton.2

Singletons are important since they can be used to pin down the magnitude (though not the phase) of components ofx. There
are several challenges, however. One lies in even identifying whether a measurement is a singleton or not. The second lies in
identifying which of thex components being measured inbi corresponds to the singleton. The third is to be able to do allthis
blindingly fast, in fact inconstanttime (independent ofn andk!). Each of these challenges can be handled by using ideas
from the our prior work on compressive sensing [22]. For details, see Sections IV and V below.
Doubletons:

Similarly, if a measurementbi involves exactly two non-zero components ofx, then we say that such a measurement is a
doubleton. Doubletons, especially doubletons measuring two non-zero components ofx which have already been measured
by singletons (we call such doubletonsresolvable doubletons), are useful since they can be used to deduce the relative phases
of the two non-zero components ofx. For example, if one is given the magnitudes|xi|, |xj |, and |xi + xj |, then one can
determine the angleθ between the phases of the complex numbersxi andxj (up to degeneracy of sign ofθ). In fact, even
this degeneracy can be resolved by an additional judiciously chosen measurement. Similar challenges to those mentioned
above vis-a-vis singletons (identifying whether or not a measurement is a doubleton/resolvable doubleton, identifying which
components ofx it corresponds to, and doing so in constant time) also hold for doubletons. See Sections IV and V for details.
Mutual resolvability:

We say our decoding algorithm has thus farmutually resolvedtwo non-zero componentsxi andxj of x if the magnitudes
of both xi and xj have been deduced, and also the relative phase betweenxi and xj has been deduced (for instance via
resolvable doubleton measurements roughly described above). Note that mutual resolvability is an equivalence relation – it is

1All the measurements are designed before the decoding process, so it is still non-adaptive.
2We borrow this terminology (of singletons, doubletons, multitons, etc) from the compressive sensing work of Pawaret al [21].
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reflexive, symmetric and transitive. Note therefore that ifxi andxi′ have been mutually resolved, it is not necessary that they
even are involved in the same measurement; it is sufficient that xi andxi′ are part of a chain of non-zero components ofx

that are pairwise mutually resolved. Finally, we note that as our decoding algorithm progresses, if it is successful, infact all
the non-zero components ofx are eventually mutually resolved. Hence this property of mutual resolvability is perhaps most
interesting in the intermediate stages of our decoding algorithm.
Giant component:

We say that a subset of the non-zero components ofx form a giant component if it is the largest subset satisfyingthe two
properties:

• The subset is of size linear ink.
• Any pair of components in the subset have been mutually resolved (thus far) by the decoding algorithm.

Non-zero components ofx that have not (yet) been mutually resolved with respect to anelement of the giant component
by the decoding algorithm are said to be unresolved.

Essentially, our algorithm proceeds by iteratively enlarging the giant component until it engorges all the non-zero components
of x.
Resolvable multiton:

We say that a measurementbi is a resolvable multiton if it is the case that exactly one (say xi) of the non-zero components
of x involved in the measurementbi is outside the giant component, and at least one of non-zero components ofx is inside
the giant component. Such measurements are useful since, inthe latter parts of our algorithm, there are not enough resolvable
doubletons. By carefully choosing the parameters of the algorithm, one can guarantee that a constant fraction of measurements
are resolvable mutitons.

Judiciously designed measurements (see Section IV) enableone to mutually resolve the componentxi that is outside the
giant component, with the components ofx inside the giant component, by solving a quadratic equation. Care is indeed
required in choosing the measurements since the amplitude measurement process is inherently non-linear, and there maynot
be a “clean” manner to mutually resolvexi via arbitrary measurements – indeed the design of such a measurement process is
also one of the intellectual contributions we wish to highlight in this work. We call this process “cancelling out” the already
resolved components ofx.

B. Putting the pieces together

Seeding phase:
In the first phase, called theseeding phase, there areO(k) “sparse” measurements (each measurement involves, in expectation,

O(n/k) components ofx). We demonstrate that by first examining the measurements corresponding to this phase, the decoding
algorithm is already able to decode a constant fraction (say1/2)3 of the components ofx up to a global phase. The algorithm is
able to do this since we are able to show that a “significant” fraction of measurements are singletons and resolvable doubletons.
Standard results in percolation theory [23] then lead one toconclude that the number of non-zero nodes that are mutually
resolvable is linear ink, i.e., that there is a giant component. Hence this phase is called the “seeding” phase, since the giant
component forms the nucleus on which the remainder of the algorithm builds upon.

Prior work ([18]) closest to our work here comprises essentially only of the seeding phase, but withO(k log(k))4 measure-
ments. The reason that prior work needs this many measurements is essentially due to what happens at the tail end of a “coupon
collection” process [24] (wherein one has to collect at least one copy of each ofk coupons by sampling with replacement) –
when most of the coupons have already been collected/the giant component is of size close tok, then the growth rate slows
down. Specifically, this is because the fraction of resolvable doubletons decays slowly to zero, and an additional multiplicative
factor of log(k) measurements is required so as to ensure the giant componentsubsumes all non-zero components ofx.

The key technique used in our work, then, is to segue to a different sampling process outlined below, and using resolvable
multitons rather than doubletons. The challenge is to make the numbers work – unlike [18], not only do we require onlyO(k)
measurements, but we also require our decoding complexity to beO(k log(k)).
Geometric-decay phase:

This phase itself comprises ofO(log(log(k))) separate stages. Each stage has half the number of measurements compared
to the previous stage, but measurements in each stage are twice as “dense” as the measurements in the previous stage. So, for
instance, if in the first stage of the geometric-decay phase,there are sayck measurements, with each measurement involvingn/k
components ofx, then in the second stage of the geometric-decay phase, there areck/2 measurements, but each measurement
involves2n/k components ofx.

There are two reasons for this choice of parameters. Firstly, with such a geometric decay in the number of measurements
in each stage, the overall number of measurements in the geometric-decay phase is stillO(k). Secondly, we show that with

3Here, 1/2 is arbitrarily chosen to simplify the presentation of intuition. The actual fraction of resolved non-zero components in the seeding phase is
different from1/2. See Section VII for details. Here, the parameter1/2 for the geometric-decay phase in this section is due to the same reason.

4The combinatorial algorithm in [18] can be modified to haveO(k log(k)) measurement with error probabilityO(1/poly(k)) instead of1/n in the paper.
Also, based on our reconstruction algorithm, the decoding complexity can be reduced toO(k log k).
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the geometric increase in the density of measurements, a significant fraction of measurements in each stage lead to resolvable
multitons, and use this to show that the number of unresolvedcomponents decays geometrically.

