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Abstract

Online or recursive robust PCA can be posed as a problem of recovering a sparse vector, Sy, and a dense vector, L;, which
lies in a slowly changing low-dimensional subspace, from M; := S; + L on-the-fly as new data comes in. For initialization, it
is assumed that an accurate knowledge of the subspace in which L lies is available. In recent works, Qiu et al proposed and
analyzed a novel solution to this problem called recursive projected compressed sensing or ReProCS. In this work, we relax one
limiting assumption of Qiu et al’s result. Their work required that the L.’s be mutually independent over time. However this is
not a practical assumption, e.g., in the video application, L; is the background image sequence and one would expect it to be
correlated over time. In this work we relax this and allow the L.’s to follow an autoregressive model. We are able to show that
under mild assumptions and under a denseness assumption on the unestimated part of the changed subspace, with high probability
(w.h.p.), ReProCS can exactly recover the support set of S; at all times; the reconstruction errors of both S; and L. are upper
bounded by a time invariant and small value; and the subspace recovery error decays to a small value within a finite delay of
a subspace change time. Because the last assumption depends on an algorithm estimate, this result cannot be interpreted as a
correctness result but only a useful step towards it.

I. INTRODUCTION

Principal Components Analysis (PCA) is a widely used dimension reduction technique that finds a small number of orthogonal
basis vectors, called principal components (PCs), along which most of the variability of the dataset lies. Often, for time series
data, the PCs space changes gradually over time. Updating it on-the-fly (recursively) in the presence of outliers, as more data
comes in is referred to as online or recursive robust PCA [1], [2]. As noted in earlier work, an outlier is well modeled as a
sparse vector. With this, as will be evident, this problem can also be interpreted as one of recursive sparse recovery in large
but structured (low-dimensional) noise.

A key application where the robust PCA problem occurs is in video analysis where the goal is to separate a slowly changing
background from moving foreground objects [3], [4]. If we stack each frame as a column vector, the background is well
modeled as being dense and lying in a low dimensional subspace that may gradually change over time, while the moving
foreground objects constitute the sparse outliers [4]. Other applications include detection of brain activation patterns from
functional MRI sequences or detection of anomalous behavior in dynamic networks [5].There has been a large amount of
earlier work on robust PCA, e.g. see [3]. In recent works [4], [6], the batch robust PCA problem has been posed as one of
separating a low rank matrix, £; := [Lg, L1,..., L], from a sparse matrix, S; := [Sp, S1,. .., S, using the measurement
matrix, M; := [My, My, ..., M;] = L++S;. A novel convex optimization solution called principal components’ pursuit (PCP)
has been proposed and shown to achieve exact recovery under mild assumptions. Since then, the batch robust PCA problem,
or what is now also often called the sparse+low-rank recovery problem, has been studied extensively. We do not discuss all
the works here due to limited space.

Online or recursive robust PCA can be posed as a problem of recovering a sparse vector, S;, and a dense vector, L;, which
lies in a slowly changing low-dimensional subspace, from M; := S; + L; on-the-fly as new data comes in. For initialization,
it is assumed that an accurate knowledge of the subspace in which L lies is available. In recent works, Qiu et al proposed
and analyzed a novel solution to this problem called ReProCS [7], [8], [9].
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Contribution: 1In this work, we relax one limiting assumption of Qiu et al’s result. Their work required that the L;’s be
mutually independent over time. However this is not a practical assumption, e.g., in the video application, L; is the background
image sequence and one would expect it to be correlated over time. In this work we relax this and allow the L,’s to follow
an autoregressive (AR) model. We are able to show that, under mild assumptions and a denseness assumption on the currently
unestimated subspace, with high probability (w.h.p.), ReProCS (with subspace change model known) can exactly recover the
support set of S; at all times; the reconstruction errors of both S; and L; are upper bounded by a time invariant and small
value; and the subspace recovery error decays to a small value within a finite delay of a subspace change time. The last
assumption depends on an algorithm estimate and hence this result also cannot be interpreted as a correctness result but only
a useful step towards it.

To the best of our knowledge, the result of Qiu et al and this follow-up work are among the first results for any recursive
(online) robust PCA approach, and also for recursive sparse recovery in large but structured (low-dimensional) noise.

Other very recent work on algorithms for recursive / online robust PCA includes [10], [11], [12], [13], [14], [5]. In [13],
[14], two online algorithms for robust PCA (that do not model the outlier as a sparse vector but only as a vector that is “far”

from the data subspace) have been shown to approximate the batch solution and do so only asymptotically.

II. NOTATION AND BACKGROUND
A. Notation

Foraset T C {1,2,...,n}, we use |T| to denote its cardinality, i.e., the number of elements in 7. We use T to denote its
complement w.r.t. {1,2,...n},ie. T¢:={i €{1,2,...n}:i ¢ T}.

We use the interval notation, [t1,t2], to denote the set of all integers between and including ¢; to ta, ie. [t1,t2] =
{t1,t1+1,...,t2}. For a vector v, v; denotes the ith entry of v and vy denotes a vector consisting of the entries of v indexed
by T. We use ||v||, to denote the ¢, norm of v. The support of v, supp(v), is the set of indices at which v is nonzero,
supp(v) := {i : v; # 0}. We say that v is s-sparse if |supp(v)| < s.

For a matrix B, B’ denotes its transpose, and BT its pseudo-inverse. For a matrix with linearly independent columns,
BT = (B'B)"'B’. We use ||B||2 := max, || Bz|2/||z||2 to denote the induced 2-norm of the matrix. Also, || B|. is the
nuclear norm (sum of singular values) and || B||max denotes the maximum over the absolute values of all its entries. We let
0;(B) denotes the ith largest singular value of B. For a Hermitian matrix, B, we use the notation B EYD UAU’ to denote
the eigenvalue decomposition of B. Here U is an orthonormal matrix and A is a diagonal matrix with entries arranged in
decreasing order. Also, we use \;(B) to denote the ith largest eigenvalue of a Hermitian matrix B and we use Apyax(B) and
Amin (B) denote its maximum and minimum eigenvalues. If B is Hermitian positive semi-definite (p.s.d.), then \;(B) = o;(B).
For Hermitian matrices By and By, the notation B; < By means that B, — B is p.s.d. Similarly, By > Bs means that B; — Bs
is p.s.d.

For a Hermitian matrix B, ||B|s = y/max(\2,.(B),)2,,(B)) and thus, || Bz < b implies that —b < Apin(B) <
Amax(B) < b.

We use I to denote an identity matrix of appropriate size. For an index set 7' and a matrix B, Br is the sub-matrix of

B containing columns with indices in the set 7'. Notice that By = BIr. Given a matrix B of size m X n and By of size
m X ng, [B Bs] constructs a new matrix by concatenating matrices B and Bs in the horizontal direction. Let Byey be a matrix
containing some columns of B. Then B \ Biey is the matrix B with columns in B, removed.

For a tall matrix P, span(P) denotes the subspace spanned by the column vectors of P.

The notation [.] denotes an empty matrix.

Definition 2.1: We refer to a tall matrix P as a basis matrix if it satisfies P'P = I.

Definition 2.2: We use the notation @@ = basis(B) to mean that () is a basis matrix and span(Q)) = span(B). In other
words, the columns of ) form an orthonormal basis for the range of B.

Definition 2.3: The s-restricted isometry constant (RIC) [15], §5, for an n x m matrix W is the smallest real number satisfying
(1 —3d5)||z||3 < [[®rz]|3 < (14 d,)||z||3 for all sets T' C {1,2,...n} with |T| < s and all real vectors = of length |T|.



It is easy to see that maxy (< [|(¥r'Ur) 712 < ﬁ [15].
Definition 2.4: We give some notation for random variables in this definition.
1) We let E[Z] denote the expectation of a random variable (r.v.) Z and E[Z|X] denote its conditional expectation given
another r.v. X.
2) Let B be a set of values that a r.v. Z can take. We use B¢ to denote the event Z € B, i.e. B¢ :={Z € B}.
3) The probability of any event B¢ can be expressed as [16],
P(B) := Ells(2)]

where

Ig(Z) :=

1 ifZeB
0 otherwise

is the indicator function on the set 5.
4) For two events B¢, B¢, P(13°|3¢) refers to the conditional probability of B¢ given 3¢, i.e. P(3¢|B¢) := P (B¢, B¢) /P(B3¢).
5) For arv. X, and a set B of values that the r.v. Z can take, the notation P(5¢|X) is defined as
P(B°|X) := E[ls(Z)|X].
Notice that P(B°|.X) is a r.v. (it is a function of the r.v. X) that always lies between zero and one.

Finally, RHS refers to the right hand side of an equation or inequality; w.p. means “with probability”; and w.h.p. means

“with high probability”.

B. Compressive Sensing result

The error bound for noisy compressive sensing (CS) based on the RIC is as follows [17].

Theorem 2.5 ([17]): Suppose we observe
y:=Vr+z
where z is the noise. Let & be the solution to following problem
min [z subject to [}y — Wal> < & (1)
Assume that = is s-sparse, ||z < &, and d24(¥) < b(v/2 — 1) for some 0 < b < 1. Then the solution of (1) obeys
& = zfls < C1€

. 44/1 + 625(0) 44/14b(v2 -1)
with C = < .
1— (V2+1)625(¥) — 1= (V2+1)b(v2 1)

Remark 2.6: Notice that if b is small enough, C is a small constant but C; > 1. For example, if d2,(¥) < 0.15, then
C, <T7.IfCi€ > ||z

(1) gives a small reconstruction error bound only for the small noise case, i.e., the case where ||z]2 < & < ||z]|2.

2, the normalized reconstruction error bound would be greater than 1, making the result useless. Hence,

C. Results from linear algebra

Davis and Kahan’s sin # theorem [18] studies the rotation of eigenvectors by perturbation.

Theorem 2.7 (sin @ theorem [18]): Given two Hermitian matrices .4 and H satisfying

Ao |[E HB |[E]
AZ[EEL} R H= |:EEL:| / @
0 A | |FL B Hy| |EL ]
where [E E| ] is an orthonormal matrix. The two ways of representing A + H are
A+H B E' Ao |[F
A+H:[EE4 , :[FFL} /
B A +H,| FE| 0 Ay _FJ_




where [F' F'|] is another orthonormal matrix. Let R := (A+ H)E — AE = HE. If Apnin(A4) > Amax(A 1), then
R
>\min(A) - )\max(AL)
The above result bounds the amount by which the two subspaces span(E) and span(F') differ as a function of the norm of

I(T = FF)E|2 <

the perturbation ||R||2 and of the gap between the minimum eigenvalue of A and the maximum eigenvalue of A . Next, we
state Weyl’s theorem which bounds the eigenvalues of a perturbed Hermitian matrix, followed by Ostrowski’s theorem.

Theorem 2.8 (Weyl [19]): Let A and H be two n x n Hermitian matrices. For each ¢ = 1,2, ..., n we have
Ai(A) + Amin(H) < N(A+H) < Xi(A) + Amax(H)

Theorem 2.9 (Ostrowski [19]): Let H and W be n x n matrices, with H Hermitian and W nonsingular. For each ¢ =
1,2...n, there exists a positive real number 6; such that Apin(WW') < 0; < Apax(WW') and \;(WHW') = 0,X\;(H).

Therefore,
)\min (WHW/) > )\min (WW/))\min (H>

The following lemma proves some simple linear algebra facts.

Lemma 2.10: Suppose that P, P and @ are three basis matrices. Also, P and P are of the same size, Q'P = 0 and
|(I — PP")P|| = .. Then,

D (I = PP)PP||z = ||(I = PP)PP'|z = ||(I = PP")P|z = ||(I — PP")P||2 = C.

2) |PP' — PP, < 2||(I — PP')P||; = 2.

3) |1PQ2 < ¢

4 VI-CG<o((I-PP)Q) <1
The proof is in the Appendix.

D. High probability tail bounds for sums of random matrices

The following lemma follows easily using Definition 2.4. We will use this at various places in the paper.

Lemma 2.11: Suppose that B is the set of values that the r.v.s X, Y can take. Suppose that C is a set of values that the r.v.
X can take. For a 0 < p < 1, if P(B°|X) > p for all X € C, then P(B°¢|C¢) > p as long as P(C¢) > 0.
The proof is in the Appendix.

The following lemma is an easy consequence of the chain rule of probability applied to a contracting sequence of events.

Lemma 2.12: For a sequence of events E§, EY, ... E} that satisfy 5§ O B O ES--- O Ey,, the following holds

P(E;,|E5) = [[ P(ERIEL ).
k=1

- BGEG) = oy PERIER 1 B o, B§) = [Tiy PERIEL ). u

Next, we state the matrix Azuma inequality which gives tail bounds for sums of random matrices.

Proof: P(ES|ES) = P(ES,, E-

m—1>

Theorem 2.13: (Matrix Azuma) Consider a finite adapted sequence {Z;};>1 of Hermitian matrices in dimension n, and a

fixed sequence A, of self-adjoint matrices that satisfy

E: 1(Z) =E(Z|Zy,---,Zs_1) =0, and Z? < A? almost surely.

2
P (Amax <Z Zt> < e) >1—mnexp (—8602) , where o2 = ‘
t

The proof is in the appendix.

Then, for all € > 0,

24
t

Corollary 2.14 (Matrix Azuma conditioned on another random variable for any zero mean matrix): Consider an «-length

adapted sequence {Z;} of random matrices of size n; X ng given a random variable X. Assume that, for all X € C, (i)



P([| Z|l2 < b1|X) =1 and (ii) E¢_1(Z;|X) = 0. Then, for all ¢ > 0,

1 — ae?
P —E Zi|| < el X | >1—(n1 +ng)exp
o
t=1

T 912
32b7
Corollary 2.15 (Matrix Azuma conditioned on another random variable for a nonzero mean Hermitian matrix): Consider

The proof is in the appendix.

an a-length sequence {Zthgtga of random Hermitian matrices of size n X n given a random variable X. Assume that, for
all X €C, () P(b1l 2 Z; X boI1X)=1,1 <t <« and (ii) bg] < éZ?:l E;_1(Z;|X) < byl. Then for all € > 0,

1 & ae?
Pl dnax | — Z|X 1 <b >1-— _
( <O‘Z ! ) 4+6> nexp( 8(b2b1)2)

t=1

P A [ § ZJX | >b >1-ne ac’
min - - - - - X 571 1 \o
a Lt 3¢ PN T8y — 012

t=1

The proof is in the appendix.

Definition 2.16: Let function F (a, €,ba — by) := exp(—m).

Lemma 2.17: If random variable X and Y are independent, h(-), g(-) are some functions, then E(Xh(Y)|g(Y)) =
E(X)E(r(Y)[g(Y)).
The proof is in the appendix.

III. PROBLEM DEFINITION

The measurement vector at time t, M;, satisfies
My = L; + 5 3)

where S, is a sparse vector and L, is a dense vector that satisfies the model given below. Denote by Fy a basis matrix
for Ly, = [Lo,L1, -+, Ly, ie., span(Py) = span(L,;, ). We are given an accurate enough estimate P, for Py, i..,
(I — PyP}) P2 is small. The goal is

1) to estimate both S; and L; at each time ¢ > ¢y, and

2) to estimate span(L;) every so often.

