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The Approximate Capacity
of the MIMO Relay Channel

Xianglan Jin and Young-Han Kim

Abstract—Capacity bounds are studied for the multiple- e Partial decode—forward and compress—forward, respec-
antenna complex Gaussian relay channel witht; transmitting tively, achieve within one bit from the cutset bound [9],
antennas at the senderr» receiving and¢. transmitting antennas [10].

at the relay, and s receiving antennas at the receiver. It is shown

that the partial decode—forward coding scheme achieves witn e Partial decode—forwarq, which IS-a superposition of
min(¢1,72) bits from the cutset bound and at least one half of decode-forward and direct transmission, reduces to the

the cutset bound, establishing a good approximate expressi of better of the twol[[11].

the capacity. A similar additive gap of min(t1 +t2,73) + 72 bits is . . . .

shown to be achieved by the compress—forward coding scheme. 11€S€ results establish simple approximate expressiotigeof
capacity, which are particularly useful in high signalrtoise

ratio (SNR). A natural question arises on how these resalts ¢
. INTRODUCTION be extended to multiple-antenna (also known as multipbesin
) ) ~_multiple-output or MIMO) Gaussian relay channels.

The relay channel, whereby pomt_—to—pomt communlcatl_on Capacity bounds for MIMO relay channels have been
betwegn a s_eqder and a receiver IS aldgd by a relay, 'Stdied in several papers. By convex optimization techesqu
canonical building block for cooperative wireless commun Wang, Zhang, and Hest-Madsén|[13] derived upper and
cation. Introduced by van der Meulen [1], this channel modgf, e hounds based on looser versions of the cutset bound and
has bleen_stlljd|ed eﬁtenswely 'ndthT Ilteratlure, 'nﬁlumm%ltthe decode—forward bound. These results have been improved
now classical paper by Cover and EI Gamal [2]. The problegy, e advanced coding schemes (partial decode—forward
of charactenzmg the capacity in a computable expressi d compress—forward) with suboptimal decoding rules by
however, remains open even for simple channel models, a§ﬁinoens, Munoz-Medina, Vidal, and del Co$al[14] and Ng
consequently a large body of the literature has been devo% Foschini [15]. The usual focus of this line of work
to the study of upper and lower bounds on the capacify,ever, has been on the optimization of resources (poveer an
Reminiscent of the max-flow min-cut theoreM [3], the cutsef, 4y idth) for practical implementations and on numerical

bound was fa_stablished ,by_ Cover and El Garﬁehl 2], whi mputation of resulting capacity bounds (see dlso [16jg T

S?ts an intuitive upper I|m_|t on the ‘?apac'ty- On the ch?ﬁost relevant to our main question is a recent result by

direction, there are a myriad of coding schemes, typu:angOlte Ozgiir, and El Gamal17] on a general MIMO relay
1% ” H H 1 '

referred to as “*~forward" [[4], each establishing a lowepayor which carefully compares the noisy network coding

bou_nd on the capacity. Among these, the two most versaqi er bound for the general unicast relay netwdrk [7] with
coding schemes are partial decode—forward [2, Th. 7] a cutset bound, which can be readily specialized to the 3-

compress—forward [2, Th. 6], which are complementary ode relay channel. In the same vein, another recent study

each other (pr_oviding digital-to-digital and analog-tigithl by Gerdes, Hellings, Weiland, and Utschick [18] estabkshe
relays, respectively) and have been successfully extetmledye oniima) input distribution of the partial decode—fordia
general relay networks for unicast, multicast, broada@stl |, ver hound for the MIMO relay channel, the corresponding
multiple access [5][16].[17],18]. result of which for the single-antenna case is immediateesin

The Gaussian relay channel, whereby the signals from Hgia| decode—forward is the better of decode—forward and
sender and the relay are corrupted by additive white Gauss{fi;act transmission.

