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Abstract—This paper considers the problem of maximizing the
entropy of two-dimensional (2D) Pickard Random Fields (PRF)
subject to constraints. We consider binary Pickard Random
Fields, which provides a 2D causal finite context model and use
it to define stationary probabilities for 2x2 squares, thus allowing
us to calculate the entropy of the field. All possible binary 2x2
constraints are considered and all constraints are categorized into
groups according to their properties. For constraints which can
be modeled by a PRF approach and with positive entropy, we
characterize and provide statistics of the maximum PRF entropy.
As examples, we consider the well known hard square constraint
along with a few other constraints.

I. INTRODUCTION

We consider the problem of determining and maximizing

the entropy of image models with constraints. In applications

such as 2D data storage, the encoding of information might

be subject to a constraint related to the physical properties of

the media. This can lead to complex data structures and data

sources with memory. If such data sources are constrained,

the possible patterns will be limited and the per symbol infor-

mation capacity of the source will be reduced, but the density

may be increased. In the 2x2 binary setting the problem can be

regarded as filling a NxM 2D grid with binary symbols with

maximum information. Under these circumstances, we seek

the maximum entropy and the corresponding coding model to

fill the grid without violating the given constraint. For block

Pickard models of higher order see [1].

The capacity of the binary source in terms of how much

information that can be stored per symbol in the grid is defined

by the combinatorial entropy C:

C = lim
N→∞

log2
E(N)

N2
(1)

where N is the width of a square grid with E(N) admissible

outcomes [2, p. 122]. The maximum entropy of the Pickard

Random Field (PRF) [3] subject to a constraint provides a

causal model which provides a lower bound on the capacity of

the constraint. The PRF also provides a probability distribution

of the symbols that can be used for coding purposes.

We formulate the problem as follows; given a constraint

in form of a set of binary 2x2 non-admissible configurations,

decide if a PRF can be defined that does not have a non-

admissible configuration as any subset of any possible out-

come. If PRF can be defined, determine the maximum entropy

of the PRF field and if the entropy of the field is greater than 0,

determine the parameters of the PRF. In this setting, we define

invalid constraints as constraints where there is a possibility

of reaching a configuration that has no solution when filling

the grid. A constraint which is not invalid is considered to

be valid. We consider this problem for all 216 cases for 2x2

binary constraints and provide statistics for the cases with field

entropy greater than 0. We also provide detailed examples.

II. PICKARD RANDOM FIELDS

PRF is defined as a 2D causal probabilistic model where

the probability assignments for rows and columns share the

property that the symbols are outcomes of the same irreducible

Markov chain over a finite alphabet [3]. Our aim is to find a

probability distribution for the symbols on a grid. If X denotes

a random variable describing the field, we want to maximize

the entropy H(X). The entropy on a NxM rectangular grid

can be expressed by the chain rule:

H(X) =
∑

j

H(xj |x1, x2, . . . , xj−1) (2)

where each symbol in the grid is assigned a one-dimensional

index j e.g. in row-by-row order. However, in a 2D structure

which can be expressed by a Markov Random Field (MRF),

non-causal interaction might exist. Therefore we turn to PRFs,

which provide us with causal 2D models in this environment.

PRFs are special cases of MRFs. PRFs have some desirable

properties such as causality, sequential simulation of a random

field and the property that the symbols in rows and columns

are outcomes of irreducible Markov chains over a finite

alphabet. A PRF is stationary and its joint probability can be

determined by a 2x2 measure which must satisfy a constraint.

The probability of each column or row is described by a

Markov chain and transition probabilities which can be derived

from the 2x2 measure. We assume the Markov chains for the

rows to go from left to right and for the columns to go from

bottom up. The PRF starting point is in the upper left corner.

The Markov chains for rows and columns can be different.

We denote the 2x2 square consisting of random variables

Xi,j from a finite alphabet on the 2D grid as follows:
[

Xi,j Xi,j+1

Xi+1,j Xi+1,j+1

]

=

[

A B

C D

]

(3)

After initializing the first row and column in the grid by using

the Markov chains, the 2x2 square (3) can be moved one



position at a time and the symbol D can be coded using the

conditional probability P (D|ABC). The probabilities of the

joint distribution (ABCD) are expressed by:

P (ABCD) = P (D|ABC)P (ABC) (4)

Since the contribution to the entropy will be dominated by

H(D|ABC) asymptotically [1], we seek to maximize this

measure of field entropy thus maximizing the amount of

information that can be stored in the grid by this approach.

