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Abstract

Supposex is any exactlyk-sparse vector irC". We present a class of phase measurement matrin C™*", and a
corresponding algorithm, called SUPER, that can resalvgp to a global phase from intensity measuremeritg| with high
probability overA. Here| Ax| is a vector of component-wise magnitudesdf. The SUPER algorithm is the first to simultaneously
have the following properties: (a) it requires onty(k) (order-optimal) measurements, (b) the computational ¢exity of
decoding isO(klog k) (near order-optimal) arithmetic operations.

|. INTRODUCTION

Phase Retrieval: In many applications, it's difficult to measure the phaseinfation of the underlying signal. Instead, we
recover the signal by its intensity measurements. For riggtain X-ray crystallography, opticsl[1] and image recaomston
for astronomy/([2], signal/image is reconstructed from thtemsity measurements of its Fourier transform.

Let A € C"™*" be used to denote thghase measurement matrixndx € C" be used to denote the unknown underlying
signal. Instead ofinear measurements of the forjm= Ax as in thecompressive sensirgerature (see, for instance,][3]) in
the phase retrieval problemve havem non-linear intensity measuremera$ the formb;, = | < A4;,x > |. Here the index
is an integer in{1,...,m} (or [m] for short), 4; is thei-th row of phase measurement matrix < - > is the inner product
and|-| is the absolute value.

Problems of this kind have been studied over the last dec#dgsod survey of some of the algorithms via non-convex
process can be found inl[4].][5]. Recently, two convex opation methods, PhaseLift|[6] and PhaseCut [7], have been
proposed by Candest al. and Waldspurgeet al. PhaselLift is inspired by finding the low-rank matrix (spieeilly for the
phase retrieval problem, rank-one matrices) by minimizimg trace norm (SDP)[8]. PhaseLift is able to reconstsutith
O(nlogn) intensity measurements by solving semidefinite progrargmaiith high probability. TheA;’s are independently
sampled on the unit sphere @f. Later, it's shown that the number of intensity measuresean be improved t®(n) where
A;'s are independently and identically distributed with th@form distribution on the sphere of radiygn, or the complex
normal distribution[[B]. PhaseCut is inspired by solvingxtait problem via SDP. The decoding complexity for both Rh#s
and PhaseCut i® (n3) which is still computationally costly when is large.

Besides SDP-based approach, more computationally effiaigorithms are proposed such as|[10]./[11]. For instante, i
[11], the number of intensity measurements require@ (m log? n) However, the decoding complexity (3 (n2 log® n) which
is less than that of SDP-based approach.

Compressive Phase Retrieval: Supposex is “sparse”,i.e., the number of non-zero componentssofs at mostk, which is
much less than the length of x. This assumption is not uncommon in many applications likeaX crystallography. Then,
given A and b, the goal ofcompressive phrase retrievéd to reconstrucik asx, wherex equalsx up to a global phase.
That is,x = xe‘© for some arbitrary fixed € [0,27). Here. denotes the positive square root-et. The reason we allow
this degeneracy i, up to a global phase factor, is that all suts result in the same measurement vector under intensity
measurements. & does indeed equad up to a global phase, then we denote this “equality%k&sx.

It is shown thattk — 1 intensity measurements suffice to uniquely reconstxiict [12] (for x € R™) and [13] (forx € C").
However, no efficient algorithms is given. Thgregularized PhaseLift method is introduced in the congivegphase retrieval
problem in [14]. In[15], it is shown that if the number of Gaisn intensity measurements(il;(k:2 log n) x can be correctly
reconstructed vid; -regularized PhaselLift.

The works in[16] and the works by Jaganatteral. [17], [18], [1C] study the case when the phase measuremetmixns
a Fourier transform matrix. In[20], it is explained that Sb&ed methods can reconstrictith sparsity up too (1/n). In
[18], the algorithm based on reweightédminimization with O (k:2 log n) phaseless Fourier measurements is proposed to go
beyond this bottleneck. When the phase measurement matlloived to be designed, a matrix ensemble and a corresppndi
combinatorial algorithm is proposed in 18] such tkais correctly reconstructed wit®(klogn) intensity measurements in
O(knlogn) time.

To our best knowledge, in the literature, there is no coetitva of a measurement matrik and a corresponding reconstruc-
tion algorithm that correctly reconstruckswith an order-optimal number of measurements and with npéimal decoding
complexity simultaneously.
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Notation | Definition

Lengthn signal overC with sparsityk

Dimensionn X m phase measurement matrix ovér
Length+n Intensity measurement vector ovRr.

The i-th row of phase measurement matrixfor all Vi € [m)].
b; = [(A;, x)[, thei-th intensity measuremeiti € [m].

k = |Ix[[y, the number of non-zero components (sparsityxof

Table |
TABLE OF NOTATION FOR THE MODEL
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A. Our Contribution

In this work, we describe a randomized design of the phasesueaent matrix4 and a corresponding decoding algorithm
achieving the following guarantees:

Theorem 1. (Main theorem) There exists a measurement ensefbjeand a corresponding decoding algorithm for com-
pressive phase retrieval with the following performance:

1) For everyx € C", with probability 1 — o(1) over the randomized design df, the algorithm exactly reconstructsup

to a global phase;

2) The number of measurements= O(k);

3) The decoding complexity i®(k log k).

The rest of this paper is organized as follows. We first pretfea high-level overview of our algorithm in Sectiéd Il. In
Section1I-C, we introduce the graphs used for measurenterdtsre. Sectiof IV and SectignlVI contain actual measa&m
design. Sectiof V and Sectibn VIl discuss the reconstroaigorithm and the performance of it. Section VIl conclsdkis
paper.

II. OVERVIEW/HIGH-LEVEL INTUITION

Our SUPER algorithm is non-adaptive. There are three dﬂlfasemr decoding algorithm. In the first phase (called seeding
phase), we are able to recover the magnitudes and relataseplof constant fraction of non-zero components.olin the
second phase (called geometric-decay phase), ther@®@og(log k)) stages. In each stage, we recovery the magnitudes and
relative phases of constant fraction of unresolved non-zemponents ok. In the third phase (called cleaning-up phase), the
remainingO(k/ log k) unresolved non-zero components are decoded.

