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The Approximate Capacity
of the MIMO Relay Channel

Xianglan Jin and Young-Han Kim

Abstract—Capacity bounds are studied for the multiple-
antenna complex Gaussian relay channel witht1 transmitting
antennas at the sender,r2 receiving and t2 transmitting antennas
at the relay, and r3 receiving antennas at the receiver. It is shown
that the partial decode–forward coding scheme achieves within
min(t1, r2) bits from the cutset bound and at least one half of
the cutset bound, establishing a good approximate expression of
the capacity. A similar additive gap ofmin(t1+t2, r3)+r2 bits is
shown to be achieved by the compress–forward coding scheme.

I. I NTRODUCTION

The relay channel, whereby point-to-point communication
between a sender and a receiver is aided by a relay, is a
canonical building block for cooperative wireless communi-
cation. Introduced by van der Meulen [1], this channel model
has been studied extensively in the literature, including the
now classical paper by Cover and El Gamal [2]. The problem
of characterizing the capacity in a computable expression,
however, remains open even for simple channel models, and
consequently a large body of the literature has been devoted
to the study of upper and lower bounds on the capacity.
Reminiscent of the max-flow min-cut theorem [3], the cutset
bound was established by Cover and El Gamal [2], which
sets an intuitive upper limit on the capacity. On the other
direction, there are a myriad of coding schemes, typically
referred to as “*–forward” [4], each establishing a lower
bound on the capacity. Among these, the two most versatile
coding schemes are partial decode–forward [2, Th. 7] and
compress–forward [2, Th. 6], which are complementary to
each other (providing digital-to-digital and analog-to-digital
relays, respectively) and have been successfully extendedto
general relay networks for unicast, multicast, broadcast,and
multiple access [5], [6], [7], [8].

The Gaussian relay channel, whereby the signals from the
sender and the relay are corrupted by additive white Gaussian
noise, is one of the most basic channel models studied in
the literature. The capacity of the Gaussian relay channel,
however, is again unknown for any nondegenerate channel
parameter. Instead, the following results have been established
for single-antenna Gaussian relay channels.
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• Partial decode–forward and compress–forward, respec-
tively, achieve within one bit from the cutset bound [9],
[10].

• Partial decode–forward, which is a superposition of
decode–forward and direct transmission, reduces to the
better of the two [11].

These results establish simple approximate expressions ofthe
capacity, which are particularly useful in high signal-to-noise
ratio (SNR). A natural question arises on how these results can
be extended to multiple-antenna (also known as multiple-input
multiple-output or MIMO) Gaussian relay channels.

Capacity bounds for MIMO relay channels have been
studied in several papers. By convex optimization techniques
[12], Wang, Zhang, and Høst-Madsen [13] derived upper and
lower bounds based on looser versions of the cutset bound and
the decode–forward bound. These results have been improved
by more advanced coding schemes (partial decode–forward
and compress–forward) with suboptimal decoding rules by
Simoens, Munoz-Medina, Vidal, and del Coso [14] and Ng
and Foschini [15]. The usual focus of this line of work,
however, has been on the optimization of resources (power and
bandwidth) for practical implementations and on numerical
computation of resulting capacity bounds (see also [16]). The
most relevant to our main question is a recent result by
Kolte, Özgür, and El Gamal [17] on a general MIMO relay
network, which carefully compares the noisy network coding
lower bound for the general unicast relay network [7] with
the cutset bound, which can be readily specialized to the 3-
node relay channel. In the same vein, another recent study
by Gerdes, Hellings, Weiland, and Utschick [18] establishes
the optimal input distribution of the partial decode–forward
lower bound for the MIMO relay channel, the corresponding
result of which for the single-antenna case is immediate since
partial decode–forward is the better of decode–forward and
direct transmission.

This paper provides more direct and comprehensive answers
to our main question through an elementary yet careful analy-
sis of the partial decode–forward and compress–forward lower
bounds for the MIMO relay channel. The main contributions
are summarized as follows.

• For the complex Gaussian relay channel witht1 trans-
mitting antennas at the sender,r2 receiving andt2 trans-
mitting antennas at the relay, andr3 receiving antennas
at the receiver, we show that the partial decode–forward
achieves withinmin(t1, r2) bits of the cutset bound
(Theorem 1).

• This gap is somewhat relaxed when noncoherent trans-
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mission is employed (Proposition 4).
• Unlike the single-antenna counterpart, partial decode–

forward can achieve rates arbitrarily higher than the better
of decode–forward and direct transmission in MIMO
relay channels (Proposition 5).