A. Signal Model

Signal Model 3.1 (Model on L;):
1) We assume that Ly = Pyay with Py = P for all t; <t <t;41, j=0,1,2---J, where P; is an n x r; basis matrix
with 7; < min(n, (¢;41 — t;)). At the change times, ¢;, P; changes as
Pj = [Pj1 Pjneul-

Here, P} pew 1S an n X ¢; pew basis matrix with Pj{,neijq =0. Thus 7; = 7j_1 + Cjnew- We let tg = 0 and ¢ ;1 equal

the sequence length or £ ;41 = oo.
2) The vector of coefficients, a; := P(t)’ L., satisfies the following autoregressive model
ay = b(lt_l + 1
where b < 1 is a scalar, E[1;] = 0, 14’s are mutually independent over time ¢ and the entries of any v; are pairwise
uncorrelated, i.e. E[(1,);(1;);] = 0 when i # j.
Definition 3.2: Define the covariance matrices of v, and a, to be the diagonal matrices A, , := Cov[y,] = E(v1}) and

Aq i := Cov[a;] = E(asa}). Then clearly,
Aa,t = b2Aa,t71 + Au,t (4)



Also, for t; <t < t;41, a; is an r; length vector which can be split as
a, = P;'L, = [ fitor ]
Gt new
where a; , = Pj,l'Lt is an r;_; length vector and a; pew := Pj,new/Lt is a ¢j new length vector. Thus, for this interval, L; can
be rewritten as
Qg %

Ly = [Pj_1 Pjnew] [ ’

At new

Aot)s
Aa,t = ( 7t) 0
0 (Aa,t)new

where (Ag, )« = Cov]a, ] and (Aq ¢)new = Cov]ay new] are diagonal matrices.

= ijlat,* + Pj,newat,new

Also, A, can be split as

Assumption 3.3: Assume that L, satisfies Signal Model 3.1 with
1) 0<¢jnew <cforall j(thus rj; < ryax =179+ Jo)

2) |willeo < (1 =)
3)

max max ||V newlloo < (1 — ) Ynew,k: o)
i tGIj,k

where Ypew.r = min(vF ey, Vi) with a v > 1
4)

(]- - b2)>\7 S )\min(Au,t) S )\max(Au,t) é (]- - bQ))\Jra
and
AT S )\min(Aa,O) S /\max(Aa,O) S (]— - b2))‘+a

where 0 < A\~ < AT < o0
5) (1 - bQ))\7 < Amin((Au,t)new) S Amax((Ay,t)new) S (1 - b2))\;rew and

new —

A;;;w S )\min((Aa,tj)new) S )\max(Aa,tj)new) S (1 - b2))\;rew
With the above assumptions, clearly, the eigenvalues of A, ; lie between A~ and At and those of Aq ¢ new lie between A,

and \*

- Thus the condition numbers of any A, ; and of A, ¢ new are bounded by

+ At
f= = and g := )\;::

respectively. Define the following quantities for S;.
Definition 3.4: Let Ty :={i: (S;); # 0} denote the support of S;. Define

Smin = tI;ltll? 116117{1 [(St)i], and s := max |T%|

B. Measuring denseness of a matrix and its relation with RIC

Before we can state the denseness assumption, we need to define the denseness coefficient.
Definition 3.5 (denseness coefficient): For a matrix or a vector B, define
ks(B) = ks(span(B)) := mex | I basis(B)||2 (6)
<s
where ||.||2 is the vector or matrix ¢3-norm.
Clearly, ks(B) < 1. First consider an n-length vector B. Then ks measures the denseness (non-compressibility) of B. A
small value indicates that the entries in B are spread out, i.e. it is a dense vector. A large value indicates that it is compressible

(approximately or exactly sparse). The worst case (largest possible value) is ks(B) = 1 which indicates that B is an s-sparse
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Fig. 1: The K Projection PCA steps.

vector. The best case is ks(B) = \/5/7 and this will occur if each entry of B has the same magnitude. Similarly, for an n x r
matrix B, a small £, means that most (or all) of its columns are dense vectors.

Remark 3.6: The following facts should be noted about k().

1) For a matrix B of rank r, x4(B) is an non-decreasing function of s and of r

2) A loose bound on r4(B) obtained using triangle inequality is x(B) < sk1(B).

The lemma below relates the denseness coefficient of a basis matrix P to the RIC of I — PP’. The proof is in the Appendix.

Lemma 3.7: For an n x r basis matrix P (i.e P satisfying P'P = I),
5s(I — PP') = k2(P).

In other words, if P is dense enough (small x,), then the RIC of I — PP’ is small.
In this work, we assume an upper bound on HQS(PJ‘) for all 7, and a tighter upper bound on Kgs(ijew), 1.e., there exist

Ky, <1landakj, ., <rj,, such that
mjaXK;Qs(Pj71> S K’;S,* (7)
mjax K2s(Pjnew) < “é:,new (8)

Additionally, we also assume denseness of another matrix, D; new,r, Whose columns span the currently unestimated part of
span(Pj new) (see Theorem 4.2).
The denseness coefficient x4(B) is related to the denseness assumption required by PCP [4]. That work uses x1(B) to

quantify denseness.

IV. THE REPROCS ALGORITHM AND ITS PERFORMANCE GUARANTEE
A. Recursive Projected CS

We summarize the ReProCS algorithm in Algorithm 2 [8]. This calls the projection PCA algorithm in the subspace update
step. Given a data matrix D, a basis matrix P and an integer r, projection-PCA (proj-PCA) applies PCA on Dy := (I—PP’)D,
i.e., it computes the top r eigenvectors (the eigenvectors with the largest r eigenvalues) of %Dproijroj’. Here ap is the number
of column vectors in D. This is summarized in Algorithm 1.

If P =[], then projection-PCA reduces to standard PCA, i.e. it computes the top r eigenvectors of ﬁDD’ .

Algorithm 1 projection-PCA: @ «+ proj-PCA(D, P, r)
1) Projection: compute Do < (I — PP')D
AO
)

Ql
Q1

2) PCA: compute —Dyoi Dproj’ PLP [Q QJ_}

ap

,] where () is an n X r basis matrix and ap is the number

of columns in D.




Algorithm 2 Recursive Projected CS (ReProCS)
Parameters: algorithm parameters: £, w, o, K, model parameters: t;, rg, ¢

(set as in Theorem 4.2 or as in [8, Section IX-B] when the model is not known)
Input: My, Output: 5}, IA/t, P(t)
Initialization: Compute Py < proj-PCA(|[Ly, Lo, - - , Ly, ], [.],70) and set ]5(,5) « Py.
Let j <1, k+ 1.
For t > ti1in, do the following:
1) Estimate 7; and S; via Projected CS:
a) Nullify most of L;: compute @) < I — P(t—1)15(/t,1), compute y; < P M;
b) Sparse Recovery: compute Sy as the solution of ming [|[z]|1 s.t. |lys — Pyzll2 < €
¢) Support Estimate: compute T, = {i: |(5‘t,cs)i\ > w}
d) LS Estimate of S;: compute (St)Tt = ((@t)Tt)Tyt, (S't)ftc =0
2) Estimate L;: Ly = My — S,.
3) Update ]5(,5): K Projection PCA steps (Figure 1).
a) Ift =t; +ka—1,
1) pj,ncw,k — proj-PCA( {ﬁtj+(k_1)a, o ,f/t_7+ka_1} ,]5]-_1,6).
ii) set I:’(t) — []5]-_1 If’j,new7k]; increment k < k + 1.
Else
i) set P(t) — P(t,l).
b) If t =t; + Ko — 1, then set Pj — [Pj_l ]%mew}K]. Increment 7 < 7 + 1. Reset k < 1.

4) Increment ¢t <— t 4+ 1 and go to step 1.

The key idea of ReProCS is as follows. First, consider a time ¢ when the current basis matrix P;) = P;_1) and this has
been accurately predicted using past estimates of L;, i.e. we have ﬁ’(t_l) with [|({ — P(t—l)P(/t,l))P(t) |l2 small. We project the
measurement vector, My, into the space perpendicular to P;_1) to get the projected measurement vector y; := ® ) M, where
Oy =1~ Is(t,l)lf’(’t_l) (step 1a). Since the n x n projection matrix, ® ) has rank n —r, where 7, = rank(lf’(t,l)), therefore
y; has only n — r, “effective” measurements!, even though its length is n. Notice that g, can be rewritten as 1y, = DSt + Bt
where 3; := ® ) L;. Since ||(1 — P(t_l)P(lt_l))P(t—l)Hz is small, the projection nullifies most of the contribution of L; and
so the projected noise 3; is small. Recovering the n dimensional sparse vector S; from y; now becomes a traditional sparse
recovery or CS problem in small noise [20], [21], [22], [15], [23], [24]. We use ¢; minimization to recover it (step 1b). If
the current basis matrix P(t), and hence its estimate, p(t_l), is dense enough, then, by Lemma 3.7, the RIC of ®;) is small
enough. Using Theorem 2.5, this ensures that S; can be accurately recovered from y;. By thresholding on the recovered S,
one gets an estimate of its support (step 1c). By computing a least squares (LS) estimate of .S; on the estimated support and
setting it to zero everywhere else (step 1d), we can get a more accurate final estimate, S,, as first suggested in [25]. This
S't is used to estimate L; as ﬁt = M; — S}. As we explain in the proof of Lemma 9.1, if Sy, is large enough and the
support estimation threshold, w, is chosen appropriately, we can get exact support recovery, i.e. T, = T,. In this case, the error
e 1= S’t —S;=L; — ﬁt has the following simple expression:

er = Ir,(®)r, B = In,[(2(0))r, (2(0)) )~ I, B o) L )
The second equality follows because (<I>(t))T/<I>(t) = (<I>(t)IT)/<I>(t) = IT’<I>(t) for any set T
Now consider a time ¢t when P(t) =P = [Pj_l, Pj,new] and P;_; has been accurately estimated but P, has not been

estimated, i.e. consider a ¢ € Z; ;. At this time, P(t_l) = Pj_l and so @) = @0 :=1— pj_lpjﬁl. Let r:=rg+ (j — 1)e.

li.e. some 7, entries of y¢ are linear combinations of the other n — 7, entries



Assume that the delay between change times is large enough so that by ¢ = ¢, p]'_l is an accurate enough estimate of P;_1,
ie. ||®;0Pj—1]l2 < r¢ < 1. Itis easy to see using Lemma 2.10 that £5(PoPhew) < Ks(Prew) +7C, i.6. PoPoew is dense because

Piew is dense and because P;_; is an accurate estimate of P;_; (which is perpendicular to Py). Moreover, using Lemma

3.7, it can be shown that ¢o := max7|<; [|[(®0)7(Po)r] |2 < 17651(%) . The error e, still satisfies (9)

1
S TG ()P
although its magnitude is not as small. Using the above facts in (9), we get that

1
||etH2 < 1 _ (Ks(Pj—l) + TC)Q [K/S(PHCW)\/EPYHSW + TC(\/;PY* + \/Elynew)]

If /C < 1/7,, all terms containing ¢ can be ignored and we get that the above is approximately upper bounded by

%ﬁ%ew. Using the denseness assumption, this quantity is a small constant times \/cyyew, €.g. With the numbers

assumed in Theorem 4.2 we get a bound of 0.18y/Cypew. Since Yew < Smin and ¢ is assumed to be small, thus,

ledla = [IS: — Si||2 is small compared with ||S;

2, 1.e. S; is recovered accurately. With each projection PCA step, as
we explain below, the error e; becomes even smaller.

Since ﬁt = M; — S’t (step 2), e; also satisfies e; = L; — ﬁt. Thus, a small e; means that L, is also recovered accurately.
The estimated ﬁt’s are used to obtain new estimates of P; ., every « frames for a total of K« frames via a modification of
the standard PCA procedure, which we call projection PCA (step 3). In the first projection PCA step, we get the first estimate
of P; news }Sj,newﬂ. For the next « frame interval, P(t_l) = [Pj_l, }Sj,newﬂ] andso &y =0, =1— Pj_lpjﬁl — pﬂew,lpr:ewJ'
Using this in the projected CS step reduces the projection noise, J;, and hence the reconstruction error, e;, for this interval,
as long as 7pew,k increases slowly enough. Smaller e; makes the perturbation seen by the second projection PCA step even
smaller, thus resulting in an improved second estimate ijewz. Within K updates (K chosen as given in Theorem 4.2), it
can be shown that both |le;||2 and the subspace error drop down to a constant times +/C. At this time, we update Pj as

pj = [pjflypj,new,l(]-

B. Main Result

The following definition is needed for Theorem 4.2.
Definition 4.1: 1) Letr :=rg+ (J — 1)c.

2
2) Define = max{%, Tk k= 1,2, K},

3) Define K(¢) := {MW

log 0.6

4) Define &o(C) = v/ernew + VE(/F + v/2)
5) With K = K(¢), define

81922 min(1.24K~4 vfé)w
¢2(A)?

Theorem 4.2: Consider Algorithm 2. Assume that Assumption 3.1 holds with b < 0.4. Assume also that the initial subspace

Madd := {(log 61KJ + 11logn)

estimate is accurate enough, i.e. ||[(I — PyP})Po|| < ro¢, with

. 1074 1.5x107% 1 +
¢ < mln( 2 27 ’7"373) where f := =

If the following conditions hold:
1) the algorithm parameters are set as £ = £y((), 7€ < w < Spin — 7€, K = K((), a > aya(¢) > 100,
2) slow subspace change holds: t;,1 —t; > Ka; (5) holds with v = 1.2; and 14¢ < Spin,
3) denseness holds: max; ros(Pj—1) < k3, , = 0.3 and max; ros(Pjnew) < Ky ey = 0.15 where
ks(B) := gﬁ?ﬁ || I7"basis(B)||2
is the denseness coefficient introduced in [8],

4) matrices D new. = (I — Pj_lijl — ijeW’kP]’.’new’k)Pj’new and Qjnew.k = (I — PjnewPjnew’ ) Pjnew i satisfy
Ks(Djnew,k) < kT = 0.15,

HQS(Qj,new,k) < /%;rs = 0.15,



5) the condition number of the covariance matrix of a; pew is bounded, i.e., g < gt = V2,
6) and n < 1.7,

then, with probability at least (1 —n~19),
1) at all times, ¢,

Tt =T; and

ledllz = 1L — Lillz = 1S — Sill2 < 0.18/€0.725 ey + 1.24/C(v/ + 0.023V/¢)
2) the subspace error SEy) := ||( — P(t)P(’t))P(t)Hg satisfies

(ro+ (j —1)e)¢ +0.15¢¢ + 0.6 if t € Zj o, k < K
SE(f) S ’

(ro + je)¢ if teZjkn
- 1072/ 4+ 0.6 if teZ;y, k<K
a 1072\/2 if te I‘j,K+1

3) the error ¢; = St —S;=L; — ﬁt satisfies the following at various times

el < {0.18\@0.72’“—1%6W +12(VF 4 0.0230) (ro + (j — 1)e)Cye if tE€Tjp, k=1,2... K
t]12 >

1.2(ro 4 je) /s if teZjkm
- 0.184/c0.72F 1y + 1.2(v/7 4+ 0.023/0)\/C if t€Zjp, k=1,2... K
~ | 1.2yrVC if t€Z;

Proof: We give a brief proof outline in Sec IV-D. The full proof is given in Sec VI.

C. Discussion

The above result says the following. Consider Algorithm 2. Assume that the initial subspace error is small enough. If the
algorithm parameters are appropriately set, if slow subspace change holds, if the subspaces are dense, if the condition number
of Cov[anew] is small enough, and if the currently unestimated part of the newly added subspace is dense enough (this is
an assumption on the algorithm estimates), then, w.h.p., we will get exact support recovery at all times. Moreover, the sparse
recovery error will always be bounded by 0.181/cynew plus a constant times /C. Since ¢ is very small, Ypew < Smin, and ¢
is also small, the normalized reconstruction error for recovering S; will be small at all times. In the second conclusion, we
bound the subspace estimation error, SE(;y. When a subspace change occurs, this error is initially bounded by one. The above
result shows that, w.h.p., with each projection PCA step, this error decays exponentially and falls below 0.01y/¢ within K
projection PCA steps. The third conclusion shows that, with each projection PCA step, w.h.p., the sparse recovery error as
well as the error in recovering L; also decay in a similar fashion.