A. Independence conditions

The Markov chain for columns defines the conditional

probability distribution of the pair of symbols A,C. Likewise,

the Markov chain for rows defines the conditional probabil-

ity distribution of the pair of symbols A,B. An important

assumption is that P (B|AC) = P (B|A) which leads to [3]:

P (ABC) = P (B|A)P (A|C)P (C) (5)

With this assumption the top row of the grid can be modeled

as a single Markov chain by the distribution of (AB). We use

the condition P (C|BD) = P (C|D) to assure that the other

rows are described by the same Markov chain [3]:

P (BCD) = P (B|D)P (D|C)P (C) (6)

The starting point can also be the lower left corner [1], [3], in

which case (5-6) would be defined along the other diagonal.

B. Consistency conditions

We denote the matrices for the Markov chains of the rows

and columns R and S, respectively. For consistency with the

joint measure (ABCD) the two distributions (ABC) and

(BCD) must have identical marginal distribution on (BC).
Since the transition from C to B can be achieved in two ways

(i.e. either by going right and then up or vice versa) due to

(5-6) the transition matrices must commute [1]:

RS = SR (7)

The last requirement is that the joint conditional probability

P (AD|bc) should be consistent with the marginal conditional

probabilities P (A|bc) (5) and P (D|bc) (6), which gives us [1]:
∑

d

P (A,D = d|bc) = P (A|bc) (8)

∑

a

P (A = a,D|bc) = P (D|bc) (9)

The entropy of the PRF will converge to H(D|ABC) since

the interior of the field will dominate over the boundaries. In

the general case this can be solved by iterative scaling [1].

H(D|ABC) = −
∑

abcd

P (abcd) log2 P (d|abc) (10)

For values (bc) of (BC) where (abcd) is admissible for all

(ad), the maximum entropy is simply obtained by

P (D|Abc) = P (D|bc) = P (bcD)/P (bc) (11)

C. Probabilistic aspects of binary PRF

We solve the PRF in general using (7-9) over the binary

alphabet. With a binary alphabet the transition matrices R,S
for rows and columns, respectively, can be defined as:

R =

[

p 1− p

1− s s

]

S =

[

q 1− q

1− r r

]

(12)

Since the matrices R and S have to commute (7) we can set

each element in RS equal to the corresponding element in SR.

Solving any of these equations gives us the following relation

between the variables:

r + p− rp = s+ q − sq (13)

This relation can be used to express one of the variables by the

other variables. This ensures that the commutation requirement

(7) is fulfilled and it also reduces the number of free variables

by one. Under certain constraints with positive entropy, one

or two of the variables p, s, q, r can be set to 0 (but not 1)

reducing the complexity of the entropy maximization; e.g. for

the straightforward formulation of the hard-square constraint

[4] one would set r = s = 0 and would only need to determine

the value for p = q that maximizes the entropy.

The stationary probabilities p∗r = p∗rR and p∗s = p∗sS of

the two Markov chains should be equal. In the binary case

this leads to the same relation as (13). Thus, in a 2x2 binary

PRF the equality condition for the stationary probabilities is

equivalent to the commutation condition (7).

Some requirements follows from this formulation of the

problem. The variables p, s, q, r, including the one expressed

by the relation in (13), should be constrained to the range

[0, 1]. Let ã be the inverted value of the binary symbol a.

By definition it is required that (A,B = b, C = c,D)
configurations for pairs of (bc) where A = a,D = d is invalid,

but (AbcD) still contributes to the entropy should satisfy:

P (bcd) ≤ P (ãbc) (14)

This inequality can be used to bound our choice of starting

points for the free variables before applying maximization.

D. Calculating and maximizing the entropy

We characterize all possible contributions to the maximum

entropy in a binary 2x2 PRF. The contributions to the entropy

(10) can be calculated as follows. For pairs of (bc) for which

all combinations are admissible following (11) the contribution

to the maximum PRF entropy can be expressed by:

Hbc(D|ABC) = P (bc)H

(

P (bcd)

P (bc)

)

(15)

For pairs of (bc) where one of the combinations of AD, A =
a,D = d, is non-admissible we may solve (8-9) directly and

the entropy contribution is calculated as:

Hbc(D|ABC) = P (A = ã, bc)H

(

P (bc,D = d)

P (A = ã, bc)

)

(16)

as P (ãbcd) = P (bcd) and for abc the entropy contribution is

0. For pairs of (bc) where A = a is non-admissible i.e. for



both D = 0 and D = 1, we get P (ãbcd) = P (bcd), P (ãbc) =
P (bc) so (15) can be used again.