• To complement the additive gap result, we show that
both coherent and noncoherent partial decode–forward
coding schemes achieve at least half the cutset bound
(Theorem 2).

• We show that compress–forward achievesmin(t1 +
t2, r3) + r2 bits within the cutset bound (Theorem 3).

• We establish similar results for half-duplex relay channel
models [11], [19], [20] (Section VI).

In conclusion, the paper establishes simple approximate ex-
pressions of the capacity, which are particularly useful inhigh
and low SNR. Beyond these analytical results, we also discuss
how these expressions can be computed efficiently.

The rest of the paper is organized as follows. In the next
section, we formally define the channel model and review the
cutset upper bound, the partial decode–forward lower bound,
and the compress–forward lower bound on the capacity. The
main results on additive and multiplicative gaps for partial
decode–forward and compress–forward are also stated therein.
The proofs of these results are given in Sections III and IV.
Section V is devoted to the computational aspects of our
results, namely, how the capacity bounds can be computed
efficiently via appropriate convex optimization formulations.
Using these computational tools, the main results are verified
by numerical simulations. In Section VI, half-duplex MIMO
relay channels are discussed.

Throughout the paper, we use the following notation. The
superscript(·)H denotes the complex conjugate transpose of
a (complex) matrix;tr(·) denotes the trace of a matrix;In
denotes then×n identity matrix;Cn×m denotes a set ofn×m
complex matrices;A � B denotes thatA−B is hermitian and
positive semidefinite;E(·) denotes the expectation with respect
to the random variables in the argument.

II. PROBLEM SETUP AND MAIN RESULTS

We model the point-to-point communication system with a
relay as a MIMO relay channel with sender node 1, relay
node 2, and receiver node 3; see Fig. 1. Throughout the
paper, we assume the complex signal model, but corresponding
results for the real case can be easily obtained; see the
conference version [21] of the current paper for some results
on the real model. The relay and the receiver haver2 andr3
receiving antennas with respective channel outputs

Y2 = G21X1 + Z2,

Y3 = G31X1 +G32X2 + Z3,
(1)

whereG21 ∈ Cr2×t1 , G31 ∈ Cr3×t1 , andG32 ∈ Cr3×t2 are
complex channel gain matrices, andZ2 ∼ CN(0, Ir2) and
Z3 ∼ CN(0, Ir3) are independent complex Gaussian noise
components. For simplicity, we will often use the shorthand
notation

G3∗ =
[

G31 G32

]

and G∗1 =

[

G21

G31

]

.

We assume that the sender and the relay havet1 andt2 trans-
mitting antennas, respectively, with average power constraint
P . As in the standard relay channel model [2], the encoder is
defined byxn

1 (m), the relay encoder is defined byx2i(y
i−1
2 ),

i = 1, . . . , n, and the decoder is defined bŷm(yn
3 ). We

assume that the messageM is uniformly distributed over the
message set. The average probability of error is defined as
P

(n)
e = P{M̂ 6= M}. A rate R is said to be achievable for

the relay channel if there exists a sequence of(2nR, n) codes
such thatlimn→∞ P

(n)
e = 0. The capacityC of the relay

channel is the supremum of all achievable rates.PSfrag replacements

X1

G21

Z2

Y2 :X2 G32

Z3

Y3
G31

Fig. 1. The MIMO relay channel.

The following upper bound on the capacity is well known.

Proposition 1 (Cutset bound [2, Th. 4]). The capacityC of
the MIMO relay channel is upper bounded by

RCS = sup
F (x1,x2)

min
{

I(X1,X2;Y3),

I(X1;Y2,Y3 |X2)
}

(2)

= max
K

min
{

log |Ir3 +G3∗KGH

3∗ |,

log |Ir2+r3 +G∗1K1|2G
H

∗1 |
}

(3)

= max
K

min
{

log |Ir2 + [G31 G32]K[G31 G32]
H |,

log |It1 + (GH

21G21 +GH

31G31)K1|2 |
}

(4)

where the supremum in(2) is over all joint distributions
F (x1,x2) such thatE(XH

jXj) ≤ P , j = 1, 2, the maxima
in (3) and (4) are over all (t1 + t2)× (t1 + t2) matrices

K =

[

K1 K12

KH

12 K2

]

� 0 (5)

such thattr(Kj) ≤ P , j = 1, 2, and

K1|2 = K1 −K12K
−1
2 KH

12.