The reason we run the geometric-decay phase for onlyO(log(log(k))) stages is also two-fold. Firstly, after that many
stages, with the number of unresolved components halving atevery stage, the number of unresolved components ofx is, in
expectation,O(k/ log(k)). Hence the concentration inequalities (which depend on thenumber of unresolved components) we
use to control the probabilities of error get progressivelyweaker (though they still result in good concentration at the last stage of
the geometric-decay phase). Secondly, and more importantly, the number of non-zero components in each resolvable multiton
increases geometrically as the number of stages increases.This has implications for the time-complexity of the decoding
algorithm, since the time-complexity depends directly on the number of non-zero components in each measurement that need
to be “cancelled out”. By terminating the geometric-decay phase afterO(log(log(k))) stages ensures that, in expectation,
the number of such “cancellations” is at mostO(log(k)), and hence the overall time-complexity of the algorithm scales as
O(k · log(k)).
Cleaning-up phase:

Finally, we segue to what we call the “cleaning-up” phase. Asnoted above, after the geometric-decay phase the number of
unresolved components ofx is, in expectation,k′ , O(k/ log(k)). To fit our budget ofO(k) measurements, andO(k log(k))
decoding time, we now segue to using “coupon collection” as aprimitive. This may be viewed as restarting the seeding (first)
phase, but with different parameters. In particular, the problem dimension has now been significantly reduced (since there are
now onlyk′ unresolved components ofx). Therefore we can now afford to pay the coupon collection penalty that we avoided
in the seeding phase by moving to the geometric-decay phase.

Specifically, in this cleaning-up phase we takeO(k′ log(k′)) measurements so as to resolve the remainingk′ unresolved
components ofx. Note thatO(k′ log(k′)) scales asO(k). Each measurement we take has the same density as the measurements
in the last stage of the geometric decay phase, and hence the time-complexity of resolving measurements also scales in the
same manner. However, since there are many more measurements than in the last stage of the geometric-decay phase, by
standard arguments corresponding to the coupon collectionproblem we are able to argue that for each unresolved component
of x there is at least one resolvable multiton that helps resolveit.

C. Summary of the overview

As the above discussion outlines, to make the numbers work (i.e., to ensureO(k) number of measurements andO(k log(k))
time-complexity), one has to delicately choose the parameters of the measurement ensemble. Our analysis indicates that having
a phase in which the sparsity actually geometrically increases, at least for a while, significantly improves performance. To take
advantage of this, however, we have to carefully design the measurements, so that one can resolve unresolved componentsof
x via judiciously designed non-linear measurements. In thiswork we have not attempted to optimize the constant factors –
we expect further constant-factor improvements are possible via further careful tuning.

III. G RAPH PROPERTIES

We construct a series of bipartite graphs with some desirable properties outlined in this section. We then use the structure of
the bipartite graphs to generate our measurement matrixA in Section IV and design the corresponding reconstruction algorithm
in Section V. Each left nodes of a bipartite graph representsa component ofx and each right node represents a set of intensity
measurements.

A. Seeding Phase

The properties of the bipartite graph,GI , in the first phase are as follows:

1) There aren left nodes andck right nodes, wherec is a constant.
2) Each edge inGI appears with probability1/k. For each right node, the degree, in expectation, isn/k.
3) For each edge inGI , it is assigned different weights which are discussed in themeasurement design (See Section IV).
4) Many singleton nodes: Singleton nodes are right nodes which involves exactly one non-zero component ofx. Singleton

nodes help to recover the magnitude of non-zero component. See Section VII for details.
5) Many resolvable doubleton nodes: Doubleton nodes are right nodes which involve exactly two non-zero components

of x. Resolvable doubletons are the doubletons which involve exactly two non-zero components whose magnitudes are
recovered by singleton nodes. See Section VII for details.

Another graphH is implied byGI . Each vertex inH represents a non-zero component ofx and there is an edge inH if and
only if two left nodes involved are mutually resolved by a resolvable doubleton node. The property ofH is as follows:

1) H has a giant connected component: The connected component,H′ contains a constant fraction of nodes inH. This
property is formally stated in Section VII.
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B. Geometric-decay phase

There areO(log log k) separate bipartite graphs/stages in this phase.
The properties of thel-th bipartite graph,GII,l (l = 1, 2, . . . , L = O(log log k)), are as follows:
1) There aren left nodes andcfII,l−1k right nodes, wherefII,l−1 is the expected fraction of unresolved non-zero

components ofx after the (l− 1)-th stage of decoding process in the second phase.fII,0 = fI is the expected fraction
of unresolved non-zero components after seeding phase. The0-th stage of geometric-decay phase is seeding-phase. The
value offII,l is discussed in Section VI.

2) Each edges inGII,l appears with probability1/ (fII,l−1k).
3) For each edge inGII,l, it is assigned different weights which are discussed in themeasurement design.
4) Many resolvable multiton nodes: The resolvable multitonnodes are right nodes which involve exactly one unresolved

non-zero component ofx and at least one of the resolved non-zero components. Each resolvable multiton node helps to
recover both the magnitude and the relative phase of the corresponding unresolved non-zero component via “Cancelling
out” process (See Section V).

For a newly resolved non-zero component, the correspondingnode inH is appended to the giant connected component,H′.
In expectation, there are(fII,l−1 − fII,l) k non-zero components decoded in thel-th stage of decoding. We show in Section
VII that we are able to reconstruct a constant fraction of undecoded non-zero components with high probability at each stage.
After O(log log k) stages, there areO(k/ log k) unresolved non-zero components ofx left.

C. Cleaning-up phase

The properties of the bipartite graph,GIII , in the last phase are as follows:
1) There aren left nodes andc (k/ log k) log (k/ log k) = O(k) right nodes.
2) Each edges inGIII appears with probabilitylog k/k.
3) For each edge inGIII , it is assigned different weights which are discussed in themeasurement design.
4) Many resolvable multiton nodes.

In this stage, all the resolved non-zero components of sizeO(k/ log k) are finally recovered using resolvable multiton nodes
by “Cancelling out” process and a Coupon Collection argument.

Notation Definition

GI The bipartite graph used in the seeding phase withn left nodes andck right nodes.
Each edge appears with probability1/k.

H Implied graph byGI .
H′ Connected component ofH.
GII,l The l-th bipartite graph used in thel-th stage in geometric-decay phase withn left nodes

andcfII,l−1k right nodes forl ∈ [L]. Each edge appears with probability1/fII,l−1k.
fI The expected fraction of unresolved non-zero components ofx after the seeding phase.

fII,l The expected fraction of unresolved non-zero components ofx after thel-th stage
of the geometric-decay phase. LetfII,0 = fI .