hoise, is one of the most basic channel models studied Mrhis paper provides more direct and comprehensive answers

the literature. The capacity of the Gaussian relay chann 'our main question through an elementary yet careful analy

howeve{, ISI a?au:j L:Ekr}()\l’lvn for any l?orr:degekz)nerat_e IChI al ng% of the partial decode—forward and compress—forwareéiow
parameter. instead, the foflowing resulls have been bounds for the MIMO relay channel. The main contributions

for single-antenna Gaussian relay channels. are summarized as follows.
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mission is employed (Propositidh 4). We assume that the sender and the relay hawndt, trans-

e Unlike the single-antenna counterpart, partial decoderitting antennas, respectively, with average power cairgtr
forward can achieve rates arbitrarily higher than the bett®. As in the standard relay channel model [2], the encoder is
of decode—forward and direct transmission in MIMQlefined byx7 (m), the relay encoder is defined by, (y5 '),
relay channels (Propositidd 5). i = 1,...,n, and the decoder is defined by (y%). We

e To complement the additive gap result, we show thassume that the messafi€ is uniformly distributed over the
both coherent and noncoherent partial decode—forwartessage set. The average probability of error is defined as
coding schemes achieve at least half the cutset boupfl”) = P{M # M}. A rate R is said to be achievable for
(TheorentD). the relay channel if there exists a sequencé26ft, n) codes

e We show that compress—forward achievesn(t; + such thatlim, .. P\") = 0. The capacityC' of the relay
ta,73) + 72 bits within the cutset bound (Theordh 3). channel is the supremum of all achievable rates.

e We establish similar results for half-duplex relay channel

models [11], [19], [20] (Sectioh V1).
In conclusion, the paper establishes simple approximate ex Zy
pressions of the capacity, which are particularly usefdiigh l
and low SNR. Beyond these analytical results, we also déscus @»Y X Zs
how these expressions can be computed efficiently. G2y 2 G2 l
p p y

The rest of the paper is organized as follows. In the nexk1 / T Y,
section, we formally define the channel model and review the G
cutset upper bound, the partial decode—forward lower bpurﬁb. 1. The MIMO relay channel.
and the compress—forward lower bound on the capacity. The
main results on additive and multiplicative gaps for partia
decode—forward and compress—forward are also statedrthere
The proofs of these results are given in Sections |l Ieroposition 1 (Cutset bound]2, Th. 4])The capacityC' of
Section[V is devoted to the computational aspects of otile MIMO relay channel is upper bounded by
results, namely, how the capacity bounds can be computed
efficiently via appropriate convex optimization formutats.  Rcs = sup min{l(Xy, X;Y3),

The following upper bound on the capacity is well known.

Using these computational tools, the main results are edrifi Fx,x2) I(X1:Y2,Y3|X0)} 2)
by numerical simulat_ions. In Sectign1VI, half-duplex MIMO — maxmin{ log |I,, + G3.KG, |,
relay channels are discussed. K "

Throughout the paper, we use the following notation. The 10g [ Iy ry + Gt K1jp Gl |} ®)
superscript(-)" denotes the complex conjugate transpose of = mlgxmin{ log |1, + [G31 G32]K[G31 Gaa]"|,
a (complex) matrix;tr(-) denotes the trace of a matriX;, log | I, + (G%,Ga1 + G5, G31) Ky | }
denotes the: x n identity matrix;C™*™ denotes a set of x m (4)

complex matricesA > B denotes thatl — B is hermitian and

positive semidefiniteE(-) denotes the expectation with respec\f"here the supremum IEZ) IS over gll joint dlstrlbutlgns
to the random variables in the argument. F(x1,%2) such thatB(X;X;) < P, j = 1,2, the maxima
in 3) and (@) are over all (¢; + t2) x (1 + t2) matrices

Il. PROBLEM SETUP AND MAIN RESULTS

; : - - K_{Kl K12]>-0 (5)
We model the point-to-point communication system with a Kt Ky |~

relay as a MIMO relay channel with sender node 1, relay
node 2, and receiver node 3; see Hig. 1. Throughout thdch thattr(K;) < P, j = 1,2, and
paper, we assume the complex signal model, but correspgpndin
results for the real case can be easily obtained; see the
conference version [21] of the current paper for some result
on the real model. The relay and the receiver havandr;
receiving antennas with respective channel outputs

Ko = K1 — Kip Ky 'K,

The equality in[(%) is justified by the following fact that Wil
be used repeatedly throughout the paper.