In other cases for the pairs of (bc) there is no contribution

to the entropy. Using (5-6) the contributions in (15-16) can be

calculated directly from the Markov chains R and S.

Finally the maximum conditional entropy is calculated as

the sum of the non-zero contributions given by (15) and (16):

H(D|ABC) =
∑

bc

Hbc(D|ABC) (17)

For given parameters p, s, q, r this provides the maximum

PRF entropy of the constraint. Depending on the constraint

there will be 1 to 3 free parameters. We can maximize the

conditional entropy (17) over the space given by the free

parameters and restricted by (13) and (14).

III. CONSTRAINT ANALYSIS

Our goal is to analyze all 216 possible 2x2 binary constraints

and identify those for which we can define a PRF with positive

entropy, i.e. in (10) H(D|ABC) > 0. To achieve this we can

start by identifying constraint sets for which it is not possible

to define a PRF with positive probabilities of all admissible

(abcd). We will take a closer look at what can be considered

to be degenerate cases and why they occur.

We start out by introducing the concept of a constraint

family. Some constraints can be characterized by having one

or more configurations which can not appear in the PRF, but

removing these provides a subset F for which all admissible

configurations appear. We call this set the father set and the

sets with identical fathers form a family. Let i, j be indexes,

then a constraint ci belongs to the same family as the constraint

cj if F of the non-admissible configurations in ci is equal to

F of the non-admissible configurations in cj :

Fi = Fj (18)

In other words, the set of non-admissible configurations Ni

for the constraint ci is a subset of Fi:

Ni ⊆ Fi (19)

Inverting the binary symbols of a configuration may change

the values but we consider the structure to be the same and

extend the family definition such that the members of a family

have F or the inverted set F ′ as their father set.

A. Analysis of configurations

We consider whether a PRF with positive entropy can be

achieved for different categories of constraints and from the

categories we derive necessary conditions. The categories are

presented in the order which they are used to classify the

constraints. Classified constraints are not considered again,

thus the categories are disjoint. The first type of classification

can be done solely on the constraints without considering

Markov chains. They are denoted Bk for bit-stuffing, where k
is an index. We define bit-stuffing as a PRF without imposing

(5-9) and where all admissible configurations are possible.

Let Ni be the set of non-admissible configurations and

the compliment set Ai the set of admissible configurations

defining the constraint ci. Let N∗

i be the union of Ni and the

subset of configurations (âb̂ĉd̂) in Ai where:

ĉd̂ = ab if abcd ∈ Ni, ∀ab

âb̂ = cd if abcd ∈ Ni, ∀cd

b̂d̂ = ac if abcd ∈ Ni, ∀ac (20)

âĉ = bd if abcd ∈ Ni, ∀bd

Let A∗

i be the complementary set of N∗

i . Repeat this process

with N∗

i and A∗

i and denote the resulting sets N∗∗

i and A∗∗

i .

A constraint ci is considered to contain a trap if:

(abc,D = 0) ∧ (abc,D = 1) ∈ N∗∗

i

∧ ∃a′b′ : (a′b′, C = a,D = b) ∈ A∗∗

i (21)

∧ ∃a′c′ : (a′c′, B = a,D = c) ∈ A∗∗

i

We consider constraints to be invalid if they contain a trap

since there is a non-zero probability of reaching the trapping

configuration. This set of constraints is denoted B1.

B2 is defined as constraints which forces one or more

parameters p, r, s, q in (12) to 1, in which case the underlying

Markov chain only has one state or is an absorbing Markov

chain. In the latter case, the entropy of the field degenerates

to 0, since the absorbing Markov state cannot be left. This can

be determined by looking at the rows or columns where this

occurs separately i.e. either 0 or 1 can never change in one

direction. Disregarding the two uniform cases, the constraints

in this category are non-stationarity.

B3 is defined by the constraint forcing one of the following

pairs of parameters to {0,0}:

{p, s}, {q, r}, {p, r}, {s, q} (22)

or by all four parameters

{p, s, q, r} (23)

forced to {0,0,0,0}. This results in a trivial field with a

checkerboard pattern, interchanging column/row pattern, or a

combination hereof. In all cases the entropy of the field is

equal to 0 since the only decisions are made either in the upper

left corner or in the top/left edge. This can be seen directly

from the admissible configurations since they will be limited

to a subset of either abcd = {[0110], [1001], [1100], [0011]} or

abcd = {[0110], [1001], [0101], [1010]}.