GIII The bipartite graph used in the cleaning-up phase withn left nodes and
c (k/ log k) log (k/ log k) right nodes. Each edge appears with probabilitylog k/k.

Table II
TABLE OF NOTATION USED IN THE DESIGN OF BIPARTITE GRAPHS

IV. M EASUREMENTDESIGN

For a bipartite graphG (G is one of theGI , GII,l’s andGIII ), there aren nodes on the left andm′
G nodes on the right .

A(G)′ is the dimension-m′
G × n adjacent matrix ofG where the entry ati-th row andj-th column equals to1 if and only if

i-th right node connects to thej-th left node forj ∈ [n] and i ∈
[
m′

G

]
. The dimension-mG × n phase measurement matrix

A(G) is designed based onA(G)′ wheremG = 5m′
G . By appending all the matrixA(G) sequentially, we get the actualm×n

measurement matrixA wherem = ΣGmG . For i-th row A(G)′i of A(G)′, a set of rows (of size5) of A(G) are designed for
i ∈

[
m′

G

]
. If the j-th entry ofA(G)′i is zero, then corresponding set of entries ofA(G) are all zero for allj ∈ [n]. In the

following measurement matrix design, we design the entriescorresponding to non-zero entries inA(G)′. See Section V for
how these measurements are used for decoding.

1) Trigonometric entries: The j-th entries of the(5i− 4)-th and(5i− 3)-th rows ofA(G) are denoted bya(G,1)i,j anda(G,2)i,j

. The values are set as follows:

a
(G,1)
i,j = cos

(
jπ

2n

)

a
(G,2)
i,j = ι sin

(
jπ

2n

)

,
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whereι denotes the positive square root of−1 andπ/2n can be treated as the unit phase of the entry design. In particular,
the phasejπ/2n will be critical for our algorithm. The first two entries are used in singleton node identification and
“cancelling out” process of resolvable multiton node.

2) Structured unit complex entries: The j-th entry of the(5i− 2)-th row ofA(G) is denoted bya(G,3)i,j . The value is set as
follows:

a
(G,3)
i,j = exp

(

ι
jπ

2n

)

.

This type of measurement will be used only in “cancelling out” process of resolvable multiton node.
3) Unit entries: The j-th entry of the(5i− 1)-th row ofA is denoted bya(G,4)i,j . The value is set to be1. This measurement

is used in resolvable doubleton identification and “cancelling out” process of resolvable multiton node.
4) Random unit complex entries: The j-th entry of the5i-th row of A is denoted bya(G,5)i,j used as verification. The value

is set as follows:
a
(G,5)
i,(j) = exp(ιφi,j),

whereι denotes the positive square root of−1 andφi,j is chosen uniformly at random from[0, π/2]. This measurement
is used in resolve the degeneracy when resolvable multiton and resolvable doubleton are used for decoding. Also, it helps
to verify our identification and estimation of magnitude andrelative phase.

Notation Definition

m′
G The number of right nodes for the bipartite graphG. G is one ofGI , GII,l for l ∈ [L], andGIII .

A(G)′ The dimension-m′
G × n adjacent matrix ofG.

A(G)′i The i-th row of matrixA(G)′ for i ∈
[

m′
G

]

.
A(G) The dimension-mG × n measurement matrix generated byA(G)′. HeremG = 5m′

G .
A The dimension-m × n phase measurement matrix generated by allA(G)’s. Here,m = ΣGmG .

a
(G,q)
i,j

The j-th entry of the[5 (i− 1) + q]-th the rows ofA(G). Here,i ∈ [mG ], j ∈ [n], andq ∈ [5].
Table III

TABLE OF NOTATION FOR MEASUREMENTS DESIGN

V. RECONSTRUCTIONALGORITHM

Let b(G,q)i denote the[5 (i− 1) + q]-th measurement generated byA(G). Here,G is one of theGI , GII,l’s andGIII , i ∈ [mG ],
andq ∈ [5].

A. Seeding phase

1) Overview:

1) Preprocessing: Each right node is attached to a list to record its neighbors (left nodes) in the decoding process.
2) Magnitude Recovery and Doubleton Identification: Check every right node to see whether it’s singleton node or not. If

yes, we locate the corresponding non-zero component and measure the magnitude of it. After decoding the non-zero
component (only the magnitude), each list of its neighbors’(right nodes’) is inserted the location of the decoded non-zero
component if the length of the list is no larger than one. For the list whose length is3 after insertion, it will be discarded
and won’t be considered in the following iteration since it definitely is not a doubleton. So far we get the potential
resolvable doubletons. Later, we use the verification measurement to find the actual resolvable doubletons. The reason
why we need the verification step is that the potential resolvable doubletons may involve other non-zero components
which have not been resolved yet.
In this step, we decode the magnitudes of constant fraction of all the non-zero components and locate these non-zero
components. We also identify the potential resolvable doubletons by checking whether its list is of length2 and the
actual resolvable doubletons by verification measurement.

3) Relative Phase Recovery: For each resolvable doubleton,it’s used to resolve the phase between the two non-zero
components whose locations lie in the neighbor list.
Breadth first search (BFS) or Depth first search (DFS) [25] algorithm would guide us to explore the connected components
in graphH efficiently. We only care about the largest connected component,H′. After this step, any pair of nodes in
H′ are mutually resolved.
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2) The formal description of reconstruction algorithm:

1) Initialization: We initialize by setting the signal estimate vector̂x to all-zeros vector0n. Each right nodei ∈
[
m′

GI

]

attaches an empty neighbor listN (i). let D denote a list of the resolvable doubletons. Initially,D is empty. Seti = 1.
2) Singleton Identification, Magnitude Recovery and Doubleton Identification:

a) Compute the ratio of Trigonometric measurements:

si =

arctan

(

b
(GI ,2)
i

ιb
(GI ,1)

i

)

π
2n

.

i) Check if si is an integer. If so, we tentatively identifies thati is a singleton,si-th entry ofx is non-zero and

|x̂si | =







b
(GI ,1)
i

a
(GI ,1)
i,si

if a(GI ,1)
i,si

6= 0

ι
b
(GI ,2)
i

a
(GI ,2)
i,si

if a(GI ,2)
i,si

6= 0.

b) We verify our estimate from the previous step. If|x̂si | 6=
∣
∣
∣b

(GI ,5)
i

∣
∣
∣, the verification fails. We incrementi by 1 and

go back to step a) to start a new iteration. If verification passes, we do the following steps:

i) si is appended to the neighbor lists of all its neighbors. Fori ∈
[
m′

GI

]
, it is no longer considered in the later

process if|N (i)| ≥ 3 since in the next step we only care about doubleton whose neighbor list size equals2.
ii) Incrementi by 1 and go back to step a) to start a new iteration.

c) For eachi whose neighbor list is of size2, it is appended to the resolvable doubleton listD whereN (i)[1] and
N (i)[2] are the two indices of non-zero components whose magnitudeshave been recovered.

