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Performance Guarantees for ReProCS – Correlated

Low-Rank Matrix Entries Case
Jinchun Zhan, Namrata Vaswani and Chenlu Qiu

Abstract

Online or recursive robust PCA can be posed as a problem of recovering a sparse vector, St, and a dense vector, Lt, which
lies in a slowly changing low-dimensional subspace, from Mt := St + Lt on-the-fly as new data comes in. For initialization, it
is assumed that an accurate knowledge of the subspace in which L0 lies is available. In recent works, Qiu et al proposed and
analyzed a novel solution to this problem called recursive projected compressed sensing or ReProCS. In this work, we relax one
limiting assumption of Qiu et al’s result. Their work required that the Lt’s be mutually independent over time. However this is
not a practical assumption, e.g., in the video application, Lt is the background image sequence and one would expect it to be
correlated over time. In this work we relax this and allow the Lt’s to follow an autoregressive model. We are able to show that
under mild assumptions and under a denseness assumption on the unestimated part of the changed subspace, with high probability
(w.h.p.), ReProCS can exactly recover the support set of St at all times; the reconstruction errors of both St and Lt are upper
bounded by a time invariant and small value; and the subspace recovery error decays to a small value within a finite delay of
a subspace change time. Because the last assumption depends on an algorithm estimate, this result cannot be interpreted as a
correctness result but only a useful step towards it.

I. INTRODUCTION

Principal Components Analysis (PCA) is a widely used dimension reduction technique that finds a small number of orthogonal

basis vectors, called principal components (PCs), along which most of the variability of the dataset lies. Often, for time series

data, the PCs space changes gradually over time. Updating it on-the-fly (recursively) in the presence of outliers, as more data

comes in is referred to as online or recursive robust PCA [1], [2]. As noted in earlier work, an outlier is well modeled as a

sparse vector. With this, as will be evident, this problem can also be interpreted as one of recursive sparse recovery in large

but structured (low-dimensional) noise.

A key application where the robust PCA problem occurs is in video analysis where the goal is to separate a slowly changing

background from moving foreground objects [3], [4]. If we stack each frame as a column vector, the background is well

modeled as being dense and lying in a low dimensional subspace that may gradually change over time, while the moving

foreground objects constitute the sparse outliers [4]. Other applications include detection of brain activation patterns from

functional MRI sequences or detection of anomalous behavior in dynamic networks [5].There has been a large amount of

earlier work on robust PCA, e.g. see [3]. In recent works [4], [6], the batch robust PCA problem has been posed as one of

separating a low rank matrix, Lt := [L0, L1, . . . , Lt], from a sparse matrix, St := [S0, S1, . . . , St], using the measurement

matrix,Mt := [M0,M1, . . . ,Mt] = Lt+St. A novel convex optimization solution called principal components’ pursuit (PCP)

has been proposed and shown to achieve exact recovery under mild assumptions. Since then, the batch robust PCA problem,

or what is now also often called the sparse+low-rank recovery problem, has been studied extensively. We do not discuss all

the works here due to limited space.

Online or recursive robust PCA can be posed as a problem of recovering a sparse vector, St, and a dense vector, Lt, which

lies in a slowly changing low-dimensional subspace, from Mt := St + Lt on-the-fly as new data comes in. For initialization,

it is assumed that an accurate knowledge of the subspace in which L0 lies is available. In recent works, Qiu et al proposed

and analyzed a novel solution to this problem called ReProCS [7], [8], [9].

J. Zhan, N. Vaswani are with the ECE dept at Iowa State University and C. Qiu is with Traffic Management Research Institute of the Ministry of Public
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Contribution: In this work, we relax one limiting assumption of Qiu et al’s result. Their work required that the Lt’s be

mutually independent over time. However this is not a practical assumption, e.g., in the video application, Lt is the background

image sequence and one would expect it to be correlated over time. In this work we relax this and allow the Lt’s to follow

an autoregressive (AR) model. We are able to show that, under mild assumptions and a denseness assumption on the currently

unestimated subspace, with high probability (w.h.p.), ReProCS (with subspace change model known) can exactly recover the

support set of St at all times; the reconstruction errors of both St and Lt are upper bounded by a time invariant and small

value; and the subspace recovery error decays to a small value within a finite delay of a subspace change time. The last

assumption depends on an algorithm estimate and hence this result also cannot be interpreted as a correctness result but only

a useful step towards it.

To the best of our knowledge, the result of Qiu et al and this follow-up work are among the first results for any recursive

(online) robust PCA approach, and also for recursive sparse recovery in large but structured (low-dimensional) noise.

Other very recent work on algorithms for recursive / online robust PCA includes [10], [11], [12], [13], [14], [5]. In [13],

[14], two online algorithms for robust PCA (that do not model the outlier as a sparse vector but only as a vector that is “far”

from the data subspace) have been shown to approximate the batch solution and do so only asymptotically.

II. NOTATION AND BACKGROUND

A. Notation

For a set T ⊂ {1, 2, . . . , n}, we use |T | to denote its cardinality, i.e., the number of elements in T . We use T c to denote its

complement w.r.t. {1, 2, . . . n}, i.e. T c := {i ∈ {1, 2, . . . n} : i /∈ T}.
We use the interval notation, [t1, t2], to denote the set of all integers between and including t1 to t2, i.e. [t1, t2] :=

{t1, t1 + 1, . . . , t2}. For a vector v, vi denotes the ith entry of v and vT denotes a vector consisting of the entries of v indexed

by T . We use ‖v‖p to denote the `p norm of v. The support of v, supp(v), is the set of indices at which v is nonzero,

supp(v) := {i : vi 6= 0}. We say that v is s-sparse if |supp(v)| ≤ s.
For a matrix B, B′ denotes its transpose, and B† its pseudo-inverse. For a matrix with linearly independent columns,

B† = (B′B)−1B′. We use ‖B‖2 := maxx 6=0 ‖Bx‖2/‖x‖2 to denote the induced 2-norm of the matrix. Also, ‖B‖∗ is the

nuclear norm (sum of singular values) and ‖B‖max denotes the maximum over the absolute values of all its entries. We let

σi(B) denotes the ith largest singular value of B. For a Hermitian matrix, B, we use the notation B
EVD

= UΛU ′ to denote

the eigenvalue decomposition of B. Here U is an orthonormal matrix and Λ is a diagonal matrix with entries arranged in

decreasing order. Also, we use λi(B) to denote the ith largest eigenvalue of a Hermitian matrix B and we use λmax(B) and

λmin(B) denote its maximum and minimum eigenvalues. If B is Hermitian positive semi-definite (p.s.d.), then λi(B) = σi(B).

For Hermitian matrices B1 and B2, the notation B1 � B2 means that B2−B1 is p.s.d. Similarly, B1 � B2 means that B1−B2

is p.s.d.

For a Hermitian matrix B, ‖B‖2 =
√

max(λ2
max(B), λ2

min(B)) and thus, ‖B‖2 ≤ b implies that −b ≤ λmin(B) ≤
λmax(B) ≤ b.

We use I to denote an identity matrix of appropriate size. For an index set T and a matrix B, BT is the sub-matrix of

B containing columns with indices in the set T . Notice that BT = BIT . Given a matrix B of size m × n and B2 of size

m×n2, [B B2] constructs a new matrix by concatenating matrices B and B2 in the horizontal direction. Let Brem be a matrix

containing some columns of B. Then B \Brem is the matrix B with columns in Brem removed.

For a tall matrix P , span(P ) denotes the subspace spanned by the column vectors of P .

The notation [.] denotes an empty matrix.

Definition 2.1: We refer to a tall matrix P as a basis matrix if it satisfies P ′P = I .

Definition 2.2: We use the notation Q = basis(B) to mean that Q is a basis matrix and span(Q) = span(B). In other

words, the columns of Q form an orthonormal basis for the range of B.

Definition 2.3: The s-restricted isometry constant (RIC) [15], δs, for an n×m matrix Ψ is the smallest real number satisfying

(1− δs)‖x‖22 ≤ ‖ΨTx‖22 ≤ (1 + δs)‖x‖22 for all sets T ⊆ {1, 2, . . . n} with |T | ≤ s and all real vectors x of length |T |.
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It is easy to see that maxT :|T |≤s ‖(ΨT
′ΨT )−1‖2 ≤ 1

1−δs(Ψ) [15].

Definition 2.4: We give some notation for random variables in this definition.

1) We let E[Z] denote the expectation of a random variable (r.v.) Z and E[Z|X] denote its conditional expectation given

another r.v. X .

2) Let B be a set of values that a r.v. Z can take. We use Be to denote the event Z ∈ B, i.e. Be := {Z ∈ B}.
3) The probability of any event Be can be expressed as [16],

P(Be) := E[IB(Z)].

where

IB(Z) :=

{
1 if Z ∈ B
0 otherwise

is the indicator function on the set B.

4) For two events Be, B̃e, P(Be|B̃e) refers to the conditional probability of Be given B̃e, i.e. P(Be|B̃e) := P(Be, B̃e)/P(B̃e).

5) For a r.v. X , and a set B of values that the r.v. Z can take, the notation P(Be|X) is defined as

P(Be|X) := E[IB(Z)|X].

Notice that P(Be|X) is a r.v. (it is a function of the r.v. X) that always lies between zero and one.

Finally, RHS refers to the right hand side of an equation or inequality; w.p. means “with probability”; and w.h.p. means

“with high probability”.

B. Compressive Sensing result

The error bound for noisy compressive sensing (CS) based on the RIC is as follows [17].

Theorem 2.5 ([17]): Suppose we observe

y := Ψx+ z

where z is the noise. Let x̂ be the solution to following problem

min
x
‖x‖1 subject to ‖y −Ψx‖2 ≤ ξ (1)

Assume that x is s-sparse, ‖z‖2 ≤ ξ, and δ2s(Ψ) < b(
√

2− 1) for some 0 ≤ b < 1. Then the solution of (1) obeys

‖x̂− x‖2 ≤ C1ξ

with C1 =
4
√

1 + δ2s(Ψ)

1− (
√

2 + 1)δ2s(Ψ)
≤

4
√

1 + b(
√

2− 1)

1− (
√

2 + 1)b(
√

2− 1)
.

Remark 2.6: Notice that if b is small enough, C1 is a small constant but C1 > 1. For example, if δ2s(Ψ) ≤ 0.15, then

C1 ≤ 7. If C1ξ > ‖x‖2, the normalized reconstruction error bound would be greater than 1, making the result useless. Hence,

(1) gives a small reconstruction error bound only for the small noise case, i.e., the case where ‖z‖2 ≤ ξ � ‖x‖2.

C. Results from linear algebra

Davis and Kahan’s sin θ theorem [18] studies the rotation of eigenvectors by perturbation.

Theorem 2.7 (sin θ theorem [18]): Given two Hermitian matrices A and H satisfying

A =
[
E E⊥

] [A 0

0 A⊥

][
E′

E⊥
′

]
, H =

[
E E⊥

] [H B′

B H⊥

][
E′

E⊥
′

]
(2)

where [E E⊥] is an orthonormal matrix. The two ways of representing A+H are

A+H =
[
E E⊥

] [A+H B′

B A⊥ +H⊥

][
E′

E⊥
′

]
=
[
F F⊥

] [Λ 0

0 Λ⊥

][
F ′

F⊥
′

]
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where [F F⊥] is another orthonormal matrix. Let R := (A+H)E −AE = HE. If λmin(A) > λmax(Λ⊥), then

‖(I − FF ′)E‖2 ≤
‖R‖2

λmin(A)− λmax(Λ⊥)

The above result bounds the amount by which the two subspaces span(E) and span(F ) differ as a function of the norm of

the perturbation ‖R‖2 and of the gap between the minimum eigenvalue of A and the maximum eigenvalue of Λ⊥. Next, we

state Weyl’s theorem which bounds the eigenvalues of a perturbed Hermitian matrix, followed by Ostrowski’s theorem.

Theorem 2.8 (Weyl [19]): Let A and H be two n× n Hermitian matrices. For each i = 1, 2, . . . , n we have

λi(A) + λmin(H) ≤ λi(A+H) ≤ λi(A) + λmax(H)

Theorem 2.9 (Ostrowski [19]): Let H and W be n × n matrices, with H Hermitian and W nonsingular. For each i =

1, 2 . . . n, there exists a positive real number θi such that λmin(WW ′) ≤ θi ≤ λmax(WW ′) and λi(WHW ′) = θiλi(H).

Therefore,

λmin(WHW ′) ≥ λmin(WW ′)λmin(H)

The following lemma proves some simple linear algebra facts.

Lemma 2.10: Suppose that P , P̂ and Q are three basis matrices. Also, P and P̂ are of the same size, Q′P = 0 and

‖(I − P̂ P̂ ′)P‖2 = ζ∗. Then,

1) ‖(I − P̂ P̂ ′)PP ′‖2 = ‖(I − PP ′)P̂ P̂ ′‖2 = ‖(I − PP ′)P̂‖2 = ‖(I − P̂ P̂ ′)P‖2 = ζ∗

2) ‖PP ′ − P̂ P̂ ′‖2 ≤ 2‖(I − P̂ P̂ ′)P‖2 = 2ζ∗

3) ‖P̂ ′Q‖2 ≤ ζ∗
4)
√

1− ζ2
∗ ≤ σi((I − P̂ P̂ ′)Q) ≤ 1

The proof is in the Appendix.

D. High probability tail bounds for sums of random matrices

The following lemma follows easily using Definition 2.4. We will use this at various places in the paper.

Lemma 2.11: Suppose that B is the set of values that the r.v.s X,Y can take. Suppose that C is a set of values that the r.v.