The equality in (4) is justified by the following fact that will
be used repeatedly throughout the paper.

Lemma 1. For γ ∈ [0, 1], r × t matrix G, and t × t matrix
K � 0,

|Ir + γGKGH | = |It + γGHGK |

≥ γmin(t,r) |Ir +GKGH |. (6)

We compare the cutset bound with two lower bounds on the
capacity. The first lower bound is based on the partial decode–
forward coding scheme, in which the relay recovers part of the
message and forwards it.
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Proposition 2 (Partial decode–forward bound [2, Th. 7]). The
capacityC of the MIMO relay channel is lower bounded by

RPDF = supmin
{

I(X1,X2;Y3),

I(U;Y2 |X2) + I(X1;Y3 |X2,U)
}

(7)

= supmin
{

I(X1,X2;Y3),

I(X1;U,Y3 |X2)− I(X1;U|X2,Y2)
}

(8)

where the suprema are over all joint distributionsF (u,x1,x2)
such thatE(XH

jXj) ≤ P , j = 1, 2.

Remark1. The partial decode–forward lower bound does not
increase by (coded) time sharing.

The partial decode–forward lower bound can be relaxed in
several directions. First, by limiting the input distribution to a
more practical product form, we obtain thenoncoherentpartial
decode–forward lower bound:

RNPDF = supmin
{

I(X1,X2;Y3),

I(U;Y2 |X2) + I(X1;Y3 |X2,U)
}

(9)

= supmin
{

I(X1,X2;Y3),

I(X1;U,Y3 |X2)− I(X1;U|X2,Y2)
}

(10)

where the suprema are over allproduct distributions
F (u,x1)F (x2) such thatE(XH

jXj) ≤ P , j = 1, 2. Second,
by settingU = X1, which is equivalent to having the relay
recover the entire message, we obtain the decode–forward
lower bound:

RDF = supmin
{

I(X1,X2;Y3), I(X1;Y2 |X2)
}

(11)

= max
K

min
{

log |Ir3 +G3∗KGH

3∗ |,

log |Ir2 +G21K1|2G
H

21 |
}

(12)

where the supremum in (11) is over all distributionsF (x1,x2)
such thatE(XH

jXj) ≤ P , j = 1, 2, and the maximum in (12)
is over all(t1+ t2)× (t1+ t2) matricesK � 0 of the form (5)
such thattr(Kj) ≤ P , j = 1, 2. Third, by settingU = ∅ and
X2 = 0, we obtain the direct-transmission lower bound:

RDT = sup I(X1;Y3)

= max
K1

log |Ir3 +G31K1G
H

31 | (13)

where the supremum is over all distributionsF (x1) such that
E(XH

1X1) ≤ P and the maximum is over allt1 × t1 matrices
K1 � 0.

Remark 2. Since decode–forward and direct transmission
schemes are two special cases of partial decode–forward, we
have in general

RPDF ≥ max(RDF, RDT). (14)

Next, we present another important lower bound, in which
the relay compresses its noisy observation instead of recover-
ing the message.

Proposition 3 (Compress–forward bound [2, Th. 6], [11]).
The capacityC of the MIMO relay channel is lower bounded
by

RCF = sup I(X1; Ŷ2,Y3 |X2) (15)

where the supremum is over all conditional distributions
F (x1)F (x2)F (ŷ2|y2,x2) such thatE(XH

jXj) ≤ P , j = 1, 2
and

I(X2;Y3) ≥ I(Y2; Ŷ2 |X2,Y3).

This lower bound can be expressed equivalently as

RCF = supmin
{

I(X1,X2;Y3)− I(Y2; Ŷ2 |X1,X2,Y3),

I(X1; Ŷ2,Y3 |X2)
}

(16)

where the supremum is over all conditional distributions
F (x1)F (x2)F (ŷ2|y2,x2) such thatE(XH

jXj) ≤ P , j = 1, 2.

Remark3. The compress–forward lower bound before taking
the supremum in (15) or (16) is not a convex function of the
conditional distributionF (x1)F (x2)F (ŷ2|y2,x2) in general
and can be potentially improved by (coded) time sharing [22,
Remark 16.4].

Remark4. By settingŶ2 = ∅, compress–forward reduces to
direct transmission and thusRCF ≥ RDT.

We are now ready to state the main results of the paper.