Y, = G Xy + Zo Lemma 1. For v € [0,1], » x t matrix G, and ¢ x ¢ matrix
’ 1) K =0,
Y3 = G31 X1 + G32X2 + Z3, @) -
whereGoy € C2%1, Gy € C%", and G € C%*2 are I +vGKG"| = |I, + vG"GK|
complex channel gain matrices, a@ ~ CN(0,I,,) and > Amintn) 1 GKGH. (6)

Z; ~ CN(0,I,,) are independent complex Gaussian noise

components. For simplicity, we will often use the shorthand We compare the cutset bound with two lower bounds on the
notation capacity. The first lower bound is based on the partial deeode

G21] forward coding scheme, in which the relay recovers part ef th

Gs. = [Gs1 G3] and G. = {GBI message and forwards it.



Proposition 2 (Partial decode—forward bourld [2, Th. 7fhe Proposition 3 (Compress—forward bound][2, Th. 6],_[11])
capacityC' of the MIMO relay channel is lower bounded by The capacityC' of the MIMO relay channel is lower bounded

by
R = sup min; I(Xq, X2;Y3), R
por = supmin{I(X, Xo; Ys) Rep = sup I(Xy; ¥, Y| Xa) (15)
I(U;Y2|Xy) + I(X1;Y3|Xo, U} (7)
— supmin{I(Xy,X,; Ys) where the supremum is over all conditional distributions
o F(x1)F(x2)F(y h thatE(X"X,) < P, j = 1,2
I(X1;U, Y3|X,) - I(X1;U[ X, Ya) } arffjl) (x2)F'(¥2ly2, x2) such thate(X;X;) < P, j =1,
®) I(X2;Y3) > I(Yo; Ya|Xs, Y3).

such thatE(X}/X;) < P, j = 1,2. . .

Remark. The partial decode_forward lower bound does not <" *° " U/ (X Xai Yo) = 1Yo [ X0, X0, Xs),
emarkl. The partial decode—forward lower bound does no <

increase by (coded) time sharing. I(X13 Y, Y3]X2)} (16)

The partial decode—forward lower bound can be relaxed \yhere the supremum is over all conditional distributions
several directions. First, by limiting the input distritari to a " (X1)F(x2) F(¥2]y2, x2) such thatE(X}X;) < P, j = 1,2,
more practical product form, we obtain thencoherenpartial Remark3. The compress—forward lower bound before taking
decode—forward lower bound: the supremum in{15) of (16) is not a convex function of the

o ) _ conditional distributionF’(x1)F(x2)F(y2]y2,x2) in general
Rypor = supmin{1(X, Xa; Y), and can be potentially improved by (coded) time sharing [22,

I(U; Y2 |Xs) + I(X1; Y5]| X2, U) } Remark 16.4].
emark4. By settingY, = (), compress—forward reduces to
) Remarka. By setting Vs = 0 forward red
= sup min{/ (X1, Xz; Y3), direct transmission and thugcr > Rpr.
I(X1;U, Y5 Xs) — I(X; U X2, Y2) } We are now ready to state the main results of the paper.
(10)

Theorem 1. For everyGay, G31, G2, and P,
where the suprema are over aproduct distributions A — R« — R < min(ty, ) (17)
F(u,x;)F(x2) such thatE(X!X;) < P, j = 1,2. Second, PDI - 7108 TIPDE = Lr2
by settingU = X,, which is equivalent to having the relay As a supplement to the additive gap result in Theokém 1,
recover the entire message, we obtain the decode—forwatich is useful in approximating the capacity in high SNR, we
lower bound: establish the following multiplicative gap to provide atigr

approximation in low SNR.

Theorem 2. For everyGa, G31, G32, and P,
Rcos

Rppr

where the supremum ifi(IL1) is over all distributidngx;, x2) In other words, partial decode—forward always achieves at
such thate (X! X;) < P, j = 1,2, and the maximum in(12) least half the capacity.

is over all(t1 +t2) x (t; +t2) matricesK = 0 of the form [3)
such thattr(K;) < P, j = 1,2. Third, by settingU = () and
X, = 0, we obtain the direct-transmission lower bound:

RDF = supmin{I(Xl,Xg;Yg), I(Xl,Y2|X2)} (11)
= max min{ log |I,, + G3. KGY,|,
log | I, + G21 K12G5 | } (12)

<2 (18)

The above results can be relaxed by using the noncoherent
partial decode—forward.