X can take. For a 0 ≤ p ≤ 1, if P(Be|X) ≥ p for all X ∈ C, then P(Be|Ce) ≥ p as long as P(Ce) > 0.

The proof is in the Appendix.

The following lemma is an easy consequence of the chain rule of probability applied to a contracting sequence of events.

Lemma 2.12: For a sequence of events Ee0 , E
e
1 , . . . E

e
m that satisfy Ee0 ⊇ Ee1 ⊇ Ee2 · · · ⊇ Eem, the following holds

P(Eem|Ee0) =

m∏
k=1

P(Eek|Eek−1).

Proof: P(Eem|Ee0) = P(Eem, E
e
m−1, . . . E

e
0 |Ee0) =

∏m
k=1 P(Eek|Eek−1, E

e
k−2, . . . E

e
0) =

∏m
k=1 P(Eek|Eek−1).

Next, we state the matrix Azuma inequality which gives tail bounds for sums of random matrices.

Theorem 2.13: (Matrix Azuma) Consider a finite adapted sequence {Zt}t≥1 of Hermitian matrices in dimension n, and a

fixed sequence At of self-adjoint matrices that satisfy

Et−1(Zt) = E(Zt|Z1, · · · , Zt−1) = 0, and Z2
t � A2

t almost surely.

Then, for all ε > 0,

P

(
λmax

(∑
t

Zt

)
≤ ε
)
≥ 1− n exp

(
− ε2

8σ2

)
, where σ2 =

∥∥∥∥∥∑
t

A2
t

∥∥∥∥∥ .
The proof is in the appendix.

Corollary 2.14 (Matrix Azuma conditioned on another random variable for any zero mean matrix): Consider an α-length

adapted sequence {Zt} of random matrices of size n1 × n2 given a random variable X . Assume that, for all X ∈ C, (i)
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P(‖Zt‖2 ≤ b1|X) = 1 and (ii) Et−1(Zt|X) = 0. Then, for all ε > 0,

P

(∥∥∥∥∥ 1

α

α∑
t=1

Zt

∥∥∥∥∥ ≤ ε|X
)
≥ 1− (n1 + n2) exp

(
− αε2

32b21

)
The proof is in the appendix.

Corollary 2.15 (Matrix Azuma conditioned on another random variable for a nonzero mean Hermitian matrix): Consider

an α-length sequence {Zt}1≤t≤α of random Hermitian matrices of size n × n given a random variable X . Assume that, for

all X ∈ C, (i) P(b1I � Zt � b2I|X) = 1, 1 ≤ t ≤ α and (ii) b3I � 1
α

∑α
t=1 Et−1(Zt|X) � b4I . Then for all ε > 0,

P

(
λmax

(
1

α

α∑
t=1

Zt|X
)
≤ b4 + ε

)
≥ 1− n exp

(
− αε2

8(b2 − b1)2

)

P

(
λmin

(
1

α

α∑
t=1

Zt|X
)
≥ b3 − ε

)
≥ 1− n exp

(
− αε2

8(b2 − b1)2

)
The proof is in the appendix.

Definition 2.16: Let function z(α, ε, b2 − b1) := exp(− αε2

8(b2−b1)2 ).

Lemma 2.17: If random variable X and Y are independent, h(·), g(·) are some functions, then E(Xh(Y )|g(Y )) =

E(X)E(h(Y )|g(Y )).

The proof is in the appendix.

III. PROBLEM DEFINITION

The measurement vector at time t, Mt, satisfies

Mt := Lt + St (3)

where St is a sparse vector and Lt is a dense vector that satisfies the model given below. Denote by P0 a basis matrix

for Lttrain = [L0, L1, · · · , Lttrain ], i.e., span(P0) = span(Lttrain). We are given an accurate enough estimate P̂0 for P0, i.e.,

‖(I − P̂0P̂
′
0)P0‖2 is small. The goal is

1) to estimate both St and Lt at each time t > ttrain, and

2) to estimate span(Lt) every so often.

A. Signal Model

Signal Model 3.1 (Model on Lt):

1) We assume that Lt = P(t)at with P(t) = Pj for all tj ≤ t < tj+1, j = 0, 1, 2 · · · J , where Pj is an n× rj basis matrix

with rj � min(n, (tj+1 − tj)). At the change times, tj , Pj changes as

Pj = [Pj−1 Pj,new].

Here, Pj,new is an n× cj,new basis matrix with P ′j,newPj−1 = 0. Thus rj = rj−1 + cj,new. We let t0 = 0 and tJ+1 equal

the sequence length or tJ+1 =∞.

2) The vector of coefficients, at := P(t)
′Lt, satisfies the following autoregressive model

at = bat−1 + νt

where b < 1 is a scalar, E[νt] = 0, νt’s are mutually independent over time t and the entries of any νt are pairwise

uncorrelated, i.e. E[(νt)i(νt)j ] = 0 when i 6= j.

Definition 3.2: Define the covariance matrices of νt and at to be the diagonal matrices Λν,t := Cov[νt] = E(νtν
′
t) and

Λa,t := Cov[at] = E(ata
′
t). Then clearly,

Λa,t = b2Λa,t−1 + Λν,t (4)
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Also, for tj ≤ t < tj+1, at is an rj length vector which can be split as

at = Pj
′Lt =

[
at,∗

at,new

]
where at,∗ := Pj−1

′Lt is an rj−1 length vector and at,new := Pj,new
′Lt is a cj,new length vector. Thus, for this interval, Lt can

be rewritten as

Lt = [Pj−1 Pj,new]

[
at,∗

at,new

]
= Pj−1at,∗ + Pj,newat,new

Also, Λa,t can be split as

Λa,t =

[
(Λa,t)∗ 0

0 (Λa,t)new

]
where (Λa,t)∗ = Cov[at,∗] and (Λa,t)new = Cov[at,new] are diagonal matrices.

Assumption 3.3: Assume that Lt satisfies Signal Model 3.1 with

1) 0 ≤ cj,new ≤ c for all j (thus rj ≤ rmax := r0 + Jc)

2) ‖νt‖∞ ≤ (1− b)γ∗
3)

max
j

max
t∈Ij,k

‖νt,new‖∞ ≤ (1− b)γnew,k, (5)

where γnew,k = min(vk−1γnew, γ∗) with a v > 1

4)

(1− b2)λ− ≤ λmin(Λν,t) ≤ λmax(Λν,t) ≤ (1− b2)λ+,

and

λ− ≤ λmin(Λa,0) ≤ λmax(Λa,0) ≤ (1− b2)λ+,

where 0 < λ− < λ+ <∞
5) (1− b2)λ−new ≤ λmin((Λν,t)new) ≤ λmax((Λν,t)new) ≤ (1− b2)λ+

new and

λ−new ≤ λmin((Λa,tj )new) ≤ λmax(Λa,tj )new) ≤ (1− b2)λ+
new

With the above assumptions, clearly, the eigenvalues of Λa,t lie between λ− and λ+ and those of Λa,t,new lie between λ−new

and λ+
new. Thus the condition numbers of any Λa,t and of Λa,t,new are bounded by

f :=
λ+

λ−
and g :=

λ+
new

λ−new

respectively. Define the following quantities for St.

Definition 3.4: Let Tt := {i : (St)i 6= 0} denote the support of St. Define

Smin := min
t>ttrain

min
i∈Tt
|(St)i|, and s := max

t
|Tt|

B. Measuring denseness of a matrix and its relation with RIC

Before we can state the denseness assumption, we need to define the denseness coefficient.

Definition 3.5 (denseness coefficient): For a matrix or a vector B, define

κs(B) = κs(span(B)) := max
|T |≤s

‖IT ′basis(B)‖2 (6)

where ‖.‖2 is the vector or matrix `2-norm.

Clearly, κs(B) ≤ 1. First consider an n-length vector B. Then κs measures the denseness (non-compressibility) of B. A

small value indicates that the entries in B are spread out, i.e. it is a dense vector. A large value indicates that it is compressible

(approximately or exactly sparse). The worst case (largest possible value) is κs(B) = 1 which indicates that B is an s-sparse
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(Subspace change time)

K times Projection PCA

First Projection PCA Second Projection PCA

K times Projection PCA

Fig. 1: The K Projection PCA steps.

vector. The best case is κs(B) =
√
s/n and this will occur if each entry of B has the same magnitude. Similarly, for an n× r

matrix B, a small κs means that most (or all) of its columns are dense vectors.

Remark 3.6: The following facts should be noted about κs(.).

1) For a matrix B of rank r, κs(B) is an non-decreasing function of s and of r

2) A loose bound on κs(B) obtained using triangle inequality is κs(B) ≤ sκ1(B).

The lemma below relates the denseness coefficient of a basis matrix P to the RIC of I−PP ′. The proof is in the Appendix.

Lemma 3.7: For an n× r basis matrix P (i.e P satisfying P ′P = I),

δs(I − PP ′) = κ2
s(P ).

In other words, if P is dense enough (small κs), then the RIC of I − PP ′ is small.

In this work, we assume an upper bound on κ2s(Pj) for all j, and a tighter upper bound on κ2s(Pj,new), i.e., there exist

κ+
2s,∗ < 1 and a κ+

2s,new < κ+
2s,∗ such that

max
j
κ2s(Pj−1) ≤ κ+

2s,∗ (7)

max
j
κ2s(Pj,new) ≤ κ+

2s,new (8)

Additionally, we also assume denseness of another matrix, Dj,new,k, whose columns span the currently unestimated part of

span(Pj,new) (see Theorem 4.2).

The denseness coefficient κs(B) is related to the denseness assumption required by PCP [4]. That work uses κ1(B) to

quantify denseness.

IV. THE REPROCS ALGORITHM AND ITS PERFORMANCE GUARANTEE

A. Recursive Projected CS

We summarize the ReProCS algorithm in Algorithm 2 [8]. This calls the projection PCA algorithm in the subspace update

step. Given a data matrix D, a basis matrix P and an integer r, projection-PCA (proj-PCA) applies PCA on Dproj := (I−PP ′)D,

i.e., it computes the top r eigenvectors (the eigenvectors with the largest r eigenvalues) of 1
αD
DprojDproj

′. Here αD is the number

of column vectors in D. This is summarized in Algorithm 1.

If P = [.], then projection-PCA reduces to standard PCA, i.e. it computes the top r eigenvectors of 1
αD
DD′.

Algorithm 1 projection-PCA: Q← proj-PCA(D, P, r)
1) Projection: compute Dproj ← (I − PP ′)D

2) PCA: compute 1
αD
DprojDproj

′ EVD=
[
QQ⊥

] [Λ 0

0 Λ⊥

][
Q′

Q⊥
′

]
where Q is an n × r basis matrix and αD is the number

of columns in D.
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Algorithm 2 Recursive Projected CS (ReProCS)
Parameters: algorithm parameters: ξ, ω, α, K, model parameters: tj , r0, c

(set as in Theorem 4.2 or as in [8, Section IX-B] when the model is not known)

Input: Mt, Output: Ŝt, L̂t, P̂(t)

Initialization: Compute P̂0 ← proj-PCA([L1, L2, · · · , Lttrain ], [.], r0) and set P̂(t) ← P̂0.

Let j ← 1, k ← 1.

For t > ttrain, do the following:

1) Estimate Tt and St via Projected CS:

a) Nullify most of Lt: compute Φ(t) ← I − P̂(t−1)P̂
′
(t−1), compute yt ← Φ(t)Mt

b) Sparse Recovery: compute Ŝt,cs as the solution of minx ‖x‖1 s.t. ‖yt − Φ(t)x‖2 ≤ ξ
c) Support Estimate: compute T̂t = {i : |(Ŝt,cs)i| > ω}
d) LS Estimate of St: compute (Ŝt)T̂t = ((Φt)T̂t)

†yt, (Ŝt)T̂ ct
= 0

2) Estimate Lt: L̂t = Mt − Ŝt.
3) Update P̂(t): K Projection PCA steps (Figure 1).

a) If t = tj + kα− 1,

i) P̂j,new,k ← proj-PCA
( [
L̂tj+(k−1)α, . . . , L̂tj+kα−1

]
, P̂j−1, c

)
.

ii) set P̂(t) ← [P̂j−1 P̂j,new,k]; increment k ← k + 1.

Else

i) set P̂(t) ← P̂(t−1).

b) If t = tj +Kα− 1, then set P̂j ← [P̂j−1 P̂j,new,K ]. Increment j ← j + 1. Reset k ← 1.

4) Increment t← t+ 1 and go to step 1.

The key idea of ReProCS is as follows. First, consider a time t when the current basis matrix P(t) = P(t−1) and this has

been accurately predicted using past estimates of Lt, i.e. we have P̂(t−1) with ‖(I− P̂(t−1)P̂
′
(t−1))P(t)‖2 small. We project the

measurement vector, Mt, into the space perpendicular to P̂(t−1) to get the projected measurement vector yt := Φ(t)Mt where

Φ(t) = I− P̂(t−1)P̂
′
(t−1) (step 1a). Since the n×n projection matrix, Φ(t) has rank n− r∗ where r∗ = rank(P̂(t−1)), therefore

yt has only n− r∗ “effective” measurements1, even though its length is n. Notice that yt can be rewritten as yt = Φ(t)St +βt

where βt := Φ(t)Lt. Since ‖(I − P̂(t−1)P̂
′
(t−1))P(t−1)‖2 is small, the projection nullifies most of the contribution of Lt and

so the projected noise βt is small. Recovering the n dimensional sparse vector St from yt now becomes a traditional sparse

recovery or CS problem in small noise [20], [21], [22], [15], [23], [24]. We use `1 minimization to recover it (step 1b). If

the current basis matrix P(t), and hence its estimate, P̂(t−1), is dense enough, then, by Lemma 3.7, the RIC of Φ(t) is small

enough. Using Theorem 2.5, this ensures that St can be accurately recovered from yt. By thresholding on the recovered St,

one gets an estimate of its support (step 1c). By computing a least squares (LS) estimate of St on the estimated support and

setting it to zero everywhere else (step 1d), we can get a more accurate final estimate, Ŝt, as first suggested in [25]. This

Ŝt is used to estimate Lt as L̂t = Mt − Ŝt. As we explain in the proof of Lemma 9.1, if Smin is large enough and the

support estimation threshold, ω, is chosen appropriately, we can get exact support recovery, i.e. T̂t = Tt. In this case, the error

et := Ŝt − St = Lt − L̂t has the following simple expression:

et = ITt(Φ(t))Tt
†
βt = ITt [(Φ(t))

′
Tt(Φ(t))Tt ]

−1ITt
′Φ(t)Lt (9)

The second equality follows because (Φ(t))T
′
Φ(t) = (Φ(t)IT )

′
Φ(t) = IT

′Φ(t) for any set T .