Theorem 1. For everyG21, G31, G32, andP ,

∆PDF := RCS −RPDF ≤ min(t1, r2). (17)

As a supplement to the additive gap result in Theorem 1,
which is useful in approximating the capacity in high SNR, we
establish the following multiplicative gap to provide a tighter
approximation in low SNR.

Theorem 2. For everyG21, G31, G32, andP ,

RCS

RPDF
≤ 2. (18)

In other words, partial decode–forward always achieves at
least half the capacity.

The above results can be relaxed by using the noncoherent
partial decode–forward.

Proposition 4. For everyG21, G31, G32, andP ,

∆NPDF := RCS −RNPDF

≤ max
[

min(t1, r2), min(t1 + t2, r3)
]

(19)

and
RCS

RNPDF
≤ 2. (20)

For the single-antenna case, the partial decode–forward
lower bound can be shown [11, Sec. II] to beequal to
the maximum of the decode–forward and direct–transmission
lower bounds; cf. (14). For multiple antennas, however, par-
tial decode–forward is in general much richer than decode–
forward and direct transmission.

Proposition 5. If t1, t2, r2, r3 ≥ 2,

sup
G21,G31,G32,P

[

RPDF −max(RDF, RDT)
]

= ∞.
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In [17, Th. 1], Kolte, Özgür, and El Gamal derived a
capacity lower bound for general MIMO relay networks.
When specialized to the three-node relay network and further
tightened, this result yields the following channel-independent
capacity approximation.

Proposition 6. For everyG21, G31, G32, andP ,

∆CF

:= RCS −RCF

≤ min
σ2

max

[

min(t1 + t2, r3) log

(

1 +
t1 + t2

min(t1 + t2, r3)

)

+ r2 log(1 + 1/σ2),

min(t1, r2 + r3) log(1 + σ2)

]

. (21)

We tighten this result further as follows.

Theorem 3. For everyG21, G31, G32, andP ,

∆CF ≤ min
σ2

max
[

min(t1 + t2, r3) + r2 log(1 + 1/σ2),

min(t1, r2 + r3) log(1 + σ2)
]

(22)

≤ min(t1 + t2, r3) + r2. (23)

No multiplicative gap is known between the compress–
forward lower bound and the cutset bound. This follows partly
from the fact that the distribution that attains the supremain
(15) and (16) is rather difficult to characterize. It can be shown,
however, that when restricted to Gaussian distributions, the
compress–forward lower bound (even with time sharing) may
have an unbounded multiplicative gap from the cutset bound.
As a compromise, we state the following simple consequence
of Remark 4 and the proof of Theorem 2.

Proposition 7. For everyG21, G31, G32, andP ,

RCS

max(RDF, RCF)
≤ 2. (24)

III. PARTIAL DECODE–FORWARD

In this section, we establish the results on partial decode–
forward stated in the previous section (Theorems 1 and 2, and
Propositions 4 and 5).

A. Partial Decode–Forward (Proof of Theorem 1)

We evaluate the partial decode–forward lower bound in (7)
with (X1,X2) ∼ CN(0,K), whereK � 0 is of the form
in (5), and

U = G21X1 + Z′
2, (25)

whereZ′
2 ∼ CN(0, Ir2) is independent of(X1,X2,Z2,Z3).

Note that (X1,X2,U,Y3) has the same distribution as
(X1,X2,Y2,Y3). The first term of the minimum in (7) is

I(X1,X2;Y3) = log
∣

∣Ir3 +G3∗KGH

3∗

∣

∣. (26)

For the second term, since

Cov(X1 |U,X2)

= Cov(X1 |Y2,X2)

= K1|2 −K1|2G
H

21(Ir2 +G21K1|2G
H

21)
−1G21K1|2

= K1|2

(

It1 +GH

21G21K1|2

)−1

,

we have

I(U;Y2 |X2) + I(X1;Y3 |X2,U)

= log
|Ir3 +G31 Cov(X1|U,X2)G

H

31|

|Ir2 +G21 Cov(X1|U,X2)GH

21|

+ log |Ir2 +G21K1|2G
H

21 |

= log |It1 + (GH

21G21 +GH

31G31)K1|2 |

+ log
|It1 +GH

21G21K1|2|

|It1 + 2GH

21G21K1|2|
(27)

≥ log |It1 + (GH

21G21 +GH

31G31)K1|2 | −min(t1, r2) (28)

where the last inequality follows by Lemma 1. Comparing (26)
and (28) with the cutset bound in (4) completes the proof of
Theorem 1.