Proposition 4. For everyGaoy, G31, G32, and P,
Rpr =supI(X1;Y3) A o .
= maxlog | I, + Ga1 K1GY, | (13) NPT s T AEDE
K < max [min(tl, r9), min(ty + to, 7’3)} (19)
where the supremum is over all distributioA$x;) such that and
E(X!'X;) < P and the maximum is over ath x t; matrices Res <9 (20)
K = 0. Rxppr

Remark 2. Since decode—forward and direct transmission FOr the single-antenna case, the partial decode—forward

schemes are two special cases of partial decode—forward,!@er bound can be showr [11, Sec. 1] to leeualto
have in general the maximum of the decode—forward and direct—transmission

lower bounds; cf.[{14). For multiple antennas, however; par
Rppr > max(Rpr, Rpr). (14) tial decode—forward is in general much richer than decode—

forward and direct transmission.
Next, we present another important lower bound, in which

the relay compresses its noisy observation instead of ezcoV

ing the message. sup  [Rppr — max(Rpr, Rpr)| = co.
G21,G31,G32,P

roposition 5. If t1,t9, 79,73 > 2,



In [17, Th. 1], Kolte, Ozgiir, and El Gamal derived awe have
capacity lower bound for general MIMO relay networks.
When specialized to the three-node relay network and furthel/ (U; Y2[X2) + 1(X1; Y3[X3, U)
tightened, this result yields the following channel-indegent I, + Gs1 Cov(X;|U, X2)GY, |

capacity approximation. 8 |1, + G21 Cov(X,|U, X2)GY, |
Proposition 6. For everyGa,, Gs1, G2, and P, +log |Ir, + G21 K1)2GY, |
Acr =log |11, + (G5, G21 + G5, G51) Ko |

I, + G5, Ga1 K)o

. . t+ [T, + 2G4, G Ky 2
< n;lznmax min(t; + to, r3) log (1 + m) > log | Iy, + (GY,Ga1 + G§1G31)K1|2| — min(t1,72) (28)
+rylog(l +1/0?),

= Ros — Rer + log

(27)

where the last inequality follows by Lemih 1. Comparind (26)

min(t1, 2 +73) log(1 + 02)]_ (21) and [28) with the cutset bound inl (4) completes the proof of
’ Theoren{]L.
We tighten this result further as follows. We can prove Theorefd 1 alternatively using the following

result that is applicable to a more general class of relay-cha

Theorem 3. For everyGay, Gi31, Gaz, and P, nels and follows by setting(u|z1, z2) = py, x, x, (ulz1, 2)

Acr < minmax [min(t; + t2, r3) + 72 log(1 + 1/0%), in the second form of the partial decode—forward lower bound
min(t1, ry + r3) log(1 4 0°)] (22) in @).
< min(t +t2, 73) + 72 (23) Proposition 8. For a discrete memoryless relay channel

No multiplicative gap is known between the compresaﬂ(y2ay?>|$1a$2) = p(ya|z1, 22)p(ys |21, 22),
forward lower bound and the cutset bound. This follows partl
from the fact that the distribution that attains the supréma Appr := Rcs — Rppr
(I8) and[(Ib) is rather difficult to characterize. It can bevei, < max [(X1;U[X2,Y2)
however, that when restricted to Gaussian distributiohs, t BEnsa)
compress—forward lower _bo_unq (even with time sharing) mayherep(ulzy, z,) = Py X1, X, (|21, T2).
have an unbounded multiplicative gap from the cutset bound.
As a compromise, we state the following simple consequencéVow, applying Propositiof]8 to the MIMO relay channel,

of RemarK% and the proof of Theordr 2. we have
Proposition 7. For everyGai, Gai, Gs2, and P, I(X1;U| X5, Y2)
}fCS = <9. (24) = 1Og‘Ir3 + Goy COV(Xl |Y2, Xg)Ggl‘
max(Rpr, Rcr) =log|L, + G5,Ga1 K1p(Iy, + G5 G21K1)2) ™!
[1l. PARTIAL DECODE-FORWARD ) I, + 2G4, Go1 Ky o
fmnd Og

In this section, we establish the results on partial decode—
forward stated in the previous section (Theoréms 1[dnd 2, and
Proposition§ 4 anf] 5).