The above result allows the a;’s, and hence the L,’s, to be correlated over time; it models the correlation using an AR
model which is a frequently used practical model. Even with this more general model as long as the AR parameter, b < 0.4,
we are able to get almost exactly the same result as that of Qiu et al [8, Theorem 4.1]. The o needed is a little larger. Also,
the only extra assumption needed is a small enough upper bound on 7 which is the ratio of the maximum magnitude entry of
any v, to the maximum variance. This is true for many types of probability distributions. For example if the i*" entry of v, is
+q; with equal probability independent of all others then 1 = 1. If each entry is zero mean uniform distributed (with different
spreads) then n = 3.

Like [8], we still need a denseness assumption on Dypey 1 and Qpew, both of which are functions of algorithm estimates
15]-, 1 and pj’new,k. Because of this, our result cannot be interpreted as a correctness result but only a useful step towards it.
As explained in [8], from simulation experiments, this assumption does hold whenever there is some support changes every
few frames. In future work, we hope to be able to replace it with an assumption on the support change of S;’s.

Also, like [8], the above result analyzes an algorithm that assumes knowledge of the model parameters ¢, Ypew and the

subspace change times ¢;. Requiring kmowledge of ¢ and 7y is not very restrictive. However it also needs to know the



subspace change times ¢; and this is somewhat restrictive. One approach to try to remove this requirement is explained in [8].

As explained in [8], under slow subspace change, it is quite valid to assume that the condition number of the new directions,
g, is bounded, in fact if at most one new direction could get added, i.e. if ¢ = 1, then we would always have g = 1. On the
other hand, notice that we do not need any bound on f. This is important and needed to allow E[|L:||3] to be large (L; is
the large but structured noise in case S; is the signal of interest) while still allowing slow subspace change (needs small ey
and hence small A~ < 7,ew). Notice that E[||L:]|3] < rAT.

D. Proof Outline

The first step in the proof is to analyze the projected sparse recovery step and show exact support recovery conditioned on
the fact that the subspace has been accurately recovered in the previous projection-PCA interval. Exact support recovery along
with the LS step allow us to get an exact expression for the recovery error in estimating S; and hence also for that of L;. This
exact expression is the key to being able to analyze the subspace recovery.

For subspace recovery, the first step involves bounding the subspace recovery error in terms of sub-matrices of the true
matrix, »_, <I>(t)ﬁtf4<1>’(t), and the perturbation in it, )", <1>(t)(itﬁg — LiLy)®{,, using the famous sin ¢ theorem [18]. This
result bounds the error in the eigenvectors of a matrix perturbed by a Hermitian perturbation. The second step involves obtaining
high probability bounds on each of the terms in this bound using the matrix Azuma inequality [26]. The third step involves
using the assumptions of the theorem to show that this bound decays roughly exponentially with k£ and finally falls below ¢
within K proj-PCA steps.

The most important difference w.r.t. the result of [8] is the following. Define the random variable X;; :=
[vo,v1, - ,z/tj+;m_1]. In the second step, we need to bound the minimum or maximum singular values of sub-matrices
of terms of the form ), f1 (X, x—1)ara;fo(X;x—1) where fi(.), f2(.) are functions of the random variable X ;_;. In Qiu
et al [8], one could use a simple corollary of the matrix Hoeffding inequality [26] to do this because there, the terms of this
summation were conditionally independent given X ;. However, here they are not. We instead need to first use the AR
model to rewrite things in terms of sub-matrices of >, f1(X; x—1)ve f3(vo,v1,- - ,v—1) f2(Xj k—1). Notice that even now,
the terms of this summation are not conditionally independent given X ;_1. However, conditioned on Xj ;_1, this term is
now in a form for which the matrix Azuma inequality [26] can be used.

Notice that the ReProCS algorithm does not need knowledge of . If b were known, one could modify the algorithm to do
proj-PCA on (I:t — bf/t,l)’s. With this one could use the exact same proof strategy as in [8].

V. SIMULATION

In this section, we compare ReProCS with PCP using simulated data that satisfies the assumed signal model. The data was
generated as explained in [8, Section X-C] except that here we generate correlated a;’s using a; = ba;_1 + v with b = 0.5
and with v, , being uniformly distributed between [—7.,.] and 14 pew uniformly distributed between [—Ynew &, Vnew, k) Also
we set tyain = 40, Smin = 2, Smax = 3,8 = 7,19 = 12, n = 200, J = 2, v = 1.1 and the support T; was constant for every
set of 50 frames and then changed by 1 index. Other parameters were the same as those in [8, Section X-C]. By running 100

Monte Carlo simulations, we got the result shown in Figure 2.

VI. PROOF OF THEOREM 4.2
Here we first list some definitions used in the proof.

Definition 6.1: We define the noise seen by the sparse recovery step at time ¢ as
B = I(I = Pu—1y Py Lulla-
Definition 6.2: We define the subspace estimation errors as follows. Recall that pj7neW70 = [.] (empty matrix).
SE) := I(I = Py Ply) Py |2
Cjo =1 = Pim1 P} 1) Py |2
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Fig. 2: Comparing recovery error of PCP implemented at A& %ifhe instants shown by the triangles and of ReProCS.

Gk = 1T = Pim1 P}y — Pjnew i P} e ) Prinew 12
Remark 6.3: Recall from the model given in Sec III-A and from Algorithm 2 that

1 Pj,new’k is orthogonal to Pj,l, ie. pf,new,kpjfl =0
2) Pj_1:= [Py, Piuew,scs- - Pj—tnew, ] and Pj_1 := [Po, Pinew, - - - Pj—1new]
3) for t € Zj k1, Py = [Pj—1, Pjewr] and Py = Pj = [Pj_1, P} new].
4) Oy i=1— Py )P,
From Definition 6.2 and the above, it is easy to see that
D G < Gt X5 G
2) SE() < s + Gk < Crw + E?;ﬂ Girie +Gip for t €5 .
Definition 6.4: Define the following
1) @, ;0 and ¢
a) ®jpi=1—Pi_ 1P| — Pjrew il oy is the CS matrix for ¢ € Z; 41, i.e. By = @ for this duration.
b) @jo:=1—P;_1Pj_, is the CS matrix for t € Z; 1, i.e. ®(;) = ®; ¢ for this duration. ;o is also the matrix used
in all of the projection PCA steps for ¢ € [t;,¢;41 — 1].
) ¢y = max; maxy., pi<s [|((D.6)7 (®j6)7) " 2. It is easy to see that ¢, < m [15].
2) Djnew,k» Djnew and Dj
a) Djnew := Dj xPjnew. span(D; new.r) is the unestimated part of the newly added subspace for any ¢ € Z; 1.
b) Djnew := Djnew,0 = P;j,0P) new- span(D; new) is interpreted similarly for any ¢ € Z; ;.
¢) Dj .= ®;rPj_1. span(D; . 1) is the unestimated part of the existing subspace for any t € Z; .
d) Dj, :=Dj.o0=Pj0Pj_1. span(D; . 1) is interpreted similarly for any ¢ € Z; ;
e) Notice that (; o = [|D; new 2, Gjv = || Dj «|l2- Also, clearly, || Dj s kll2 < s
Definition 6.5:

R . .. . . . . .
1) Let Djnew & B newlj new denote its QR decomposition. Here Ej v is a basis matrix and I2; ey is upper triangular.

25 Cj,k = |Dj,new,k

2) Let Ejnew, 1 be a basis matrix for the orthogonal complement of span(E; new) = span(D; new). To be precise, Ej new, 1
is a m X (n — ¢; new) basis matrix that satisfies E;‘7new,J_Ej~,ﬂeW =0.
3) Using Ejnew and Ej new, 1, define A;p, Ajr 1, Hjp, Hjp 1 and Bj ) as

1 ! i
A= S E Ejnew ©j0Le Ly @50E; new
te€L; k

1 A !
Ajp,1 = S E Ejnew, . ®j0LiLy @j0E) new, 1

tEIjJC

1
P / / I /
Hj,k = — E Ej,new éj,O(etet — Ltet — etLt )(I)j,OEj,neW
te€L; k



1 ’ / ’ ’
Hj,k,J_ = a § E’,new,J_ (bj,O(etet — Liey — ey )ij,OE',new,L

t€L; k
L 1 / roT _ 1 / / /
Bj,k = E Ej,new,J_ ‘I)j,oLtLt@j,oEj,new = E g Ej,new,J_ CDj,O(Lt - et)(Lt — €t )q)j,OEj,new
tEIj,k tel-j,k
4) Define
/
A= | B E Ajr 0 Ej new
g,k = j,new £75 new, L ’
0 Ajr1] [ Ejnew,L
/ li
yoo=lE & Hjr Bju Ej new
gk = j,new £7j new, | /
Bjk Hjg,1| [ Ejnew,L

5) From the above, it is easy to see that

1 .
Aje + My = > ®j0LiLi®;0.

teT; r

P!
P Jonew,k ‘| is the EVD of .AjJC +Hj k-

/
jnew,k, L

A O
0 A]%J_

6) Recall from Algorithm 2 that A; . +H,, “<" [Pj,new,k P newk. L}

Here Pjnew,k 1S @ 1 X Cj peyw basis matrix.
7) Using the above, Aj; 1 + H; 1 can be decomposed in two ways as follows:

A 0 pj{,new,k
0 Apy||P

Aj’k + Hj,k = I:Pj,new,k' pj,new,k,L:| p
Aj,k+Hj,k B;,k Ej,new/ ‘|

= [Ej,new Ej,new,L:|

/
Jnew,k, L
Bik  Ajkit+ Hjko | [ Bjnewt
Remark 6.6: Thus, from the above definition, H;, = 2L[®g>,(—Lie; — e,Lj + ee})®o + F + F'] where
F = new,J_Erlleva(PO Zt LtLg(I)OEnewEl = new,J_Er/lew,L(D*,kflat,*xD*,kflat,* + Dnew,kf1at,new)lEnewE1/1ew' Since

new

Elat «a} yey] = 0, [LF|l2 < r?¢2AT whp. Recall < means (in an informal sense) that the RHS contains the dominant
terms in the bound.

Definition 6.7: In the sequel, we let

D) ksx = maxjks(Pj—1), Kenew = mMaxX;Kks(Pjnew)s Kok = mMaxX;ks(Djnewk) Fsk = max;rg((l —
Pj,neij,new/)ijeW,k)a
2) /Q;“M =0.3, n{qmew :=0.15, K} := 0.15, &3, := 0.15 and g* := /2 are the upper bounds assumed in Theorem 4.2 on

max; kos(P;j), max; kos(Pj new), Max; maxy Ks(D; new, k), Max; Kos(Qjnew,x) and g respectively.
3) ¢T :=1.1735 We see later that this is an upperbound on ¢ under the assumptions of Theorem 4.2.
4) Ynew k := min(1.28 " Lyey 74)
(recall that the theorem assumes max; maxiez, , [|@t newlloo < Ynew,k)
5) Pj.:=Pj_; and P;. := P;_; (see Remark 6.8).
Remark 6.8: Notice that the subscript j always appears as the first subscript, while % is the last one. At many places in
this paper, we remove the subscript j for simplicity. Whenever there is only one subscript, it refers to the value of k, e.g., ®g
refers to ®; o, Pnew’k refers to ]Sjmw,k. Also, P, := P;_; and }5* = Aj_l.

Definition 6.9: Define the following:
1) ¢ :=r¢ (We note that ¢ = (1o + (j — 1)c)¢ will also work.)
2) Define the sequence {Ck+}k:071,27... K recursively as follows

CS' =1

o= by + 0.125¢cCA~
R ba, —ba, . — by — 0.25¢CA"

where b4, ,ba,  ,by are defined in (59), (61) and (94) respectively.

for k> 1, (10)



As we will see, ;" and (; are the high probability upper bounds on (. and (j (defined in Definition 6.2) under the
assumptions of Theorem 4.2.

Definition 6.10: Define the random variable Xy := {v1,v2, * ,Vt; 1 pa—1}-
Recall that the v4’s are mutually independent over t.

Definition 6.11: Define the set f‘jJC as follows:
k= 1{Xjr:Cr < ¢ and Ty = T; and e satisfies (9) for all t € Z; 1}
T ki1 = {Xj410: Ty =T and e, satisfies (9) for all t € Z; 1}
Definition 6.12: Recursively define the sets I'; 5, as follows:
Fio:={X1,0:¢,<r¢and T, = T, and e, satisfies (9) for all ¢ € [teraint1 ¢ t1 — 1]}
Djn:=T;p 1Ny k=12 Kj=12..,J

Tjsi0:=Tjx Nl j=1,2,...,J

A. Main Steps for Theorem 4.2

The proof of Theorem 4.2 essentially follows from two main lemmas, 7.1 and 7.2. Lemma 7.1 gives an exponentially
decaying upper bound on ¢ ,j defined in Definition 6.9. C,j will be shown to be a high probability upper bound for j, under the
assumptions of the Theorem. Lemma 7.2 says that conditioned on X ;1 € I'j 1, X; ; will be in I'; ;, w.h.p.. In words this
says that if, during the time interval Z; ;. _1, the algorithm has worked well (recovered the support of S; exactly and recovered
the background subspace with subspace recovery error below C,;L_l + (), then it will also work well in Z; ;, w.h.p.. The proof
of Lemma 7.2 requires two lemmas: one for the projected CS step and one for the projection PCA step of the algorithm.
These are lemmas 9.1 and 9.2. The proof Lemma 9.1 follows using Lemmas 7.1, 3.7, 2.10, the CS error bound (Theorem 2.5),
and some straightforward steps. The proof of Lemma 9.2 is longer and uses a lemma based on the sinf and Weyl theorems
(Theorems 2.7 and 2.8) to get a bound on (. From here we use the matrix Azuma inequalities (Corollaries 2.15 and 2.14) to
bound each of the terms in the bound on (j, to finally show that, conditioned on F; i1 Ck < (,j w.h.p.. These are Lemmas
10.1 and 10.2.

VII. MAIN LEMMAS AND PROOF OF THEOREM 4.2

Recall that when there is only one subscript, it refers to the value of k (i.e. ( = (5 1)

Lemma 7.1 (Exponential decay of C,j ): Pick ¢ as given in Theorem 4.2. Assume that the six conditions of Theorem 4.2
hold. Define the series ¢, as in Definition 6.9. Then,

1) ¢ =1, =0.5688,¢ = 0.3568, ¢ < ¢, <0.3568 for all k> 3.

2) ¢ <0.6%+0.15¢¢ forall k >0

3) ba, —ba, , —by —0.25¢CA™ >0 forall k > 1.

We will prove this lemma in Section VIIIL.

Lemma 7.2: Assume that all the conditions of Theorem 4.2 hold. Also assume that P(I';, ;) > 0. Then

P(F;",k“'—‘;,kfl) > pk(av C) > pK(av C) for all £ = L2,..., Ka

where pg(«, ) is defined in equation (21).
Remark 7.3: Under the assumptions of Theorem 4.2, it is easy to see that the following holds. For any £k = 1,2... K, ISk
implies that ¢, < ¢F
From the definition of ISy Cirr < (;; for all 5 < j — 1. By Lemma 7.1 and the definition of K in Definition 4.1,
¢ <0.6% 4 0.15¢¢ < ¢ for all j' < j — 1. Using Remark 6.3, (;. < (f + Zg;ll Crw <roC+ (j —1)e¢ < ¢
Proof of Theorem 4.2:

The theorem is a direct consequence of Lemmas 7.1, 7.2, and Lemma 2.12.