A. Pieces of the puzzle

We first define some useful terminology.
Singletons:

If a measurement; involves only a single non-zero componentgfthen we say that such a measurementﬁ'ngletorﬁ
Singletons are important since they can be used to pin doevmggnitude (though not the phase) of components. dthere
are several challenges, however. One lies in even idemgjfyinether a measurement is a singleton or not. The secandhlie
identifying which of thex components being measuredbincorresponds to the singleton. The third is to be able to dthal
blindingly fast, in fact inconstanttime (independent ofi and k!). Each of these challenges can be handled by using ideas
from the our prior work on compressive sensihgl[22]. For iletaee Sections IV and]V below.

Doubletons:

Similarly, if a measuremernt; involves exactly two non-zero componentsxgfthen we say that such a measurement is a
doubleton Doubletons, especially doubletons measuring two non-zemponents ok which have already been measured
by singletons (we call such doubletoresolvable doubletonsare useful since they can be used to deduce the relativeepha
of the two non-zero components af For example, if one is given the magnitudes)|, |z,|, and|z; + z;|, then one can
determine the anglé between the phases of the complex numberand z; (up to degeneracy of sign @. In fact, even
this degeneracy can be resolved by an additional judigjoosbsen measurement. Similar challenges to those medtione
above vis-a-vis singletons (identifying whether or not aasweement is a doubleton/resolvable doubleton, identfyihich
components ok it corresponds to, and doing so in constant time) also haldiéwbletons. See Sections] IV dnél V for details.
Mutual resolvability:

We say our decoding algorithm has thus fauntually resolvedwo non-zero components; andz; of x if the magnitudes
of both z; and z; have been deduced, and also the relative phase betweand x; has been deduced (for instance via
resolvable doubleton measurements roughly describedebote that mutual resolvability is an equivalence refat it is

1All the measurements are designed before the decoding gmose it is still non-adaptive.
2We borrow this terminology (of singletons, doubletons, titars, etc) from the compressive sensing work of Pagtaal [21].



reflexive, symmetric and transitive. Note therefore that;ifandz;; have been mutually resolved, it is not necessary that they
even are involved in the same measurement; it is sufficiattathand x;; are part of a chain of non-zero componentsxof
that are pairwise mutually resolved. Finally, we note thebar decoding algorithm progresses, if it is successfufaat all
the non-zero components af are eventually mutually resolved. Hence this property ofualresolvability is perhaps most
interesting in the intermediate stages of our decodingrilgo.
Giant component:

We say that a subset of the non-zero components fafrm a giant component if it is the largest subset satisfythng two
properties:

o The subset is of size linear i

« Any pair of components in the subset have been mutually veddlthus far) by the decoding algorithm.

Non-zero components of that have not (yet) been mutually resolved with respect t@lament of the giant component
by the decoding algorithm are said to be unresolved.

Essentially, our algorithm proceeds by iteratively enlagghe giant component until it engorges all the non-zeragonents
of x.

Resolvable multiton:

We say that a measureméntis a resolvable multiton if it is the case that exactly one/ (89 of the non-zero components
of x involved in the measurement is outside the giant component, and at least one of non-zergaonents ok is inside
the giant component. Such measurements are useful sintteg latter parts of our algorithm, there are not enough vebdé
doubletons. By carefully choosing the parameters of therdlgn, one can guarantee that a constant fraction of measnts
are resolvable mutitons.

Judiciously designed measurements (see SeCfibn 1V) emaleldo mutually resolve the component that is outside the
giant component, with the components xfinside the giant component, by solving a quadratic equati@are is indeed
required in choosing the measurements since the amplitdsumement process is inherently non-linear, and therermogy
be a “clean” manner to mutually resolwg via arbitrary measurements — indeed the design of such aumeasnt process is
also one of the intellectual contributions we wish to hightiin this work. We call this process “cancelling out” theealdy
resolved components of.

B. Putting the pieces together

Seeding phase:

In the first phase, called tteeeding phaséhere are) (k) “sparse” measurements (each measurement involves, icttioa,
O(n/k) components ok). We demonstrate that by first examining the measurementssponding to this phase, the decoding
algorithm is already able to decode a constant fraction 1¢aﬁ of the components af up to a global phase. The algorithm is
able to do this since we are able to show that a “significa@tétfon of measurements are singletons and resolvable etouisl
Standard results in percolation theofy|[23] then lead oneadtaclude that the number of non-zero nodes that are mutually
resolvable is linear irk, i.e., that there is a giant component. Hence this phase is cdlledseeding” phase, since the giant
component forms the nucleus on which the remainder of theriéthgn builds upon.

Prior work ([18]) closest to our work here comprises essdigtonly of the seeding phase, but wim(klog(k))ﬁ measure-
ments. The reason that prior work needs this many measutsisegssentially due to what happens at the tail end of a ‘@oup
collection” process([24] (wherein one has to collect attlease copy of each of coupons by sampling with replacement) —
when most of the coupons have already been collected/tmt gimmponent is of size close fq then the growth rate slows
down. Specifically, this is because the fraction of resdvaloubletons decays slowly to zero, and an additional piidétive
factor oflog(k) measurements is required so as to ensure the giant comparesumes all non-zero componentsxof

The key technique used in our work, then, is to segue to ardiffessampling process outlined below, and using resolvable
multitons rather than doubletons. The challenge is to ma&entimbers work — unliké [18], not only do we require o6lyk)
measurements, but we also require our decoding complexibetO(k log(k)).

Geometric-decay phase:

This phase itself comprises d¥(log(log(k))) separate stages. Each stage has half the number of measts@ompared
to the previous stage, but measurements in each stage amdwi‘dense” as the measurements in the previous stageorSo, f
instance, if in the first stage of the geometric-decay phaseg are sayk measurements, with each measurement involuifg
components ok, then in the second stage of the geometric-decay phase, dherk /2 measurements, but each measurement
involves2n/k components ok.

There are two reasons for this choice of parameters. Finsith such a geometric decay in the number of measurements
in each stage, the overall number of measurements in the gfdordecay phase is stilD(k). Secondly, we show that with

3Here, 1/2 is arbitrarily chosen to simplify the presentation of ititii. The actual fraction of resolved non-zero componentshe seeding phase is
different from1/2. See Sectiofi' V]l for details. Here, the parameté? for the geometric-decay phase in this section is due to theegaason.

4The combinatorial algorithm i [18] can be modified to h@ék log(k)) measurement with error probabilit) (1 /poly(k)) instead ofl /n in the paper.
Also, based on our reconstruction algorithm, the decodmgpgexity can be reduced O (k log k).



the geometric increase in the density of measurementsn#isamnt fraction of measurements in each stage lead tovaisiel
multitons, and use this to show that the number of unresoteadponents decays geometrically.