I, + G5, Ga1 K)o
< min(ty,r9).

A. Partial Decode—Forward (Proof of Theoreh 1) B. Noncoherent Partial Decode—Forward (Proof of the First
We evaluate the partial decode—forward lower bounddn (Btatement of Propositidd 4)

with (X;,X32) ~ CN(0,K), where K = 0 is of the form .

in (), and We use the following fact.

U = GauX; +Z, (25) Lemma 2. Let K = 0 be of the form in(G). Then, for every

whereZ), ~ CN(0, 1,,) is independent of X, Xy, Z, Z3). (31 and Gz, we have
Note that (X;,X,,U,Y3) has the same distribution as " " "o "
(X1,X2,Y2,Y3). The first term of the minimum if{7) is Gu1 K1 Gy + Gaa KoGap = Gaa K15 Gy + G Ko Gap. (29)

I(X1,X2;Ys3) =log|I,, + G3. KGY,|. (26) Proof of Lemmé&12: Consider
For the second term, since
' Ky  —Kip H
Cov(X4[U, Xs) G Ga] |y ] (6 a0
= COV(X1|Y2,X2) m
= Ko — K1)2G5, (I, + G21K15GY,) G Ky o To prove Propositiofil4, lefl = 0 be of the form in ().
-1 Let X; ~ CN(0,K;) and X, ~ CN(0, K2) be independent
_ H 1 ) 1 2 ) 2
- K”Q(Itl + G21G21K1|2) ’ of each other, and defin® as in [25). Then, by Lemmds 1



and2, the first term of the minimum in the noncoherent parti@lomparing [3b) and_(36) with the cutset bound[ih (4) estab-

decode—forward lower bound ial(9) is
I(X1,X2;Y3)

=log | I, + G31 K1GY, + G3a K2GY, | (30)
> log| I, + 3 (G KaGlfy + G KOGl

+ G KWL GH + Ga1 K1oG,)| (31)
>log |1, + Gg*KG§*| — min(ty + t2, 73). (32)

Following steps similar to the coherent case in Sediio@ -

we have

COV(Xl |U7 Xg) = COV(Xl |U)
= Ki(I, + G§,G21 K1) ™!
and

I(U, Y, |X2) + I(Xl; Y3 |)(27 U)
|IT3 + Gz COV(X1|U)G§1|
|I., + G21 COV(X1|U)G51|
+ log |I7«2 + G21K1G51|
+ (Ggle + Gg‘ngl)Kﬂ

I, + G21 K1 G|
I, + 2GY, G2 K|

(G;‘lel + GH 1G31) K| — min(tq,72).

= log

= log | I},

+ log

> 1Og | It1 (33)

lishes that

Rppr > max(Rxppr, Ror, RpT)

. 1

> min{ Rxppr, max(Rpr, RpT)} > §RCS- (37)
D. Decode-Forward and Direct Transmission (Proof of
Proposition[®)

Consider the MIMO relay channel wit¥s; = diag(g, 1),
Go1 = diagl,9), Gs2 = diaglg,g9), ¢ > 1, which is
equivalent to a product of two mismatched single-antenna
relay channels, one with the direct channel stronger than th
sender-to-relay channel and the other in the oppositetairec
SetK,, = K1 = Ky = (P/2)I, in (26) and [ZB), we have

Rppr Zmin{log (1+92P)(1+(1+92)§)’

log (1+ (1 +92)§)2 - 2}

— log (1+(1+92)§)2—2. (38)
In comparison,
Rpr = Rpr = Plgllgizxgplog(l +P)(1+g°P)
<log(l+ P)(1+ g*P). (39)

Comparing [(3R) and(33) with the cutset bound[ih (4) Coml'herefore we have

pletes the proof.