We can prove Theorem 1 alternatively using the following
result that is applicable to a more general class of relay chan-
nels and follows by settingp(u|x1, x2) = pY2|X1,X2

(u|x1, x2)
in the second form of the partial decode–forward lower bound
in (8).

Proposition 8. For a discrete memoryless relay channel
p(y2, y3|x1, x2) = p(y2|x1, x2)p(y3|x1, x2),

∆PDF := RCS −RPDF

≤ max
p(x1,x2)

I(X1;U |X2, Y2)

wherep(u|x1, x2) = pY2|X1,X2
(u|x1, x2).

Now, applying Proposition 8 to the MIMO relay channel,
we have

I(X1;U|X2,Y2)

= log
∣

∣Ir3 +G21 Cov(X1 |Y2,X2)G
H

21

∣

∣

= log
∣

∣It1 +GH

21G21K1|2(It1 +GH

21G21K1|2)
−1

∣

∣

= log
|It1 + 2GH

21G21K1|2|

|It1 +GH

21G21K1|2|

≤ min(t1, r2).

B. Noncoherent Partial Decode–Forward (Proof of the First
Statement of Proposition 4)

We use the following fact.

Lemma 2. Let K � 0 be of the form in(5). Then, for every
G31 andG32, we have

G31K1G
H

31+G32K2G
H

32 � G32K
H

12G
H

31+G31K12G
H

32. (29)

Proof of Lemma 2: Consider

[

G31 G32

]

[

K1 −K12

−KH

12 K2

]

[

G31 G32

]H

� 0.

To prove Proposition 4, letK � 0 be of the form in (5).
Let X1 ∼ CN(0,K1) andX2 ∼ CN(0,K2) be independent
of each other, and defineU as in (25). Then, by Lemmas 1
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and 2, the first term of the minimum in the noncoherent partial
decode–forward lower bound in (9) is

I(X1,X2;Y3)

= log |Ir3 +G31K1G
H

31 +G32K2G
H

32 | (30)

≥ log
∣

∣

∣
Ir3 +

1

2
(G31K1G

H

31 +G32K2G
H

32

+G32K
H

12G
H

31 +G31K12G
H

32)
∣

∣

∣
(31)

≥ log |Ir3 +G3∗KGH

3∗ | −min(t1 + t2, r3). (32)

Following steps similar to the coherent case in Section III-A,
we have

Cov(X1 |U,X2) = Cov(X1 |U)

= K1(It1 +GH

21G21K1)
−1

and

I(U;Y2 |X2) + I(X1;Y3 |X2,U)

= log
|Ir3 +G31 Cov(X1|U)GH

31|

|Ir2 +G21 Cov(X1|U)GH

21|

+ log |Ir2 +G21K1G
H

21 |

= log |It1 + (GH

21G21 +GH

31G31)K1 |

+ log
|Ir2 +G21K1G

H

21|

|It1 + 2GH

21G21K1|

≥ log |It1 + (GH

21G21 +GH

31G31)K1 | −min(t1, r2). (33)

Comparing (32) and (33) with the cutset bound in (4) com-
pletes the proof.

C. Multiplicative Gap (Proofs of Theorem 2 and the Second
Statement of Proposition 4)

By settingU = ∅ or X1 in (9) and specializing (12) to
independent(X1, X2), it can be readily checked thatRNPDF

andmax(RDF, RDT) are simultaneously lower bounded by

max
{

max
K1,K2

min
(

log |Ir3 +G31K1G
H

31 +G32K2G
H

32 |,

log |Ir2 +G21K1G
H

21 |
)

,

max
K1

log |Ir3 +G31K1G
H

31 |
}

= max
K1,K2

min
{

log |Ir3 +G31K1G
H

31 +G32K2G
H

32 |,

max
(

log |Ir2 +G21K1G
H

21 |,

log |Ir3 +G31K1G
H

31 |
)

}

. (34)

We further lower bound each term in (34). By (31),

log |Ir3 +G31K1G
H

31 +G32K2G
H

32 |

≥ log
∣

∣

∣
Ir3 +

1

2
(G31K1G

H

31 +G32K2G
H

32

+G32K
H

12G
H

31 +G31K12G
H

32)
∣

∣

∣

≥
1

2
log |Ir3 + (G31K1G

H

31 +G32K2G
H

32

+G32K
H

12G
H

31 +G31K12G
H

32)|. (35)

Similarly,

max
{

log |It1 +GH

21G21K1 |, log |It1 +GH

31G31K1 |
}

≥
1

2

(

log |It1 +GH

21G21K1 | + log |It1 +GH

31G31K1 |
)