3) Relative Phase Recovery:

a) Compute connected component ofH: Breadth first search or depth first search for adjacent list representation of
H is applied in this step. For eachi ∈ D, the elements inN (i) tell which two vertices inH are connected. BFS
or DFS outputs connected components of graphH. We run the BFS or DFS, for each edge inH, with additional
steps b), c), and d) stated below:

b) Law of Cosine: Supposei’s two neighbors are denoted byN (i)[1] andN (i)[2]. The fourth measurement is used to
derive the phase betweenN (i)[1]-th andN (i)[2]-th components ofx, θ =

∣
∣θN (i)[1] − θN (i)[2]

∣
∣, by Law of Cosine5.

c) The verification measurement helps to resolve the degeneracy of sign ofθ (i.e., whetherθ or −θ is the actual phase
difference we are interested in.) by checking whether

∣
∣
∣
∣x̂N (i)[1]

∣
∣ exp

(
ιφi,N (i)[1]

)
+
∣
∣x̂N (i)[2]

∣
∣ exp

(
ιφi,N (i)[2] + ιθ

)∣
∣ =

∣
∣
∣b

(GI ,5)
i

∣
∣
∣

or
∣
∣
∣
∣x̂N (i)[1]

∣
∣ exp

(
ιφi,N (i)[1]

)
+
∣
∣x̂N (i)[2]

∣
∣ exp

(
ιφi,N (i)[2] − ιθ

)∣
∣ =

∣
∣
∣b

(GI ,5)
i

∣
∣
∣ .

If neither of the above equations holds, theni is not a resolvable doubleton.
d) For the first node in a connected component, its phase is setto be zero.
e) When the BFS or DFS terminates, we can find the largest connected component ofH, H′. For all the node pairs

in H′, they are mutually resolved.

B. Geometric-decay and Cleaning-up phases

Claim 2. (“Cancelling out” Process) For a bipartite graphG in geometric-decay phase or cleaning-up phase, if a right node i
is a resolvable multiton node, it involves exactly one (unknown) undecoded non-zero component,xj , and at least one (known)
resolved non-zero components. Then, we are able to find the location ofxj , j, and resolvexj (both magnitude and relative
phase).

Proof: We will use four measurements in the “cancelling out” process,

5Given the lengths of two complex numberA andB, we can deduce the phase betweenA andB, ∆, by Law of Cosine if we also know the length of

A+B. To be more explicit,− cos∆ =
|A|2+|B|2−|A+B|2

2|A||B|
.
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b
(G,1)
i =

∣
∣
∣
∣
A+ xj cos

(
jπ

2n

)∣
∣
∣
∣

b
(G,2)
i =

∣
∣
∣
∣
B + xjι sin

(
jπ

2n

)∣
∣
∣
∣

b
(G,3)
i =

∣
∣
∣
∣
C + xj exp

(

ι
jπ

2n

)∣
∣
∣
∣

b
(G,5)
i = |D + xj exp (ιφi,j)| ,

whereA, B, C, andD are calculated from the decoded non-zero components which connect to right nodei in G.
We find that by the measurements design

A+B = C

and

xj cos

(
jπ

2n

)

+ xjι sin

(
jπ

2n

)

= xj exp

(

ι
jπ

2n

)

.

Let

jπ

2n
= α

A+ xj cos

(
jπ

2n

)

= U

B + xjι sin

(
jπ

2n

)

= V

C + xj exp

(

ι
jπ

2n

)

= W,

we have

b
(G,1)
i = |U |
b
(G,2)
i = |V |
b
(G,3)
i = |W |

= |U + V | .
Finding the relation betweenU andV :

We know that

U = V × b
(G,1)
i

b
(G,2)
i

exp (ιψ) ,

or

U = V × b
(G,1)
i

b
(G,2)
i

exp (−ιψ) ,

whereψ is the phase betweenU andV andcosψ = |U|2+|V |2−|U+V |2

2|U||V | .
Finding the relation betweenx andα:

For simplicity, we only consider the case that

U = V × b
(G,1)
i

b
(G,2)
i

exp (ιψ)

, V ×M.

So,
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A+ xj cosα = [B + xjι sinα]M.

We have

xj =
BM −A

cosα− ιM sinα
.

Solving cos2 α by quadratic equation:
Replacingxj in

b
(G,1)
i = |U | ,

we know that

b
(G,1)
i =

∣
∣
∣
∣
A+

BM −A

cosα− ιM sinα
cosα

∣
∣
∣
∣

=

∣
∣
∣
∣

BM cosα− ιAM sinα

cosα− ιM sinα

∣
∣
∣
∣

=

∣
∣
∣
∣

B cosα− ιA sinα

cosα− ιM sinα

∣
∣
∣
∣
|M |

=

∣
∣
∣
∣

B cosα− ιA sinα

cosα− ιM sinα

∣
∣
∣
∣

b
(G,1)
i

b
(G,2)
i

.

So,

b
(G,2)
i |cosα− ιM sinα| = |B cosα− ιA sinα| .

Let

A = A1 + ιA2

B = B1 + ιB2

M = M1 + ιM2,

whereA1, A2, B1, B2, M1, andM2 are real numbers. We have

b
(G,2)
i |cosα− ι (M1 + ιM2) sinα|

= |(B1 + ιB2) cosα− ι (A1 + ιA2) sinα| .
Squaring both sides, we get

[

b
(G,2)
i

]2 [

(cosα+M2 sinα)
2 + (M1 sinα)

2
]

= (B1 cosα+ A2 sinα)
2
+ (B2 cosα−A1 sinα)

2
.

After reorganizing the above equation, we have

([

b
(G,2)
i

]2

− |B|2
)

cos2 α+

([

b
(G,1)
i

]2

− |A|2
)

sin2 α

= 2 cosα sinα

(

A2B1 −A1B2 − 2
[

b
(G,2)
i

]2

M2

)

.