The reason we run the geometric-decay phase for @Mlpg(log(k))) stages is also two-fold. Firstly, after that many
stages, with the number of unresolved components halvireyexty stage, the number of unresolved components isf in
expectation?(k/log(k)). Hence the concentration inequalities (which depend omtireber of unresolved components) we
use to control the probabilities of error get progressivedaker (though they still result in good concentration atl#st stage of
the geometric-decay phase). Secondly, and more impoytdind number of non-zero components in each resolvablatorult
increases geometrically as the number of stages incre@bés.has implications for the time-complexity of the decuyli
algorithm, since the time-complexity depends directly lo@ humber of non-zero components in each measurement that ne
to be “cancelled out”. By terminating the geometric-decémage afterO(log(log(k))) stages ensures that, in expectation,
the number of such “cancellations” is at ma@3tlog(k)), and hence the overall time-complexity of the algorithmlesas
O(k -log(k)).

Cleaning-up phase:

Finally, we segue to what we call the “cleaning-up” phase.n@ted above, after the geometric-decay phase the number of
unresolved components afis, in expectationt’ = O(k/log(k)). To fit our budget ofO(k) measurements, an@(k log(k))
decoding time, we now segue to using “coupon collection” asimitive. This may be viewed as restarting the seedingt)firs
phase, but with different parameters. In particular, thabfgm dimension has now been significantly reduced (sineesthre
now only ¥ unresolved components &). Therefore we can now afford to pay the coupon collectionaitg that we avoided
in the seeding phase by moving to the geometric-decay phase.

Specifically, in this cleaning-up phase we také¢k’log(k’)) measurements so as to resolve the remaiingnresolved
components ok. Note thatO (k' log(k’)) scales a®) (k). Each measurement we take has the same density as the meastse
in the last stage of the geometric decay phase, and hencartbecomplexity of resolving measurements also scalesén th
same manner. However, since there are many more measusethantin the last stage of the geometric-decay phase, by
standard arguments corresponding to the coupon colleptiolblem we are able to argue that for each unresolved compone
of x there is at least one resolvable multiton that helps restlve

C. Summary of the overview

As the above discussion outlines, to make the numbers vierktd ensured (k) number of measurements a6k log(k))
time-complexity), one has to delicately choose the parametf the measurement ensemble. Our analysis indicatesahiag
a phase in which the sparsity actually geometrically ingesaat least for a while, significantly improves perforneao take
advantage of this, however, we have to carefully design thasurements, so that one can resolve unresolved compaients
x via judiciously designed non-linear measurements. In wWosk we have not attempted to optimize the constant factors —
we expect further constant-factor improvements are plessil further careful tuning.

Ill. GRAPH PROPERTIES

We construct a series of bipartite graphs with some desnatdperties outlined in this section. We then use the straatf
the bipartite graphs to generate our measurement matiimxSectior{ TV and design the corresponding reconstructigorahm
in Sectior V. Each left nodes of a bipartite graph represamsmponent ok and each right node represents a set of intensity
measurements.

A. Seeding Phase
The properties of the bipartite grapfi;, in the first phase are as follows:

1) There aren left nodes and:k right nodes, where is a constant.

2) Each edge ij; appears with probability /k. For each right node, the degree, in expectatiom,/is.

3) For each edge ig;, it is assigned different weights which are discussed innleasurement design (See Secfioh 1V).

4) Many singleton nodes: Singleton nodes are right nodeshwinivolves exactly one non-zero componenofSingleton
nodes help to recover the magnitude of non-zero componertSectiof VIl for details.

5) Many resolvable doubleton nodes: Doubleton nodes aft# rigdes which involve exactly two non-zero components
of x. Resolvable doubletons are the doubletons which invoheetx two non-zero components whose magnitudes are
recovered by singleton nodes. See Sedfion VIl for details.

Another graphH is implied by G;. Each vertex i represents a non-zero componentkoénd there is an edge iH if and
only if two left nodes involved are mutually resolved by aaleable doubleton node. The property Afis as follows:
1) H has a giant connected component: The connected compdiérpntains a constant fraction of nodes#h This
property is formally stated in Sectign VII.



B. Geometric-decay phase

There areO(loglog k) separate bipartite graphs/stages in this phase.

The properties of thé-th bipartite graphG;;; (I =1,2,...,L = O(loglogk)), are as follows:

1) There aren left nodes andcf;;;—1k right nodes, wherefr;;—; is the expected fraction of unresolved non-zero
components ok after the ( — 1)-th stage of decoding process in the second phase. = f; is the expected fraction
of unresolved non-zero components after seeding phase)-Tthstage of geometric-decay phase is seeding-phase. The
value of f;;,; is discussed in Sectidn V.

2) Each edges ig;;; appears with probability / (frri—1k).

3) For each edge i, it is assigned different weights which are discussed inmfeasurement design.

4) Many resolvable multiton nodes: The resolvable multitmdes are right nodes which involve exactly one unresolved
non-zero component of and at least one of the resolved non-zero components. Eaclvable multiton node helps to
recover both the magnitude and the relative phase of thesmonding unresolved non-zero component via “Cancelling
out” process (See Sectidd V).

For a newly resolved non-zero component, the corresponuiag in? is appended to the giant connected compon#ht,
In expectation, there argf;;,—1 — f11,) k non-zero components decoded in fhih stage of decoding. We show in Section
[VITlthat we are able to reconstruct a constant fraction ofamedied non-zero components with high probability at eaafest
After O(loglog k) stages, there ar@(k/log k) unresolved non-zero componentssofeft.

C. Cleaning-up phase

The properties of the bipartite grapf;;;, in the last phase are as follows:

1) There aren left nodes and: (k/ log k) log (k/log k) = O(k) right nodes.

2) Each edges ig;;; appears with probabilityog &/ k.

3) For each edge ig;;;, it is assigned different weights which are discussed innleasurement design.