Notice that TS, 2 TS, 2 -+ 2 T§g, 2 TS, Thus, by Lemma 2.12, P(F§+1,0‘F§,o) =
P(T5,1015 &) Hf:1 (Feklrj k1) and P(I'y41,0[T'10) = H] 1 P(T510[050)-

Using Lemmas 7.2, and the fact that py(a, () > pr (e, () (see their respective definitions in Lemma 10.2 and equation
(1)), we get P(I',; 4|T1.0,0) > pr(a, {)X7. Also, P(I'§ ;) = 1. This follows by the assumption on Py and Lemma 9.1.
Thus, P(Flei-s-Lo) > pr (@, Q).

Using the definition of a,gq We get that P(F‘j+170) > pr(a, ()57 > 1 —n=10 whenever o > arauq.

The event F?Hl,o implies that Tt =T, and e, satisfies (9) for all ¢t < ¢;4;. Using Remarks 6.3 and 7.3, Ff}JrLO implies that
all the bounds on the subspace error hold. Using these, ||at new||2 < v/Cnew,k» and [la¢l|2 < /1y, TG 41,0 implies that all the
bounds on ||e;||2 hold (the bounds are obtained in Lemma 9.1).

Thus, all conclusions of the the result hold w.p. at least 1 — n =10, [

VIII. PROOF OF LEMMA 7.1

Proof: By the high probability bounds on Apmin(Ag), (59), || Ak, .||, (61), ||Hg||, (94) and Assumption 3.1(3g), we have

5 9 b2 —pPot2 b2 (1 — b2°‘) \/7
bAlc > bAlc - (1 - (C:) )(1 - m))‘new,k - 2174*
bAk,L < EAIC,L = (Cj)z)ﬁ_ + 2M(C* )
- b2(1 — h2« b2(1 — b2
b < b = (62 + (620G N 2y [t GG o7+ P g e
2 _ 12a +3\2 2 _ 12«
: (117*:2 )nkiew,m*n?c;l)? T (S ) (117 :2 )ng“) +
1-(¢h)?
20 maX{O‘I5C<=C;—1}W()‘$wk M )\;:w k) +4M ,)\+C* ¢+L +
- () b b G
201 _ 12a 2
6 +oren(a o —= ) (v + EEE ) ot (14 076, )
1—(G)? 1—(¢h)?
_ B2« _ 12« +
)\new k + Lb)nAnew k + b(lb)\/777>‘+ ((:j_ + ¢+C:_) ]- + (51)24-]?_1(;57
1— 02 1—52 1_ (Cj)2

Kj)) (11)
1—(¢H)?

In the first inequality, we use assumption that av > 100. When k = 1, by is a little different because the reason which will be

+oTrI¢GH, <<r + (ot

discussed later.

~ _ Ha r 2(1 _ K2« r
b < Bty = 00PN+ 000G N+ 2 oGt 00 + P a4
&

2 _ ha +\2 2 I V161
2¢okT \/%(M 40 (11 ;2 ) IAT) + 260 max{0.15cﬁ,§,j_1}\/%<)\jew,k - MnA;W7k>
L= (¢h)? B 1—(¢5)? B
b2(1 _ b2a) l€+ I<c+ b2( b2a)
T AT CE o 7( v +(¢F +¢o<i)(<J +<;*¢>075( +)2) <A+ T nV)
1— (¢ V1= (¢
+ + + (r3)? + b?(1 — b**) + +32 -+ b0
Cu_1Poky <1+¢oCk_1))\newk 1—1)2\[ (CF+ o)1+ (s]) Ck_1>
1—(¢h)? 1—(¢h)?
+oor Gy (cr + <;f¢o“j)> (12)
1—(¢h)?

Conditions 2, 4 of Theorem 4.2 imply that kg . < H;_s « = 0.3, Kagnew < ngLS new = 0.15, Ras,k < /?;;'S = 0.15, kg < k=

0.15 and g < gt = /2. Using Lemma 9.3, this implies that ¢}, < ¢+ = 1.1735 (¢ < 1.1111).



Let

by + 0.125¢C A~
inc Al ) :_acv :_7" 9 :_7‘ 7'%;‘_7 +,b,04, = = = =~
fine(G_13 ¢, eC G f, G f kT @ n) bas — by — b — 02560A

b2 (1-b2%)
AS ———

function of all their arguments. Thus, by taking upper bounds on some of the variables, we define

= Z;:Ol b2(1+9) s an increasing function of b and o, finc(¢ 13 ¢F, £y eC, I fy v, ¢7,b, @, ) is an increasing

Fine(GF15¢C,07,0) = fine(GE 131074, ¢, 1.5 x 1074, 1.5 x 1074,0.15, ¢™, b, 00, 1.7)

Using Fact 9.5, ¢ <1074 ¢(Ff <15 x 1074 ¢frf <1.5x 107 and ¢ < 1074,
1) By definition, ¢f = 1. For k = 1, ¢ = fine(G 15¢¢,07,0) < fine(1;107%,1.1111,0.4) = 0.5688. For k = 2,
GF = fine(G_ 13 ¢C, 07, b) < fine(0.5688;107%,1.1735,0.4) = 0.3568.We prove the first claim by induction.
o Base case: For k =3, ¢ = finc(CF 1;¢C, ¢7,0) < fine(0.3568;107%,1.1735,0.4) < 0.3568.
o Induction step: Assume that C;:_l < C:_Q for k >= 4. Since f;,. is an increasing function of its arguments,
GF = fine( G136 0F,0) < fine( G 3G 0F,0) = Gy

2) For the second claim, when k = 0, 1, 2, the result is obvious correct; when k£ > 3,notice that

G = fine(GE 1307, b)
Fime(GH_y; ¢, 1.1735,0.4)

0.058¢;; + 0.4284 N
 0.9981 — 0.058(;}_,)2 — 0.09885(;~_, — 0.2505¢( 1t

< 0.5360¢;"_; + 0.150c¢
< 0.6" +0.15¢¢ (13)

IN

0.1257¢¢ + 4.041 x 107°
0.9981 — 0.058(¢; ;)2 — 0.09885¢, | — 0.2505¢¢

Thus the claim is correct for k£ > 0 by induction.
3) Since ¢;” < ¢ =1 and
ba, —ba, . — by — 0.25cCA"
Anew, k
is a decreasing function of its variables, ggec > gaec(1;107%,1074,1.5x 1074, 1.5 x 107%,0.15, 1.1735, 0.4, 00, 1.7) > 0.
|

gdec(ﬁ]j;l;c;‘—vc(:acrrfv C:_T.ﬂ K:a¢+abaa,n) =

IX. PROOF OF LEMMA 7.2

The proof of Lemma 7.2 follows from two lemmas. The first is the final conclusion for the projected CS step for ¢t € Z; .
The second is the final conclusion for one projection PCA (i.e.) for ¢t € Z; ;. We will state the two lemmas first and then
proceed to prove them in order.

Lemma 9.1 (Projected Compressed Sensing Lemma): Assume that all conditions of Theorem 4.2 hold.

1) Forallt € Z;, forany k =1,2,... K, if X;,_1 € 'jr_1,

a) the projection noise 3 satisfies ||B¢|l2 < ¢ 1 vV mew,k + (VY < V€0.728 1ypey + C (V7 + 0.154/¢) < &.

b) the CS error satisfies ||S; ., — Si[l2 < 7&o.

c) Tt =T

d) e, satisfies (9) and [le¢[2 < ¢ [5G Vrmew,k + G VY] < 0.184/€0.728 7 1y +1.20/C (/7 +0.023,/c). Recall
that (9) is

Ir ()1, Be = I, (1)), (D)) ] " I, @iy Ly
2) Forall k=1,2,... K, P(Tt =T, and e, satisfies (9) for all t € Ij’k|1"§7k_1) =1

Lemma 9.2 (Subspace Recovery Lemma): Assume that all the conditions of Theorem 4.2 hold. Let ;& = r¢. Then, for all
k=1,2,...K,

P(Cr < G 05 k1) > pr(e, C)



where (;" is defined in Definition 6.9 and py(a, () is defined in (21).
Proof of Lemma 7.2: Observe that P(I'; T x—1) = P(I'; x|Tj x—1). The lemma then follows by combining Lemma 9.2

and item 2 of Lemma 9.1. u

A. Proof of Lemma 9.1

In order to prove Lemma 9.1 we first need a bound on the RIC of the compressed sensing matrix ®.
Lemma 9.3 (Bounding the RIC of ®;,): Recall that ¢, := ||(I — P,P.)P,||5. The following hold.

1) Suppose that a basis matrix P can be split as P = [Py, P;] where P; and P, are also basis matrices. Then x2(P) =
maxr,|7|<s |[I7P|3 < 53(P1) + 53(P).

2) K2(P.) < K2, + 2.

3) fs(Prewk) < Fsnew + FskCr + Ca

4) 05(Po) = 3 (P)<f‘és*+2C*

5) 05(®r) = KZ([Ps Prewi]) < 82(P) + 12 (Prew ) < K20 + 20 + (Ronew + Fs G + ) for k> 1

Proof:

1) Since P is a basis matrix, x2(P) = max|p|<, || I7'P||3. Also, ||I7'P|3 = | I7'[Py1, Po][Py, Po)'Ir|l2 = || I7'(PLP] +
PoPY)Ir| 2 < ||[I7' Py P{I7||2 + || I7' PaPyIr||2. Thus, the inequality follows.

2) For any set T with |T| < s, |[I7/P.||3 = ||I7'P.PIr|, = ||I7/(P.P. — PP, + P,P.\Ir||y < ||I7/(P,P. —
P.P)Ir||s + |I7' PP I7 |2 < 2¢ + Hg’*. The last inequality follows using Lemma 2.10 with P = P, and P="pr,.

3) By Lemma 2.10 with P = P,, P = P, and Q = Puw, ||Paew' Pill2 < ¢.. By Lemma 2.10 with P = - Py and

P = Pruwir I = PawPiey) Baewillz = 1T = Prew.kBley 1) Prewll2- For any set T with |T| < s, |17/ Prewill2 <
17" (I = PaewPlew)Prewill2 + 117" Poew PrewPrewiell2. < Fos k(I = PrewPaew) Prewiill2 + 17 Paew| kI =
Paew kPI:eW w) Prewll2 + 117 Paewll2 < Rkl Dnew kll2 + Fs k| Pa Pl Paewllz + |1 I Paewll2 < Fos kG + Ro ko + Konew <
Fs,kCl + Cx + Ksnew- Taking max over |T'| < s the claim follows.

4) This follows using Lemma 3.7 and the second claim of this lemma.

5) This follows using Lemma 3.7 and the first three claims of this lemma.

|

Corollary 9.4: If the conditions of Theorem 4.2 are satisfied, and X 1 € I'; x—1, then

1) 64(®0) < bas(®0) < w, " +2¢5 < 0.1

2) 0:(®p1) < Goa(@h1) < kd,” + 20 + (K e + Faa o 1 Gy + CF)? < 0.1479

3) ¢r—1 < m < ¢t

Proof: This follows using Lemma 9.3, the definition of I'; 51, and the bound on th1 from Lemma 7.1. |

The following are striaghtforward bounds that will be useful for the proof of Lemma 9.1 and later.

Fact 9.5: Under the assumptions of Theorem 4.2:

D ¢ < o < VC
4

2) (F < il <107

3 CW—mﬁl

5) gjf_ % <15x107*

6) ¢, <0.6871 4 0.15¢¢ (from Lemma 7.1)
7 G mew,k < (0.6 - 1.2)F Typey 4+ 0.15¢Cy, < 0.728 Ly + % < 0.72 1 ypew + 0.154/C
8) G 1 Vmewp < (0.6 1.2%)F 7102 0 4 0.15¢¢y2 < 0.864% I3, + o opgr < 0.864F 1, +0.15

Proof of Lemma 9.1: Recall that X;;_q € I'; 1 implies that ¢, < ¢Hand (g < (,j_l.



1) a) ForteZy, B:=(I— P(tq)]s(/t,l))[/t = D, k-1t + Dpew, k—10¢ new- Thus, using Fact 9.5

1Bell2 < Cv/rys + Gom1 vV Tnew i
< VGV + (0728 My + 0.15(/O) /e
= VA0.72" e + VC(VF +0.1510) < &
b) By Corollary 9.4, do,(Pr—1) < 0.15 < V2 — 1. Given |T:| < s,

satisfies

Billa < & = &, by Theorem 2.5, the CS error

A 44/1 + bo5(Pp—
||St,cs - St||2 S 2 ( k 1)
1— (V2 +1)62(Pp_1)
¢) Using the above and the definition of p, ||;§t7cs — Stllee < Tp&o. Since minger, [(St)il > Smin and (S¢)7e = 0,

min;er, |(~§t,cs)i| > Smin—7p&o and min; ey |(S’tcg)l| < 7p€p. If w < Smin—"T7p&o, then T, D T,. On the other hand,
if w > 7p&y, then Ty C Ty. Since Smin > 14p&, (condition 2 of the theorem) and w satisfies 7p€y < w < Shmin—7p&0

§o < 7&.

(condition 1 of the theorem), then the support of S; is exactly recovered, i.e. T, =T,.

d) Given 7, = T, the LS estimate of S; satisfies (S)7, = [(Pr_1)n] e = [(Pe_1)n,])T(Pr1S: + Pr_1Ly)
and (S’t)th = 0 for t € Z;;. Also, (<I>k_1)Tt/<I>k_1 = Ip,/®;_; (this follows since (®y_1)7, = ®4_117, and
<I>§c_1<1>k,1 = ®;_4). Using this, the LS error e; := St — S satisfies (9). Thus, using Fact 9.5 and condition 2 of
the theorem,

||€tH2 S ¢+(Cj\/;7* + Hs,k—lC]j_l\/E’Ynew,k)
<12 (\/Fﬂ +1/c0.15(0.72)F 1 + \/60.023\/5)
= 0.184/c0.728 Lyey + 1.20/C (V7 + 0.023V/¢).

2) The second claim is just a restatement of the first.

||
X. PROOF OF LEMMA 9.2
The proof of Lemma 9.2 will use the next two lemmas (10.1, and 10.2).
Lemma 10.1: If Ayin (Ax) — || Ak, 1|2 — [[Hk]l2 > 0, then
IRkl [ Hell2
< < 14)
G Amin(Ax) = [[Ak, Lll2 = 1Hellz = Amin(Ak) = [[Ak, 112 — [[Hkll2 (

where Ry, := HyEnew and Ay, Ay, 1, Hy are defined in Definition 6.5.