Let

P =
[

b
(G,2)
i

]2

− |B|2

Q =
[

b
(G,2)
i

]2

− |A|2

R = A2B1 −A1B2 − 2
[

b
(G,2)
i

]2

M2

S = cos2 α

and square both sides, we have

[PS +Q(1− S)]
2

= 4R2S(1− S).
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After reorganizing the above equation, we get

(
P 2 +Q2 − 2PQ+ 4R2

)
S2

+
(
2PQ− 2Q2 − 4R2

)
S +Q2 = 0.

We are able to solveS (quadratic equation) in constant time and similarly for thecase thatU = V × b
(G,1)
i

b
(G,2)
i

exp (−ιψ).
Resolving the degeneracy via random unit complex measurements:

After deriving the value ofS = cos2 α, we can get the constant (4) possible value ofj andxj (both magnitude and the
relative phase inH′) pairs.

Last, we check which pairs of solution that satisfies the following equation to resolve the degeneracy

b
(G,5)
i = |D + xj exp (ιφi,j)| .

Note that if “cancelling out” fails (i.e., none of the pairs ofj andxj satisfies the last equation in the proof), theni is not
a resolvable multiton. In each stage at geometric-decay phase and cleaning-up phase, we go through all the right nodes, find
resolvable multitons and use them to recover unresolved non-zero components by the “cancelling out” process. For a newly
resolved component ofx, the corresponding node inH is appended toH′. In the end, the size of the node set ofH′ should
be k.

Notation Definition

b
(G,q)
i The [5 (i− 1) + q]-th intensity measurement generated by measurement matrixA(G). Here,i ∈ [mG ], andq ∈ [5].
D Resolvable doubleton list used in the seeding phase.
S Singleton List. used in the seeding phase.

N (i) The neighbor list fori-th node inGI for i ∈
[

mGI

]

.
Table IV

TABLE OF NOTATION FOR MEASUREMENTS DESIGN

VI. PARAMETERS DESIGN

All the parameters designed in this section are calculated based on expectation. The actual performance of our algorithm
will be discussed in Section VII.

A. Seeding phase

1) Magnitude Recovery by singletons:

• The probability of a right node being a singleton node:

PS =

(
k

1

)
1

k

(

1− 1

k

)k−1

=

(

1− 1

k

)k−1

.
= e−1.

• The expected number of singletons is= ck × PS
.
= e−1ck.

• The expected number of different non-zero components whosemagnitudes are recovered:

Lemma 3. (Generalized coupon collection) GivenV different coupons andV log V
V −U picks with repetition (U < V ), the

expected number of different coupons picked isU for V → +∞. With probability at least1 − 2 exp
(

− 2ǫ2(V −U)U
V

)

, the

number of different coupons picked is between(1− ǫ)U and (1 + ǫ)U for any ǫ > 0.

By Lemma 3 (letV = k andV log V
V −U = ck × PS), we know that the expected number of non-zero components ofx

whose magnitudes are recovered isk
(
1− e−cPS

)
.
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2) Relative Phase Recovery by resolvable doubletons:

• The probability of a right node being doubleton:

PD =

(
k

2

)(
1

k

)2(

1− 1

k

)k−2

=
1

2

(

1− 1

k

)k−1

.
=

e−1

2
.

• The expected number of doubletons is= ck × PD
.
= e−1ck/2.

• The expected number of resolvable doubletons:

Note that only the doubleton which involves two non-zero components whose magnitudes have been recovered is useful to
recover the relative phase.

# resolvable doubletons=

(k(1−e−cPS )
2

)

(
k
2

) × ckPD

.
=

(
1− e−cPS

)2
cke−1

2
.

• The expected number of different pairs of components whose relative phase is recovered by resolvable doubletons:

By Lemma 3, givenk
(
1− e−cPS

)
nodes and

(
1− e−cPS

)2
ckPD edges with repetition inH, there are

(1 +O(1/k))
(
1− e−cPS

)2
ckPD

distinct edges.
3) The giant connected components:

Theorem 4. [23] For a random graphGN,M with N nodes andM edges chosen at random among the
(
N
2

)
possible edges.

Let ZN,M denote the size of the greatest component ofGN,M . If r = 2M/N > 1, we have for anyǫ > 0

Pr

(∣
∣
∣
∣

ZN,M

N
− β

∣
∣
∣
∣
< ǫ

)

= 1−O
(

1

ǫ2N

)

,

whereβ is the unique solution toβ + exp(−βr) = 1.

We need to find the size of giant connected component of a random graph withk
(
1− e−cPS

)
nodes and

(
1− e−cPS

)2
ckPD

edges (with repetition) and therefore(1 +O(1/k))
(
1− e−cPS

)2
ckPD distinct edges (implied by Lemma 3). Let’s say the

size is(1− fI) k wherefI is the function ofc.
By Theorem 4, when2

(
1− e−cPS

)
cPD > 1, the giant connected component exists (this inequality holds when constant

c is large enough) and the size of the giant component is(1− fI) k = βck
(
1− e−cPS

)
whereβc is the unique solution to

β + exp
[
−β · 2

(
1− e−cPS

)
cPD

]
= 1.

B. Geometric-decay phase:

Let fII,l denote the expected fraction of unresolved non-zero components after thel-th stages in this phase. LetfI = fII,0.
1) Stagel+ 1 (0 ≤ l ≤ L− 1):

• The probability that a right node being a resolvable multiton:

P
(II,l+1)
M =

(
fII,lk

1

)
1

fII,lk

(

1− 1

fII,lk

)fII,lk−1
[

1−
(

1− 1

fII,lk

)(1−fII,l)k
]

=

(

1− 1

fII,lk

)fII,lk−1

−
(

1− 1

fII,lk

)k−1

.
= e−1 − e

− 1
fII,l .

• The expected number of resolvable multitons iscfII,lkP
(II,l+1)
M .

• The expected number of non-zero components which are resolved (both magnitude and phase):
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By Lemma 3, let

fII,lk log
fII,lk

fIIk − (fII,l − fII,l+1)k
= cfII,lkP

(II,l+1)
M ,

we know thatfII,l − fII,l+1 = fII,l

(

1− e−cP
(II,l+1)
M

)

.

Therefore,fII,l+1 = e−cP
(II,l+1)
M fII,l. We can compute the value offII,l recursively.

Note thatP (II,l)
M increases asl increases. So,P (II,l)

M is bounded bye−1 − e
− 1

fI (l = 0) ande−1 (l = +∞).
2) End of this phase:There areO(log log k) stages in the geometric-decay phase. We already show that ineach step we

expect to recover constant fraction of remaining unresolved non-zero components. In the end of this phase, the number of
unresolved non-zero components isO(k/ log k).