4) Many resolvable multiton nodes.
In this stage, all the resolved non-zero components of @ige/ log k) are finally recovered using resolvable multiton nodes
by “Cancelling out” process and a Coupon Collection argumen

Notation | Definition

gr The bipartite graph used in the seeding phase willeft nodes and:k right nodes.
Each edge appears with probability k.
H Implied graph byG;.
H' Connected component 6{.
Grr, The [-th bipartite graph used in theth stage in geometric-decay phase witHeft nodes
andcfrr 1k right nodes forl € [L]. Each edge appears with probability f;; ;1 k.
fr The expected fraction of unresolved non-zero components after the seeding phase.
frra The expected fraction of unresolved non-zero components after thel-th stage
' of the geometric-decay phase. Lgt; o = f7.
grrr The bipartite graph used in the cleaning-up phase witeft nodes and
c(k/logk)log (k/logk) right nodes. Each edge appears with probability &/ k.
Table TI

TABLE OF NOTATION USED IN THE DESIGN OF BIPARTITE GRAPHS

IV. MEASUREMENTDESIGN

For a bipartite graplyy (G is one of theG;, Gr1,;'s andGyy;), there aren nodes on the left andh;; nodes on the right .
A(G)" is the dimensiomng x n adjacent matrix otj where the entry at-th row andj-th column equals td if and only if
i-th right node connects to thgeth left node forj € [n] andi € [m’g] The dimensionng x n phase measurement matrix
A(G) is designed based af(G)" wheremg = 5mg. By appending all the matri¥(G) sequentially, we get the actual x n
measurement matrid wherem = Xgmg. Fori-th row A(G); of A(G)’, a set of rows (of siz&) of A(G) are designed for
i € [mg]. If the j-th entry of A(G)! is zero, then corresponding set of entriesA(iy) are all zero for allj € [n]. In the

following measurement matrix design, we design the ent@sesponding to non-zero entries #(G)’. See Sectiofi vV for
how these measurements are used for decoding.

1) Trigonometric entriesThe j-th entries of the5i — 4)-th and(5: — 3)-th rows of A(G) are denoted byzg
. The values are set as follows:
@ _ Jjr
a;; = cos <%)

(6,2)

o (im
a;; = sin o )

g.,1)

g,2)
»J J

and az(.,.




where: denotes the positive square root-ef andr/2n can be treated as the unit phase of the entry design. In plartic
the phasejw/2n will be critical for our algorithm. The first two entries aresed in singleton node identification and
“cancelling out” process of resolvable multiton node.

2) Structured unit complex entrieShe j-th entry of the(5: — 2)-th row of A(G) is denoted bwg

follows:
agg’g) = exp (Lé—Z)

This type of measurement will be used only in “cancelling’qarbcess of resolvable multiton node.

3) Unit entries The j-th entry of the(5: — 1)-th row of A is denoted bwgi’4). The value is set to bé. This measurement
is used in resolvable doubleton identification and “caimeglbut” process of resolvable multiton node.

4) Random unit complex entrieShe j-th entry of the5i-th row of A is denoted byzz(.gf) used as verification. The value
is set as follows: ’

g.3)

e The value is set as

Gg,5
az(.,(j)) = exp(tg; ;),

where: denotes the positive square root-ef and¢; ; is chosen uniformly at random froffi, =/2]. This measurement
is used in resolve the degeneracy when resolvable multiidrresolvable doubleton are used for decoding. Also, it$elp
to verify our identification and estimation of magnitude aethtive phase.

Notation | Definition
7

mg The number of right nodes for the bipartite graghg is one ofGy, G for I € [L], andGyy.
A(G)" | The dimensionng x n adjacent matrix ofG.

A(G); | Thei-th row of matrix A(G)’ for i € [m[].

A(G) The dimensionmg x n measurement matrix generated BYG)’. Heremg = 5mg,.

A The dimensionn x n phase measurement matrix generated byd&ll)’s. Here,m = Xgmg.
aigj"” The j-th entry of the[5 (: — 1) 4 g]-th the rows ofA(G). Here,: € [mg], j € [n], andq € [5].
Table T

TABLE OF NOTATION FOR MEASUREMENTS DESIGN

V. RECONSTRUCTIONALGORITHM

Let bgg’Q) denote thd5 (i — 1) + ¢]-th measurement generated ByG). Here,G is one of theG;, G;r;’s andGyyy, i € [mg],
andgq € [5].

A. Seeding phase
1) Overview:

1) Preprocessing: Each right node is attached to a list tordeits neighbors (left nodes) in the decoding process.

2) Magnitude Recovery and Doubleton Identification: Cheefre right node to see whether it's singleton node or not. If
yes, we locate the corresponding non-zero component angumethe magnitude of it. After decoding the non-zero
component (only the magnitude), each list of its neighb@fght nodes’) is inserted the location of the decoded nercz
component if the length of the list is no larger than one. Rerlist whose length i8 after insertion, it will be discarded
and won't be considered in the following iteration since éfiditely is not a doubleton. So far we get the potential
resolvable doubletons. Later, we use the verification measent to find the actual resolvable doubletons. The reason
why we need the verification step is that the potential redalty doubletons may involve other non-zero components
which have not been resolved yet.

In this step, we decode the magnitudes of constant fracticall dhe non-zero components and locate these non-zero
components. We also identify the potential resolvable tkiohs by checking whether its list is of lengthand the
actual resolvable doubletons by verification measurement.

3) Relative Phase Recovery: For each resolvable doubléfenysed to resolve the phase between the two non-zero
components whose locations lie in the neighbor list.

Breadth first search (BFS) or Depth first search (DES) [25)ritlym would guide us to explore the connected components
in graph# efficiently. We only care about the largest connected corapgri{’. After this step, any pair of nodes in
‘H' are mutually resolved.



2) The formal description of reconstruction algorithm:

1) Initialization: We initialize by setting the signal astite vectork to all-zeros vecto0™. Each right node € [m’gl}
attaches an empty neighbor lisf(7). let D denote a list of the resolvable doubletons. Initialyis empty. Set = 1.
2) Singleton Identification, Magnitude Recovery and Dotdsieldentification:

a) Compute the ratio of Trigonometric measurements:

p(91:2)
arctan | ‘e
D

i
2n

i) Check if s; is an integer. If so, we tentatively identifies tha a singletongs;-th entry ofx is non-zero and

S; =

(6r:1)

by el 20
|':E5i - ai’(sgil,z)

Wy i al9Y £,

i,84

b) We verify our estimate from the previous step|df,| # bl(.g”‘r’) , the verification fails. We incremeritby 1 and
go back to step a) to start a new iteration. If verificationseas we do the following steps:

i) s; is appended to the neighbor lists of all its neighbors. Fer[m’gl}, it is no longer considered in the later
process iflA/(i)] > 3 since in the next step we only care about doubleton whosénbeidist size equal&.
i) Increment; by 1 and go back to step a) to start a new iteration.
c) For eachi whose neighbor list is of siz®, it is appended to the resolvable doubleton fistwhere NV (i)[1] and
N (i)[2] are the two indices of non-zero components whose magnituales been recovered.
3) Relative Phase Recovery:

a) Compute connected component?f Breadth first search or depth first search for adjacent distasentation of
H is applied in this step. For eache D, the elements inV () tell which two vertices inH are connected. BFS
or DFS outputs connected components of graphNe run the BFS or DFS, for each edge#f) with additional
steps b), c¢), and d) stated below:

b) Law of Cosine: Supposés two neighbors are denoted by (¢)[1] and A/ (7)[2]. The fourth measurement is used to
derive the phase betweei(i)[1]-th and/(i)[2]-th components ok, 6 = A1) — Oxriz |, by Law of Cosiné.