Now consider a time t when P(t) = Pj = [Pj−1, Pj,new] and Pj−1 has been accurately estimated but Pnew has not been

estimated, i.e. consider a t ∈ Ij,1. At this time, P̂(t−1) = P̂j−1 and so Φ(t) = Φj,0 := I − P̂j−1P̂
′
j−1. Let r := r0 + (j − 1)c.

1i.e. some r∗ entries of yt are linear combinations of the other n− r∗ entries
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Assume that the delay between change times is large enough so that by t = tj , P̂j−1 is an accurate enough estimate of Pj−1,

i.e. ‖Φj,0Pj−1‖2 ≤ rζ � 1. It is easy to see using Lemma 2.10 that κs(Φ0Pnew) ≤ κs(Pnew)+rζ, i.e. Φ0Pnew is dense because

Pnew is dense and because P̂j−1 is an accurate estimate of Pj−1 (which is perpendicular to Pnew). Moreover, using Lemma

3.7, it can be shown that φ0 := max|T |≤s ‖[(Φ0)′T (Φ0)T ]−1‖2 ≤ 1
1−δs(Φ0) ≤ 1

1−(κs(Pj−1)+rζ)2 . The error et still satisfies (9)

although its magnitude is not as small. Using the above facts in (9), we get that

‖et‖2 ≤
1

1− (κs(Pj−1) + rζ)2
[κs(Pnew)

√
cγnew + rζ(

√
rγ∗ +

√
cγnew)]

If
√
ζ < 1/γ∗, all terms containing ζ can be ignored and we get that the above is approximately upper bounded by

κs(Pnew)
1−κ2

s(Pj−1)

√
cγnew. Using the denseness assumption, this quantity is a small constant times

√
cγnew, e.g. with the numbers

assumed in Theorem 4.2 we get a bound of 0.18
√
cγnew. Since γnew � Smin and c is assumed to be small, thus,

‖et‖2 = ‖St − Ŝt‖2 is small compared with ‖St‖2, i.e. St is recovered accurately. With each projection PCA step, as

we explain below, the error et becomes even smaller.

Since L̂t = Mt − Ŝt (step 2), et also satisfies et = Lt − L̂t. Thus, a small et means that Lt is also recovered accurately.

The estimated L̂t’s are used to obtain new estimates of Pj,new every α frames for a total of Kα frames via a modification of

the standard PCA procedure, which we call projection PCA (step 3). In the first projection PCA step, we get the first estimate

of Pj,new, P̂j,new,1. For the next α frame interval, P̂(t−1) = [P̂j−1, P̂j,new,1] and so Φ(t) = Φj,1 = I− P̂j−1P̂
′
j−1− P̂new,1P̂

′
new,1.

Using this in the projected CS step reduces the projection noise, βt, and hence the reconstruction error, et, for this interval,

as long as γnew,k increases slowly enough. Smaller et makes the perturbation seen by the second projection PCA step even

smaller, thus resulting in an improved second estimate P̂j,new,2. Within K updates (K chosen as given in Theorem 4.2), it

can be shown that both ‖et‖2 and the subspace error drop down to a constant times
√
ζ. At this time, we update P̂j as

P̂j = [P̂j−1, P̂j,new,K ].

B. Main Result

The following definition is needed for Theorem 4.2.

Definition 4.1: 1) Let r := r0 + (J − 1)c.

2) Define η = max{ cγ
2
∗

λ+ ,
cγ2

new,k

λ+
new

, k = 1, 2, · · · ,K}.
3) Define K(ζ) :=

⌈
log(0.85cζ)

log 0.6

⌉
4) Define ξ0(ζ) :=

√
cγnew +

√
ζ(
√
r +
√
c)

5) With K = K(ζ), define

αadd :=
⌈
(log 61KJ + 11 log n)

8 · 1922 min(1.24Kγ4
new, γ

4
∗)

ζ2(λ−)2

⌉
Theorem 4.2: Consider Algorithm 2. Assume that Assumption 3.1 holds with b ≤ 0.4. Assume also that the initial subspace

estimate is accurate enough, i.e. ‖(I − P̂0P̂
′
0)P0‖ ≤ r0ζ, with

ζ ≤ min

(
10−4

r2
,

1.5× 10−4

r2f
,

1

r3γ2
∗

)
where f :=

λ+

λ−

If the following conditions hold:

1) the algorithm parameters are set as ξ = ξ0(ζ), 7ξ ≤ ω ≤ Smin − 7ξ, K = K(ζ), α ≥ αadd(ζ) ≥ 100,

2) slow subspace change holds: tj+1 − tj ≥ Kα; (5) holds with v = 1.2; and 14ξ ≤ Smin,

3) denseness holds: maxj κ2s(Pj−1) ≤ κ+
2s,∗ = 0.3 and maxj κ2s(Pj,new) ≤ κ+

2s,new = 0.15 where

κs(B) := max
|T |≤s

‖IT ′basis(B)‖2

is the denseness coefficient introduced in [8],

4) matrices Dj,new,k := (I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj,new and Qj,new,k := (I − Pj,newPj,new

′)P̂j,new,k satisfy

κs(Dj,new,k) ≤ κ+
s := 0.15,

κ2s(Qj,new,k) ≤ κ̃+
2s := 0.15,
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5) the condition number of the covariance matrix of at,new is bounded, i.e., g ≤ g+ =
√

2,

6) and η ≤ 1.7,

then, with probability at least (1− n−10),

1) at all times, t,

T̂t = Tt and

‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt − St‖2 ≤ 0.18
√
c0.72k−1γnew + 1.2

√
ζ(
√
r + 0.023

√
c)

2) the subspace error SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2 satisfies

SE(t)≤
{

(r0 + (j − 1)c)ζ + 0.15cζ + 0.6k−1 if t ∈ Ij,k, k ≤ K
(r0 + jc)ζ if t ∈ Ij,K+1

≤
{

10−2
√
ζ + 0.6k−1 if t ∈ Ij,k, k ≤ K

10−2
√
ζ if t ∈ Ij,K+1

3) the error et = Ŝt − St = Lt − L̂t satisfies the following at various times

‖et‖2≤
{

0.18
√
c0.72k−1γnew + 1.2(

√
r + 0.023

√
c)(r0 + (j − 1)c)ζγ∗ if t ∈ Ij,k, k = 1, 2 . . .K

1.2(r0 + jc)ζ
√
rγ∗ if t ∈ Ij,K+1

≤
{

0.18
√
c0.72k−1γnew + 1.2(

√
r + 0.023

√
c)
√
ζ if t ∈ Ij,k, k = 1, 2 . . .K

1.2
√
r
√
ζ if t ∈ Ij,K+1

Proof: We give a brief proof outline in Sec IV-D. The full proof is given in Sec VI.

C. Discussion

The above result says the following. Consider Algorithm 2. Assume that the initial subspace error is small enough. If the

algorithm parameters are appropriately set, if slow subspace change holds, if the subspaces are dense, if the condition number

of Cov[at,new] is small enough, and if the currently unestimated part of the newly added subspace is dense enough (this is

an assumption on the algorithm estimates), then, w.h.p., we will get exact support recovery at all times. Moreover, the sparse

recovery error will always be bounded by 0.18
√
cγnew plus a constant times

√
ζ. Since ζ is very small, γnew � Smin, and c

is also small, the normalized reconstruction error for recovering St will be small at all times. In the second conclusion, we

bound the subspace estimation error, SE(t). When a subspace change occurs, this error is initially bounded by one. The above

result shows that, w.h.p., with each projection PCA step, this error decays exponentially and falls below 0.01
√
ζ within K

projection PCA steps. The third conclusion shows that, with each projection PCA step, w.h.p., the sparse recovery error as

well as the error in recovering Lt also decay in a similar fashion.

The above result allows the at’s, and hence the Lt’s, to be correlated over time; it models the correlation using an AR

model which is a frequently used practical model. Even with this more general model as long as the AR parameter, b ≤ 0.4,

we are able to get almost exactly the same result as that of Qiu et al [8, Theorem 4.1]. The α needed is a little larger. Also,

the only extra assumption needed is a small enough upper bound on η which is the ratio of the maximum magnitude entry of

any νt to the maximum variance. This is true for many types of probability distributions. For example if the ith entry of νt is

±qi with equal probability independent of all others then η = 1. If each entry is zero mean uniform distributed (with different

spreads) then η = 3.

Like [8], we still need a denseness assumption on Dnew,k and Qnew,k both of which are functions of algorithm estimates

P̂j−1 and P̂j,new,k. Because of this, our result cannot be interpreted as a correctness result but only a useful step towards it.

As explained in [8], from simulation experiments, this assumption does hold whenever there is some support changes every

few frames. In future work, we hope to be able to replace it with an assumption on the support change of St’s.

Also, like [8], the above result analyzes an algorithm that assumes knowledge of the model parameters c, γnew and the

subspace change times tj . Requiring kmowledge of c and γnew is not very restrictive. However it also needs to know the
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subspace change times tj and this is somewhat restrictive. One approach to try to remove this requirement is explained in [8].

As explained in [8], under slow subspace change, it is quite valid to assume that the condition number of the new directions,

g, is bounded, in fact if at most one new direction could get added, i.e. if c = 1, then we would always have g = 1. On the

other hand, notice that we do not need any bound on f . This is important and needed to allow E[‖Lt‖22] to be large (Lt is

the large but structured noise in case St is the signal of interest) while still allowing slow subspace change (needs small γnew

and hence small λ− ≤ γnew). Notice that E[‖Lt‖22] ≤ rλ+.

D. Proof Outline

The first step in the proof is to analyze the projected sparse recovery step and show exact support recovery conditioned on

the fact that the subspace has been accurately recovered in the previous projection-PCA interval. Exact support recovery along

with the LS step allow us to get an exact expression for the recovery error in estimating St and hence also for that of Lt. This

exact expression is the key to being able to analyze the subspace recovery.

For subspace recovery, the first step involves bounding the subspace recovery error in terms of sub-matrices of the true

matrix,
∑
t Φ(t)L̂tL̂

′
tΦ
′
(t), and the perturbation in it,

∑
t Φ(t)(L̂tL̂

′
t − LtL′t)Φ′(t), using the famous sin θ theorem [18]. This

result bounds the error in the eigenvectors of a matrix perturbed by a Hermitian perturbation. The second step involves obtaining

high probability bounds on each of the terms in this bound using the matrix Azuma inequality [26]. The third step involves

using the assumptions of the theorem to show that this bound decays roughly exponentially with k and finally falls below cζ

within K proj-PCA steps.

The most important difference w.r.t. the result of [8] is the following. Define the random variable Xj,k :=

[ν0, ν1, · · · , νtj+kα−1]. In the second step, we need to bound the minimum or maximum singular values of sub-matrices

of terms of the form
∑
t f1(Xj,k−1)ata

′
tf2(Xj,k−1) where f1(.), f2(.) are functions of the random variable Xj,k−1. In Qiu

et al [8], one could use a simple corollary of the matrix Hoeffding inequality [26] to do this because there, the terms of this

summation were conditionally independent given Xj,k−1. However, here they are not. We instead need to first use the AR

model to rewrite things in terms of sub-matrices of
∑
t f1(Xj,k−1)νtf3(ν0, ν1, · · · , νt−1)′f2(Xj,k−1). Notice that even now,

the terms of this summation are not conditionally independent given Xj,k−1. However, conditioned on Xj,k−1, this term is

now in a form for which the matrix Azuma inequality [26] can be used.

Notice that the ReProCS algorithm does not need knowledge of b. If b were known, one could modify the algorithm to do

proj-PCA on (L̂t − bL̂t−1)’s. With this one could use the exact same proof strategy as in [8].

V. SIMULATION

In this section, we compare ReProCS with PCP using simulated data that satisfies the assumed signal model. The data was

generated as explained in [8, Section X-C] except that here we generate correlated at’s using at = bat−1 + νt with b = 0.5

and with νt,∗ being uniformly distributed between [−γ∗, γ∗] and νt,new uniformly distributed between [−γnew,k, γnew,k]. Also

we set ttrain = 40, Smin = 2, Smax = 3, s = 7, r0 = 12, n = 200, J = 2, v = 1.1 and the support Tt was constant for every

set of 50 frames and then changed by 1 index. Other parameters were the same as those in [8, Section X-C]. By running 100

Monte Carlo simulations, we got the result shown in Figure 2.

VI. PROOF OF THEOREM 4.2
Here we first list some definitions used in the proof.

Definition 6.1: We define the noise seen by the sparse recovery step at time t as

βt := ‖(I − P̂(t−1)P̂
′
(t−1))Lt‖2.