C. Multiplicative Gap (Proofs of Theorel 2 and the Second Zippr — max(Rpr, Rpr) > log

Statement of Propositidd 4)

By settingU = 0 or X; in (@) and specializing[{12) to

independent X, X»), it can be readily checked th@xppr
andmax(Rpr, Rpr) are simultaneously lower bounded by

max{ II(naI? mln(log |1, + G31 K1GY, + G3a KoGh, |,
log |I7«2 + G21K1G21 |)
maxlog |, + G531 K1G35, |}

max mm{ 10g |I7«,g + G31K1G31 + G32K2G32|
Ki,K>

max(log |1, + Ga1 K1GY, |,

log |1, + GaKaGl, )} (34)
We further lower bound each term i {34). Hy{31),
log |1, + G351 K1GY, + G2 KoGhy |
> log|I;, + %(G31K1G§1 + G52 K2GY,
+ G Gl + G K1aGly)|
> 2 log| L, + (Ga1 K1 Gl + GanKaGly
+ G32KH,GY, + G31K12GY,)|. (35)

Similarly,
max { log |It1 + GS1G21K1 | ,log |It1 —|—Gg1G31K1 |}

1
> —(10g |It1 +G5‘1G21K1| —|—10g |It1 +G§1G31K1|)

> = 10g ‘Itl G21 G21 + G31 G31)K1‘ (36)

2
G+0+g98)°
(1+P)(1+¢2%P)
which tends to infinity agy — oo. Based on this example,
more examples of larger dimensions can be constructed.

IV. COMPRESS-FORWARD

We prove Theorerh]3. LekK = 0 be of the form in [(b).
Let X; ~ CN(0, K;) and X5 ~ CN(0, K3) be independent
of each other, and R R

Yo=Y2+7 (40)

whereZsy ~ CN(0,0%1,.,) is independent 0K ;, X5, Z,, and
Zs. Then,

1(Ya; Yo| X1, X2, Y3)
= h(Y2|X1,X2,Y3) —
=rylog(1+1/0?)

h(Y2| X1, Xs, Y2, Ys3)
(41)
and
I(X1; Y2, Y3]Xs2)

1 2 I, 0
‘ ( +g) 2 I }+G*1K1GE1
r3

= log

1+o*)I., 0
0 I,

= log

L, + (1 — GG + G31G31)K1‘
Z 10g |It1 (G21G21 + G31G31)K1|

— min(ty, re + 73) log(1 4 o2).

(42)

(43)



The first statement of Theorefd 3 is now established by
substituting[(3R) [(41), an@(#3) in the compress—forwavedr
bound in [I6) and comparing it with the cutset bound[ih (3).
Settingo? = 1 in (22) yields the second statement [n](23).

V. COMPUTATION OF THE CAPACITY BOUNDS
A. Formulations of Optimization Problems

1) Cutset Bound:Computing the cutset upper bound in WAL
(3) can be formulated as the following convex optimization

problem [15]:
maximize Rcg

over Rcs > 0,K = 0,K1|2 =0 S0 B
subject to Rcg < log|I,, + G3. KGY,
Reg < 10g\Ir2+r3 + G*lKl‘QG:‘l
tr(AYKA;) < Ptr(AYKA)) < P

K — AlKl‘QAll—' =0

Iy, Oty x¢
= and A, = | 10
|:Ot2><t1:| ° |: It2 :|

The optimization problem in_(44) can be solved by standard
convex optimization techniques or packages, €.gl, [23].

2) Partial Decode—Forward Lower BoundSince direct
computation of[(I7) or[{8) is intractable, we instead conside

Additive Gap

—6—Maximum of Appp
e .’|-©-Average of Appp
- & | A Maximum of Anpor ]
. -A-Average of Anppp
— Maximum of Acg
-B-Average of Ay

05

0 10 20
SNR (dB)

(44) Fig. 2. The additive gaps between the cutset bound and thialpdecode—
forward and compress—forward lower bounds for randomlyegeied2 x 2

MIMO relay channels.

where

A

Ay

three lower bounds omRppr, Nnamely, Rpr, Rpt, and the
special case aRppr evaluated by[(25), and take the maximum
of the three. Note that all three lower bounds can be viewed
as the partial decode—forward lower bound evaluated by (25)

Multiplicative Gap

03r

—6—Minimum of Rppp/Res ||

-0-Average of Rppp/Rcs

—A—Minimum of Rxppr/Res

-A-Average of Ryppr/Res

—&Minimum of Rep/Res  f

-B8-Average of Rep/Rcs

with a more general choice &), ~ CN(0,02I,,), where % o

02 = 00,0,1, respectively. Considering more values ot

can further improve the bound at the cost of CompleXity' Fig. 3. The multiplicative gaps between the cutset bound taedpartial
As for the cutset bound, botlRpr and Rpr can be decode—forward and compress—forward lower bounds fororahdgenerated

computed efficiently as a convex optimization problem. Thgx 2 MIMO relay channels.

third bound, characterized by (26) ard](27), is nonconvex.