¢) The verification measurement helps to resolve the degeyeir sign off (i.e., whetherd or —@ is the actual phase
difference we are interested in.) by checking whether

S| exp (sinom) + R exp (i +8)| = [
or

|[Zn@ym | exp (ki nym) + Xz | exp (16 az — 0) | =

If neither of the above equations holds, theis not a resolvable doubleton.
d) For the first node in a connected component, its phase i® $& zero.

e) When the BFS or DFS terminates, we can find the largest ctesheomponent of{, H'. For all the node pairs
in H’, they are mutually resolved.

b(g15) ‘ A

B. Geometric-decay and Cleaning-up phases

Claim 2. (“Cancelling out” Process) For a bipartite graghin geometric-decay phase or cleaning-up phase, if a rigdeno
is a resolvable multiton node, it involves exactly one (umkn) undecoded non-zero component, and at least one (known)
resolved non-zero components. Then, we are able to find taidm ofx;, j, and resolvex; (both magnitude and relative

phase).

Proof: We will use four measurements in the “cancelling out” praces

5Given the lengths of two complex numbgr and B, we can deduce the phase betwegrand B, A, by Law of Cosine if we also know the length of

2 2 2
A + B. To be more explicit— cos A = [APHIBIZ—|A+B|7

2]Al|B]



bgg’l) = |A+x;jcos (jj)‘
' 2n
92 _ g (T
i + Xt sin on
bggv?’) = |C +x;exp (L]—F> ‘
2n

B9 = D+ xjexp (161)],

where A, B, C, and D are calculated from the decoded non-zero components wiichect to right node in G.
We find that by the measurements design

A+B = C
and
cos (1T R (i Jm
X; cos<2n) +XJLSIH(2n> X exXp <L2n> .
Let
g
AL
2n
A+ x;cos (%) = U
B +x;usin (%) =V
C 4+ xjexp <L‘;—ﬂ-) = W,
n
we have
bt = o
b = VI
be = W
U+ V]|
Finding the relation betweeti andV:
We know that
p(G:1)
U = Vx mexp(m/)),
or
(g,1)
U = Vx Wexp(—m/)),
where1) is the phase betweeii andV andcosy = W
Finding the relation betweex and a:
For simplicity, we only consider the case that
XCRY
U = Vx Wexp(u/))
£ VvV x M.

So,



A+xjcosa

We have

Solving cos? o by quadratic equation:
Replacingx;in

b\
we know that

bl A+

BM cosa — 1AM sin «

[B + xjusina) M.

BM - A

cosa — M sina’

D= U],
BM — A

_ cos«&
cosa — 1M sin «

cosa — (M sin «
Bcosa — tAsin

COS

Bcosa — tAsina

| M|
b(_g.,l)

o — 1M sina

COS

So,

bgg,z) |cos e — LM sin «

Let

A
B
M

where A, A5, B, By, My, and M,y are real numbers

bl(g,z) |cos a

= |(B1 + tB2) cosa

Squaring both sides, we get

[bgg’m} ’ {(cos o+

= (Bycosa + Ay sina)’

After reorganizing the above equation, we have

(|:b§g,2):|2 - |B|2) cos?

= 2cosasina (AgBl

o — M sin«

b(g)2) :

|Beosa — tAsinal.

Ay + 1A
B + B>
Ml + LMQ,

. We have

— (M1 + ¢ My) sin o
— 1 (A1 + tAg)sinal.

M, sin a)® + (M sin a)ﬂ

+ (Bycosa — Ay sina)?.

+ ([b r - |A|2> sin? o

— A1By—2 {b§972>r M2> .

(G,1)

i

Let
N
Q = [ - 4P
R = ABi—ABy—2 [ * M
S = costa

and square both sides, we have

[PS+Q(1—9)

= 4R?S(1-25).
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After reorganizing the above equation, we get

(P*+Q* —2PQ +4R?) $*
+(2PQ —2Q* —4R*) S+ Q* = 0.

(g,1)
We are able to solvé (quadratic equation) in constant time and similarly for tase that/ = V' x Z(Q—Z)) exp (—w).

Resolving the degeneracy via random unit complex measurime
After deriving the value ofS = cos? o, we can get the constant)(possible value ofi andx; (both magnitude and the

relative phase i) pairs.
Last, we check which pairs of solution that satisfies theofeihg equation to resolve the degeneracy

B9 = D+ xjexp (16:)].

[ |
Note that if “cancelling out” fails i(e., none of the pairs of andx; satisfies the last equation in the proof), theis not
a resolvable multiton. In each stage at geometric-decageohad cleaning-up phase, we go through all the right nodes, fi
resolvable multitons and use them to recover unresolvedzeom components by the “cancelling out” process. For a yiewl
resolved component of, the corresponding node iH is appended t@{’. In the end, the size of the node set7f should
be k.

Notation | Definition

b9+ The [5 (i — 1) + ¢]-th intensity measurement generated by measurement métgy. Here,: € [mg], andq € [5].
D Resolvable doubleton list used in the seeding phase.
S Singleton List. used in the seeding phase.
N (3) The neighbor list fori-th node ing; for i € [mg, .
Table TV

TABLE OF NOTATION FOR MEASUREMENTS DESIGN

V1. PARAMETERS DESIGN

All the parameters designed in this section are calculatestdb on expectation. The actual performance of our algorith
will be discussed in Sectidn VII.