C. Cleaning-up phase

Recall that, in this phase, each edges appears with probability log k/k and there arec (k/ log k) log (k/ log k) = O(k) right
nodes inGIII .

VII. PERFORMANCE OF ALGORITHM(PROOF OFMAIN THEOREM)

Number of measurements:
In Section VI, we already know thatfII,l+1 = e−cP

(II,l+1)
M fII,l. And P (II,l)

M increases asl increases.

fII,l+1 = exp
[

−cP (II,l+1)
M

]

fII,l

= exp
[

−cΣl+1
t=1P

(II,t)
M

]

fII,0

= exp
[

−cΣl+1
t=1P

(II,t)
M

]

fI

≤ exp
[

−c(l+ 1)P
(II,1)
M

]

fI .

Then, the total number of measurements in three phases is

ck
︸︷︷︸

Seeding

+ ΣL
l=1cfII,l−1k
︸ ︷︷ ︸

geometric−decay

+ c(k/ log k) log(k/ log k)
︸ ︷︷ ︸

cleaning−up

= O(k) +
(
ΣL

l=1cfII,l−1

)
k +O(k)

≤ O(k) +
(

ΣL
l=1 exp

[

−clP (II,1)
M

])

fIck

= O(k).

Decoding complexity:
Almost all the operations take constant time except for DFS in the seeding phase and “Cancelling out” process in the

geometric-decay and cleaning-up phases.
For DFS, the time complexity is linear in the size of node set and edge set. Since there arek nodes andO(k) edges involved

in the seeding phase, the time complexity isO(k).
For “Cancelling out” process, the time complexity is dominated by calculating the value ofA, B, C andD (See Section V).

And the complexity depends on the number of resolved non-zero components which corresponds to the resolvable multiton.
In the later stage/phase, more non-zero components are associated with a measurement. Since the number of measurementsis

O(k), it suffices to show that each measurement involves at mostO(log k) non-zero components (even if they are unresolved)
in the cleaning-up phase with probability at least1− o(1/k).

Let NZ be the number of non-zero components involved in a measurement in cleaning-up phase. By Chernoff bound, for
any ǫNZ ≥ 0, we have

Pr [NZ ≥ (1 + ǫNZ) k · log k/k] ≤ exp

(

− ǫ2NZ

2 + ǫ2NZ

k · log k/k
)

.

Therefore,

Pr [NZ = O(log k)] ≥ 1−O(1/poly(k)).

Thus, we know that the decoding complexity is at mostO(k · NZ) = O(k log k) with probability at least1 − k ·
O(1/poly(k)) = 1− o(1) by Union bound.
Correctness:
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The actual performance of our algorithm is slightly different from expectation. Here, “slightly” means that the actual
number of resolved non-zero components in each phase/stagedeviates from the expected value but it can be concentrated
around expectation with high probability.

Let gI denote the actual fraction of unresolved non-zero components after seeding phase. LetgII,l denote the actual fraction
of unresolved non-zero components after thel-th stage in geometric-decay phase. LetgII,0 = gI .

Just recall the properties of the bipartite graphs for measurement design. In the seeding phase, each edge appears with
probability 1/k and there areck right nodes. In the geometric-decay phase, each edge appears with probability1/fII,lk and
there arecfII,lk right nodes in (l+1)-th step forl ≥ 0. In the cleaning-up phase, each edge appears with probability log k/k
and there arec(k/ log k) log(k/ log k) right nodes.

A. Seeding Phase

1) Magnitude recovery:

• By Chernoff bound, the probability that the number of singletons is larger than(1 + ǫS) ck × PS or smaller than
(1− ǫS) ck × PS is less than2e−(ǫS)

2ckPS/2 = O
(
exp

(
−ǫ2Sk

))
for any ǫS > 0.

• By Lemma 3 and Union bound, we know that, for anyǫDS > 0, the number of different non-zero components whose
magnitudes are recovered is between(1− ǫDS)

[
1− e−(1−ǫS)cPS

]
k and(1 + ǫDS)

[
1− e−(1+ǫS)cPS

]
k with probability

1−O
[
exp

(
−ǫ2DSk

)
+ exp

(
−ǫ2Sk

)]
.

Note that
(1 + βS)

[

1− e−(1+ǫS)cPS

]

k

and
(1− βS)

[

1− e−(1−ǫS)cPS

]

k

scale as
(
1− e−cPS

)
[1 + (ǫDS + ǫS) + o(ǫDS + ǫS)] k

and
(
1− e−cPS

)
[1− (ǫDS + ǫS)− o(ǫDS + ǫS)] k,

respectively.
2) Relative phase recovery:

• By Chernoff bound, the probability that the number of doubletons is larger than(1 + ǫD) ck × PD or smaller than
(1− ǫD) ck × PD is less than2e−(ǫD)2ckPD/2 = O

(
exp

(
−ǫ2Dk

))
for any ǫD > 0.

• The resolvable doubletons

# resolvable doubletons≤
((1+ǫDS)

[

1−e−(1+ǫS)cPS

]

k

2

)

(
k
2

)

× (1 + ǫD) (1 + ǫRD) ckPD

and

# resolvable doubletons≥
((1−ǫDS)

[

1−e−(1−ǫS)cPS

]

k

2

)

(
k
2

)

× (1− ǫD) (1− ǫRD) ckPD

with probability
1−O

[
exp

(
−ǫ2DSk

)
+ exp

(
−ǫ2Sk

)
+ exp

(
−ǫ2Dk

)
+ exp

(
−ǫ2RDk

)]
,

for any ǫRD > 0, by Chernoff bound and Union bound. Again, the upper bound and the lower bound on the number of
resolvable doubletons scale as

[1 +O (ǫDS + ǫS + ǫD + ǫRD)]
(
1− e−cPS

)2
ckPD

and

[1−O (ǫDS + ǫS + ǫD + ǫRD)]
(
1− e−cPS

)2
ckPD,

respectively.
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• Number of distinct edges in giant component: By Lemma 3 and Union bound, for anyǫDRD > 0, with probability

1−O
[
exp

(
−ǫ2DSk

)
+ exp

(
−ǫ2Sk

)
+ exp

(
−ǫ2Dk

)
+ exp

(
−ǫ2RDk

)
+ exp

(
−ǫ2DRDk

)]
,

the number of pairs of relative phase resolved by all the resolvable doubletons will be bounded by

(1 + ǫDRD) [1 +O (ǫDS + ǫS + ǫD + ǫRD) /k] [1 +O (ǫDS + ǫS + ǫD + ǫRD)]
(
1− e−cPS

)2
ckPD

and
(1− ǫDRD) [1−O (ǫDS + ǫS + ǫD + ǫRD) /k] [1−O (ǫDS + ǫS + ǫD + ǫRD)]

(
1− e−cPS

)2
ckPD

which scale as
[1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)]

(
1− e−cPS

)2
ckPD

and
[1−O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)]

(
1− e−cPS

)2
ckPD.