B4 are absorbing fields which are defined as constraints

where p = q = 0 and the non-admissible configurations addi-

tionally contains abcd = [a11d], where s = r = 0 and the non-

admissible configurations additionally contains abcd = [a00d],
where r = 0 or q = 0 and the non-admissible configurations

additionally contains abcd = [0b1d] ∧ abcd = [1b0d], or

where s = 0 or p = 0 and the non-admissible configurations

additionally contains abcd = [01cd] ∧ abcd = [10cd]. In these

cases the probability of the occurrence of a symbol using

bit-stuffing depends on the distances to the starting edges;

a structure which cannot be reflected by PRF. This category



implies non-stationarity. An example is a modified hard-square

constraint where (A,B = 0, C = 0, D = 1) is added to the

non-admissible configurations. In this example the PRF will

degenerate to uniform zeros.

Finally, B5 is defined by constraints ci where the set of

non-admissible configurations Fi includes all possible combi-

nations of (ABC) without belonging to a prior category:

(abcd) ∈ Fi ∨ (abcd̃) ∈ Fi

for abc = {[000], [001], . . . , [111]} (24)

In this case the field is defined only by the top and left edge

and the per symbol field entropy is equal to 0.

A necessary condition to construct a PRF with positive

entropy for a given constraint is that the constraint does not

belong to any of the categories listed in this subsection. This

can be determined without introducing probabilities. Fields

constructed under the constraints in these categories can not

contain all admissible configurations (B1), are not stationary

(B1,B2,B4) and/or have a field entropy equal to 0 (B2,B3,B5).

If the constraint is not categorized by now, we need to apply

PRF analysis as described in the next section to determine

whether the entropy of the PRF is non-zero.

B. PRF analysis

After analyzing the constraints within 2x2 blocks, we pro-

ceed and analyze any uncategorized constraints as PRF. For

this reason the categories listed next are denoted Pk where k
is an index. The first category P1 we define as the constraints

where the only PRF solution is:

p = r = s = q = 0.5 (25)

due to the requirements given by (13) and (14). In this

case the entropy contribution calculated in (16) will be 0

and the calculated maximum entropy will only depend on

contributions from (15) (of which there might be none). The

354 constraints in this category can be separated into 186

families, in which 3 family fathers have maximum entropy

equal to 0.5, 34 family fathers have maximum entropy equal

to 0.25 and the rest have maximum entropy equal to 0.

Category P2 is defined as constraints where the only con-

figurations that can possibly contribute to the entropy is of the

form (16) and satisfy ã = d, b = c. Due to (13) this will lead to

a maximum PRF entropy equal to 0. Constraints belonging to

P1 or P2 can be analyzed by choosing e.g. the lower left corner

as starting point for the PRF (corresponding to a rotation of

the configurations), which might lead to a better PRF solution.

P3 contains the constraints which can be modeled by the

PRF approach with positive field entropy less than 1. For these

constraints we search for the maximum entropy over 1 to 3

of the free parameters from p, q, r, s. We provide test statistics

and examples for this in Section IV.

Finally, P4 is the unconstrained case in which all configu-

rations are admissible. In this case the maximum field entropy

is equal to 1 with i.i.d. row and column distributions.

IV. RESULTS

We classify each of the 216 possible constraints as belonging

to one of the categories listed in Table I and as detailed in the

previous section. In these categories, B1 is considered to be

invalid, B2-5 have field entropy equal to 0, P1-2 are special

cases for the PRF model and P4 is the single unconstrained

case. We apply the PRF to the fathers of the families in P3.

TABLE I: Test statistics

Number
Index Short Description of cases

B1 Invalid due to traps 47865
B2 H = 0, Absorbing Markov chain 9661
B3 H = 0, Checkerboard and/or rows/cols 275
B4 H = 0, Absorbing field 484
B5 H = 0, all (ABC) 600

P1 p = r = s = q = 0.5 354
P2 H = 0 due to commutation 324
P3 H > 0, PRF applied 5972
P4 H = 1, unconstrained 1

P3 consists of a total of 5972 constraints which were sep-

arated into 2645 families. For each family in P3, the optimal

distributions and maximum PRF entropy were estimated as

shown in Fig. 1. Most of the families in P3 have 2 members

due to constraints being equal only through binary inversion.