≥
1

2
log

∣

∣It1 + (GH

21G21 +GH

31G31)K1

∣

∣. (36)

Comparing (35) and (36) with the cutset bound in (4) estab-
lishes that

RPDF ≥ max(RNPDF, RDF, RDT)

≥ min{RNPDF,max(RDF, RDT)} ≥
1

2
RCS. (37)

D. Decode–Forward and Direct Transmission (Proof of
Proposition 5)

Consider the MIMO relay channel withG31 = diag(g, 1),
G21 = diag(1, g), G32 = diag(g, g), g > 1, which is
equivalent to a product of two mismatched single-antenna
relay channels, one with the direct channel stronger than the
sender-to-relay channel and the other in the opposite direction.
SetK1|2 = K1 = K2 = (P/2)I2 in (26) and (28), we have

RPDF ≥ min

{

log
(

1 + g2P
)

(

1 + (1 + g2)
P

2

)

,

log
(

1 + (1 + g2)
P

2

)2

− 2

}

= log
(

1 + (1 + g2)
P

2

)2

− 2. (38)

In comparison,

RDF = RDT = max
P1+P2≤P

log(1 + P1)(1 + g2P2)

≤ log(1 + P )(1 + g2P ). (39)

Therefore, we have

RPDF −max(RDF, RDT) ≥ log

(

1 + (1 + g2)P2
)2

(1 + P )(1 + g2P )
− 2

which tends to infinity asg → ∞. Based on this example,
more examples of larger dimensions can be constructed.

IV. COMPRESS–FORWARD

We prove Theorem 3. LetK � 0 be of the form in (5).
Let X1 ∼ CN(0,K1) andX2 ∼ CN(0,K2) be independent
of each other, and

Ŷ2 = Y2 + Ẑ2 (40)

whereẐ2 ∼ CN(0, σ2Ir2) is independent ofX1, X2, Z2, and
Z3. Then,

I(Y2; Ŷ2 |X1,X2,Y3)

= h(Ŷ2 |X1,X2,Y3)− h(Ŷ2 |X1,X2,Y2,Y3)

= r2 log(1 + 1/σ2) (41)

and

I(X1; Ŷ2,Y3 |X2)

= log

∣

∣

∣

∣

∣

[

(1 + σ2)Ir2 0
0 Ir3

]

+G∗1K1G
H

∗1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

(1 + σ2)Ir2 0
0 Ir3

]

∣

∣

∣

∣

∣

= log
∣

∣

∣
It1 +

( 1

1 + σ2
GH

21G21 +GH

31G31

)

K1

∣

∣

∣
(42)

≥ log |It1 + (GH

21G21 +GH

31G31)K1 |

−min(t1, r2 + r3) log(1 + σ2). (43)
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The first statement of Theorem 3 is now established by
substituting (32), (41), and (43) in the compress–forward lower
bound in (16) and comparing it with the cutset bound in (3).
Settingσ2 = 1 in (22) yields the second statement in (23).

V. COMPUTATION OF THECAPACITY BOUNDS

A. Formulations of Optimization Problems

1) Cutset Bound:Computing the cutset upper bound in
(3) can be formulated as the following convex optimization
problem [15]:

maximize RCS

over RCS ≥ 0,K � 0,K1|2 � 0

subject to RCS ≤ log
∣

∣Ir3 +G3∗KGH

3∗

∣

∣

RCS ≤ log
∣

∣Ir2+r3 +G∗1K1|2G
H

∗1

∣

∣

tr(AH

1KA1) ≤ P, tr(AH

2KA2) ≤ P

K −A1K1|2A
H

1 � 0

(44)

where

A1 =

[

It1
0t2×t1

]

and A2 =

[

0t1×t2

It2

]

.

The optimization problem in (44) can be solved by standard
convex optimization techniques or packages, e.g., [23].

2) Partial Decode–Forward Lower Bound:Since direct
computation of (7) or (8) is intractable, we instead consider
three lower bounds onRPDF, namely,RDF, RDT, and the
special case ofRPDF evaluated by (25), and take the maximum
of the three. Note that all three lower bounds can be viewed
as the partial decode–forward lower bound evaluated by (25)
with a more general choice ofZ′

2 ∼ CN(0, σ2Ir2), where
σ2 = ∞, 0, 1, respectively. Considering more values ofσ2

can further improve the bound at the cost of complexity.
As for the cutset bound, bothRDF and RDT can be

computed efficiently as a convex optimization problem. The
third bound, characterized by (26) and (27), is nonconvex.
Thus, we evaluate the bound with the optimal solution to
the convex optimization problem defined by (26) and (28).
A similar approach can be taken for computation ofRNPDF.