3) The giant connected component:Let N+andN− be the upper bound and lower bound on the number of nodes in giant
component.

Let M+ andM− be the upper bound and lower bound on the number of edges in giant component. Then,r+ = 2M+/N−

is the upper bound on twice the size of edges over size of nodesand ther− = 2M−/N+ is the lower bound.β+
c andβ−

c are
the solution to the equationβ + exp (−βr+) = 1 andβ + exp (−βr−) = 1.

We know that

r+ = 2M+/N−

= 2 [1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)]
(
1− e−cPS

)2
ckPD

/
(
1− e−cPS

)
[1−O(ǫDS + ǫS)] k

= 2 [1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)]
(
1− e−cPS

)
cPD

and

r− = 2M−/N+

= 2 [1−O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)]
(
1− e−cPS

)2
ckPD

/
(
1− e−cPS

)
[1 +O(ǫDS + ǫS)] k

= 2 [1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)]
(
1− e−cPS

)
cPD.

Sincer = − log(1− β)/β, dr/dβ = (− log(1− β)/β)
′
β=βc

is a constant.
By Theorem 4,

Pr

(∣
∣
∣
∣

ZN,M

N
− βc

∣
∣
∣
∣
≤ ǫGC

)

= O
(

1

ǫ2GCk

)

,

for any ǫGC > 0.
Therefore,

β+
c = [1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)] (βc + ǫGC)

and

β−
c = [1−O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)] (βc − ǫGC) .

The upper bound on the size of giant component is

N+β+
c =

(
1− e−cPS

)
[1 +O(ǫDS + ǫS)] k [1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD)] (βc + ǫGC)

= [1 +O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD + ǫGC)]βc
(
1− e−cPS

)
k

and the lower bound on the size of giant component is

N−β−
c = [1−O (ǫDS + ǫS + ǫD + ǫRD + ǫDRD + ǫGC)]βc

(
1− e−cPS

)
k,

with probability

1−O
[
exp

(
−ǫ2DSk

)
+ exp

(
−ǫ2Sk

)
+ exp

(
−ǫ2Dk

)
+ exp

(
−ǫ2RDk

)
+ exp

(
−ǫ2DRDk

)
+O

(
1/ǫ2GCk

)]
.
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Recall that(1− fI) k = βc
(
1− e−cPS

)
k, we conclude that, with probability

1−O
[
exp

(
−ǫ2DSk

)
+ exp

(
−ǫ2Sk

)
+ exp

(
−ǫ2Dk

)
+ exp

(
−ǫ2RDk

)
+ exp

(
−ǫ2DRDk

)
+O

(
1/ǫ2GCk

)]
,

there existsǫI such that

(1− ǫI) fI ≤ gI ≤ (1 + ǫI) fI .

Here,ǫI scales asO (ǫDS + ǫS + ǫD + ǫRD + ǫDRD + ǫGC). Choose all theǫ’s to bek−1/3. Then,ǫI scales asO
(
k−1/3

)

with probability1−O
(
k−1/3

)
.

B. Geometric-decay Phase

1) Stagel+ 1 (0 ≤ l ≤ L− 1):
• The probability that a right node being a resolvable multiton:

Q
(II,l+1)
M =

(
gII,lk

1

)
1

fII,lk

(

1− 1

fII,lk

)gII,lk−1
[

1−
(

1− 1

fII,lk

)(1−gII,l)k
]

=
gII,l
fII,l

[(

1− 1

fII,lk

)gII,lk−1

−
(

1− 1

fII,lk

)k−1
]

.
=

gII,l
fII,l

(

e
−

gII,l
fII,l − e

− 1
fII,l

)

.

• The number of resolvable multitons is bounded by
(

1 + ǫ
(II,l+1)
M

)

cfII,lkQ
(II,l+1)
M

and (

1− ǫ
(II,l+1)
M

)

cfII,lkQ
(II,l+1)
M

with probability1−O
(

exp

(

−
[

ǫ
(II,l+1)
M

]2

fII,lk

))

for any ǫ(II,l+1)
M > 0.

• The number of non-zero components which are recovered (bothmagnitude and phase)
Let ǫII,0 = ǫI . By Lemma 3, we know that

gII,l+1 − gII,l ≤
(

1 + ǫ
(II,l+1)
DM

)[

1− e
−
(

1+ǫ
(II,l+1)
M

)

cfII,lQ
(II,l+1)
M

/gII,l

]

gII,l

.
=

(

1 + ǫ
(II,l+1)
DM

)



1− e
−
(

1+ǫ
(II,l+1)
M

)

c

(

e
−

gII,l
fII,l −e

− 1
fII,l

)

 gII,l

≤
(

1 + ǫ
(II,l+1)
DM

)



1− e
−
(

1+ǫ
(II,l+1)
M

)

c

(

e
−(1−ǫII,l)−e

− 1
fII,l

)

 gII,l

and

gII,l+1 − gII,l ≥
(

1− ǫ
(II,l+1)
DM

)[

1− e
−
(

1−ǫ
(II,l+1)
M

)

cfII,lQ
(II,l+1)
M

/gII,l

]

gII,l

.
=

(

1− ǫ
(II,l+1)
DM

)



1− e
−
(

1−ǫ
(II,l+1)
M

)

c

(

e
−

gII,l
fII,l −e

− 1
fII,l

)

 gII,l

≥
(

1− ǫ
(II,l+1)
DM

)



1− e
−
(

1−ǫ
(II,l+1)
M

)

c

(

e
−(1−ǫII,l)−e

− 1
fII,l

)

 gII,l,

with probability1−O
(

exp

(

−
[

ǫ
(II,l+1)
M

]2

fII,lk

)

+ exp

(

−
[

ǫ
(II,l+1)
DM

]2

gII,lk

)

+ k−1/3

)

by Lemma 3 and Union bound

for any ǫ(II,l+1)
DM > 0.

We conclude there existsǫ′II,l+1 such that
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e−cP
(II,l+1)
M

(
1− ǫ′II,l+1

)
gII,l ≤ gII,l+1

≤ e−cP
(II,l+1)
M

(
1 + ǫ′II,l+1

)
gII,l.