Proof: Since Apin (Ar) — || Ak, 1 ll2— [ Hrll2 > 0, 50 Amin(Ak) > || Ak, 1 ||2. Since Ay, is of size cnew X Cnew and Apin (Ag) >
Ak, L l|2, Aepw+1(Ak) = || Ak, 1 ||2. By definition of EVD, and since Ay, is @ Crew X Cnew Matrix, Amax (Ak, 1) = Aepu+1 (Ar+Hy)-
By Weyl’s theorem (Theorem 2.8), A, +1(Ak +Hi) < Aept1(Ak) + | Hill2 = || Ak, Lll2 + |Hk||2. Therefore, Apax (A, 1) <
| Ak, 1 |l2+ || Hk||2 and hence Amin (Ak) — Amax(Ak, 1) > Amin(Ak) — [| Ak, 1|2 — || Hk|l2 > 0. Apply the sin 6 theorem (Theorem
2.7) with Apmin (Ak) — Amax (A, 1) > 0, we get

[Rl2 < [ Hl2
min(Ak) = Amax(Ak, 1) ~ Amin(Ar) = | Ak, Lll2 — [[Hell2
) Daewllz = (1 = Prew.i Pl 1) Enew Bnewll2 < (I = Pacw,: Pley, 1) Enew 2. the result follows. The
last inequality follows because ||Ruewl||2 = || Etew Dnewll2 < 1. ]

H(I - pnew,kpr:ew,k)EneWHQ < A\

Since G, = /(1 — Paew, Ple 1
Lemma 10.2 (High probability bounds for each of the terms in the (i bound (14)): Assume the conditions of Theorem 4.2
hold. Also assume that P(F;kq) >(0forall 1 <k<K+1. Then, forall 1 <k <K

1
cC\™
12

P (Amin(Ak) >ba, — ) > 1—pa(a,¢) 15)



p2 _p2at2

where bAk (1 — (CJr) )( m))\n_ew kT b2<1 b2 )\/E’Y*fynew kC
- — b20)(1 — - — — p2(a=1)

9 1+0b new, k 9 ’ 1+0b

— _ a2 — _ a+1 _ pa+1
ek (a’ 6492 ’ (11 +bb) C%?ew”“) 2k (o Ci?g a2 2\/1)1 +(zj w0t )\/E’Y*’ynew,kcj)
AT (1 - A~ 1— %
+2cfF (047 C%G ,4 ( 1+0 )C'Ynew,k’)’new,lc1> + 2cF (a7 CiS s ( 1+b )\/EV*Wnew kC* ) (16)
2)
P (14l < ba + S ) 2 1m0 (1)
where by, | =M ((H)? + P05 2(¢F)? and
AT (1=0*)(1-0 AT b(1=b)(1 — b2
w00 = (0= ar (o G, E T m2c?) 2t - ar (o G 2SI D )
_ a2 — _ 12«
+2(n — ) (m ci)z 72(11+bb) rﬁ(c:)?) +2(n—oF (a, C%AG ,4b(11 fb )mf@:)?) (18)
3)
A
P (Il < bt G101 ) 2 1= pelan) = prfen©) ~ max{palen 0. ) (19)
where
(1 — b2 (1 — b«
= @9+ (Gt + 2P o ot + PO D g 4
2 _ h2a —
%Cﬁew,mwmjéﬁlf vagta & (V + Mmf) +
- - () b
1\2 201 _ 1n2c _ +
2¢* max{0.15¢¢, g,j_l}(“57)+ (A+ + b(llbbz)cﬁew,kg + 4b(11bb)m*gj¢+\/“87+ +
1—(6)? - 1-(60)?
+ gttt o et Ky I A I + o+ (k3)?
1—(¢h)? V1-(¢h)?
201 _ 12a _ +
(/\+ + b(1b2)c’71?ew,k1> + b (1 )\/EPY*'Vnew k (C:— + ¢+Cj) (1 + (Hj)QCIj—1¢>
b 1- (¢
+
ot R G (¢F +<r<z>+“5)> (20)
1—(¢h)?
Proof of Lemma 9.2: Lemma 9.2 now follows by combining Lemmas 10.1 and 10.2 and defining
pk(a7 C) =1 —pa(a7 C) - pb(a7 C) _pC(av C) - pf(Oé, C) - max{pd(aa C)ape(aa C)} (21)

As above, we will start with some simple facts that will be used to prove Lemma 10.2.
. . 1 1
For convenience, we will use >, to denote > teZ;

Fact 10.3: Under the assumptions of Theorem 4.2 the following are true.

1) The matrices Dyew, Ruews Enews Ds; Dnew,k—1, ®r—1 are functions of the r.v. X ;_1. All terms that we bound for the
first two claims of the lemma are of the form é Ette,k Zy where Zy = f1(X x—1)Yif2(X; k-1), Y is a sub-matrix of
ara} and fi(.) and fo(.) are functions of X ;_1.

2) X, r—1 is independent of any a; for ¢t € Z; . , and hence the same is true for the matrices Dhew, Ruews Fnew> Dy Drew,k—1,

®p_1. Also, ay’s for different ¢ € Z; 3, are mutually independent. Thus, conditioned on X _1, the Z;’s defined above
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are mutually independent.

3) All the terms that we bound for the third claim contain e;. Using the second claim of Lemma 9.1, conditioned on
X k—1, e satisfies (9) w.p. one whenever X .1 € I'; ,_1. Conditioned on X 1, all these terms are also of the form
éztdm Zy with Z; as defined above, whenever X ,_; € I'; x_:. Thus, conditioned on X ;_1, the Z;’s for these

terms are mutually independent, whenever X 1 € I'; ;1.

4) It is easy to see that H(I)k lp ||2 C*, CO - ||Dnew||2 S 1, (I)ODnew == (I)/Dnew - Dnew, ||Rnew|| S 17
| (Ruew) 1” 1/\/1_ ¥ EnewL hew = 0, and ”Enewlq)OetH Il( new) lDllieW(boetH = ||(Rnew) ™ lDl/leWet” <

(Rl 1D I et < \/@HetH. The bounds on || Rpew|| and ||(Rpew) t| follow using Lemma 2.10 and the
fact that o;(Ryew) = 04 (Dnew)-
5) Xjx—1 €' x—1 implies that
a) (. < (I (see Remark 7.3)
b) (o1 < (,j_l < 0.65"1 4 0.15¢¢ (This follows by the definition of I'; ;1 and Lemma 7.1.)
6) Item 5 implies that
a) Amin (Ruew Bnew’) > 1 — (¢F)2. This follows from Lemma 2.10 and the fact that o iy (Riew) = Omin(Dnew)-
b) |11, ®r_1Pill2 < [[Pr—1Psll2 < & < Gy 11 Daewi—1ll2 < Kspm1Com1 < K55G
7) By Weyl’s theorem (Theorem 2.8), for a sequence of matrices By, Amin(D_; Bt) > D, Amin(Bt) and Amax(d -, Br) <
>4 Amax (Bt)-

Proof of Lemma 10.2: 1In this proof, we frequently refer to items from Sec. 10.3 and the following bounds (22).

Dpll2 <1

‘ ‘ new

/ + ot
H new(I)OITt”Q = H( new) Dnew(I)OITt”Q = H ( new) newITt

S

2 < Soft

[@oPyll2 = ¢ < ¢F
[@r—1Pi]l2 < |PoPill2 < ¢

HI’iFtDnew,k—IH < “:C;jq (22)

/ / /
A. Bounds for Etezjyk At,newQt pew> Ztezjyk At newQt s Etezjyk At 5y
For calculation simplicity, let {d; }o<i<a—1 denote {a new }tez; ,» {11t }o<t<a—1 denote {Vinew }tez, ;> {Mtfo<i<a—1 denote

{at«}iez; > and {wifo<t<a—1 denote {vy . }iez, -

a—1
> did;
t=0

a—1

= Z(bdt—l + u¢) (bdy—1 + 1)’
t=0
a—1
Z bt+1d +th 7 bt+1d 1+th Z,”“L
t= 0 1=0
a—1 a—1 t
— Z thZb_QZM’L/J/z + Z b2t Z b—i1—izuilué2) + Z Zb%_i-i_ld—lllg +
= 0<i1,i2<t,i1F#ia t=0 =0
a—1 t
ZZth 2+1,U/zdll+zb2 t+1d dl
(i (1;01 i1—1
:ZZ b2tb 21/1“/141 +Zb2t Zzb i1 — zgu“um_’_z Z b™ 11— 12M21M22)+
1=0 t=1 11=012=0 i1=0142=%1+1
a—1la—1 a—1la—1 b2( b2a)

I R I M e

1=0 t=1 =0 t=1t
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a—1 (1 _ b2 a— 1 a—1 a—1 11—1 ) ) t ) )
S O ST b e Y 5 ) +
=0 i1=01t=1 ia=t;j+(k—1) io=11+1

a—1 4, i

pitl(1 — b2(a—z) b2(1 — b2
Z (1 2 )(Mz‘d/—1 +doypp) + %d—ldl_l
=0

1(1_b2(a Z)) O61( _b2a11 lez % 2tp—i1—1
= 271_1) pah+ ) DS b, + Z Z Zb b i
1=0 i1=0 12=0 11=—1143=41+1 t=iz
a—1,, ;
bz+1(1 _ b2(ozfz)) b2(1 _ b2a)
+ 02 (pad"_y +d_yp;) + Wd—ldl_l
1=0
a—1 i i1—1 a—1
1—b2(0‘_7’)) (1—b2a zl) 1— 1_b2(a zz)) iy
B LAl P SEClilll SR S S L TR
=0 i1=0 12=0 11=01i2=11+1
a—1,, ;
b’r‘rl(l _ b2(a71)) b2(1 _ b2a)
id d_q 1 ——2d_d
+i:0 1_p2 (p’ -1+ 1”’1)+ 1— 2 161
a_l(l_bQ(a—z 1_b2a Q1) 7'11 a—1 1_b2a 12) ) L
7 7 3 12— /
B Syl P (Sl SIS S i e
1=0 i1=0 12=0 11=01i2=a—11
a—1,, ;
bz-i-l(]_ _ b2(a—z)) b2(1 _ b2a)
+ 11— (MidLl + d—lﬂg) + 1_7b2d—1d/71
=0
Let
(1 _ b2(a z))
Z1; = ﬁ/uhuza
i—1 i
Q-0OD)
Zoi = ZO T Mty 1
12=
a—1 ;
(1= i a
Zoi= Y~ VT e,
’L‘2:O¢7’L‘
pitl(1 — p2(a—i)
Zy; = &_W Mmg (23)
2(a—io)
Z3; = 212 i %bl“z i1ty = fra—i—1hi(fa—is Pa—it1, " 5 fPa—1), thus

Ei_1(Z3:) = E(ta—i—1hi(pta—is ha—it1s s Ba—1)|gi(Ha—is a—it1, 5 Ha—1))
= E(pa—i—1)E(hi(fta—i, ha—it1s s Ha—1)|gi(Ba—is Ba—it1, 5 fa—1))
=0 24)

Then we can split {d:d} }o<i<a—1 into four adapted sequences, i.e., {Z1;}o<i<a—1,{Z2,}o<i<a—1,{Z3,i}o<i<a—1 and

{Z4,i}o<i<a-1-
)\mm Ez 1 ( ZZ11| >>

According to Assumption 3.1(3),
a—1 (1 _ b2(a—i))

1
=3 e A (B
DD (E(uips;))
O(( _ b2) _ b2 4 b2a+2 _
a(l o bz) new, k
b2 _ b2a+2
= 1 _—_——— —
( Oz(l _ b2) ))‘new,k

Y

v
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and

1 a—1
Amax (Ei—l (a Z 21 Xj,k—1>)

<2 Z - bQ(a 1)) Amax (B (ift;))

(1 _ b2) _ b2 b2a+2 .
<
— ( a(l _ b2) )‘new,k

< \F

new, k

and by Lemma 2.17,

E,_1(Z2,;

i—1 ;
1— b2(a—z) i
sk-1) = Ei1 (Z (1—7b2)b zﬂiﬂgz

(1 _ b2(a z))
-E S A Zoi_
( Z:O ]__b /’[’12‘ 2,05 y L2,i—1
Gg=
E( h(:UOa,U“h"' a“i—l)‘g(u07/~‘bl7"' 7ui—1))
= E( )E(h(MOaula 7/’61'—1)'9(/-1/05/-1117"' a,ui—l))
0,

Similarly, we have E;_1(Z3 ;| X, x—1) = 0,E;_1(Z44|X; x-1) = 0.

1 — p2la—i) 1—02)(1—b
gc(l - b)QFYr?ew,kI = %C’Ynew,kl7

=1 0 12(a—iq)
(1 b ) i1 —1
||Z2,i1 H < E 1 — 2 b 20(1 - b)Q’YI?eW,k

22=0
b(1 — b)) (1 — p™)

<

= 1+b C’Ynew,k
b(1 —b)(1 — p*(>=1)

< 1+0 C’Yr?ech

a—1 :
1— b2(a712) o
1zod < Y U e a2,
Z’Q:DL*Z'
1it1N2
_ (b
- 1+0b
(1—0%)?
< ﬁﬂfew,k

2
CVnew k

pitl (1 _ bQ(in))

||Z4,1H < 1_ 2 C(l - b)’ynew,k’)’new,kfl
b(1 — b2
=~ ﬁcvnew,kﬁ)/new,k—l
b2(1 _ b2a) b2(1 _ b2a) 5
0= 1—_p2 dfld/q = W@’new,kq—r

Given X r_1, {Zl,i}iGIj‘k is an adapted sequence of Hermitian matrices, thus by Corollary 2.15, for all X ;_;

we have

(25)

(26)

27)

(28)

(29)

€lr—1,
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b2 _ b2a+2 B
<m1n< ZZ11>( _a(l_bg))Anew,k_6

Similarly, given X 1, {Z2,i, }ivez; s 123, Yirez; s 1 Z4.i biez,,, are adapted sequences of matrices, by Corollary 2.14,
for all X;,_1 €T';,_1 we have

1-0*)(1-1b
j,kl) Z 1- ck <aa € (1_1_)(b)CPYI?eW,k) (30)

b(1 —b)(1 — p2e—D

222“ Xjpo1 | >1—2¢F (a,62 (1 = O )C'yfewk 31
1+0 ’
21 =0
1—b%)?

Z Z3 ,i1 j k—1 Z 1—2cF (O[, €, 2<7)C’71?ew k) (32)

a = 1+b ,

1 a—1 b( _ p2e

p < a ;(Z4,i + Z:l,i) < E‘Xj7k—1> >1=2cF <OL, €4 1+ C’Ynew,k"Ynew,k—l) (33)

Thus, given X ;_1, we have

| B2(1 — b2
P - Z atyﬂewa;,,new )\new k + ﬁcf}/new k—1 T € Xj,k—l
te€l; k
B2(1 — b2

I
—
\
e,

Xjk—1

Z ay HCWat new > Anew k + 1— b C"Ynew k—1 +e€

teIJk
a—1
+ “Ix p(|2 “Ix
>)\newk it o a >1 Gk—1 | —

a—1
1
-P < - > Zas,
€ b2(17b2a) b2(17b2a) )
-~ (H D 4‘X7‘k_1> - (‘ B T C’Ynerk—l)

Y
—_

ZZS’L

L10

]k: 1)

Z AR
; i1=0
10

d_id,

e (1—0b%)(1—b) e _b(1—0)(1— b2(a—1)) e (1 —0b%)2
> 1—cF (O[7 Z, 1—_|_bc’yr?ew,k —2cf Qa, 17 2 1+b C’YI?ew,k — 2ck a, 17 2174_1)0’735“”]“
e b(l—b*
—2cF (a, 4,4(1+bc')/new,k7new,k—l) (34)
b2 _ b2a+2
Amin Z ag newat ,new > (1 - 72))‘;6\%16 — € Ag k-1
feIJ k a(l —b )
1 b2 _ b2a+2 B

=1-P >\min a Z at,newa;,new < (1 - m))\new,k — €A k-1

tEIj k

b2 _ b2a+2 _ €
> 1- mm Z Zl K - W)Anew’k - 1 Xj,k’—l - mln lzo ZZ ,i1

a—1 a—1

1 € 1 €

-P (Amin (a > ZS,i) < _4‘Xj,k:1> -P <)\min (a > (Zai+ Zfl,i)) < _4‘Xj,k1>

i1=0 i1=0
b2 1— b2a

- <>\min ( (1 —b? )d_ld/_1> - O)

e (1-0%*)(1—-0) € _b(1—0b)(1—bp>"D) e (1—b%)?
>1—cF <av471_i_bc’7r?ew,k = 2¢ck 0‘7172 C%?ew,k = 2ck a7172767r?ew,k

X]k 1>

1+ 1+0b

e b(l—0bv>™
—2cfF (a, Z, 4(:l_~_b)0'7new,k’7new,k1> 35

Remark 10.4: d_; corresponds t0 ay, 4 (x—1)a—1- When k = 1, there is no d_; in previous equations, in which case there
2 2
is no %cﬁew’ 1 in the upper bound (34).
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a—1
li
E dtmt
t=0

a—1
=Y (bdi1 + p) (b1 + wy)

t=0
a—1
_ Z(bt+1d _"_th 7 bt—‘,—lm +th 7 l
t=0 =0 =0
a—1 t t a—1 t a—1
_ Z Z b2t7“712ﬂi1w;2 + Z Zb2t72+1uim/_1 4 Z b2(t+1)d_lm/_l +
t=0 i1 =01i2=0 t=0 =0 t=0
a—1 t