3) Compress–Forward Lower Bound:We consider two
convex lower bounds onRCF, namely, the special case of
RCF evaluated by (40) withσ2 = 1, namely,

max
K1,K2

min
{

log |Ir3 +G31K1G
H

31 +G32K2G
H

32 | − r2,

log
∣

∣

∣
It1 +

(1

2
GH

21G21 +GH

31G31

)

K1

∣

∣

∣

}

and RDT (which corresponds toσ2 = ∞). As in the case
of partial decode–forward, considering more values ofσ2 can
further improve the bound at the cost of complexity.

B. Numerical Results

We consider the additive and multiplicative gaps on 2000
2 × 2 MIMO relay channels with random channel gains
independently distributed according toCN(0, 1). The gaps
are evaluated by relaxed bounds discussed in the previous
subsection. The maximum and average of the additive gaps
are shown in Fig. 2 and similar multiplicative gaps are shown
in Fig. 3. The simulation results are consistent with the theo-
retical predictions in Theorems 1, 2, and 3, and Proposition4.
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Fig. 2. The additive gaps between the cutset bound and the partial decode–
forward and compress–forward lower bounds for randomly generated2 × 2

MIMO relay channels.

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

M
u
lt
ip

li
ca

ti
v
e

G
a
p

 

 

Minimum of RPDF/RCS

Average of RPDF/RCS

Minimum of RNPDF/RCS

Average of RNPDF/RCS

Minimum of RCF/RCS

Average of RCF/RCS

Fig. 3. The multiplicative gaps between the cutset bound andthe partial
decode–forward and compress–forward lower bounds for randomly generated
2× 2 MIMO relay channels.

VI. H ALF-DUPLEX MIMO RELAY CHANNELS

Half-duplex relay channel models are often investigated to
study wireless communication systems in which relays cannot
send and receive in the same time slot or frequency band.
There are two different types of half-duplex models. One
is the sender frequency-division (SFD) MIMO relay channel
(Fig. 4(a)), in which the channel from the sender to the relay,
X′′

1 → Y2, is orthogonal to the multiple access channel from
the sender and the relay to the receiver,(X′

1,X2) → Y3.
The other is the receiver frequency-division (RFD) MIMO
relay channel (Fig. 4(b)), in which the channelX2 → Y′′

3 is
orthogonal to the broadcast channelX1 → (Y2,Y

′
3). Both can

be viewed as special cases of the general (full-duplex) MIMO
relay channel model. For example, the SFD model follows by
setting

[

G31 0
]

∈ Cr3×(t′
1
+t′′

1
) and

[

0 G21

]

∈ Cr3×(t′
1
+t′′

1
)

in (1). Consequently, our main results in Section II continue
to hold with t1 = t′1 + t′′1 andr3 = r′3 + r′′3 for the SFD and
RFD cases, respectively.

In the following, we present tighter results that exploit the
half-duplex channel structure. The proofs are similar to the
full-duplex case in basic analysis techniques and relegated to
the Appendix.
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Fig. 4. Half-duplex MIMO relay channels.

A. Sender Frequency-Division MIMO Relay Channels

It has been shown by El Gamal and Zahedi [24] that the
relay channel capacity is achieved by partial decode–forward
when the sender has orthogonal components. We specialize
this result to the multiple-antenna case.

Proposition 9. The capacity of the SFD MIMO relay channel
is

C = RCS = RPDF

= sup
F (x′

1
,x2)F (x′′

1
)

min{I(X′
1,X2;Y3),

I(X′′
1 ;Y2) + I(X′

1;Y3 |X2)}

= max
K

min

{

log

∣

∣

∣

∣

Ir3 +G3∗

[

K ′
1 K ′

12

(K ′
12)

H K2

]

GH

3∗

∣

∣

∣

∣

,

log |Ir2 +G21K
′′
1G

H

21 |

+ log |Ir3 +G31K
′
1|2G

H

31 |

}

(45)

where the supremum is over allF (x′
1,x2)F (x′′

1 ) such that
E((X′

1)
HX′

1) + E((X′′
1 )

HX′′
1) ≤ P and E(XH

2X2) ≤ P , the
maximum is over all(t′1 + t′′1 + t2)× (t′1 + t′′1 + t2) matrices

K =





K ′
1 0 K ′

12

0 K ′′
1 0

(K ′
12)

H 0 K2



 � 0 (46)

such thattr(K ′
1 +K ′′

1 ) ≤ P , tr(K2) ≤ P , andK ′
1|2 = K ′

1 −

K ′
12K

−1
2 (K ′

12)
H.