Hereǫ′II,l+1 scales asO
[

ǫ
(II,l+1)
DM + ǫ

(II,l+1)
M + ǫII,l

]

.

Since(1− ǫII,l) fII,l ≤ gII,l = (1 + ǫII,l) fII,l, we have

e−cP
(II,l+1)
M

(
1− ǫ′II,l+1

)
(1− ǫII,l) fII,l ≤ gII,l+1

≤ e−cP
(II,l+1)
M

(
1 + ǫ′II,l+1

)
(1 + ǫII,i) fII,l.

SincefII,l+1 = e−cP
(II,l+1)
M fII,l, we have

(
1− ǫ′II,l+1

)
(1− ǫII,l) fII,l+1 ≤ gII,l+1

≤
(
1 + ǫ′II,l+1

)
(1 + ǫII,l) fII,l+1.

Thus, we get that

(1− ǫII,l+1) fII,l+1 ≤ gII,l+1

≤ (1 + ǫII,l+1) fII,l+1.

Here,ǫII,l+1 scales asO
[

ǫ
(II,l+1)
DM + ǫ

(II,l+1)
M + 2ǫII,l

]

.

Chooseǫ(II,l+1)
DM andǫ(II,l+1)

M to bek−1/3 for all l. The error probability in each stage isO
(
k−1/3

)
(which is the dominant

term).
After L stages (L = O(log log k)),

(1− ǫII,L) fII,L ≤ gII,L ≤ (1 + ǫII,L) fII,L (1)

holds with probability1 −O
(
log log k · k−1/3

)
by Union bound. HereǫII,L scales asO

(
log k · k−1/3

)
(since each stage

ǫII,l doubles).

C. Cleaning-up phase

Theorem 5. [Folklore](Coupon Collection) Let the random variableX denote the minimum number of trials for collecting
each of theV types of coupons. Then, we havePr[X > ηV log V ] ≤ V −η+1 for any η > 0.

• The probability that a right node being a resolvable multiton:

QIII
M

.
=

gII,L
fII,L

(

e
−

gII,L
fII,L − e

− 1
fII,L

)

.

• fIII = 1/ log k. The number of resolvable multitons is lower bounded by
(
1− ǫIIIM

)
cfIIIk log (fIIIk)Q

III
M ,

with probability1−O
(

exp
(

−
[
ǫIIIM

]2
k/ log k

))

given Equation (1) holds for anyǫ(III)M > 0.

• The number of unresolved components in this phase isO(k/ log k). By Theorem 5, all the components are resolved with
probability1−O(log k/k) for large enoughc given Equation (1) holds.

By Union bound, the overall error probability iso(1).

VIII. C ONCLUSION

In this paper, we present the first algorithm for compressivephase retrieval problem whose number of measurements is
order-optimal and computational complexity is nearly order-optimal.
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IX. A PPENDIX

A. Proof for Lemma 3

Proof: Let Yi be the indicator random variable which represents whetheri-th coupon is picked inM trials. We know that
Y ′
i s are dependent and

Yi =

{

1 with probability1−
(
1− 1

V

)
M

0 with probability
(
1− 1

V

)
M .

Then,Y = Y1 + · · ·+ YV is the total number of different types of coupons picked inM trials.
By the linearity of expectation, we have

E[Y ] = ΣV
i=1E[Yi]

= V

[

1−
(

1− 1

V

)M
]

.
= V

(

1− e−
M
V

)

= V

(

1− V − U

V

)

= U.

Let Z1, . . . , ZM be independent random variables all taking values in[V ] uniformly at random representing each pick for
V types of coupon.

Let f(Z1, . . . , ZM ) be the number of different types of coupons picked. Then,E[f ] = E[Y ]
.
= U .

Also, ∀i ∈ [M ],

|f (Z1, . . . , Zi, . . . , ZM )− f (Z1, . . . , Z
′
i, . . . , ZM )| ≤ 1.

.
For all β > 0, by McDiarmid’s Inequality (Theorem 7), we have

Pr(f −E[f ] ≤ −β) ≤ exp

(

−2β2

M

)

and

Pr(f −E[f ] ≥ β) ≤ exp

(

−2β2

M

)

.

Thus,

Pr(f ≤ V (1− e−M/V )− β) ≤ exp

(

−2β2

M

)

.

Let M = V log V
V−U andβ = ǫU , we know that

Pr(f ≤ (1− ǫ)U) ≤ exp

(

− 2(ǫU)2

V log V
V −U

)

≤ exp−2(ǫU)2

V U
V−U

= exp

(

−2ǫ2U(V − U)

V

)

and

Pr(f ≥ (1 + ǫ)U) ≤ exp

(

−2ǫ2U(V − U)

V

)

.

Therefore,

Pr((1− ǫ)U ≤ f ≤ (1 + ǫ)U) ≥ 1− 2 exp

(

−2ǫ2U(V − U)

V

)

.
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B. Proof of Theorem 5

Proof: Let Zi be the event thati-th coupon has not yet picked inM trials. We know that

Pr (Zi) =

(

1− 1

V

)M

≤ exp (−M/V ) .

Then,

Pr (X > M) = Pr (∪v
i=1Zi)

≤
v∑

i=1

Pr (Zi)

≤ V exp (−M/V ) .

Let M = ηV logV , we get

Pr (X > ηV logV ) ≤ V −η+1.

C. Chernoff Bound and McDiamid’s Inequality

Theorem 6. (Chernoff Bound) LetX1, . . . , Xn be independent random variables. Assume that0 ≤ Xi ≤ 1 for eachi ∈ [n].
Let X = X1 + · · ·+Xn. µ = E[X ] = E[X1] + · · ·+E[Xn]. Then for anyǫ ≥ 0,

Pr[X ≤ (1 − ǫ)µ] ≤ exp

(

− ǫ
2

2
µ

)

and

Pr[X ≥ (1 + ǫ)µ] ≤ exp

(

− ǫ2

2 + ǫ
µ

)

.

Theorem 7. [26](McDiarmid’s Inequality) LetX1, . . . , Xm be independent random variables all taking values in the setX .
Further, let f : Xm → R be a function ofX1, . . . , Xm that satisfies∀i,∀x1, . . . , xm, x′i ∈ X ,

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci.

Then for all ǫ > 0,

Pr(f −E[f ] ≥ ǫ) ≤ exp

( −2ǫ2

Σm
i=1c

2
i

)

and

Pr(f −E[f ] ≤ −ǫ) ≤ exp

( −2ǫ2

Σm
i=1c

2
i

)

.
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