Thus, we evaluate the bound with the optimal solution to

the convex optimization problem defined dy](26) ahd] (28). VI.

A similar approach can be taken for computation/afppr- Half-duplex relay channel models are often investigated to
3) Compress—Forward Lower BoundWe consider two study wireless communication systems in which relays canno

convex lower bounds orRcr, namely, the special case ofsend and receive in the same time slot or frequency band.

Rcr evaluated by[(40) witv? = 1, namely, There are two different types of half-duplex models. One

is the sender frequency-division (SFD) MIMO relay channel

(Fig.[4(@)), in which the channel from the sender to the relay

X/ — Ya, is orthogonal to the multiple access channel from

the sender and the relay to the receig),X2) — Y3.

The other is the receiver frequency-division (RFD) MIMO

relay channel (Fig._4(p)), in which the chan®} — Y7 is

orthogonal to the broadcast chanXal — (Y., Y%). Both can

) be viewed as special cases of the general (full-duplex) MIMO

B. Numerical Results relay channel model. For example, the SFD model follows by
We consider the additive and multiplicative gaps on 200getting [G51 0] € C™#* i+ and [0 Gy € Crex(titt)

2 x 2 MIMO relay channels with random channel gainin (@). Consequently, our main results in Section Il corginu

independently distributed according t6N(0,1). The gaps to hold witht; = ¢ + ¢/ andrs = 5 + 4 for the SFD and

are evaluated by relaxed bounds discussed in the previ®iSD cases, respectively.

subsection. The maximum and average of the additive gapdn the following, we present tighter results that exploi th

are shown in Figl]2 and similar multiplicative gaps are showmalf-duplex channel structure. The proofs are similar te th

in Fig.[3. The simulation results are consistent with thenthefull-duplex case in basic analysis techniques and relegtate

retical predictions in Theoreri$ [, 2, dnd 3, and Propod#ionthe Appendix.

0 10 20
SNR (dB)

HALF-DUPLEX MIMO RELAY CHANNELS

nax min { log | I, + G31 K1GY| + G32 KoGly | — 72,
1, 2
1
1og‘1t1 n (§G5'1G21 + Ggngl)Kl‘}

and Rpr (which corresponds t@? = o). As in the case
of partial decode—forward, considering more valuegdtan
further improve the bound at the cost of complexity.



Z . L
: B. Receiver Frequency-Division MIMO Relay Channels

i 7. The capacity in this case is not known in general.
XH %@» Y2 5X2 3 . )
! G2 l Proposition 12. The capacityC' of the RFD MIMO relay
channel is upper bounded by
X4 G >+ Y3
o o Ros = sup  min{I(Xy;Y35) + I(X2;Y5),
(a) Sender frequency division. F(x1)F(x2)
) I(X1;Y2,Y3)}
Z: Zs = maxmin{ log | I, + Gt K, G|
(g G l ' + H}(&X 10g |L«3 + G32K2G5|2 |7
4>Y2 2X24> : )—VY:;/ 2
Gy log |1, + (G5, Go1 + G351 G1) Ky |}
X4 e -+ Y (49)
31 .
T where the supremum is over alf'(x;)F(x2) such that
) E(X{X;) < P, j = 1,2, and the maxima are over all
(b) Receiver frequency division. Zs Ky, K2 = 0 such thattr(K;) < P, j =1,2.