Definition 6.2: We define the subspace estimation errors as follows. Recall that P̂j,new,0 = [.] (empty matrix).

SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2,

ζj,∗ := ‖(I − P̂j−1P̂
′
j−1)Pj−1‖2
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Fig. 2: Comparing recovery error of PCP implemented at the time instants shown by the triangles and of ReProCS.

ζj,k := ‖(I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k)Pj,new‖2

Remark 6.3: Recall from the model given in Sec III-A and from Algorithm 2 that

1) P̂j,new,k is orthogonal to P̂j−1, i.e. P̂ ′j,new,kP̂j−1 = 0

2) P̂j−1 := [P̂0, P̂1,new,K , . . . P̂j−1,new,K ] and Pj−1 := [P0, P1,new, . . . Pj−1,new]

3) for t ∈ Ij,k+1, P̂(t) = [P̂j−1, P̂j,new,k] and P(t) = Pj = [Pj−1, Pj,new].

4) Φ(t) := I − P̂(t−1)P̂
′
(t−1)

From Definition 6.2 and the above, it is easy to see that

1) ζj,∗ ≤ ζ1,∗ +
∑j−1
j′=1 ζj′,K

2) SE(t) ≤ ζj,∗ + ζj,k ≤ ζ1,∗ +
∑j−1
j′=1 ζj′,K + ζj,k for t ∈ Ij,k+1.

Definition 6.4: Define the following

1) Φj,k, Φj,0 and φk

a) Φj,k := I − P̂j−1P̂
′
j−1 − P̂j,new,kP̂

′
j,new,k is the CS matrix for t ∈ Ij,k+1, i.e. Φ(t) = Φj,k for this duration.

b) Φj,0 := I − P̂j−1P̂
′
j−1 is the CS matrix for t ∈ Ij,1, i.e. Φ(t) = Φj,0 for this duration. Φj,0 is also the matrix used

in all of the projection PCA steps for t ∈ [tj , tj+1 − 1].

c) φk := maxj maxT :|T |≤s ‖((Φj,k)T
′
(Φj,k)T )−1‖2. It is easy to see that φk ≤ 1

1−maxj δs(Φj,k) [15].

2) Dj,new,k, Dj,new and Dj,∗

a) Dj,new,k := Φj,kPj,new. span(Dj,new,k) is the unestimated part of the newly added subspace for any t ∈ Ij,k+1.

b) Dj,new := Dj,new,0 = Φj,0Pj,new. span(Dj,new) is interpreted similarly for any t ∈ Ij,1.

c) Dj,∗,k := Φj,kPj−1. span(Dj,∗,k) is the unestimated part of the existing subspace for any t ∈ Ij,k
d) Dj,∗ := Dj,∗,0 = Φj,0Pj−1. span(Dj,∗,k) is interpreted similarly for any t ∈ Ij,1
e) Notice that ζj,0 = ‖Dj,new‖2, ζj,k = ‖Dj,new,k‖2, ζj,∗ = ‖Dj,∗‖2. Also, clearly, ‖Dj,∗,k‖2 ≤ ζj,∗.

Definition 6.5:

1) Let Dj,new
QR
= Ej,newRj,new denote its QR decomposition. Here Ej,new is a basis matrix and Rj,new is upper triangular.

2) Let Ej,new,⊥ be a basis matrix for the orthogonal complement of span(Ej,new) = span(Dj,new). To be precise, Ej,new,⊥

is a n× (n− cj,new) basis matrix that satisfies E′j,new,⊥Ej,new = 0.

3) Using Ej,new and Ej,new,⊥, define Aj,k, Aj,k,⊥, Hj,k, Hj,k,⊥ and Bj,k as

Aj,k :=
1

α

∑
t∈Ij,k

Ej,new
′Φj,0LtLt

′Φj,0Ej,new

Aj,k,⊥ :=
1

α

∑
t∈Ij,k

Ej,new,⊥
′Φj,0LtLt

′Φj,0Ej,new,⊥

Hj,k :=
1

α

∑
t∈Ij,k

Ej,new
′Φj,0(etet

′ − Ltet′ − etLt′)Φj,0Ej,new
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Hj,k,⊥ :=
1

α

∑
t∈Ij,k

Ej,new,⊥
′Φj,0(etet

′ − Ltet′ − etLt′)Φj,0Ej,new,⊥

Bj,k :=
1

α

∑
t∈Ij,k

Ej,new,⊥
′Φj,0L̂tL̂

′
tΦj,0Ej,new =

1

α

∑
t∈Ij,k

Ej,new,⊥
′Φj,0(Lt − et)(Lt′ − et′)Φj,0Ej,new

4) Define

Aj,k :=
[
Ej,new Ej,new,⊥

] [Aj,k 0

0 Aj,k,⊥

][
Ej,new

′

Ej,new,⊥
′

]

Hj,k :=
[
Ej,new Ej,new,⊥

] [Hj,k Bj,k
′

Bj,k Hj,k,⊥

][
Ej,new

′

Ej,new,⊥
′

]
5) From the above, it is easy to see that

Aj,k +Hj,k =
1

α

∑
t∈Ij,k

Φj,0L̂tL̂
′
tΦj,0.

6) Recall from Algorithm 2 that Aj,k+Hj,k EV D=
[
P̂j,new,k P̂j,new,k,⊥

] [Λk 0

0 Λk,⊥

][
P̂ ′j,new,k

P̂ ′j,new,k,⊥

]
is the EVD of Aj,k+Hj,k.

Here P̂j,new,k is a n× cj,new basis matrix.

7) Using the above, Aj,k +Hj,k can be decomposed in two ways as follows:

Aj,k +Hj,k =
[
P̂j,new,k P̂j,new,k,⊥

] [Λk 0

0 Λk,⊥

][
P̂ ′j,new,k

P̂ ′j,new,k,⊥

]

=
[
Ej,new Ej,new,⊥

] [Aj,k +Hj,k B′j,k

Bj,k Aj,k,⊥ +Hj,k,⊥

][
Ej,new

′

Ej,new,⊥
′

]
Remark 6.6: Thus, from the above definition, Hj,k = 1

α [Φ0

∑
t(−Lte′t − etL

′
t + ete

′
t)Φ0 + F + F ′] where

F := Enew,⊥E
′
new,⊥Φ0

∑
t LtL

′
tΦ0EnewE

′
new = Enew,⊥E

′
new,⊥(D∗,k−1at,∗)(D∗,k−1at,∗ + Dnew,k−1at,new)′EnewE

′
new. Since

E[at,∗a
′
t,new] = 0, ‖ 1

αF‖2 . r2ζ2λ+ w.h.p. Recall . means (in an informal sense) that the RHS contains the dominant

terms in the bound.

Definition 6.7: In the sequel, we let

1) κs,∗ := maxj κs(Pj−1), κs,new := maxj κs(Pj,new), κs,k := maxj κs(Dj,new,k), κ̃s,k := maxj κs((I −
Pj,newPj,new

′)P̂j,new,k),

2) κ+
2s,∗ := 0.3, κ+

2s,new := 0.15, κ+
s := 0.15, κ̃+

2s := 0.15 and g+ :=
√

2 are the upper bounds assumed in Theorem 4.2 on

maxj κ2s(Pj), maxj κ2s(Pj,new), maxj maxk κs(Dj,new,k), maxj κ2s(Qj,new,k) and g respectively.

3) φ+ := 1.1735 We see later that this is an upperbound on φk under the assumptions of Theorem 4.2.

4) γnew,k := min(1.2k−1γnew, γ∗)

(recall that the theorem assumes maxj maxt∈Ij,k ‖at,new‖∞ ≤ γnew,k)

5) Pj,∗ := Pj−1 and P̂j,∗ := P̂j−1 (see Remark 6.8).

Remark 6.8: Notice that the subscript j always appears as the first subscript, while k is the last one. At many places in

this paper, we remove the subscript j for simplicity. Whenever there is only one subscript, it refers to the value of k, e.g., Φ0

refers to Φj,0, P̂new,k refers to P̂j,new,k. Also, P∗ := Pj−1 and P̂∗ := P̂j−1.

Definition 6.9: Define the following:

1) ζ+
∗ := rζ (We note that ζ+

∗ = (r0 + (j − 1)c)ζ will also work.)

2) Define the sequence {ζk+}k=0,1,2,···K recursively as follows

ζ+
0 := 1

ζ+
k :=

bH + 0.125cζλ−

bAk − bAk,⊥ − bH − 0.25cζλ−
for k ≥ 1, (10)

where bAk , bAk,⊥ , bH are defined in (59), (61) and (94) respectively.
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As we will see, ζ+
∗ and ζ+

k are the high probability upper bounds on ζj,∗ and ζj,k (defined in Definition 6.2) under the

assumptions of Theorem 4.2.

Definition 6.10: Define the random variable Xj,k := {ν1, ν2, · · · , νtj+kα−1}.
Recall that the νt’s are mutually independent over t.

Definition 6.11: Define the set Γ̌j,k as follows:

Γ̌j,k := {Xj,k : ζj,k ≤ ζ+
k and T̂t = Tt and et satisfies (9) for all t ∈ Ij,k}

Γ̌j,K+1 := {Xj+1,0 : T̂t = Tt and et satisfies (9) for all t ∈ Ij,K+1}

Definition 6.12: Recursively define the sets Γj,k as follows:

Γ1,0 := {X1,0 : ζ1,∗ ≤ rζ and T̂t = Tt and et satisfies (9) for all t ∈ [ttrain+1 : t1 − 1]}
Γj,k := Γj,k−1 ∩ Γ̌j,k k = 1, 2, . . . ,K, j = 1, 2, . . . , J

Γj+1,0 := Γj,K ∩ Γ̌j,K+1 j = 1, 2, . . . , J

A. Main Steps for Theorem 4.2

The proof of Theorem 4.2 essentially follows from two main lemmas, 7.1 and 7.2. Lemma 7.1 gives an exponentially

decaying upper bound on ζ+
k defined in Definition 6.9. ζ+

k will be shown to be a high probability upper bound for ζk under the

assumptions of the Theorem. Lemma 7.2 says that conditioned on Xj,k−1 ∈ Γj,k−1, Xj,k will be in Γj,k w.h.p.. In words this

says that if, during the time interval Ij,k−1, the algorithm has worked well (recovered the support of St exactly and recovered

the background subspace with subspace recovery error below ζ+
k−1 + ζ+

∗ ), then it will also work well in Ij,k w.h.p.. The proof

of Lemma 7.2 requires two lemmas: one for the projected CS step and one for the projection PCA step of the algorithm.

These are lemmas 9.1 and 9.2. The proof Lemma 9.1 follows using Lemmas 7.1, 3.7, 2.10, the CS error bound (Theorem 2.5),

and some straightforward steps. The proof of Lemma 9.2 is longer and uses a lemma based on the sin θ and Weyl theorems

(Theorems 2.7 and 2.8) to get a bound on ζk. From here we use the matrix Azuma inequalities (Corollaries 2.15 and 2.14) to

bound each of the terms in the bound on ζk to finally show that, conditioned on Γej,k−1 ζk ≤ ζ+
k w.h.p.. These are Lemmas

10.1 and 10.2.

VII. MAIN LEMMAS AND PROOF OF THEOREM 4.2

Recall that when there is only one subscript, it refers to the value of k (i.e. ζk = ζj,k).

Lemma 7.1 (Exponential decay of ζ+
k ): Pick ζ as given in Theorem 4.2. Assume that the six conditions of Theorem 4.2

hold. Define the series ζk+ as in Definition 6.9. Then,

1) ζ+
0 = 1, ζ+

1 = 0.5688, ζ+
2 = 0.3568, ζ+

k ≤ ζ+
k−1 ≤ 0.3568 for all k ≥ 3.

2) ζ+
k ≤ 0.6k + 0.15cζ for all k ≥ 0

3) bAk − bAk,⊥ − bH − 0.25cζλ− > 0 for all k ≥ 1.

We will prove this lemma in Section VIII.

Lemma 7.2: Assume that all the conditions of Theorem 4.2 hold. Also assume that P(Γej,k−1) > 0. Then

P(Γej,k|Γej,k−1) ≥ pk(α, ζ) ≥ pK(α, ζ) for all k = 1, 2, . . . ,K,

where pk(α, ζ) is defined in equation (21).

Remark 7.3: Under the assumptions of Theorem 4.2, it is easy to see that the following holds. For any k = 1, 2 . . .K, Γej,k

implies that ζj,∗ ≤ ζ+
∗

From the definition of Γej,k, ζj′,K ≤ ζ+
K for all j′ ≤ j − 1. By Lemma 7.1 and the definition of K in Definition 4.1,

ζ+
K ≤ 0.6K + 0.15cζ ≤ cζ for all j′ ≤ j − 1. Using Remark 6.3, ζj,∗ ≤ ζ∗1 +

∑j−1
j′=1 ζj′,K ≤ r0ζ + (j − 1)cζ ≤ ζ+

∗ .

Proof of Theorem 4.2:

The theorem is a direct consequence of Lemmas 7.1, 7.2, and Lemma 2.12.
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Notice that Γej,0 ⊇ Γej,1 ⊇ · · · ⊇ Γej,K,0 ⊇ Γej+1,0. Thus, by Lemma 2.12, P(Γej+1,0|Γej,0) =

P(Γej+1,0|Γej,K)
∏K
k=1 P(Γej,k|Γej,k−1) and P(ΓJ+1,0|Γ1,0) =

∏J
j=1 P(Γej+1,0|Γej,0).