A. Seeding phase
1) Magnitude Recovery by singletons:
o The probability of a right node being a singleton node:

m o= (i1

Il
N
x> =
~_
x>
L

= e L

« The expected number of singletons=isck x Pg = e~ !ck.

o The expected number of different non-zero components whagmitudes are recovered:
Lemma 3. (Generalized coupon collection) Givan different coupons and/log% picks with repetition ' < V), the
expected number of different coupons picked/igor V' — +oco. With probability at leastl — 2exp (—M) the
number of different coupons picked is betwg¢én- €)U and (1 + €)U for anye > 0.

By Lemmal3 (letV = k and V log % = ck x Ps), we know that the expected number of non-zero componenis of
whose magnitudes are recoveredifl — e=<7s).
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2) Relative Phase Recovery by resolvable doubletons:
o The probability of a right node being doubleton:

e ()G (1)

« The expected number of doubletonssisck x Pp = e~ ck/2.

o The expected number of resolvable doubletons:

Note that only the doubleton which involves two non-zero poments whose magnitudes have been recovered is useful to
recover the relative phase.

(k(l—e’CPS ))

X~ 2 0 7
()
(1 — efcps)2 cke !
2
« The expected number of different pairs of components whelsgive phase is recovered by resolvable doubletons:
By Lemma[B, givenk (1 — e~/s) nodes and1 — e*CPS)2 ckPp edges with repetition i, there are

# resolvable doubletons= x ckPp

(1+0(1/k)) (1 — e ) ckPp

distinct edges.
3) The giant connected components:

Theorem 4. [23] For a random graphGy s with N nodes andV/ edges chosen at random among (H}e) possible edges.
Let Zx ar denote the size of the greatest componerg@ofy. If » = 2M/N > 1, we have for any > 0

ZN M 1

where 3 is the unique solution t@ + exp(—pr) = 1.

We need to find the size of giant connected component of a rargdaph withk (1 — e~“"s) nodes and1 — e‘CPS)2 ckPp
edges (with repetition) and therefote + O(1/k)) (1 — e*CPS)2 ckPp distinct edges (implied by Lemnid 3). Let's say the
size is(1 — fr) k where f; is the function ofc.

By Theoreni#, wher (1 — e‘CPS) c¢Pp > 1, the giant connected component exists (this inequalitghethen constant
c is large enough) and the size of the giant componefitis f;) k = 8.k (1 — e‘CPS) where 3. is the unique solution to
B+exp[—B-2(1—eF)cPp| =1.

B. Geometric-decay phase:

Let f;;,; denote the expected fraction of unresolved non-zero comperafter thé-th stages in this phase. L¢t = f11.0.
1) Stagel+1 (0<I<L-—1):
o The probability that a right node being a resolvable muitito

pULIL) <f11,lk) 1 (1_ 1 )fl”k_l 1_<1_ 1 )(1_'f”’l)k
M 1) frnak friik friik

1 f]]vlkfl 1 k—1
- (1= (1
( fll,zk) ( f]],lk)
. 1

= e t—¢ T,

o The expected number of resolvable multitonsfsf,lkPI(\f’”1).

o The expected number of non-zero components which are exsgdhoth magnitude and phase):
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By Lemmal3, let

friak (I1,1+1)
frriklog ' =cfrr kP,
' frok = (frig— frra+1)k M
we know thatf;r; — frri+1 = frry (1 - €7CP1(‘;I’HU)-
Therefore,frr+1 = e*CPA(/fI’Hl)fH_,l. We can compute the value ¢f;; recursively.

Note thatPjijI’l) increases as increases. SOPIE;”) is bounded by—! — e T (I=0)ande ! (I = +0).

2) End of this phaseThere areO(loglog k) stages in the geometric-decay phase. We already show tlegicim step we
expect to recover constant fraction of remaining unresbiven-zero components. In the end of this phase, the number of
unresolved non-zero componentsi$k/ log k).

C. Cleaning-up phase

Recall that, in this phase, each edges appears with pridbi & /k and there are (k/logk)log (k/logk) = O(k) right
nodes inGrr.

VII. PERFORMANCE OF ALGORITHM(PROOF OFMAIN THEOREM)
Number of measurements:

. (I1,141) . .
In Sectior[V], we already know thaty; ;11 = e “Fn frri. And Pﬁf"l) increases asincreases.
[ II,1+1
frrgs1 = exp —CPI(\,[ )} frra

I 11,
= oxp |—cNiH Py 't)} fir0

= exp :—cEiiiPIE;I’t)} fr

< exp _—c(l + l)PJSI’l)} I
Then, the total number of measurements in three phases is

ck  + Sfcfrri—1k +c(k/logk)log(k/ log k)
Seeding

O(k) + (S(Licfiri—1) k+ O(k)

geometric—decay cleaning—up
< O®k)+ (zle exp [—clpg”)}) Frck
= O(k).

Decoding complexity:

Almost all the operations take constant time except for DRShe seeding phase and “Cancelling out” process in the
geometric-decay and cleaning-up phases.

For DFS, the time complexity is linear in the size of node set @dge set. Since there dreodes and) (k) edges involved
in the seeding phase, the time complexitygk).

For “Cancelling out” process, the time complexity is donéuhby calculating the value of, B, C and D (See Sectiof V).
And the complexity depends on the number of resolved noa-zemponents which corresponds to the resolvable multiton.

In the later stage/phase, more non-zero components areéassbwith a measurement. Since the number of measurements
O(k), it suffices to show that each measurement involves at A@isiz k) non-zero components (even if they are unresolved)
in the cleaning-up phase with probability at least o(1/k).

Let NZ be the number of non-zero components involved in a measunteime&leaning-up phase. By Chernoff bound, for
anyenyz > 0, we have

2
Pr(NZ > (1 +enz)k-logk/k] < exp(— EN% k-logk/k:).
2+ ey,

Therefore,

Pr[NZ =0O(logk)] > 1—0(1/poly(k)).

Thus, we know that the decoding complexity is at mé&tk - NZ) = O(klogk) with probability at leastl — & -
O(1/poly(k)) =1 — o(1) by Union bound.
Correctness:
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The actual performance of our algorithm is slightly diffierdrom expectation. Here, “slightly” means that the actual
number of resolved non-zero components in each phase/dagates from the expected value but it can be concentrated
around expectation with high probability.

Let g; denote the actual fraction of unresolved non-zero compsradter seeding phase. Let; ; denote the actual fraction
of unresolved non-zero components after #tk stage in geometric-decay phase. heto = g;.