There exist 2584 of such families in P3. Only 38 constraints

are completely unique (family size equal to 1) e.g. the no

uniform squares configuration (where [0000] and [1111] are the

non-admissible configurations). There are 22 families where

one of the variables p, s, q, r is forced to 0 and they all have

size equal to 30. The biggest family size is equal to 106 (of

which there is only 1). This is the family corresponding to the

hard square problem. It should be noted that families can have

members which belongs to category B1, but these are not part

of the analysis since they are considered invalid.
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Fig. 1: Histogram of the estimated maximum PRF entropies.

V. EXAMPLES

In this section, some specific examples of the implemented

PRF methodology is shown. To get an approximate value of

the capacity we use bands, extending the binary alphabet to

an alphabet with 2M elements. We can now create the transfer

(or adjacency) matrix TM of the band and (when TM is



symmetric) we calculate a lower bound for the combinatorial

entropy of the field, first suggested by Calkin and Wilf [5]:

C ≥ log2(λ2k+2)− log2(λ2k+1) (26)

where λM is the greatest eigenvalue for TM .

A. Hard-square Constraint

The first example is the hard-square constraint with the

straightforward formulation as in [4]. This constraint forbids

neighbours of 1s in the horizontal or vertical direction, giving

nine non-admissible configurations. In this case the transfer

matrix T is symmetric and the calculated lower bound (26)

for the field entropy is 0.58789 for k = 6. The estimated

maximum entropy with the PRF model is 0.58306 with

parameters: p = q = 0.71662, s = r = 0. If we use the

formulation of the hard-square constraint as suggested in [4]

and also analyzed in [6] by shifting the bottom row of (3) to

the left by one place, the non-admissible configurations are:
[

1 0

0 1

][

1 1

0 1

][

1 1

0 0

] [

0 0

1 1

][

1 0

1 1

][

1 1

1 1

][

0 1

1 1

] [

1 1

1 0

]

(27)

With this formulation of the problem the transfer matrix T is

not symmetric. The estimated maximum entropy with the PRF

model improves to 0.58728 with the parameters: p = 0.70901,

s = 0, q = 0.81124, r = 0.35132 (Fig. 2).

Fig. 2: The hard-square constraint in a 100x100 field.

B. No isolated 0-area

We consider the problem where no rectangles of all 0s are

allowed and all 0s are connected to each other (when accepting

diagonal connectivity). The non-admissible configurations are:
[

1 1

1 0

][

1 0

1 1

][

1 1

0 1

] [

0 1

1 1

]

(28)

With this constraint the transfer matrix T is symmetric and the

calculated lower bound (26) for the field entropy is 0.75949 for

k = 6. The estimated maximum entropy with the PRF model is

0.75617 with parameters: p = q = 0.65483, s = r = 0.19347.

This was used to generate the image in Fig. 3 (a).

C. No 1 columns

In this example, vertical neighboring 1s are not allowed.

The non-admissible configurations are:
[

1 1

1 0

][

1 0

1 1

][

1 1

1 1

] [

1 0

1 0

]

(29)

(a) (b)

Fig. 3: An example of the ”no isolated 0-area” constraint (a)

and ”no upper left 1-corner” constraint (b) in a 100x100 field.

With this constraint the transfer matrix T is symmetric and the

calculated lower bound (26) for the field entropy is 0.69515
for k = 6. The estimated maximum entropy with the PRF

model is 0.69424 with parameters: p = 0.72361, s = 0.27639,

q = 0.61803, r = 0.

D. No upper left 1-corner

For this constraint the non-admissible configuration is

(abcd) = (1110). With this constraint the transfer matrix

T is not symmetric. The maximum entropy with the PRF

model is 0.82496. This provides a lower bound of the en-

tropy for the constraint. The corresponding parameters were

p = q = 0.61504, s = r = 0.32161 and were used to generate

the image in Fig. 3 (b).

VI. CONCLUSION

Binary PRF have been analyzed and a closed form solution

has been obtained for the maximum entropy of the binary PRF

given any constraint defined on the 2x2 square. All binary

constraints on the 2x2 square have been tested to determine

whether a PRF got all admissible 2x2 configurations of the

father constraint in its possible outcomes. Statistics have also

been gathered on the corresponding maximum PRF entropies.

Furthermore, invalid constraints and trivial constraints have

been characterized and tested.

Future work could include a refined separation of categories

with more strict description of the defining structure e.g. the

category of constraints classified as invalid could be further

divided depending on whether it is possible to fill the grid

with a subset of the admissible configurations or not.
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