Using Lemmas 7.2, and the fact that pk(α, ζ) ≥ pK(α, ζ) (see their respective definitions in Lemma 10.2 and equation

(21)), we get P(ΓeJ+1,0|Γ1,0,0) ≥ pK(α, ζ)KJ . Also, P(Γe1,0) = 1. This follows by the assumption on P̂0 and Lemma 9.1.

Thus, P(ΓeJ+1,0) ≥ pK(α, ζ)KJ .

Using the definition of αadd we get that P(ΓeJ+1,0) ≥ pK(α, ζ)KJ ≥ 1− n−10 whenever α ≥ αadd.

The event ΓeJ+1,0 implies that T̂t = Tt and et satisfies (9) for all t < tJ+1. Using Remarks 6.3 and 7.3, ΓeJ+1,0 implies that

all the bounds on the subspace error hold. Using these, ‖at,new‖2 ≤
√
cγnew,k, and ‖at‖2 ≤

√
rγ∗, ΓeJ+1,0 implies that all the

bounds on ‖et‖2 hold (the bounds are obtained in Lemma 9.1).

Thus, all conclusions of the the result hold w.p. at least 1− n−10.

VIII. PROOF OF LEMMA 7.1

Proof: By the high probability bounds on λmin(Ak), (59), ‖Ak,⊥‖, (61), ‖Hk‖, (94) and Assumption 3.1(3g), we have

bAk ≥ b̃Ak = (1− (ζ+
∗ )2)(1− b2 − b2α+2

100(1− b2)
)λ−new,k − 2

b2(1− b2α)

1− b2 ζ+
∗

√
r

c
ηλ+

bAk,⊥ ≤ b̃Ak,⊥ = (ζ+
∗ )2λ+ + 2

b2(1− b2α)

1− b2 (ζ+
∗ )2 r

c
ηλ+

bH ≤ b̃H = (φ+)2(ζ+
∗ )2λ+ + (φ+)2(κ+

s ζ
+
k−1)2λ+

new,k + 2
b2(1− b2α)

1− b2
√
r

c
ηλ+ζ+

∗ ζ
+
k−1κ

+
s (φ+)2 +

b2(1− b2α)

1− b2 η
r

c
λ+(φ+ζ+

∗ )2

+
b2(1− b2α)

1− b2 ηλ+
new,k(φ+κ+

s ζ
+
k−1)2 + 2φ+κ+

s

(ζ+
∗ )2√

1− (ζ+
∗ )2

(λ+ +
b2(1− b2α)

1− b2 η
r

c
λ+) +

2φ+ max{0.15cζ, ζ+
k−1}

(κ+
s )2√

1− (ζ+
∗ )2

(
λ+

new,k +
b2(1− b2α)

1− b2 ηλ+
new,k

)
+ 4

b2(1− b2α)

1− b2 η
r

c
λ+ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

+

(ζ+
∗ + φ+ζ+

∗ )

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)(
λ+ +

b2(1− b2α)

1− b2 ηλ+

)
+ ζ+

k−1φ
+κ+

s

(
1 + φ+ζ+

k−1

(κ+
s )2√

1− (ζ+
∗ )2

)
(
λ+

new,k +
b2(1− b2α)

1− b2 ηλ+
new,k

)
+
b2(1− b2α)

1− b2
√
r

c
ηλ+

(
(ζ+
∗ + φ+ζ+

∗ )

(
1 + (κ+

s )2ζ+
k−1

φ+√
1− (ζ+

∗ )2

)

+φ+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

))
(11)

In the first inequality, we use assumption that α ≥ 100. When k = 1, b̃H is a little different because the reason which will be

discussed later.

bH1 ≤ b̃H1 = (φ0)2(ζ+
∗ )2λ+ + (φ0)2(κ+

s ζ
+
k−1)2λ+

new,k + 2
b2(1− b2α)

1− b2
√
r

c
ηλ+ζ+

∗ ζ
+
k−1κ

+
s (φ0)2 +

b2(1− b2α)

1− b2 η
r

c
λ+(φ0ζ

+
∗ )2 +

2φ0κ
+
s

(ζ+
∗ )2√

1− (ζ+
∗ )2

(λ+ +
b2(1− b2α)

1− b2 η
r

c
λ+) + 2φ0 max{0.15cζ, ζ+

k−1}
(κ+
s )2√

1− (ζ+
∗ )2

(
λ+

new,k +
b2(1− b2α)

1− b2 ηλ+
new,k

)

+4
b2(1− b2α)

1− b2 η
r

c
λ+ζ+

∗ φ0
κ+
s√

1− (ζ+
∗ )2

+ (ζ+
∗ + φ0ζ

+
∗ )

(
ζ+
∗ + ζ+

∗ φ0
κ+
s√

1− (ζ+
∗ )2

)(
λ+ +

b2(1− b2α)

1− b2 ηλ+

)
+

ζ+
k−1φ0κ

+
s

(
1 + φ0ζ

+
k−1

(κ+
s )2√

1− (ζ+
∗ )2

)
λ+

new,k +
b2(1− b2α)

1− b2
√
r

c
ηλ+

(
(ζ+
∗ + φ0ζ

+
∗ )

(
1 + (κ+

s )2ζ+
k−1

φ0√
1− (ζ+

∗ )2

)

+φ0κ
+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ0
κ+
s√

1− (ζ+
∗ )2

))
(12)

Conditions 2, 4 of Theorem 4.2 imply that κ2s,∗ ≤ κ+
2s,∗ = 0.3, κ2s,new ≤ κ+

2s,new = 0.15, κ̃2s,k ≤ κ̃+
2s = 0.15, κs,k ≤ κ+

s =

0.15 and g ≤ g+ =
√

2. Using Lemma 9.3, this implies that φk ≤ φ+ = 1.1735 (φ0 ≤ 1.1111).
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Let

finc(ζ
+
k−1; ζ+

∗ , cζ, ζ
+
∗ rf, ζ

+
∗ rf, κ

+
s , φ

+, b, α, η) =
b̃H + 0.125cζλ−

b̃Ak − b̃Ak,⊥ − b̃H − 0.25cζλ−

As b2(1−b2α)
1−b2 =

∑α−1
i=0 b

2(1+i) is an increasing function of b and α, finc(ζ+
k−1; ζ+

∗ , f, cζ, ζ
+
∗ rf, κ

+
s , φ

+, b, α, η) is an increasing

function of all their arguments. Thus, by taking upper bounds on some of the variables, we define

f̃inc(ζ
+
k−1; cζ, φ+, b) = finc(ζ

+
k−1; 10−4, cζ, 1.5× 10−4, 1.5× 10−4, 0.15, φ+, b,∞, 1.7)

Using Fact 9.5, ζ+
∗ ≤ 10−4; ζ+

∗ f ≤ 1.5× 10−4; ζ+
∗ rf ≤ 1.5× 10−4 and cζ ≤ 10−4.

1) By definition, ζ+
0 = 1. For k = 1, ζ+

k = f̃inc(ζ
+
k−1; cζ, φ+, b) ≤ f̃inc(1; 10−4, 1.1111, 0.4) = 0.5688. For k = 2,

ζ+
k = f̃inc(ζ

+
k−1; cζ, φ+, b) ≤ f̃inc(0.5688; 10−4, 1.1735, 0.4) = 0.3568.We prove the first claim by induction.

• Base case: For k = 3, ζ+
4 = f̃inc(ζ

+
k−1; cζ, φ+, b) ≤ finc(0.3568; 10−4, 1.1735, 0.4) < 0.3568.

• Induction step: Assume that ζ+
k−1 ≤ ζ+

k−2 for k >= 4. Since finc is an increasing function of its arguments,

ζ+
k = f̃inc(ζ

+
k−1; cζ, φ+, b) ≤ finc(ζ+

k−2; cζ, φ+, b) = ζ+
k−1.

2) For the second claim, when k = 0, 1, 2, the result is obvious correct; when k ≥ 3,notice that

ζ+
k = f̃inc(ζ

+
k−1; cζ, φ+, b)

≤ f̃inc(ζ
+
k−1; cζ, 1.1735, 0.4)

=
0.058ζ+

k−1 + 0.4284

0.9981− 0.058(ζ+
k−1)2 − 0.09885ζ+

k−1 − 0.2505cζ
· ζ+
k−1 +

0.1257cζ + 4.041× 10−5

0.9981− 0.058(ζ+
k−1)2 − 0.09885ζ+

k−1 − 0.2505cζ

≤ 0.5360ζ+
k−1 + 0.150cζ

≤ 0.6k + 0.15cζ (13)

Thus the claim is correct for k ≥ 0 by induction.

3) Since ζ+
k ≤ ζ+

0 = 1 and

gdec(ζ
+
k−1; ζ+

∗ , cζ, ζ
+
∗ rf, ζ

+
∗ rf, κ

+
s , φ

+, b, α, η) =
bAk − bAk,⊥ − bH − 0.25cζλ−

λ−new,k

is a decreasing function of its variables, gdec ≥ gdec(1; 10−4, 10−4, 1.5×10−4, 1.5×10−4, 0.15, 1.1735, 0.4,∞, 1.7) > 0.

IX. PROOF OF LEMMA 7.2

The proof of Lemma 7.2 follows from two lemmas. The first is the final conclusion for the projected CS step for t ∈ Ij,k.

The second is the final conclusion for one projection PCA (i.e.) for t ∈ Ij,k. We will state the two lemmas first and then

proceed to prove them in order.

Lemma 9.1 (Projected Compressed Sensing Lemma): Assume that all conditions of Theorem 4.2 hold.

1) For all t ∈ Ij,k, for any k = 1, 2, . . .K, if Xj,k−1 ∈ Γj,k−1,

a) the projection noise βt satisfies ‖βt‖2 ≤ ζ+
k−1

√
cγnew,k + ζ+

∗
√
rγ∗ ≤

√
c0.72k−1γnew +

√
ζ(
√
r + 0.15

√
c) ≤ ξ0.

b) the CS error satisfies ‖Ŝt,cs − St‖2 ≤ 7ξ0.

c) T̂t = Tt

d) et satisfies (9) and ‖et‖2 ≤ φ+[κ+
s ζ

+
k−1

√
cγnew,k+ζ+

∗
√
rγ∗] ≤ 0.18

√
c0.72k−1γnew +1.2

√
ζ(
√
r+0.023

√
c). Recall

that (9) is

ITt(Φ(t))Tt
†
βt = ITt [(Φ(t))

′
Tt(Φ(t))Tt ]

−1ITt
′Φ(t)Lt

2) For all k = 1, 2, . . .K, P(T̂t = Tt and et satisfies (9) for all t ∈ Ij,k|Γej,k−1) = 1.

Lemma 9.2 (Subspace Recovery Lemma): Assume that all the conditions of Theorem 4.2 hold. Let ζ+
∗ = rζ. Then, for all

k = 1, 2, . . .K,

P(ζk ≤ ζ+
k |Γej,k−1) ≥ pk(α, ζ)



17

where ζ+
k is defined in Definition 6.9 and pk(α, ζ) is defined in (21).

Proof of Lemma 7.2: Observe that P(Γj,k|Γj,k−1) = P(Γ̌j,k|Γj,k−1). The lemma then follows by combining Lemma 9.2

and item 2 of Lemma 9.1.

A. Proof of Lemma 9.1

In order to prove Lemma 9.1 we first need a bound on the RIC of the compressed sensing matrix Φk.

Lemma 9.3 (Bounding the RIC of Φk): Recall that ζ∗ := ‖(I − P̂∗P̂ ′∗)P∗‖2. The following hold.

1) Suppose that a basis matrix P can be split as P = [P1, P2] where P1 and P2 are also basis matrices. Then κ2
s(P ) =

maxT :|T |≤s ‖I ′TP‖22 ≤ κ2
s(P1) + κ2

s(P2).

2) κ2
s(P̂∗) ≤ κ2

s,∗ + 2ζ∗

3) κs(P̂new,k) ≤ κs,new + κ̃s,kζk + ζ∗

4) δs(Φ0) = κ2
s(P̂∗) ≤ κ2

s,∗ + 2ζ∗

5) δs(Φk) = κ2
s([P̂∗ P̂new,k]) ≤ κ2

s(P̂∗) + κ2
s(P̂new,k) ≤ κ2

s,∗ + 2ζ∗ + (κs,new + κ̃s,kζk + ζ∗)
2 for k ≥ 1

Proof:

1) Since P is a basis matrix, κ2
s(P ) = max|T |≤s ‖IT ′P‖22. Also, ‖IT ′P‖22 = ‖IT ′[P1, P2][P1, P2]′IT ‖2 = ‖IT ′(P1P

′
1 +

P2P
′
2)IT ‖2 ≤ ‖IT ′P1P

′
1IT ‖2 + ‖IT ′P2P

′
2IT ‖2. Thus, the inequality follows.

2) For any set T with |T | ≤ s, ‖IT ′P̂∗‖22 = ‖IT ′P̂∗P̂ ′∗IT ‖2 = ‖IT ′(P̂∗P̂ ′∗ − P∗P∗
′ + P∗P∗

′)IT ‖2 ≤ ‖IT ′(P̂∗P̂ ′∗ −
P∗P∗

′)IT ‖2 + ‖IT ′P∗P∗′IT ‖2 ≤ 2ζ∗ + κ2
s,∗. The last inequality follows using Lemma 2.10 with P = P∗ and P̂ = P̂∗.