Fig. 4. Half-duplex MIMO relay channels. As in the cutset bound, coherent transmission is irrelevant

Proposition 13. For everyGay, Gs1, Gsa, and P,

A. Sender Frequency-Division MIMO Relay Channels Rppr = RxppF
It has been shown by El Gamal and Zahedil [24] that tlend consequently

relay channel capacity is achieved by partial decode—fiatwa

when the sender has orthogonal components. We specialize

this result to the multiple-antenna case. We can further establish the following.

Appr = Anppr < min(ty, r2).

Proposition 9. The capacity of the SFD MIMO relay channeProposition 14. For everyGs:, Gs1, G32, and P,
is

Acr < max[min(ty, ro +1%),72]. (50)
C = Rcs = Rppr
= sup min{7 (X}, X2;Y3), APPENDIX
Fle %) PG I(X!5Y) + I(X: Y3 Xo)) Proof of Propositior 10: Set K}, = 0 and K/, = K,

in (@8). The result follows by similar arguments 32)m

(Ki)H Koy ) Proof of Propositior II: Let K be the form of[(4b). Let

L X! ~ CN(0, K1), X! ~ CN(0, K7), and Xy ~ CN(0, K>)

log | Ir, + G2 KYG3, | be independent an¥, = Y, + Z,, whereZ, ~ CN(0, I,.,,)
+log |1, + G31K12G§'1|} (45) is independent of X/, X", X5, Zs, Z3). Then,

where the supremum is over alf(x},x3)F(x}) such that I(X1, X2 Y5) = 1(Y2; Y2 X1, X2, Y5)
E((X})"X)) + E(X!)"XY) < P and E(X{X,) < P, the =log |1, + G51 K] G, + GaaKaGly| — 1o
maximum is over allt] + ¢} +t2) x (t] + ¢} + t2) matrices and

K] 0 Ki,

!/ !/
Ira + G3* |: Kl K12] Gg*

m]?(i.X min { og

I(X1; Y2, Y3]X2)

K=| 0 K/ 0]=0 (46)
(Kip)" 0 K =log | I, + Gs1 K1GY, | +1og | I, + (1/2)Gn K| G, |
such thattr(K{ + K1) < P, tr(K,) < P, and K}, = K — > log | Iry + G31 K1G3, | +log | I, + G K1 Gy, |
K{2K2_1(K{2)H- — min(t7, 7).
We can establish the following (in addition to obvioughe gap due to the first ternmin(t; + t2,73) + r2, follows
corollaries from the full-duplex results). by similar arguments to the proof of Propositiobn 10, which

dominates the gap due to the second term. |
Proof of Propositiof_I4: The compress—forward lower

Anppr = C — Rxppr < min(t) + to, 3). (47) bound in [I6) simplifies to
Rer = supmin{I(Xy;Y5) + I(Xo; YY) —I(Y2; Y2 |Xy),
Proposition 11. For everyGa1, Gs1, G2, and P, [(Xl;Y%Yg)} (51)

Proposition 10. For everyGay, Gs1, G3o, and P,

Acr = C — Rop < min(t] +ta, 13) + 72. (48) where the supremum is over all conditional distributions
F(Xl)F(Xg)F(ygb’g) such thatE(X;'Xj) < P, 7 =1,2.



Let X; ~ CN(0, K;) and X, ~ CN(0, K2) be independent [22] A. El Gamal and Y.-H. KimNetwork Information Theory Cambridge:

of each other. Lel, = Y3 + Z, whereZ, ~ CN(0, I,.,) is Cambridge University Press, 2011. .
ind d X: X..7, ' 7 Th [23] M. Grant and S. Boyd, “CVX: Matlab software for discipdd convex
independent of X, X», Z», Z3, Z3). Then, programming, version 2.0 beta,” http://cvxr.com/tvx, SBP13.

Y o~ '~ [24] A. El Gamal and S. Zahedi, “Capacity of a class of relagrofels with
I(le Ys) + I(X2v Y3) - I(Y2a Yo |X1) orthogonal componentsfEEE Trans. Inf. Theoryvol. 51, no. 5, pp.

= log |Ir3 =+ G31K1Ggl| + 10g |L«3 + G32K2G5|2| — T 1815-1817, 2005.
and

I(X1;Ya,Y}) = log

1
Itl + (iGgle + Gg‘ngl)Kl‘.

The rest of the proof follows similar steps to that of Proposi

tion [11. ]
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