Just recall the properties of the bipartite graphs for mesmsant design. In the seeding phase, each edge appears with
probability 1/k and there arek right nodes. In the geometric-decay phase, each edge appéhrprobabilityl/ f;; &k and
there arecf;;,;k right nodes in {+ 1)-th step for/ > 0. In the cleaning-up phase, each edge appears with prdiydbjii%/k
and there are(k/ log k) log(k/ log k) right nodes.

A. Seeding Phase

1) Magnitude recovery:

« By Chernoff bound, the probability that the number of sitghes is larger thanl + eg) ck x Ps or smaller than
(1—eg)ck x Pg is less tharge—(cs)"ckPs/2 = © (exp (—€%k)) for anyes > 0.

« By Lemmal3 and Union bound, we know that, for afys > 0, the number of different non-zero components whose
magnitudes are recovered is betwéen- eps) [1 — e~ (17<)Fs] k and (1 + epg) [1 — e~ (Hes)ePs] k with probability

1-0 [exp (—e%sk) + exp (—e%kﬂ .

Note that
(14 Bs) [1 = 7 AFesIePs ] g
and
(1= Bs) [1 = emAmes)ePs |
scale as
(1 - e—cPs) [1 + (EDS + ES) + O(EDS + 65)] k
and
(1 — e—cPs) [1 — (GDS + ES) — O(EDS + ES)] k,
respectively.

2) Relative phase recovery:

« By Chernoff bound, the probability that the number of dotdne is larger thanl + ep)ck x Pp or smaller than
(1—ep)ck x Pp is less tharRe(c0)*ckPp/2 — (exp (—€3k)) for anyep > 0.

o The resolvable doubletons

((1+€Ds) {l—e7(1+€S)CPS] k)

# resolvable doubletons< =

()

X (1 +€D) (1 +€RD)CkPD

and

(1—eps) 1—e (1-es)ePs g
((-eos [ i ] )

()

X (1 —ED) (1 — ERD)CkPD

# resolvable doubletons>

with probability
1-0 [exp (—e%sk) + exp (—e%k) + exp (—EQDk) + exp (—E%Dk)] ,

for any egp > 0, by Chernoff bound and Union bound. Again, the upper bound tae lower bound on the number of
resolvable doubletons scale as

[14+ O(eps+es+ep+erp)] (1 — e_CPS)2 ckPp

and

[1—O(eps+es+ep+erp) (1— €7CPS)2 ckPp,

respectively.
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« Number of distinct edges in giant component: By Lenitha 3 ansbtbound, for anyprp > 0, with probability
1-0 [exp (—EQDS]{I) + exp (—e%k) + exp (—e%k) + exp (—E%Dk) + exp (—eQDRDk)] ,
the number of pairs of relative phase resolved by all thelvabte doubletons will be bounded by

(1+eprp) [L+O(eps +e€s+ep +erp) /K] [1+ O (eps +es +ep + erp)] (1 — €*CPS)2 ckPp

and
Py 2
(1—¢eprp)[1—O(eps+es+ep+erp)/kl[1—0O(eps+es+ep+erp)) (1 —e PS) ckPp
which scale as )
[1+O(eps+es+ep+erp +eprp) (1—e %) ckPp
and )
[1—O(eps+es+ep+erp +eprp)] (1—e %) ckPp.

3) The giant connected componeihiet N *Tand N~ be the upper bound and lower bound on the number of nodesin gia
component.
Let M+ and M~ be the upper bound and lower bound on the number of edgesrih @aponent. Them; ™ = 2M+ /N~
is the upper bound on twice the size of edges over size of nadegsher— = 2V~ /N is the lower bounds; andj3; are
the solution to the equatiofi + exp (—3r") =1 and 8 + exp (—0r~) = 1.
We know that
rt = 2M*/N~
= 2[1+O(eps+es+ep+erp+eprp) (11— €7CPS)2 ckPp
/(11— eiCPS) [1—O(eps +es)lk
= 2[1+O(eps+es+ep+erp +eprp)] (1—e %) cPp

and

r~ = 2M~/N*
= 2[1—O(eDs—l—eS—i—eD—i—eRD—l-eDRD)](1—e*CPS)2ckPD
/(1 —e ) [1+ O(eps +es)] k
= 2[1+O(€DS+ES+ED+€RD+EDRD)](1—676PS)CPD.

Sincer = —log(1 — 8)/B, dr/dB = (—log(1 — 8)/8)s_p, is a constant.

By Theorenl},
ZN.M 1
) _ < —
(|5 - <o) = o),
for anyege > 0.
Therefore,
BF =1+ 0O(eps+es+ep+erp +eprp)] (Be + €ce)
and

B, =[1—0O(eps+es+ep+erp +eprp)| (Be —€ae) -

The upper bound on the size of giant component is

N*BF = (1—e ) [1+ O(eps +€s)|k[1+ O (eps + €5 + €p + €rp + €prp)] (Be + €cc)
= [1+O(eps+es+ep+erp+eprp +ece)] Be (1—eF5) k

and the lower bound on the size of giant component is
N B, = [1—0O(eps+es+ep+erp+eprp +ece)] Be (1 — e P9) k,
with probability

1-0 [exp (—EQDSk) + exp (—e?.;k) + exp (—e%k) + exp (—eQRDk) + exp (—EQDRDk) + O (l/eéckﬂ .



Recall that(1 — f;) k = B. (1 — e~“"s) k, we conclude that, with probability
1-0 [exp (—eQDSk) + exp (_Ezsk) +exp (—ehk) + exp (—E%Dk) + exp (—eQDRDk) +0 (1/eéckﬂ ,

there exists; such that

(I—en)fr<gr<+eg)fr.
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Here,e; scales a®) (eps + €5 + €p + €rp + €prp + €gc). Choose all the’s to bek~1/3. Then,¢; scales a®) (k*1/3)

with probability 1 — O (k=1/3).
B. Geometric-decay Phase

1) Stagel+1 (0<I<L—1):
« The probability that a right node being a resolvable muitito

(I1,141) _ (911,l/€> 1 (1_ 1 >g”‘lk1 1_<1_ 1 )(19”,1)1@
M 1) frrk friik friik

k—1 k—1
_ grr. (1_ 1 )911,1 B (1_ 1 )
frra friik friik
911, a1
= 9111 (e i — ¢ fu,z) .
fII,l

o The number of resolvable multitons is bounded by

(1 4 65\21,1“)) Cf]],leS\I/’Hl)

and z l
(1 - 65\21, +1)) Cf]],leELI{I’ +1)