3) By Lemma 2.10 with P = P∗, P̂ = P̂∗ and Q = Pnew, ‖Pnew
′P̂∗‖2 ≤ ζ∗. By Lemma 2.10 with P = Pnew and

P̂ = P̂new,k, ‖(I − PnewP
′
new)P̂new,k‖2 = ‖(I − P̂new,kP̂

′
new,k)Pnew‖2. For any set T with |T | ≤ s, ‖IT ′P̂new,k‖2 ≤

‖IT ′(I − PnewP
′
new)P̂new,k‖2 + ‖IT ′PnewP

′
newP̂new,k‖2 ≤ κ̃s,k‖(I − PnewPnew

′)P̂new,k‖2 + ‖IT ′Pnew‖2 = κ̃s,k‖(I −
P̂new,kP̂

′
new,k)Pnew‖2 + ‖IT ′Pnew‖2 ≤ κ̃s,k‖Dnew,k‖2 + κ̃s,k‖P̂∗P̂ ′∗Pnew‖2 + ‖IT ′Pnew‖2 ≤ κ̃s,kζk + κ̃s,kζ∗ + κs,new ≤

κ̃s,kζk + ζ∗ + κs,new. Taking max over |T | ≤ s the claim follows.

4) This follows using Lemma 3.7 and the second claim of this lemma.

5) This follows using Lemma 3.7 and the first three claims of this lemma.

Corollary 9.4: If the conditions of Theorem 4.2 are satisfied, and Xj,k−1 ∈ Γj,k−1, then

1) δs(Φ0) ≤ δ2s(Φ0) ≤ κ+
2s,∗

2
+ 2ζ+

∗ < 0.1

2) δs(Φk−1) ≤ δ2s(Φk−1) ≤ κ+
2s,∗

2
+ 2ζ+

∗ + (κ+
2s,new + κ̃+

2s,k−1ζ
+
k−1 + ζ+

∗ )2 < 0.1479

3) φk−1 ≤ 1
1−δs(Φk−1) < φ+

Proof: This follows using Lemma 9.3, the definition of Γj,k−1, and the bound on ζ+
k−1 from Lemma 7.1.

The following are striaghtforward bounds that will be useful for the proof of Lemma 9.1 and later.

Fact 9.5: Under the assumptions of Theorem 4.2:

1) ζγ∗ ≤
√
ζ

(r0+(J−1)c)3/2
≤ √ζ

2) ζ+
∗ ≤ 10−4

(r0+(J−1)c) ≤ 10−4

3) ζ+
∗ γ

2
∗ ≤ 1

(r0+(J−1)c)2 ≤ 1

4) ζ+
∗ γ∗ ≤

√
ζ√

r0+(J−1)c
≤ √ζ

5) ζ+
∗ f ≤ 1.5×10−4

r0+(J−1)c ≤ 1.5× 10−4

6) ζ+
k−1 ≤ 0.6k−1 + 0.15cζ (from Lemma 7.1)

7) ζ+
k−1γnew,k ≤ (0.6 · 1.2)k−1γnew + 0.15cζγ∗ ≤ 0.72k−1γnew + 0.15

√
ζ√

r0+(J−1)c
≤ 0.72k−1γnew + 0.15

√
ζ

8) ζ+
k−1γ

2
new,k ≤ (0.6 · 1.22)k−1γ2

new + 0.15cζγ2
∗ ≤ 0.864k−1γ2

new + 0.15
(r0+(J−1)c)2 ≤ 0.864k−1γ2

new + 0.15

Proof of Lemma 9.1: Recall that Xj,k−1 ∈ Γj,k−1 implies that ζ∗ ≤ ζ+
∗ and ζk−1 ≤ ζ+

k−1.
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1) a) For t ∈ Ij,k, βt := (I − P̂(t−1)P̂
′
(t−1))Lt = D∗,k−1at,∗ +Dnew,k−1at,new. Thus, using Fact 9.5

‖βt‖2 ≤ ζ∗
√
rγ∗ + ζk−1

√
cγnew,k

≤
√
ζ
√
r + (0.72k−1γnew + 0.15

√
ζ)
√
c

=
√
c0.72k−1γnew +

√
ζ(
√
r + 0.15

√
c) ≤ ξ0.

b) By Corollary 9.4, δ2s(Φk−1) < 0.15 <
√

2 − 1. Given |Tt| ≤ s, ‖βt‖2 ≤ ξ0 = ξ, by Theorem 2.5, the CS error

satisfies

‖Ŝt,cs − St‖2 ≤
4
√

1 + δ2s(Φk−1)

1− (
√

2 + 1)δ2s(Φk−1)
ξ0 < 7ξ0.

c) Using the above and the definition of ρ, ‖Ŝt,cs − St‖∞ ≤ 7ρξ0. Since mini∈Tt |(St)i| ≥ Smin and (St)T ct = 0,

mini∈Tt |(Ŝt,cs)i| ≥ Smin−7ρξ0 and mini∈T ct |(Ŝt,cs)i| ≤ 7ρξ0. If ω < Smin−7ρξ0, then T̂t ⊇ Tt. On the other hand,

if ω > 7ρξ0, then T̂t ⊆ Tt. Since Smin > 14ρξ0 (condition 2 of the theorem) and ω satisfies 7ρξ0 ≤ ω ≤ Smin−7ρξ0

(condition 1 of the theorem), then the support of St is exactly recovered, i.e. T̂t = Tt.

d) Given T̂t = Tt, the LS estimate of St satisfies (Ŝt)Tt = [(Φk−1)Tt ]
†yt = [(Φk−1)Tt ]

†(Φk−1St + Φk−1Lt)

and (Ŝt)T ct = 0 for t ∈ Ij,k. Also, (Φk−1)Tt
′
Φk−1 = ITt

′Φk−1 (this follows since (Φk−1)Tt = Φk−1ITt and

Φ′k−1Φk−1 = Φk−1). Using this, the LS error et := Ŝt − St satisfies (9). Thus, using Fact 9.5 and condition 2 of

the theorem,

‖et‖2 ≤ φ+(ζ+
∗
√
rγ∗ + κs,k−1ζ

+
k−1

√
cγnew,k)

≤ 1.2
(√

r
√
ζ +
√
c0.15(0.72)k−1 +

√
c0.023

√
ζ
)

= 0.18
√
c0.72k−1γnew + 1.2

√
ζ(
√
r + 0.023

√
c).

2) The second claim is just a restatement of the first.

X. PROOF OF LEMMA 9.2

The proof of Lemma 9.2 will use the next two lemmas (10.1, and 10.2).

Lemma 10.1: If λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2 > 0, then

ζk ≤
‖Rk‖2

λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2
≤ ‖Hk‖2
λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2

(14)

where Rk := HkEnew and Ak, Ak,⊥, Hk are defined in Definition 6.5.

Proof: Since λmin(Ak)−‖Ak,⊥‖2−‖Hk‖2 > 0, so λmin(Ak) > ‖Ak,⊥‖2. Since Ak is of size cnew×cnew and λmin(Ak) >

‖Ak,⊥‖2, λcnew+1(Ak) = ‖Ak,⊥‖2. By definition of EVD, and since Λk is a cnew×cnew matrix, λmax(Λk,⊥) = λcnew+1(Ak+Hk).

By Weyl’s theorem (Theorem 2.8), λcnew+1(Ak+Hk) ≤ λcnew+1(Ak)+‖Hk‖2 = ‖Ak,⊥‖2 +‖Hk‖2. Therefore, λmax(Λk,⊥) ≤
‖Ak,⊥‖2 +‖Hk‖2 and hence λmin(Ak)−λmax(Λk,⊥) ≥ λmin(Ak)−‖Ak,⊥‖2−‖Hk‖2 > 0. Apply the sin θ theorem (Theorem

2.7) with λmin(Ak)− λmax(Λk,⊥) > 0, we get

‖(I − P̂new,kP̂
′
new,k)Enew‖2 ≤

‖Rk‖2
λmin(Ak)− λmax(Λk,⊥)

≤ ‖Hk‖2
λmin(Ak)− ‖Ak,⊥‖2 − ‖Hk‖2

Since ζk = ‖(I− P̂new,kP̂
′
new,k)Dnew‖2 = ‖(I− P̂new,kP̂

′
new,k)EnewRnew‖2 ≤ ‖(I− P̂new,kP̂

′
new,k)Enew‖2, the result follows. The

last inequality follows because ‖Rnew‖2 = ‖E′newDnew‖2 ≤ 1.

Lemma 10.2 (High probability bounds for each of the terms in the ζk bound (14)): Assume the conditions of Theorem 4.2

hold. Also assume that P(Γej,k−1) > 0 for all 1 ≤ k ≤ K + 1. Then, for all 1 ≤ k ≤ K
1)

P

(
λmin(Ak) ≥ bAk −

cζλ−

12

)
≥ 1− pa(α, ζ) (15)
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where bAk = (1− (ζ+
∗ )2)(1− b2−b2α+2

α(1−b2) )λ−new,k − 2
b2(1−b2α)

1−b2
√
crγ∗γnew,kζ

+
∗ and

pa(α, ζ) = cz
(
α,
cζλ−

96
,

(1− b2α)(1− b)
1 + b

cγ2
new,k

)
+ 2cz

(
α,
cζλ−

96
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

)
+2cz

(
α,
cζλ−

96
, 2

(1− bα)2

1 + b
cγ2

new,k

)
+ 2cz(α,

cζλ−

48
, 4

1 + b− 2
√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,kζ

+
∗ )

+2cz
(
α,
cζλ−

96
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1

)
+ 2cz

(
α,
cζλ−

48
, 8
b(1− b2α)

1 + b

√
crγ∗γnew,kζ

+
∗

)
(16)

2)

P

(
‖Ak,⊥‖ ≤ bAk,⊥ +

cζλ−

24

∣∣∣Xj,k−1

)
≥ 1− pb(α, ζ) (17)

where bAk,⊥ = λ+(ζ+
∗ )2 + b2(1−b2α)

1−b2 rγ2
∗(ζ

+
∗ )2 and

pb(α, ζ) = (n− c)z
(
α,
cζλ−

96
,

(1− b2α)(1− b)
1 + b

rγ2
∗(ζ

+
∗ )2

)
+ 2(n− c)z

(
α,
cζλ−

96
, 2
b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗(ζ

+
∗ )2

)
+2(n− c)z

(
α,
cζλ−

96
, 2

(1− bα)2

1 + b
rγ2
∗(ζ

+
∗ )2

)
+ 2(n− c)z

(
α,
cζλ−

96
, 4
b(1− b2α)

1 + b
rγ2
∗(ζ

+
∗ )2

)
(18)

3)

P

(
‖Hk‖2 ≤ bH +

cζλ−

8
|Xj,k−1

)
≥ 1− pc(α, ζ)− pf (α, ζ)−max{pd(α, ζ), pe(α, ζ)} (19)

where

bH := (φ+)2((ζ+
∗ )2 + (κ+

s ζ
+
k−1)2)λ+ + 2

b2(1− b2α)

1− b2
√
crγ∗γnew,kζ

+
∗ ζ

+
k−1κ

+
s (φ+)2 +

b2(1− b2α)

1− b2 rγ2
∗(φ

+ζ+
∗ )2 +

b2(1− b2α)

1− b2 cγ2
new,k−1(φ+κ+

s ζ
+
k−1)2 + 2φ+κ+

s

(ζ+
∗ )2√

1− (ζ+
∗ )2

(
λ+ +

b2(1− b2α)

1− b2 rγ2
∗

)
+

2φ+ max{0.15cζ, ζ+
k−1}

(κ+
s )2√

1− (ζ+
∗ )2

(
λ+ +

b2(1− b2α)

1− b2 cγ2
new,k−1

)
+ 4

b2(1− b2α)

1− b2 rγ2
∗ζ

+
∗ φ

+ κ+
s√

1− (ζ+
∗ )2

+

(ζ+
∗ + φ+ζ+

∗ )(ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)(λ+ +
b2(1− b2α)

1− b2 rγ2
∗) + ζ+

k−1φ
+κ+

s (1 + φ+ζ+
k−1

(κ+
s )2√

1− (ζ+
∗ )2

)

(
λ+ +

b2(1− b2α)

1− b2 cγ2
new,k−1

)
+
b2(1− b2α)

1− b2
√
crγ∗γnew,k

(
(ζ+
∗ + φ+ζ+

∗ )

(
1 + (κ+

s )2ζ+
k−1

φ+√
1− (ζ+

∗ )2

)

+φ+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

))
(20)

Proof of Lemma 9.2: Lemma 9.2 now follows by combining Lemmas 10.1 and 10.2 and defining

pk(α, ζ) := 1− pa(α, ζ)− pb(α, ζ)− pc(α, ζ)− pf (α, ζ)−max{pd(α, ζ), pe(α, ζ)}. (21)

As above, we will start with some simple facts that will be used to prove Lemma 10.2.

For convenience, we will use 1
α

∑
t to denote 1

α

∑
t∈Ij,k

Fact 10.3: Under the assumptions of Theorem 4.2 the following are true.

1) The matrices Dnew, Rnew, Enew, D∗, Dnew,k−1, Φk−1 are functions of the r.v. Xj,k−1. All terms that we bound for the

first two claims of the lemma are of the form 1
α

∑
t∈Ij,k Zt where Zt = f1(Xj,k−1)Ytf2(Xj,k−1), Yt is a sub-matrix of

ata
′
t and f1(.) and f2(.) are functions of Xj,k−1.

2) Xj,k−1 is independent of any at for t ∈ Ij,k , and hence the same is true for the matrices Dnew, Rnew, Enew, D∗, Dnew,k−1,

Φk−1. Also, at’s for different t ∈ Ij,k are mutually independent. Thus, conditioned on Xj,k−1, the Zt’s defined above
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are mutually independent.