We can establish the following (in addition to obvious
corollaries from the full-duplex results).

Proposition 10. For everyG21, G31, G32, andP ,

∆NPDF = C −RNPDF ≤ min(t′1 + t2, r3). (47)

Proposition 11. For everyG21, G31, G32, andP ,

∆CF = C −RCF ≤ min(t′1 + t2, r3) + r2. (48)

B. Receiver Frequency-Division MIMO Relay Channels

The capacity in this case is not known in general.

Proposition 12. The capacityC of the RFD MIMO relay
channel is upper bounded by

RCS = sup
F (x1)F (x2)

min{I(X1;Y
′
3) + I(X2;Y

′′
3 ),

I(X1;Y2,Y
′
3)}

= max
K1

min
{

log |Ir3 +G31K1G
H

31 |

+max
K2

log |Ir3 +G32K2G
H

32 |,

log |It1 + (GH

21G21 +GH

31G31)K1 |
}

(49)

where the supremum is over allF (x1)F (x2) such that
E(XH

jXj) ≤ P , j = 1, 2, and the maxima are over all
K1,K2 � 0 such thattr(Kj) ≤ P , j = 1, 2.

As in the cutset bound, coherent transmission is irrelevant.

Proposition 13. For everyG21, G31, G32, andP ,

RPDF = RNPDF

and consequently

∆PDF = ∆NPDF ≤ min(t1, r2).

We can further establish the following.

Proposition 14. For everyG21, G31, G32, andP ,

∆CF ≤ max[min(t1, r2 + r′3), r2]. (50)

APPENDIX

Proof of Proposition 10: SetK ′
12 = 0 andK ′

1|2 = K ′
1

in (45). The result follows by similar arguments to (32).
Proof of Proposition 11:Let K be the form of (46). Let

X′
1 ∼ CN(0,K ′

1), X
′′
1 ∼ CN(0,K ′′

1 ), andX2 ∼ CN(0,K2)
be independent and̂Y2 = Y2 + Ẑ2, whereẐ2 ∼ CN(0, Ir2)
is independent of(X′

1,X
′′
1 ,X2,Z2,Z3). Then,

I(X1,X2;Y3)− I(Y2; Ŷ2 |X1,X2,Y3)

= log |Ir3 +G31K
′
1G

H

31 +G32K2G
H

32 | − r2

and

I(X1; Ŷ2,Y3 |X2)

= log |Ir3 +G31K
′
1G

H

31 | + log |Ir2 + (1/2)G21K
′′
1G

H

21 |

≥ log |Ir3 +G31K
′
1G

H

31 | + log |Ir2 +G21K
′′
1G

H

21 |

−min(t′′1 , r2).

The gap due to the first term,min(t′1 + t2, r3) + r2, follows
by similar arguments to the proof of Proposition 10, which
dominates the gap due to the second term.

Proof of Proposition 14: The compress–forward lower
bound in (16) simplifies to

RCF = supmin
{

I(X1;Y
′
3) + I(X2;Y

′′
3 )−I(Y2; Ŷ2 |X1),

I(X1; Ŷ2,Y
′
3)
}

(51)

where the supremum is over all conditional distributions
F (x1)F (x2)F (ŷ2|y2) such thatE(XH

jXj) ≤ P , j = 1, 2.
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Let X1 ∼ CN(0,K1) andX2 ∼ CN(0,K2) be independent
of each other. Let̂Y2 = Y2 + Ẑ2, whereẐ2 ∼ CN(0, Ir2) is
independent of(X1,X2,Z2,Z

′
3,Z

′′
3 ). Then,

I(X1;Y
′
3) + I(X2;Y

′′
3 )− I(Y2; Ŷ2 |X1)

= log |Ir3 +G31K1G
H

31 | + log |Ir3 +G32K2G
H

32 | − r2

and

I(X1; Ŷ2,Y
′
3) = log

∣

∣

∣
It1 +

(

1

2
GH

21G21 +GH

31G31

)

K1

∣

∣

∣
.

The rest of the proof follows similar steps to that of Proposi-
tion 11.
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