2t—i+1 /
b d_lwi

(]

~
Il
o
~
o

—1 a—1la-—1 b (1—b2a)
S, + 3 St P

11=01t=171 15=0 =0 t=1

—la—1

Z Z b2t7i+1d_1wz{

=0 t=1

e
L

|
M

e =

a—1 a—1

a—1
( b2(a z)) b2(1 _ b2a>
D I S S S A= <

11=012=0 t=max{i1,i2}

a—1 ;
1— b2(o¢—z) )
+ a-) bitld_yw]

_h2
—~ 1-b
a—1 a—1 iv .0
bZ(afmax{Zl,m}) max{iy,? i1—1 1- b2(a ) i
=y 3 B et i ww—|—z%b+l(uiml_l+d_1wg)
’Ll 022 0 =0
B2(1 — b
+(1—7b2)d71m/71 (36)
Let
1— b2(a—max{i,i2}) o o
Yl,i _ Z ( : bQ )b2 max{z,zz}—l—lzuiwgz
i2=0
1— b2(o¢—i) .
Yoi = %bl_‘—l(/”'im/—l +d-1w))
then by Lemma 2.17 and similar procedure to (25),
Ei1(Y1:Xjk-1) = 0,Ei_1(Y2,:[Xj 1) =0 (37
and
a—1 i
1— b2(a7max{11,z2}) o . .
Vi, < Z ( o )b2 max{iy iz} —11—12 or(1 — b)2'7*7new,k (38)
i2=0
As
-1 a—max{iy,?
(1 — b2( ax{is, 2}))b2max{i1,i2}—i1—i2
o 1-—02
2=
a—1
(1), (1= ) oy
:Z LT i g Z AT Rie—i—ie
1 — b2 1— b2
19=0 i9=11+1
_ (1 _ b2(a—i1)>bi1(1 _ b—(i1+1)) N b(l _ ba—l—i1) + b2(a)—2i1(1 _ b—(a—i1—1))
(1=0)(1—-0b71) (1-0%)(1-0)

_bi1+1 + 1 + b(x—i1+(x+1 + b _ ba—il _ ba—i1+1
(1—0%)(1-b)
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14b—2/b>FL(1 + b — botl)

- (1=0*)(1-0) ’

we have

14+ b—2,/boF (1 + b batl

HYl,il ||2 < \/ ( )\/E + Ynew, k -
140
Also,
1 — p2(a—i) .
2 < 2(71)2)b+1+1\/67(1 - b)’Y*'}/new,k
b(1 — b*>™
< ( 1+0 )\/77*7new k (39)
b2 1_b2a b2 1_b2a
||(1_7b2)d,1m'_1|| < (1_71)2)\/5’)’*%ew,k (40)

Thus, by Corollary 2.14, we have

1+b—2y/b>F1(1+ b — botl)

1
PlI= > Yy Se]Xj,k_l >1—(rj+o)f (€2 Veramewr), (A1)

11€L5 1+ b
for all X;,_1 €T';,_1; and
b(1 — b2
P Z Vaiu| S e[ Xjnn | 21—+ 0F (0647 Ve ) (42)
l1€I] k
for all Xj7k_1 € Fch_l.
Thus, given X ;_1, we have
b2 (1 — b2
Amax Z At new it * = %\/EV*’YMW kte€
tGI] k
1 v (1 -2
=1-P | Anax a Z attnewat,*l (177)\/77*7new Kkt €
t€L; k
1 € €
>1-P /\max a . Z Yl,il > §‘Xj,k—l - max Z Y ,i1 > i‘X’,k—l
11€ZL5 K ’LlGIJ k
1 b2 (1 _ bQ(x) , b2 ( b2a)
P | Amax o A Z Wd_lm_l > 1_7\/>’Y*’Ynew k‘X k—1
11€L5 k
€ 14+b—2btH(1+b— brt! e b(l—0b>
2 1- (rj + C)F(a, 57 2 \/ 1 +(b )\/E'Y*'Ynew,k) - (rj + C)F (a, 574%\/57*7%%]@ (43)
b2 b2(x
rmn Z At newQit, * = _¥\/77*7new k —
teL k
b? (1 — b2
=1-P <>\m1n Z At newQt, * _¥\/E’Y*'Ynew k —
tEI] k
€ €
2 -P <>\m1n Z Yl ,i1 *ilXj,k,—l - m1n Z )/211 < *i‘Xj,k—l -
llEI] k l1€I] k

-2 1

b(1—b
1+

G Hb— 24/boF (1 + b — botT)

F Oé, 7 1+b

1 b2 1 — b3 b? (1 — b2
Amin a )d 1ml_1 < *%\/E’Y*Vnew k’Xj k-1 | >1—
11€Z5 K
€
2

) \/E'Y*’Ynew k) (44)

N

\/E’Y*’Ynew7k> ( + )F < ,4



a—1
!
E memy
t=0

a—1
= Z(bmt,l + wy)(bmy_1 + wy)
t=0
a—1
_ Z(bt'Hm +th 7 bt+1m +th 7 I
t=0 =0 =0
a—1 t a—1 a—1 t
— Z(b2t2b72lwlwi) + Z(bZt Z b*i1*i2wilw£2) + Z b2t7i+1m_1w§
t=0 i=0 t=0 0<iq in<t,i1Fis t=0 i=0
a—1 t
+ Z p2t— lelm + Z b2 t+1)m 1m .
t=0 =0
a—1a—1 t 11—1
DI SCTENIES ST 90 WEREMITED Sl SR M AR
=0 t=1 11 =012=0 11=0122=121+1
a—1a—1 a—1a—1
b2(1 — b
I IEES 5 SICAL IRt M
=0 t=1 =0 t=1
(1 . b2(°‘ ,L) a—1 a—1 i1—1 . ) t ) ]
a0 YLD VL R Dl e
=0 i1=0t=11 io=t;+(k—1) io=11+1
a—1 ., i
pitl(1 — b2(a72) b2(1 — b2
(1 — )(Wi,ml—l +m_jw;) + (1_7b2)m_1m'_1
=0
a—1 Z1 1 a—1
(1_b2(a 1) 1_b2a Q1) i i
=2 1 SELARU NWES 3L Qo) S b, + Y $ S, +
=0 i1=0 i9=0 i1=—112=11+1t=iy
a—1 4, i
pitl(1 — b2(a72) b2(1 — b2
Z (1 — )(Wiml—l +m_qw;) + (1_7172)71171711’_1
=0
a—1 (1 _ b2(a z)) , a—1 (1 _ b2(o¢*i1)) i1-1 a1 1 _ b2 a— 12)) i ,
=D it Y T 20 2“’11%z+z Z T 0w,
=0 11=0 i2=0 11=01i2=11+1
a—1,, ;
bz+1 1— bQ(a—z) b2 1— b2a
n (1 — )(wiml,l + m_1wj) + g_ilﬁ)m,lmll
=0
S =P SR () R T A=) :
— 11 12 7/1 12 —Q
= [z Wi + Z 5 Z b wi, Wy, + Z Z 5 — b Wa—1—4, Wi,
=0 ilz() ig 0 21—022 o— ’Ll
a—1 ., ;
pitl(1 — b2(a—z) b2 (1 — b2
+ (1 2 )(Wim/,1 + m—lw;‘) + (1771)2)7”—17”/,1 45)
=0
Let
(1 _ b2(o¢—i))
Z1; = W“iwn

1 .
1— b2(a71) )
Z2i= 2 %bl P, 1
19=0

a—1 i
(L=b*2)) e g
23,7,': Z 1_71)25 2 a—1— zwzga

ig:a—i

i+101 _ p2(a—i)
Z4Z-—b (1-b )

g = 1— b2 (A)iml_l (46)
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then,

a—1
1
Amax (Ema > 2y, Xj,k1)>
=0
a—1 (1 _ b2(t]‘+ka7i))

1 — /
< o Z 1_—bg>‘maX(E(wiwi))

< (QU=P) B e
= a(l—12)

AT
1 a—1
Amin (Eu(a > 2, Xj,“))
=0
1 (1 _ b2(t_7~+kozfi))

1 — /
z Z T Amin(E(wiw)

a( _ b2) _ b2 + b2oc+2 _
= O[(l _ b2) )\new,k (47)
and by Lemma 2.17 and similar procedure to (25),

Xjk-1)=0,E;_1(Z3,|X;5-1) =0,E;_1(Z4| X r—1) = 0. (48)

E,_1(Zs;

(1 _ b2(a7i))
1—0b2

(1 —0%*)(1—b)

2
I
1+b TYsds

0= 721, = r(1 —b)2~2T <

i1 ;
(1=p2D) 2.2
| Z2,ill < 'Zoﬁb r(l=1b)"
12=

_12(a—i)\(1 _ i
_ (L= D) (1 - )

- 1+56
b(1 —b)(1 — p(e=1)

- (1+0)

2
7Y

2
T

a—1 :
1— b2(a77,2) i e
1Zs,ill < Z %b Fretmar(1 - b)?y?
7,'220477;
_ pit1y2
_ (-t
- 1+b
(1—0%)?
< -~ 7
- 140 ™

2
T

bi+1(1 _ b2(a—i))
1-—102

b(1 — bQO‘)

- 140

1 Za,i, |l < o1 =b)y2

7"’}/2

*

b2(1 — b>) b2(1 — b>)
=<
R 2 102

Given X j_1, {Zl,z’}z‘ezj,k is an adapted sequence of Hermitian matrices, thus by Corollary 2.15, for all X, ;1 € I'; 1,

m_ym’ | < 2T (49)

we have

(0%
=0

a—1
1 (1— %) (1 —b)
P (Amax< > Zu> <A —e\Xj,k._l) > 1l (e ) (50)
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Similarly, given X1, {Z2,, }iyez; s 123, Yirez; . 1 Za,i iz, are adapted sequences of matrices, by Corollary 2.14,
for all X;, 1 € I'j,_1 we have

a—1
1 b(1 —b)(1 —p*@=D)
P ( a;z2,i SG‘XM1> >1—=2r;F (v, 6,2 D) rYZ) (51)
1 a—1 (1 ba)Q
ZZgl <€l Xjpo | >1—2r0 (a,6,22—"r72) (52)
P 1+0b
- b1 —=b**)
Z Zyi+ 2 ;) st | Z 1= 25k (as € 4= =) (53)
=0

Thus, given X 1, we have

1 b2 (1 — b
P — Z at,*aéy* < )\+ + (1_7[))7'7* +e€ Xj,kfl
tEijk
b2(1 - b0
Zl—P *Zat*at* >>\+ ( b )C’Y*k 1+€vak*1
tEI]k
a—1 1 -1 € 1 s €
> 1_P<|ZZ“ > AT 4 - ‘X]k 1> —P( aZZQ,il > 4‘X]‘,k—1> —P( EZZM > 4‘Xj,k—1>
1=0 i1 =0 11 =0
a—1
1 ¢ b2(1 — b2) (1 —b%)
-~ ( o o Fact 2| > 4’X““> - (‘ Wm,lmgl i
1=
c (L-p)I-b) ¢ —b)(—pe)
>1—1r; A S -2
= TJF (O(, 47 ]_+b T] Q, ~ 47 1 b) T
e (1-b)2 b1 —b)
— O - 22— -2 44— >4
riF (a747 1+ T« riF 47 1+ (54)
(1 _ 62) _ b2 + b2a+2 B
Amin Z at *at | = a(l = b?) )‘new kT Jik—1
tEI]k
1 a(l—b%) = b2 + b2+
Z 1-P >\min a Z at,*a;§7* < Oé(l _ b2) )‘new kT Jik—1

tezj k

a(l—b%) —b? +b2+2 € €
>1- ( min ( Z Z1 z) Oz(]. — b2) /\new,k - Z‘Xj,kfl - Amin Z Zo i | < _1 Xj;kfl
Z1 =0
12 €
< min < Z Z3 z) j k— 1> -P (Amin <Oé 2(24,i + Z;LJ) < 4‘Xj,k—1>
i1=0 i1=0
p(1— 2o
NGRS

>1—-r;F (a, i, erf) —2r;F (a, i, Qb(l - b)((ll_’__blf(a_l))rvf) —2r;F <a, i, 2(11__:)(;)27“'yf>
onr (oz, 2,41’(11+”b2“)mf) (55)
B. Amin (Ak)
Consider Ay, := ZteI Eoew' ®oLi Ly ®oEpew. Notice that Epey'®oL; = Ruew @t new + Enew/D*at’*. We have
Aem TS Bttt R’ 4+ 3 (Faowttpentt, s/ D. oo’ + Euey/ Dty stigen' Boew')  (56)

te€L; k tel; k
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By Amin (Ruew Riew) = 1 — ()2, || Ruew|| < 1 and similar procedure to get (35), we have

1 b2 — p2at2 CC}\*
+)2 -
P | Auin a Z Rnewat,newag,newR;ew > (1 - (C* ) )(1 - m) new,k TlXj,k—l
tel; r
cCA™ (1 =0**)(1—-0) cCA™ _b(1 = b)(1 — D)
=k (a’ 06 1gp s ) 2 (02 1+ e
AT (1 —b)? AT b(1 —b%)
—2cF (Oé, 96 72 1+ b C'Yfew,k — 2cF «, 96 a4 1+ b CYnew,k Vnew,k—1 (57)
By || Ruewll < 1, || Enewll < 1,]|D4|| < ¢ and similar procedure to get (44), we have
1 b2 (1 — an) cCA™
P )\min a Z (Rnewat,newat,*/D*/Enew,+Enew/D*at,*at,new/Rnew/) Z 721_7b2\/57*7new,k<~j - 2 jtl
te€l; r
AT 14+b—2/b>tH(14b—batl AT _b(1 — b
1—2cF <Oéa i8 74 \/ 1 +(b )\/J'Y*’Ynew,k(:_> — 2cF (Oéy ilS )8 ( 1+0b )\/J’V*'Ynew,kc;‘r) (58)
Combining the previous two inequalities, we have,
cCA™
P (x\min(Ak) > ba, — B ) > 1 —pa(a, () (59)
_p2e _ b2 (1-b2
where by, = (1= (CH)2)(1 — Bty 9P U)oy mnC and
A (1 =021 —10) cCA™ b1 —b)(1 — b D)
pa(aaC) =cF (OL, 96 140 C’Yr?ew,k +2ck a, 96 72 1+b C’Yr?ew,k
AT (1=b)2 cCA™ b(1—b%) cCA™
2 2 2 4 new new,k— 2 v AQ 0
teck (O" 96 % 1qp hewn | Tk (&g AT Ohew i Thew k1 | o+ 268 { @ g
14b—2/b2t (14 b—botl AT b(1 —b*
4 \/ 1 +(b )\/077*’Ynew,k<::_> + 2¢cf (067 ig ;8 ( 110 )\/E’Y*’Ynew,kc;’_) (60)
C. >\max (Ak,J_)
1
AL =~ 3 Buew 1/ ®0LiLy o Foen 1
tet; k
1 !/ ! /
= — Z Enew,J_ D*at,*at,*D*Enew,J_
a tet) k
By || Enew. || < 1,]|D4|| < ¢ and similar procedure to get (54), we have
1 ’ ’ ’ cCA™
P> Y BuowiDetrdl D Buons | < bay + S |Xjnor | = 1= mo(aQ) 61)
teL;
where by, | = AT(¢H)? + %TVE(CJ)Q and
AT (1= (1—=b) o, 4 cCA™ _b(1 =b)(1 = vy
= — 2 _ 2 +\2
a0 = (0= ar (a G, EE 0= m2¢2) 2t - ar (o G 2 I e
AT (1=b%)2 9 AT b(1—-0%)
2(n — F 2(n — 2 62
s - (o G 202 ) v - o (o S a2 (62)

D. [[Hpll2

In this proof, we frequently refer to items from Sec. 10.3 and the bounds (22).