3) All the terms that we bound for the third claim contain et. Using the second claim of Lemma 9.1, conditioned on

Xj,k−1, et satisfies (9) w.p. one whenever Xj,k−1 ∈ Γj,k−1. Conditioned on Xj,k−1, all these terms are also of the form
1
α

∑
t∈Ij,k Zt with Zt as defined above, whenever Xj,k−1 ∈ Γj,k−1. Thus, conditioned on Xj,k−1, the Zt’s for these

terms are mutually independent, whenever Xj,k−1 ∈ Γj,k−1.

4) It is easy to see that ‖Φk−1P∗‖2 ≤ ζ∗, ζ0 = ‖Dnew‖2 ≤ 1, Φ0Dnew = Φ′0Dnew = Dnew, ‖Rnew‖ ≤ 1,

‖(Rnew)−1‖ ≤ 1/
√

1− ζ2
∗ , Enew,⊥

′Dnew = 0, and ‖Enew
′Φ0et‖ = ‖(R′new)−1D′newΦ0et‖ = ‖(Rnew)−1D′newet‖ ≤

‖(R′new)−1D′newITt‖‖et‖ ≤ κ+
s√

1−ζ2∗
‖et‖. The bounds on ‖Rnew‖ and ‖(Rnew)−1‖ follow using Lemma 2.10 and the

fact that σi(Rnew) = σi(Dnew).

5) Xj,k−1 ∈ Γj,k−1 implies that

a) ζ∗ ≤ ζ+
∗ (see Remark 7.3)

b) ζk−1 ≤ ζ+
k−1 ≤ 0.6k−1 + 0.15cζ (This follows by the definition of Γj,k−1 and Lemma 7.1.)

6) Item 5 implies that

a) λmin(RnewRnew
′) ≥ 1− (ζ+

∗ )2. This follows from Lemma 2.10 and the fact that σmin(Rnew) = σmin(Dnew).

b) ‖ITt ′Φk−1P∗‖2 ≤ ‖Φk−1P∗‖2 ≤ ζ∗ ≤ ζ+
∗ , ‖ITt ′Dnew,k−1‖2 ≤ κs,k−1ζk−1 ≤ κ+

s ζ
+
k−1.

7) By Weyl’s theorem (Theorem 2.8), for a sequence of matrices Bt, λmin(
∑
tBt) ≥

∑
t λmin(Bt) and λmax(

∑
tBt) ≤∑

t λmax(Bt).

Proof of Lemma 10.2: In this proof, we frequently refer to items from Sec. 10.3 and the following bounds (22).

‖E′newΦ0‖2 ≤ 1

‖E′newΦ0ITt‖2 = ‖ (R′new)
−1
D′newΦ0ITt‖2 = ‖ (R′new)

−1
D′newITt‖2 ≤

ζ0κ
+
s√

1− ζ2
∗
≤ κ+

s√
1−

(
ζ+
∗
)2

‖Φ0P∗‖2 = ζ∗ ≤ ζ+
∗

‖Φk−1P∗‖2 ≤ ‖Φ0P∗‖2 ≤ ζ+
∗

‖I ′TtDnew,k−1‖ ≤ κ+
s ζ

+
k−1 (22)

A. Bounds for
∑
t∈Ij,k at,newa

′
t,new,

∑
t∈Ij,k at,newa

′
t,∗,
∑
t∈Ij,k at,∗a

′
t,∗

For calculation simplicity, let {dt}0≤t≤α−1 denote {at,new}t∈Ij,k , {µt}0≤t≤α−1 denote {νt,new}t∈Ij,k , {mt}0≤t≤α−1 denote

{at,∗}t∈Ij,k , and {ωt}0≤t≤α−1 denote {νt,∗}t∈Ij,k .
α−1∑
t=0

dtd
′
t

=

α−1∑
t=0

(bdt−1 + µt)(bdt−1 + µt)
′

=

α−1∑
t=0

(bt+1d−1 +

t∑
i=0

bt−iµi)(b
t+1d−1 +

t∑
i=0

bt−iµi)
′

=

α−1∑
t=0

(b2t
t∑
i=0

b−2iµiµ
′
i) +

α−1∑
t=0

(b2t
∑

0≤i1,i2≤t,i1 6=i2

b−i1−i2µi1µ
′
i2) +

α−1∑
t=0

t∑
i=0

b2t−i+1d−1µ
′
i +

α−1∑
t=0

t∑
i=0

b2t−i+1µid
′
−1 +

α−1∑
t=0

b2(t+1)d−1d
′
−1

=

α−1∑
i=0

α−1∑
t=i

(b2tb−2iµiµ
′
i) +

α−1∑
t=0

b2t(

t∑
i1=0

i1−1∑
i2=0

b−i1−i2µi1µ
′
i2 +

t∑
i1=0

t∑
i2=i1+1

b−i1−i2µi1µ
′
i2) +

α−1∑
i=0

α−1∑
t=i

b2t−i+1d−1µ
′
i +

α−1∑
i=0

α−1∑
t=i

b2t−i+1µid
′
−1 +

b2(1− b2α)

1− b2 d−1d
′
−1
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=

α−1∑
i=0

(1− b2(α−i))

1− b2 µiµ
′
i +

α−1∑
i1=0

α−1∑
t=i1

b2t(

i1−1∑
i2=tj+(k−1)

b−i1−i2µi1µ
′
i2 +

t∑
i2=i1+1

b−i1−i2µi1µ
′
i2) +

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (µid
′
−1 + d−1µ

′
i) +

b2(1− b2α)

1− b2 d−1d
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 µiµ
′
i +

α−1∑
i1=0

(1− b2(α−i1))

1− b2
i1−1∑
i2=0

bi1−i2µi1µ
′
i2 +

α−1∑
i1=−1

α−1∑
i2=i1+1

α−1∑
t=i2

b2tb−i1−i2µi1µ
′
i2

+

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (µid
′
−1 + d−1µ

′
i) +

b2(1− b2α)

1− b2 d−1d
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 µiµ
′
i +

α−1∑
i1=0

(1− b2(α−i1))

1− b2
i1−1∑
i2=0

bi1−i2µi1µ
′
i2 +

α−1∑
i1=0

α−1∑
i2=i1+1

(1− b2(α−i2))

1− b2 b−i1+i2µi1µ
′
i2

+

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (µid
′
−1 + d−1µ

′
i) +

b2(1− b2α)

1− b2 d−1d
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 µiµ
′
i +

α−1∑
i1=0

(1− b2(α−i1))

1− b2
i1−1∑
i2=0

bi1−i2µi1µ
′
i2 +

α−1∑
i1=0

α−1∑
i2=α−i1

(1− b2(α−i2))

1− b2 bi1+i2−α+1µα−i1−1µ
′
i2

+

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (µid
′
−1 + d−1µ

′
i) +

b2(1− b2α)

1− b2 d−1d
′
−1

Let

Z1,i =
(1− b2(α−i))

1− b2 µiµ
′
i,

Z2,i =

i−1∑
i2=0

(1− b2(α−i))

1− b2 bi−i2µiµ
′
i2 , i ≥ 1

Z3,i =

α−1∑
i2=α−i

(1− b2(α−i2))

1− b2 bi+i2−α+1µα−i−1µ
′
i2 ,

Z4,i =
bi+1(1− b2(α−i))

1− b2 µid
′
−1 (23)

Z3,i =
∑α−1
i2=α−i

(1−b2(α−i2))
1−b2 bi+i2−α+1µα−i−1µ

′
i2

= µα−i−1hi(µα−i, µα−i+1, · · · , µα−1), thus

Ei−1(Z3,i) = E(µα−i−1hi(µα−i, µα−i+1, · · · , µα−1)|gi(µα−i, µα−i+1, · · · , µα−1))

= E(µα−i−1)E(hi(µα−i, µα−i+1, · · · , µα−1)|gi(µα−i, µα−i+1, · · · , µα−1))

= 0 (24)

Then we can split {dtd′t}0≤t≤α−1 into four adapted sequences, i.e., {Z1,i}0≤i≤α−1, {Z2,i}0≤i≤α−1, {Z3,i}0≤i≤α−1 and

{Z4,i}0≤i≤α−1.

According to Assumption 3.1(3),

λmin

(
Ei−1

(
1

α

α−1∑
i=0

Z1,i|Xj,k−1

))

≥ 1

α

α−1∑
i=0

(1− b2(α−i))

1− b2 λmin(E(µiµ
′
i))

≥ α(1− b2)− b2 + b2α+2

α(1− b2)
λ−new,k

= (1− b2 − b2α+2

α(1− b2)
)λ−new,k
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and

λmax

(
Ei−1

(
1

α

α−1∑
i=0

Z1,i|Xj,k−1

))

≤ 1

α

α−1∑
i=0

(1− b2(α−i))

1− b2 λmax(E(µiµ
′
i))

≤
(
α(1− b2)− b2 + b2α+2

α(1− b2)
λ+

new,k

)
≤ λ+

new,k

and by Lemma 2.17,

Ei−1(Z2,i|Xj,k−1) = Ei−1

(
i−1∑
i2=0

(1− b2(α−i))

1− b2 bi−i2µiµ
′
i2

)

= E

(
µi

i−1∑
i2=0

(1− b2(α−i))

1− b2 bi−i2µ′i2 |Z2,0, · · · , Z2,i−1

)
= E (µih(µ0, µ1, · · · , µi−1)|g(µ0, µ1, · · · , µi−1))

= E(µi)E (h(µ0, µ1, · · · , µi−1)|g(µ0, µ1, · · · , µi−1))

= 0, (25)

Similarly, we have Ei−1(Z3,i|Xj,k−1) = 0,Ei−1(Z4,i|Xj,k−1) = 0.

0 � Z1,i �
(1− b2(α−i))

1− b2 c(1− b)2γ2
new,kI �

(1− b2α)(1− b)
1 + b

cγ2
new,kI,

‖Z2,i1‖ ≤
i1−1∑
i2=0

(1− b2(α−i1))

1− b2 bi1−i2c(1− b)2γ2
new,k

≤ b(1− b2(α−i1))(1− bi1)

1 + b
cγ2

new,k

≤ b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k (26)

‖Z3,i‖ ≤
α−1∑

i2=α−i

(1− b2(α−i2))

1− b2 bi+i2−α+1c(1− b)2γ2
new,k

≤ (1− bi+1)2

1 + b
cγ2

new,k

≤ (1− bα)2

1 + b
cγ2

new,k (27)

‖Z4,i‖ ≤
bi+1(1− b2(α−i))

1− b2 c(1− b)γnew,kγnew,k−1

≤ b(1− b2α)

1 + b
cγnew,kγnew,k−1 (28)

0 � b2(1− b2α)

1− b2 d−1d
′
−1 �

b2(1− b2α)

1− b2 cγ2
new,k−1I (29)

Given Xj,k−1, {Z1,i}i∈Ij,k is an adapted sequence of Hermitian matrices, thus by Corollary 2.15, for all Xj,k−1 ∈ Γj,k−1,

we have
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P

(
λmin

(
1

α

α−1∑
i=0

Z1,i

)
≥
(

1− b2 − b2α+2

α(1− b2)

)
λ−new,k − ε

∣∣∣Xj,k−1

)
≥ 1− cz

(
α, ε,

(1− b2α)(1− b)
1 + b

cγ2
new,k

)
(30)

Similarly, given Xj,k−1, {Z2,i1}i1∈Ij,k , {Z3,i1}i1∈Ij,k , {Z4,i}i∈Ij,k are adapted sequences of matrices, by Corollary 2.14,

for all Xj,k−1 ∈ Γj,k−1 we have

P

(∥∥∥∥∥ 1

α

α−1∑
i1=0

Z2,i1

∥∥∥∥∥ ≤ ε∣∣∣Xj,k−1

)
≥ 1− 2cz

(
α, ε, 2

b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

)
(31)

P

(∥∥∥∥∥ 1

α

α−1∑
i1=0

Z3,i1

∥∥∥∥∥ ≤ ε∣∣∣Xj,k−1

)
≥ 1− 2cz

(
α, ε, 2

(1− bα)2

1 + b
cγ2

new,k

)
(32)

P

(∥∥∥∥∥ 1

α

α−1∑
i=0

(Z4,i + Z ′4,i)

∥∥∥∥∥ ≤ ε∣∣∣Xj,k−1

)
≥ 1− 2cz

(
α, ε, 4

b(1− b2α)

1 + b
cγnew,kγnew,k−1

)
(33)

Thus, given Xj,k−1, we have

P

∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

at,newa
′
t,new

∥∥∥∥∥∥ ≤ λ+
new,k +

b2(1− b2α)

1− b2 cγ2
new,k−1 + ε

∣∣∣Xj,k−1


= 1−P

∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

at,newa
′
t,new

∥∥∥∥∥∥ > λ+
new,k +

b2(1− b2α)

1− b2 cγ2
new,k−1 + ε

∣∣∣Xj,k−1


≥ 1−P

(∥∥∥∥∥ 1

α

α−1∑
i=0

Z1,i

∥∥∥∥∥ > λ+
new,k +

ε

4

∣∣∣Xj,k−1

)
−P

(∥∥∥∥∥ 1

α

α−1∑
i1=0

Z2,i1

∥∥∥∥∥ > ε

4

∣∣∣∣Xj,k−1

)
−P

(∥∥∥∥∥ 1

α

α−1∑
i1=0

Z3,i

∥∥∥∥∥ > ε

4

∣∣∣∣Xj,k−1

)

−P
(∥∥∥∥∥ 1

α

α−1∑
i1=0

(Z4,i + Z ′4,i)

∥∥∥∥∥ > ε

4

∣∣∣∣Xj,k−1

)
−P

(∥∥∥∥b2(1− b2α)

1− b2 d−1d
′
−1

∥∥∥∥ > b2(1− b2α)