2
with probability 1 — O (eXp — [eg{[’l“)} frrak ) | for anyeg\y’lﬂ) > 0.
o The number of non-zero components which are recovered ¢hatinitude and phase)
Let €770 = 7. By LemmalB, we know that

(14D Cfu,zQ(”’Hl)/gu,z
( M ) M gIr,

N [
grri+1 —9grrg < (1 + e%f”) 1—e¢

= (14t [1-e

910 _ 1
—(1+65\21’l+1))c<e Tirn e Tir )
grr,

(e o))

IT141
= (1+6§3M+ )) 1-e g1,
and
)\ | _(1_ iy (I1,141)
grri+1 — 9grrg = (1 — estJr )) 1—¢ ( € )cfn,zQM /9111 girs

9II,1

1
(1 UL+ T Frrg e frrpn
. (IT,141) (1 ar )C(e ¢ )
= 1-— €pm 1—e gir,

(1-eri™) [1-e

(u-greYe (o) )

Y

gir,i,

2 2
with probability1—© (exp (— {egél’l“)} f;;)ﬂc) + exp (— {egf\'j“)} gH)lk) T k—1/3> by Lemmd3 and Union bound

for any egf\frl) > 0.

We conclude there existg; ., such that
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_opULI+D
e M (1= €rrpen) 9110 < giri
_ p(ILi+1)
< e Pu (1 + E/Il,l-i-l) gi1,i-
Heree};, ., scales a®) egﬁ“) + eg;“*” +errl-
Since(1 —erry) frrg < grrg = (14 €rr,1) frr, we have
_opULI+D
e (1= €rrae) A=) frin < g
 p(II+1)
< e (T4 €y ) (L era) o
. (I1,141)
Since fr 141 = e Fu f11., we have
(L =€) Q=€) frnpsr < grri4n
< (Y4 €rp) A +err) frri-
Thus, we get that
(I —errgs1) frrarr < grri+a
< (T+errgs1) frigsr-
11,041 I1,04+1
Here,err,4+1 scales ag) 653M >+e<M )+2en,l .

Choosec\ 1" ande{}"" " to bek~1/3 for all 1. The error probability in each staged(k~'/3) (which is the dominant

term).
After L stages [ = O(loglogk)),

(I—errr) frre < grrp < (L +ermrn) frre 1)

holds with probabilityl — O (loglog k - k=*/%) by Union bound. Here,;,;, scales as) (log k - k=1/%) (since each stage
err, doubles).

C. Cleaning-up phase
Theorem 5. [Folklore](Coupon Collection) Let the random variabl€ denote the minimum number of trials for collecting
each of theV’ types of coupons. Then, we haRg X > nV log V] < V-1 for anyn > 0.

o The probability that a right node being a resolvable muitito

_911,L 1
M} - gir,L (6 L — e fU,L) .
frr.r

e frrr = 1/logk. The number of resolvable multitons is lower bounded by
(1 —err") efirrklog (frirk) Q4r",

with probability 1 — O (exp (— [eﬁff k/log k:)) given Equation[{1) holds for angf]é”) > 0.
o The number of unresolved components in this phas@(s/ log k). By Theorenib, all the components are resolved with
probability 1 — O(log k/k) for large enoughe given Equation[{{l) holds.
By Union bound, the overall error probability ig1).

VIII. CONCLUSION

In this paper, we present the first algorithm for compresgpiiase retrieval problem whose number of measurements is
order-optimal and computational complexity is nearly ordptimal.
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IX. APPENDIX

A. Proof for Lemmé&]3

Proof: Let Y; be the indicator random variable which represents whetlleicoupon is picked inV/ trials. We know that
Y/s are dependent and

~_J1 with probability 1 — (1-3)M
" |0 with probability (1 — &) *.

Then,Y =Y; +--- + Yy is the total number of different types of coupons picked\intrials.
By the linearity of expectation, we have

ElY] = 2L E[Y]]

1_<1_%>M

= v(i-e¥)

- V(1 ZY—=
)

= U

Let Z1, ..., Zy be independent random variables all taking valueS/ihuniformly at random representing each pick for
V' types of coupon.

Let f(Zy,..., Zy) be the number of different types of coupons picked. THe&f] = E[Y] = U.

Also, Vi € [M],

=V

l\f(Z1,.. s Ziyeo s Zng) — f(Z1yo 20, Zag)| < 1.
For all 5 > 0, by McDiarmid’s Inequality (Theorefl 7), we have

Pr(f — BIf] < ) < exp (—%)

and

2
Pr(f — E[f] > B) < exp (—%) |
Thus,

Pr(f<V(1- eiM/V) — ) <exp <_2W52) )

Let M =V log - and 3 = €U, we know that

Pr(f<(1-oU) < exp( M)

_Vlog %
2(eU)?
< exp-— T
Vv=o
( 2¢2U(V — U))
= exp|— v
and
2 _
Pr(f > (1+¢e)U) < exp (—26 U(K U)>
Therefore,
2 _
Pril—eU<f<(1+4+eU) > 1-2exp (—26 U(“; U)>
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B. Proof of Theorerhl5
Proof: Let Z; be the event thai-th coupon has not yet picked it/ trials. We know that

Pr(Z) = <1—%>M
< exp(=M/V).

Then,
Pr(X > M)

Pr (Ui, Zi)

S iPY(ZZ)
< {/:;xp(—M/V).

Let M =nVlogV, we get

Pr(X >nVlegV) < V7t

C. Chernoff Bound and McDiamid’s Inequality

Theorem 6. (Chernoff Bound) LeX1, ..., X,, be independent random variables. Assume that X; < 1 for eachi € [n].
LetX = X1+ -+ X,,. 0 =E[X]=E[X1] +--- + E[X,,]. Then for anye > 0,

PiX < (1- o) < exp (-5 )

and

2
PriX > (1 +e)u] <exp <—2€+€,u) .

Theorem 7. [26](McDiarmid’s Inequality) LetX;, ..., X,, be independent random variables all taking values in theXset
Further, let f : X — R be a function ofXy, ..., X,, that satisfiesvi,Va1, ..., z,, o} € X,

(1, @iy ey xm) — f(o, . @) < cn
Then for alle > 0,
Pr(f-E[f] >0 < exp (s
I = € =~ Xp E;ﬁlcg

and

Pi(f -~ Blf]< 0 < exp(ii)
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