For the second claim, using the expression for ) given in Definition 6.5, it is easy to see that

1
Il < max{[|Hxll2, [ Hr, 2} + | Brllz < |l - > evedll2 + max (|72, | T4]l2) + || Bl (63)
t
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where T2 = éZt Enewlq)o (Ltet’ + etLt/) (I)OEHCW and T4 = é Zt EneW,J_/(I)O (Ltet’ + et’Lt) (bOEneW,J_~ The second
inequality follows by using the facts that (i) Hy = T'1 — T2 where T'1 := é Zt Erew’ Poeser’ PoEnew, (i) Hp, =T3-T4
where T3 := 2 3 Fyey, 1 '®oere,/ o Enew, 1 » and (iii) max (|| T1|2, [|T3]]2) < [|£ Y, erel||2. Next, we obtain high probability

bounds on each of the terms on the RHS of (63) using the Azuma corollaries.

1) |13, ere’||2: Consider |13, ee)/||2. Let Z;, = epey’. Then
Zy = I7,[(Pr— 1) (@ U, ] Y1 (@1 Py) g, v + Dnew ki—101new][(Pr—1Ps) ar « + D“6W7k—1at,neW]/ITt[(‘bk—l)Tt/ ((I)k—l)Tt]ilth/
= I, [(®r-1)7," (Pr-1)7,]  I1, [(Pr—1Ps) @t} PL®% 1 + Drew k-1t new@h new Dhew k-1 + (Ph-1Px) Gt 20 pey Dhew 1
+Drew, e~ 10t newttt, o PL®r1 ) I, [(Pr—1) 7, (Pr—1) ) I (64)
(a) By (22) and similar procedure to get (54), we have

(k1) g, (Ph—1) g ) n (@pa Po) || < ¢7¢F

and

P ( é D I (@ko1)g, (Pret) ] (R P gl @i Iy (P )y, (®a1) ]

T
gA+<¢+<r>2+%m$<wd>2 i 1>

>1—pe, (a,Q) (65)

where
pes(.0) = o (0 S L0 ) o (o, S0 pMEZ O ) e
e D R (=< SFLLe L B (66

(b) By (22) and similar procedure to get (34), we have

7, [(Pr—1)7, "(®r-1)p, )T Ut Doew 1|l < ¢TI,

and
( D I [(®k-1)g, (@k-1) 7] 11, Dacw k10t new @) e Dreneom1 17 [(®h—1) 7, (@1—1) 7, ) I
tEIJk
b%(1 — b%@ cCA
— new k(¢+ +<k 1) %C’Ynewk 1(¢+ +<k 1) + =5 ‘XJC 1>
> 1= pe, (e, ) (67)
where
A (1=0**)(1-b) , ot o cCA™ _b(1=b)(1 = by Lo
, = 1 2 2 !
pcz(aaC) n <O[, 288 ) ].-|—b C,Vnew,k(q5 '%5 Ckfl) + 'le «, 288 ’ 1+b C’Ynew,k (¢ KJ&

— a2 — 2c
+ \2 9 cC 2(1—1)) 9 Loaad a2 9 cC A 4b(1—b ) ot a2
<k71) ) +2nF <047 238 11 C'}/new,k((l5 K Ck71) +2nf | o, 288 1rb CVnew,k Vnew,k—1 (@™ K] Ckﬂ)

(c) By (22) and similar procedure to get (43), we have
17, [(®r—1)g, (Pae1) g, ) I < &7, [1n, Drew -1l < 635G (| Pr1 Pell < ¢

and

1 _
P (H Z ITt [((I)k—l)Tt/ ((I)k—l)Tt] IITt/[(ék—lp*) at7*a;,newDrl1ew,k—1 + Dnew,k—lat,newa;7*P;(bk—l]
tel;
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b2 b2a
ITt[((I)k 1) ((I)k 1)TJ 1IT1 §2¥\/EV*’YH€W k(¢+)2 +<k IC* CC)\ ‘Xjk 1)
Z 1 _pCS(a7<)

(68)
where

AT 1+b—2/b>t1(1+b— botl
Pea(@,€) = 20F (o, S0 4 Vi ) o e (612 GG +
144 1+0
™ _b(1 — b2 N2 A
27'LF (Oé, 144 ’8 1+b \/E’Y*’Ynew,k((b ) "is gkflg*
Combining (65), (67) and (68), we have

’ ( Ly e < arrer + BEE D i 4

(69)

rargrr+ P e otwiGh )+
1— b2 newk k—1 1—p2 Vnewk 1 s Sk—1
teT, p
b2 (1 — b2 cCA™
2 (1 — b2 ) \/E’Y*Vnew,k(ﬂs+)2“:<2_,1<j C ’X] k-1 | = 1— pc(oz C) (70)
where pe(av, ¢) = pe, (@, €) + Pey (@, €) + pey (e, €).
2) ||Tz]|: Consider T2. Let
Ly = Enewlq)OLtet/(POEnew
= Enew/q)o (P*at,* + Pnewat,new) [(q)k 1P )at « T Dnew k—10a¢ new] ITt [(q)k 1)Tt <(Dk 1) ] ITtIQOEnew
= Fhew' Po (P*at,*a;,*Pi(I)kfl + Pnewat,newaty*P*(I)kfl + P*at,*at nelelqewﬁk 1+ Pnewat,newatynew ;ew,kfl) ITt
[((I)k—l)Tt/ ((I)k—l)TJilthl(I)OEnew (71)
which is of size ¢ x ¢. Then T2 = 1 3~ (Z, + Z}).
(a) By (22) and similar procedure to get (54), we have
+
K
[ Bnew' @0 Pel < G 1PLPk—1 I, [(Pr—1) 1, (@) 7, ]~ I, @ Enews || < ot ———
1-(¢5)
and
p (|2 Frew' ®o P, L PL®y  I7, (P "(® 5, ®E
a Z new P0Lx0t 0y 4 L PE—1 Tt[( k—l)Tt ( k—l)Tt] T, P0Lrnew
tGIjﬁk
’ b2(1 — b2 + A
(5 L N ki BS% P L § P )
1— (¢ 1— (&)
2 1-—- DPd, (O{, C) (72)
where
DPd, (O(, C) =
AT Q=)L =b) 5 oo Ky AT b(1=b)(1 =) 2 Ky
ck ) 5 TV*QS ( * ) —— + 2¢cF a, 72 TV*¢+(CJ) ——
576 1+ 2 576 1+0 2
1 (&) 1+9) - (¢)
AT (=0, L K AT b(1—=b*) 9 KT
+2cF «, 72 TV*¢ (C:_) —— + 2¢cF a, 74 T"Y*QSJ'_(C:_) ——
576 1+0 2 576 1+ 2
- () - ()
(73)

(b) By (22) and similar procedure to get (43), we have

+
K:S
||Enew/(b0P H < Cj < 1 ||Enew/q)0 neWH < 1 ||P/q)k IITt[((I)k: 1) ((I)k 1) ] 1IT,5/(1)0E11n6W|| ngdﬁ_i

1 ()
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and

1 _
P (Ha Z Enew/CDO(Pnewat,newa,lf,*P;q)k—l + P*at,*a,/g,newDaemk_ﬂITt[(q)k—l)Tt/ (q)k—l)Tt] 1IT,E/(I)OlEneW

teL; k
b2 (1 — b2« KT cCA™
< 2%@’7*7&% k¢ C* B + 544 > 1- Pds (a’ C) (74)
where
AT 14+b—2b2F(1+b—botl kT
DPds (Oé,C) = QCF(O{, C 54 \/ ( )\F’Y*’Ynew k(b C* 7)
288 1+
- (&)
A~ b(1— b KT
+2¢F | a, S .8 ( )\Fwwnew RO —— (75)
288 1+
- (¢’
(c) By (22) and similar procedure to get (34), we have
kT2
v @0 Paosll < 1. [ Dl T (1), (1), i, B0 B | < Gy 67—
2
1- (&)
and
( > I [(@k-1)g, (®h-1)7,] I, Doew k—10t newth new Drewe k-1 17, [(Pr-1) 7, (k1))
tEI] k
(k) b*(1 - b*) (r$)? LA
< NawnGiio — e 1Gi 10" — 11 ‘Xjk 1
1-(¢5) 1- (&)
Z 1-— DPds (Ol, C) (76)
where

AT (1=b*)(1-b )2
Pay (@, ¢) = el (OZ7 C£§76 ’ s 1 —:(bl )C'yr?ew,k(¢+/€i@;‘——1)2(ﬁs))

2
1-(¢)
cCA™ b(1—b)(1 —p*D kT)?
+2cf | 5C76 ,2 ( )g_'_b )C’Yfew,k(¢+/€j§j1)2()+2
1-(¢5)
cCA™ (1 —b%)2 k¥)?
+2cF Q, 2-76 72( 1+b) c’yr?ew,k((b—‘r'k‘;:CIj—l)Q()M
1-(¢5)
A~ b(1— b2 k)2
ek | o §76 4 (1+b )C%ewﬂﬂewk—lWW?C:?—JQ(8)2) 7
1-(¢)

Thus, combining (72), (74) and (76), we have

1 (x1)?
P <T2|| = |Z(Zt+Z )| <20tk & >\++2¢+<,j_157>\j‘ew,k+
« p /1 _ C* /1 - (C:’_)Z
b2 (1 — b2 + b2 (1 — b H?
Q%T%Aﬁ & ) 5 +2 (1 2 )Cﬁew,k—ﬂﬁ@j—l% +
1 (¢) 1= (¢5)
b? (1 — b + A~
4(1_71)2)\/077*'}/new,kcr¢+ s B CC ‘XJ k— 1)
1—(¢h)
> 1 —pa(e, Q) (78)

where pd(a7 C) = 2pd1 (av C) + 2pdz (Oé, C) + 2pcl?. (aa C)
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3) ||Ty]|: Consider T4. Let
Zt = Enew,J_/éoLtet/q)OEnew,J_ (79)

which is of size (n o c) x (n - C)- Then T4 = é Zt (Zt + Zz{) EneW,J_/‘I)OLt = EnCW,J_/(I)OP*at,* + Enew,J_/Eneanewat,new =
Enew,L/D*atv*. Thus,

Zy = Enew,1'Diay [(Pr—1Py) at s« + Dyew k—1t new) 17, [(Pr— 1)1, "(®r_1)p N U7, @0 EByew, 1
= EﬂeWyJ- D*at,* (at,*P*(I)kfl + at,new I/ISW,k‘fl) ITf[((I)k 1)T, (q)k 1) ] ITt q)OEHCW L

(a) Using (22) and similar procedure to get (54), we have

1 2
P ll= > Buew.t'Daaraty  Pi®sIn,[(Pr-1)g, (Ph-1)7,]~ Ir, o Buew L[l2 < &7 (CF) N+

tet; k
b2 b2a
%ry*qﬁ‘(c* ) CC/\ ‘X] k— 1) > 1— De, (a C) (80)
where
A (=) (1-b A= b(1—b)(1—p2a—D)
Pes (a,0) =2(n—c)F <0¢7 c§84 ; ( 1le() )r’yf¢+(§j)2> +2(n—c)F(a, c§84 ,2 ( )ier )va¢+

2 A (1= 5 A b(1-b) 2
(&) >+2(n—c)F<oz, 384’2 o r7*¢+(Cj))+2(n—c)F<a, 384’2 T 2ot ()

(b) Using (22) and similar procedure to get (43), we have, conditioned on X _1,

P ||* D" Buew, 1’ Dat sl e Dby o1 I [(Pr-1) 7, (Ph—1) ) 1, @ By, 1|2 <
tEtJ k
b2 (1 — b* cC\™
g_ibg)vcr *'YneW,ijg:_1¢+’i: + W‘Xg‘,k—l > 1—pe, (Q»C) (81)
where
A~ 14b— 200 (1 +b—botl
pes (0.0) =2(n — OF <a, Ot e e kGG 16T

oA b (L0 S
+2(’Il — C)r (Oé, 192 ,4 1+b \/E’Y*Vnew,kg* Ck-lgb K

Thus, combining last two inequalities, we have

1 ! + ()2 b* (1-6%) 2 0+ ()2 b (1 -6 + it
P | [|T42 = ||a Z Zi+ Zll2 <267 (¢F)7A +21_7b27"7*¢ (&) + 21_7\/07"7*7116“/ RCHGE 0T RE+
tet; k
AT
X 1) > 1= pe(eQ) (82)
where
De (Oé, C) = 2p€1 (O[, g) + 2p62 (O[, g) (83)

By condition in Theorem 18, (7 = ro¢ + (j — 1)c¢ < 7¢, kI = 0.15,Frf < 1.5 x 1074, we have

r2(GH)? < (2N /e = ()2 fasan/e = G froxg wn/e < 1.5 x 10710,

KT KT
< 0.15CC7‘97]/\H_6W e < max{0.15¢(, Ck 1}7‘917)\;6%,C (84)
1—(¢h)? 1—(¢H)?

Thus,

P (max{|T2||2, [ Tyll2} < 2¢+ﬁj& (A+ + bQ(l_b;a)mf> + 2¢™" max{0.15¢(, CJL}& ()\;gw k
1 (¢ b N Gas
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b%(1 — b2 b?(1 — b*> + AT
P ) 4 oty ) 2 1 maxdpule, Ol O} 69)
1—b 1—b (G

4) || Bi||: Consider || By|2. Let Z; := Enew, 1 ®o(Lt—e:) (Lt —e;') o Enew Which is of size (n—c)xc. Then By, = + 3, Z;.
As Enew,il‘bopnewat,new = Epew L/Eneanewat,new =0, Enew,L/(I)O(Lt - Gt) = Enew,L/(D*at,* - ‘Doet), Enew/(I)O(Lt - €t) =
Ruewinew + Frew' Diy x — (Rheyy) 1 Dlower. Thus,
Zt = Bnew, 1" (Dt — P0€1) (0} pey Rrew + 04 D Bnew — €; Dyew(Rnew) ™)
= Ehew, 1 (Dsar — Polr,[(®r—1)1, (®a—1)7 ] I, [(Pr—1P) @t s + Drew, k-1t mew)) (@} pew Roew + 02 Dl Enew — [(Pr—1Py)a
+Drew k-1t new) I1, [(Pr—1) 7, (Pr—1) 7] 11, Daew (Ruew) ™)
= Enew, 1 (Ds — (I)OITt[((I)k—l)T,/(q)k—l)Tt]ilLiFt((I)k—lp*))at,*aé,*(D;Enew — Pl 1 I7, [(®r—1)7, (Pr—1)7,] I, Dew(Rnew) ™)
F Enew, 1 (Ds — @oIr, [(Pr—1)7, (®h—1)1,] 11, (Pr—1Pe))at st mew(Bew — Dhew i1 I, [(@r—1)7, (®r—1) 7] 17, Drew (Rnew) ™)
+ Enew, 1" (= oI, [(®r—1)1, (Ph=1)1,] " 17, Drew k1)t new @t (Dl Bnew — PL®r—117,[(®h—1)1," (®r—1)7,] " I7," Duew(Rnew) ")
+ Enew, 1" (= oI, [(Pr—1)1. (®e—1)1.] ™ 17, Drew k1)t newt new (R — Do k117 [(@h—1) 1, (®r—1)1] "7,  Drew (Rnew) ™' {86)

(a) Using (22) and similar procedure to get (54), we have

1
P (Ha Z Ehew, 1" (Ds — q)OITf,[(q)k—l)Tt/(q)k—l)Tt]illéﬂt(q)k_lp*)>at7*a27*(D;Enew — POy Ir, (1)1, (B 1)1,

tet; k

+ 2 _ h2a
< (CF +CHIC + Gt i 4 Ty X

2 1-(¢h)?

Dnew(RneW)_l) ’I“’Y*) 4+ =

’ka 1) > 1—pp(a,Q)

(87)
where

(A~ (1= b2)(1 — b)
384 1+b

Pl Q) =nf | a, ry(GH)? <1+<15+ <1+<;5+ i ) +nF<a,CC>\,

/1 384

b(1 — b)(1 — p2(a—1) + e — )2
DL o) (14 00 1”3( >+nf< C§84 =l ey
(Haﬁ*)(Haﬁ*L) TS P - 0%) 73(@?)2(1+¢+)(1+¢>+'€j> (88)
1 (¢H)? 8 1wh 1 (¢h?

(b) Using (22) and similar procedure to get (43), we have

p (HEnew,ll(D* — BoI1, [(Pr—1), (Ph—1) 1) I, (Ph—1P2))at, w0t new (Rrew — Diew o1 I [(®r1) 1, (@h-1)7,) " 11,  Diens

_ 12« +
(o)) = TR a6 + 0760 (14 (%60 =) + S i 1> > 1 (0,0
2 1—(¢h)?
(89)

where

A™ 14b—2/bt1(1+b—batl +
p, (@, Q) =nf | e, 61<92 ’ = Y 1+(b - )\/E“Y*’Ynew,k(gr +oT¢HA+ (’fj)QC/j_1¢(<+)2) +

1— (¢4

A, b(1—b*)

K e T R 2

+
\/E'Y*'Ynew,k(gj + ¢+<j) (1 + (K?)2Cl:r1¢>
1—(G)?
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and

P (|Enew,L/(_(I>OITt[(@k—l)Tt/(q)k—l)Tt]1I%tDnew,k—1)at,newa::,*(D;Enew — P& _1I7,[(®r—1)1, (®r—1)7.] " I1," Dew

b _ +
(Rnew)il)HQ < %\/E’Y*'Ynew k(b HJFC]C 1(<* + C ¢+ fs ) + CC)\ ‘Xj k— 1) > 1 _pfg(a C) (90)
1—(¢5)?
where
AT 14+b—2y/b>F1(1+b— bt T
pf3 (a7<) = (aa 6592 72 i \/ 1 +(b i )\/J'Y*’Ynew,k(/b-i_"ijgjfl (C:— + Cj¢+ﬁs(+)2>> +
1— (¢

A~ b(1— b2 +
nf | «, S .4 ( )\/CT"Y*'Ynew,k(ZS+ kIGH <§j + ot . S— >

(c) Using (22) and similar procedure to get (34), we have

1
P (H Z EHCW,L/(ié()ITt[(Qk—l)Tt/(®k—l)Tt]71[’3}DHSW,k—l)at,newat,ﬂeW(R;ew7Dl’]ew,k—l‘l—Tt[(ék—l)Tt/(Qk—l)Tt]i:lITt/DneW

tet; k

+\2 _ h2a
o o G T AV G0 W | UL Chud i B S U i
1—(¢h)? L=

(Ruew) ™) i

’X Jo— 1) >1—pp (. Q)

2
oD

where

- _ 12« _ 2
pr (@, ¢) =nfF (017 €A ,(1 ) b)CVI?ew,kC;—lngrHj(l+¢+CI:_—1(Kj))>)

A b(1=b)(1 =), + e (K5)?
2 -~ 57
+nf <C¥7 384 ) 1+ C’Ynew,k((k—l(;S ) L (C;L)Q
A (=2 . e (B
+nF (O[, 334 B 1 + b C’Ynew,ka;flgb Rg + ¢ Ck}—l 1 (<+)2
AT b(1— b )2
+’[’LF a, CC 74 ( )C’Ynew7k7new,k—1cz__1¢+ﬁj 1 + ¢+<2‘_1 (K/s ) (92)

Using (87), (89), (90) and (91) and the union bound, for any X1 € I'; p_1,

+ 201 _ K2« +)2
P <||Bk|2 < ¢ roren (s v aror =) (v P ) et (1 0, L)
1- (CJ“)2 1— (G2
b2(1 — b b?(1 — +
<)‘r—12w & (_2)87§ew,k—1> + — ( ) \/E’Y*'Ynew k (( ¢+<* ) ( ( i)zczll qzs7)
bt 1 (G2
o + o gt Ky CQ‘
1—(¢H)?
where pf(a’ C) =Phn (av C) + Dy, (057 C) +Dfs (O‘, C) + Dy, (aa C)
Using (70), (85) and (93) and the union bound, for any X; ;1 € I'; 1,

P (7l < bt G101 ) 2 1= puf0n0) = py(a, )~ max{patan O, ) o4

where
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b(l—b o) b*(1 —b**)

H = (¢+)2(<j)2)‘+ + (¢+)2(nglj_1) )‘:;w k- +2 \/E'Y*'Ynew kC* Ck 1Rs (¢+) ﬁwy* (¢+C+)

POV 2 (6FREGE)? +2¢+51L (A* + wa) +
G () b

k)2 bi(1 — b b2(1 — b2 KT
2¢" max{0.15¢C, g,jfl}# <A;;W’k + (I_I)Q)UA;;MO + 4¥m‘2<+¢+7 +

1—(¢H)? 1—(¢GH)?
+ b2 1— b2a +\2
(G +oteh [ ¢+ Ci¢+l€75 <)\+ + abz)mf) F GRS [ 1 ¢+CJ_1L
1—(¢H)? 1—(G)?
b2(1 — b* b?(1 — +
)\:::w T (72)C’Yr?ew,k—1 + ( )\/E'V*Vnew k (C:r + ¢+<j) 1+ (”?)%}j—ld)i
b - (G
+ ot + o ot Ky
1—(¢)?
Remark 10.5: As shown in Remark 10.4, when k = 1, there is nO a4 (k—1)a—1new» l€ading to changes in bounds

ba,,ba, bz, in which case C,j decreases exponentially with same parameters given above with larger b.
|

APPENDIX

A. Proof of Lemma 2.10

Proof: Because P, Q and P are basis matrix, P’P = I, Q’Q = I and P'P = I.

1) Using P'/P = I and | M| = |MM'||s, |(I — PPYPP'||y = |(I — PP')P||s. Similarly, |(I — PP )PP'||y =
|(I — PP")P||y. Let D; = (I — PP')PP’ and let Dy = (I — PP')PP’. Notice that | D12 = /Amax(D,D1) =
VIID1D1ll2 and ||Ds]l2 = \/)\max(D’QDg) = \/||D’2D2H2. So, in order to show ||D1lls = || D2
that | D} Dills = ||DyDslls. Let P'P °L° USV'. Then, D\D, = P(I — P'PP'P)P' = PU(I — S*)U'P’ and
D4yDy = P(I — P'PP'P)P' = PV(I — %2)V'P’ are the compact SVD’s of D’ Dy and D) D5 respectively. Therefore,
Dy Dy || = || D5Dsl5 = |[I — 52|z and hence ||(I — PP')PP'|ly = ||(I — PP')PP||5.

2) |PP' — PP'||y = |PP — PP'PP' + PP'PP' — PP'||y < ||(I — PP")PP'||y + ||(I — PP)PP'||3 = 2(..

3) Since Q'P =0, then ||Q"P|l2 = ||Q"(I — PP")P|2 < ||(I — PP")P|j2 = (..

4) Let M = (I — PP)Q). Then M'M = Q'(I — PP")Q and so o;((I — PP)Q \/)\ (I — PP)Q). Clearly,
Amax(@Q'(I = PP')Q) < 1. By Weyl’s Theorem, Ain (Q'(I — PP)Q) > 1 — max(Q'PP’@ =1-QP3=>1-¢
Therefore, /1 — (2 < o;((I — PP)HQ) < 1.

2, it suffices to show

B. Proof of Lemma 2.11
Proof: Tt is easy to see that P(B¢,C°) = E[l(X,Y)I:(X)]. If E[lg(X,Y)|X] > p for all X € C, this means that
E[lp(X,Y)| X]le(X) > ple(X). This, in turn, implies that
P(B%,C°%) = E[Ip(X,Y)l(X)] = E[E[I(X,Y)|X]lc(X)] > pE[lc(X)].

Recall from Definition 2.4 that P(8°|X) = E[I3(X,Y)|X] and P(C°®) = E[I¢(X)]. Thus, we conclude that if P(B°|X) > p
for all X € C, then P(B¢,C°) > pP(C®). Using the definition of P(B°|C¢), the claim follows. [ |
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C. Proof of Theorem 2.13

Proof of Theorem: The matrix Laplace transform method, Proposition 3.1, states that

P <Amax (2}; Xk> > t) < inf {e—“ -Etrexp (Zk 9Xk>}. (96)

The main difficulty in the proof is to bound the matrix mgf, which we accomplish by an iterative argument that alternates
between symmetrization and cumulant bounds.

Let us detail the first step of the iteration. Denote conditional expectation E(XY |g(Y)) as Ex y|4v)(XY), then

n—1
Etrexp (Zk HXk) =Ex,, . X, 1 Ex, %1, Xy {trexp < E o 06X + gxnﬂ
n—1
< Ex, o x, 0 Eexax, o X, [trexp E o 0X, + 2¢6X,,
n—1
=Ex, ... x,Eqx, . x, |trexp E o 0X}, + 266X,
n—1
< Ex, .. x,trexp (E L 60Xy, +logEcx, . x., [ezeexno

n—1
< Ex, .. x,trexp (Zk=1 0X + 292A2) .

The first identity is the tower property of conditional expectation. In the second line, we invoke the symmetrization method,
Lemma 7.6, conditional on X;,---,X,,_1, and then we relax the conditioning on the inner expectation to X;,--- ,X,,. By
construction, the Rademacher variable € is independent from X;, - -- , X,,, so we can apply the concavity result, Corollary 3.3,
conditional on X1, --- ,X,,. Finally, we use the fact (2.5) that the trace exponential is monotone to introduce the Azuma cgf
bound, Lemma 7.7, in the last inequality.

By iteration, we achieve

Etrexp (Zk 9X;€> < trexp (292 Zk Ai) . 97)

Note that this procedure relies on the fact that the sequence {Aj} of upper bounds does not depend on the values of the
random sequence {Xy}. Substitute the mgf bound (97) into the Laplace transform bound (96), and observe that the infimum

is achieved when 0 = t/402. u

D. Proof of Corollary 2.14

. Notice that this is an (n1 +n2) X (n1+n2)

0 M
Proof: Define the dilation of an n; X ne matrix M as dilation(M) := [M 0

Hermitian matrix [26]. As shown in [26, equation 2.12],
Amax (dilation(M)) = ||dilation(M)]|2 = || M |2 (98)

Thus, the corollary assumptions imply that P(||dilation(Z;)||2 < b1]X) = 1 for all X € C. Using (98), the corollary assumptions
also imply that E;_; (dilation(Z;)|X) = dilation(E;_1(Z;|X)) = 0 for all X € C. Thus, applying Corollary 2.13 for the
sequence {dilation(Z;)}, we get that,

1 & 2
P ()\max (a ;dilation(Zt)> < e|X> >1—(n1+n2)exp <_3>O;Zf) forall X €C

Using (98), Amax (= > v, dilation(Z;)) = Amax(dilation(2 37" | 7)) = || £ 3072, Zi||2 and this gives the final result. [

E. Proof of Corollary 2.15
Proof:

1) Since, for any X € C, conditioned on X, the Z,’s are adapted, the same is also true for Z; — g(X, Z1.;—1) for any function
of X and Zy.41. Let Y; := Z; — E;_1(Z¢|X). Thus, for any X € C, conditioned on X, the Y;’s are adapted. Also,
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clearly E;_1(Y:|X) = 0. Since for all X € C, P(b1] = Z; = boI|X) = 1 and since Apax(.) is a convex function, and
Amin(.) is a concave function, of a Hermitian matrix, thus b1 < E;_ 1(Zt|X ) = bol w.p. one for all X € C. Therefore,
P(Y? < (by — b1)?I|1X) = 1 for all X € C. Thus, for Theorem 2.13, 02 = || Y7, (b2 — b1)?I||2 = (b — by)?. For
any X € C, applying Theorem 2.13 for {Y;}’s conditioned on X, we get that, for any € > 0,

(X€2
mdx Z}/t <€ >1_neXp —m for all X € C

By Weyl’s theorem, )‘maX(a Zt:l Yt) = maX( Zf 1(Zt - Ei 1(Zt|X)) > max( Zf 1 Zt) +
mm( Zt 1 —Ei-1(Z;]X)). Since )‘min(é Z?:l —Ei1(Z:|X)) = maX( Zt 1Ei-1(Z:]X)) > —by, thus
Amax (% 201 Y1) = Amax(2 Y1 Zi) — ba. Therefore,

1 & ae?
P (Amax (aZZt> S b4+€X> > lfnexp (8(1)2—1)1)2> for all X € C

t=1
2) Let Y; = E;_1(Z:|X) — Z;. As before, E;_1(Y;|X) = 0 and conditioned on any X € C, the Y;’s are independent and
P(Y? < (by — b1)?I|X) = 1. As before, applying Theorem 2.13, we get that for any € > 0,

1 < we?
Pl dnax | — Y: | <elX 1-— ——— | forall X €C
( ( <az ) ! >> o (-5 ) Forsl X ¢

By Weyl’s theorem, )\maX(l 2 Vy) = maX( Y (Be1(Ze]X) = Z4)) = )‘min(l i1 Be1(Ze X)) +
Amax (2201 =Z¢) = Amin(2 i1 Be1(Z4] X)) — Anin (2 20021 Z¢) = b3 — Amin(E X4, Z¢) Therefore, for any

€ > 0,
P )\m'n 1 E Z > b3 - €‘X > 1 - ’I’LeXp - 7a6 B f()] all X S C
' o K 8(62 bl)

t=1

|
F. Proof of Lemma 2.17
Proof: Denote conditional expectation E(XA(Y)|g(Y)) as Ex y|gv)(Xh(Y)), then
E(Xh(Y)|g9(Y)) = Eyjgrv) (Exjygv) (XR(Y)))

= Eyjyv) (Bxpy (XA(Y)))

= Eyiyr) (Exy (X) h(Y))

= Eyy(v) (E(X)(Y))

= E(X)E(h(Y)[g(Y)). 99)
|

G. Proof of Lemma 3.7
Proof: Let A = I — PP'. By definition, d5(A) := max{max7|<s(Amax(A7 A7) — 1), max|rj<s(1 — Amin (A7 A47))) }-
Notice that A7 Ap = I —IL.PP'Ip. Since I PP' Iy is p.s.d., by Weyl’s theorem, Apax (A A1) < 1. Since Ayax (AT A7) —
0 while 1 — Apin (AT A7) > 0, thus,
(I — PP') = max (1 ~ Amin(I — I’TPP’IT)) (100)

By Definition, r,(P) = maxr|<, ”ﬁﬁlg’ﬂ‘z = max|z|<, | I5P|l2. Notice that |I5P|2 = Apax (I PP Ir) = 1 — Ain(I —

IZ.PP'Ir) %, and so

2 _ _ . 7 /
K3(P) = max (1= AuinlI = 1:PP'I1)) (101)

2This follows because B = I, PP'Ir is a Hermitian matrix. Let B = USU’ be its EVD. Since UU’ = I, Amin(I — B) = Amin(U(I — £)U’) =
Amin(I = 3) =1 — Amax(X) = 1 — Amax(B).
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From (100) and (101), we get d,(I — PP’) = xk2(P). [ ]
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