1− b2 cγ2
new,k−1

)
≥ 1− cz

(
α,
ε

4
,

(1− b2α)(1− b)
1 + b

cγ2
new,k

)
− 2cz

(
α,
ε

4
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

)
− 2cz

(
α,
ε

4
, 2

(1− bα)2

1 + b
cγ2

new,k

)
−2cz

(
α,
ε

4
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1

)
(34)

P

λmin

 1

α

∑
t∈Ij,k

at,newa
′
t,new

 ≥ (1− b2 − b2α+2

α(1− b2)
)λ−new,k − ε

∣∣∣Xj,k−1


= 1−P

λmin

 1

α

∑
t∈Ij,k

at,newa
′
t,new

 < (1− b2 − b2α+2

α(1− b2)
)λ−new,k − ε

∣∣∣Xj,k−1


≥ 1−P

(
λmin

(
1

α

α−1∑
i=0

Z1,i

)
< (1− b2 − b2α+2

α(1− b2)
)λ−new,k −

ε

4

∣∣∣Xj,k−1

)
−P

(
λmin

(
1

α

α−1∑
i1=0

Z2,i1

)
< − ε

4

∣∣∣∣Xj,k−1

)

−P
(
λmin

(
1

α

α−1∑
i1=0

Z3,i

)
< − ε

4

∣∣∣∣Xj,k−1

)
−P

(
λmin

(
1

α

α−1∑
i1=0

(Z4,i + Z ′4,i)

)
< − ε

4

∣∣∣∣Xj,k−1

)

−P
(
λmin

(
b2(1− b2α)

1− b2 d−1d
′
−1

)
< 0

)
≥ 1− cz

(
α,
ε

4
,

(1− b2α)(1− b)
1 + b

cγ2
new,k

)
− 2cz

(
α,
ε

4
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

)
− 2cz

(
α,
ε

4
, 2

(1− bα)2

1 + b
cγ2

new,k

)
−2cz

(
α,
ε

4
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1

)
(35)

Remark 10.4: d−1 corresponds to atj+(k−1)α−1. When k = 1, there is no d−1 in previous equations, in which case there

is no b2(1−b2α)
1−b2 cγ2

new,k−1 in the upper bound (34).
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α−1∑
t=0

dtm
′
t

=

α−1∑
t=0

(bdt−1 + µt)(bmt−1 + ω′t)

=

α−1∑
t=0

(bt+1d−1 +

t∑
i=0

bt−iµi)(b
t+1m−1 +

t∑
i=0

bt−iω′i)

=

α−1∑
t=0

t∑
i1=0

t∑
i2=0

b2t−i1−i2µi1ω
′
i2 +

α−1∑
t=0

t∑
i=0

b2t−i+1µim
′
−1 +

α−1∑
t=0

b2(t+1)d−1m
′
−1 +

α−1∑
t=0

t∑
i=0

b2t−i+1d−1ω
′
i

=

α−1∑
i1=0

α−1∑
t=i1

t∑
i2=0

b2t−i1−i2µi1ω
′
i2 +

α−1∑
i=0

α−1∑
t=i

b2t−i+1µim
′
−1 +

b2(1− b2α)

1− b2 d−1m
′
−1 +

α−1∑
i=0

α−1∑
t=i

b2t−i+1d−1ω
′
i

=

α−1∑
i1=0

α−1∑
i2=0

α−1∑
t=max{i1,i2}

b2t−i1−i2µi1ω
′
i2 +

α−1∑
i=0

(1− b2(α−i))

1− b2 bi+1µim
′
−1 +

b2(1− b2α)

1− b2 d−1m
′
−1

+

α−1∑
i=0

(1− b2(α−i))

1− b2 bi+1d−1ω
′
i

=

α−1∑
i1=0

α−1∑
i2=0

(1− b2(α−max{i1,i2}))

1− b2 b2 max{i1,i2}−i1−i2µi1ω
′
i2 +

α−1∑
i=0

(1− b2(α−i))

1− b2 bi+1(µim
′
−1 + d−1ω

′
i)

+
b2(1− b2α)

1− b2 d−1m
′
−1 (36)

Let

Y1,i =

α−1∑
i2=0

(1− b2(α−max{i,i2}))

1− b2 b2 max{i,i2}−i−i2µiω
′
i2

Y2,i =
(1− b2(α−i))

1− b2 bi+1(µim
′
−1 + d−1ω

′
i)

then by Lemma 2.17 and similar procedure to (25),

Ei−1(Y1,i|Xj,k−1) = 0,Ei−1(Y2,i|Xj,k−1) = 0 (37)

and

‖Y1,i1‖ ≤
α−1∑
i2=0

(1− b2(α−max{i1,i2}))

1− b2 b2 max{i1,i2}−i1−i2√cr(1− b)2γ∗γnew,k (38)

As
α−1∑
i2=0

(1− b2(α−max{i1,i2}))

1− b2 b2 max{i1,i2}−i1−i2

=

i1∑
i2=0

(1− b2(α−i1))

1− b2 b2i1−i1−i2 +

α−1∑
i2=i1+1

(1− b2(α−i2))

1− b2 b2i2−i1−i2

=
(1− b2(α−i1))bi1(1− b−(i1+1))

(1− b2)(1− b−1)
+
b(1− bα−1−i1) + b2(α)−2i1(1− b−(α−i1−1))

(1− b2)(1− b)

=
−bi1+1 + 1 + bα−i1+α+1 + b− bα−i1 − bα−i1+1

(1− b2)(1− b)
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≤ 1 + b− 2
√
bα+1(1 + b− bα+1)

(1− b2)(1− b) ,

we have

‖Y1,i1‖2 ≤
1 + b− 2

√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,k.

Also,

‖Y2,i‖2 ≤ 2
(1− b2(α−i))

1− b2 b+i+1
√
cr(1− b)γ∗γnew,k

≤ 2
b(1− b2α)

1 + b

√
crγ∗γnew,k (39)

‖b
2
(
1− b2α

)
1− b2 d−1m

′
−1‖ ≤

b2
(
1− b2α

)
1− b2

√
crγ∗γnew,k (40)

Thus, by Corollary 2.14, we have

P

∥∥∥∥∥∥ 1

α

∑
i1∈Ij,k

Y1,i1

∥∥∥∥∥∥ ≤ ε
∣∣∣Xj,k−1

 ≥ 1− (rj + c)z(α, ε, 2
1 + b− 2

√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,k), (41)

for all Xj,k−1 ∈ Γj,k−1; and

P

∥∥∥∥∥∥ 1

α

∑
i1∈Ij,k

Y2,i1

∥∥∥∥∥∥ ≤ ε
∣∣∣Xj,k−1

 ≥ 1− (rj + c)z
(
α, ε, 4

b(1− b2α)

1 + b

√
crγ∗γnew,k

)
, (42)

for all Xj,k−1 ∈ Γj,k−1.

Thus, given Xj,k−1, we have

P

λmax

 1

α

∑
t∈Ij,k

at,newat,∗
′

 ≤ b2
(
1− b2α

)
1− b2

√
crγ∗γnew,k + ε


= 1−P

λmax

 1

α

∑
t∈Ij,k

at,newat,∗
′

 >
b2
(
1− b2α

)
1− b2

√
crγ∗γnew,k + ε


≥ 1−P

λmax

 1

α

∑
i1∈Ij,k

Y1,i1

 >
ε

2

∣∣∣Xj,k−1

−P

λmax

 1

α

∑
i1∈Ij,k

Y2,i1

 >
ε

2

∣∣∣Xj,k−1

−
P

λmax

 1

α

∑
i1∈Ij,k

b2
(
1− b2α

)
1− b2 d−1m

′
−1

 >
b2
(
1− b2α

)
1− b2

√
crγ∗γnew,k

∣∣∣Xj,k−1


≥ 1− (rj + c)z(α,

ε

2
, 2

1 + b− 2
√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,k)− (rj + c)z

(
α,
ε

2
, 4
b(1− b2α)

1 + b

√
crγ∗γnew,k

)
(43)

P

λmin

 1

α

∑
t∈Ij,k

at,newat,∗
′

 ≥ −b2 (1− b2α)
1− b2

√
crγ∗γnew,k − ε


= 1−P

λmin

 1

α

∑
t∈Ij,k

at,newat,∗
′

 < −b
2
(
1− b2α

)
1− b2

√
crγ∗γnew,k − ε


≥ 1−P

λmin

 1

α

∑
i1∈Ij,k

Y1,i1

 < − ε
2

∣∣∣Xj,k−1

−P

λmin

 1

α

∑
i1∈Ij,k

Y2,i1

 < − ε
2

∣∣∣Xj,k−1

−
P

λmin

 1

α

∑
i1∈Ij,k

b2
(
1− b2α

)
1− b2 d−1m

′
−1

 < −b
2
(
1− b2α

)
1− b2

√
crγ∗γnew,k

∣∣∣Xj,k−1

 ≥ 1−

(rj + c)z

(
α,
ε

2
, 2

1 + b− 2
√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,k

)
− (rj + c)z

(
α,
ε

2
, 4
b(1− b2α)

1 + b

√
crγ∗γnew,k

)
(44)
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α−1∑
t=0

mtm
′
t

=

α−1∑
t=0

(bmt−1 + ωt)(bmt−1 + ω′t)

=

α−1∑
t=0

(bt+1m−1 +

t∑
i=0

bt−iωi)(b
t+1m−1 +

t∑
i=0

bt−iω′i)

=

α−1∑
t=0

(b2t
t∑
i=0

b−2iωiω
′
i) +

α−1∑
t=0

(b2t
∑

0≤i1,i2≤t,i1 6=i2

b−i1−i2ωi1ω
′
i2) +

α−1∑
t=0

t∑
i=0

b2t−i+1m−1ω
′
i

+

α−1∑
t=0

t∑
i=0

b2t−i+1ωim
′
−1 +

α−1∑
t=0

b2(t+1)m−1m
′
−1

=

α−1∑
i=0

α−1∑
t=i

(b2tb−2iωiω
′
i) +

α−1∑
t=0

b2t(

t∑
i1=0

i1−1∑
i2=0

b−i1−i2ωi1ω
′
i2 +

t∑
i1=0

t∑
i2=i1+1

b−i1−i2ωi1ω
′
i2) +

α−1∑
i=0

α−1∑
t=i

b2t−i+1m−1ω
′
i +

α−1∑
i=0

α−1∑
t=i

b2t−i+1ωim
′
−1 +

b2(1− b2α)

1− b2 m−1m
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 ωiω
′
i +

α−1∑
i1=0

α−1∑
t=i1

b2t(

i1−1∑
i2=tj+(k−1)

b−i1−i2ωi1ω
′
i2 +

t∑
i2=i1+1

b−i1−i2ωi1ω
′
i2)

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (ωim
′
−1 +m−1ω

′
i) +

b2(1− b2α)

1− b2 m−1m
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 ωiω
′
i +

α−1∑
i1=0

(1− b2(α−i1))

1− b2
i1−1∑
i2=0

bi1−i2ωi1ω
′
i2 +

α−1∑
i1=−1

α−1∑
i2=i1+1

α−1∑
t=i2

b2tb−i1−i2ωi1ω
′
i2 +

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (ωim
′
−1 +m−1ω

′
i) +

b2(1− b2α)

1− b2 m−1m
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 ωiω
′
i +

α−1∑
i1=0

(1− b2(α−i1))

1− b2
i1−1∑
i2=0

bi1−i2ωi1ω
′
i2 +

α−1∑
i1=0

α−1∑
i2=i1+1

(1− b2(α−i2))

1− b2 b−i1+i2ωi1ω
′
i2

+

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (ωim
′
−1 +m−1ω

′
i) +

b2(1− b2α)

1− b2 m−1m
′
−1

=

α−1∑
i=0

(1− b2(α−i))

1− b2 ωiω
′
i +

α−1∑
i1=0

(1− b2(α−i1))

1− b2
i1−1∑
i2=0

bi1−i2ωi1ω
′
i2 +

α−1∑
i1=0

α−1∑
i2=α−i1

(1− b2(α−i2))

1− b2 bi1+i2+1−αωα−1−i1ω
′
i2

+

α−1∑
i=0

bi+1(1− b2(α−i))

1− b2 (ωim
′
−1 +m−1ω

′
i) +

b2(1− b2α)

1− b2 m−1m
′
−1 (45)

Let

Z1,i =
(1− b2(α−i))

1− b2 ωiω
′
i,

Z2,i =

i−1∑
i2=0

(1− b2(α−i))

1− b2 bi−i2ωiω
′
i2 , i ≥ 1

Z3,i =

α−1∑
i2=α−i

(1− b2(α−i2))

1− b2 bi+i2+1−αωα−1−iω
′
i2 ,

Z4,i =
bi+1(1− b2(α−i))

1− b2 ωim
′
−1 (46)
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then,

λmax

(
Ei−1(

1

α

α−1∑
i=0

Z1,i

∣∣∣Xj,k−1)

)

≤ 1

α

α−1∑
i=0

(1− b2(tj+kα−i))

1− b2 λmax(E(ωiω
′
i))

≤ (
α(1− b2)− b2 + b2α+2

α(1− b2)
λ+)

≤ λ+

λmin

(
Ei−1(

1

α

α−1∑
i=0

Z1,i

∣∣∣Xj,k−1)

)

≥ 1

α

α−1∑
i=0

(1− b2(tj+kα−i))

1− b2 λmin(E(ωiω
′
i))

≥ α(1− b2)− b2 + b2α+2

α(1− b2)
λ−new,k (47)

and by Lemma 2.17 and similar procedure to (25),

Ei−1(Z2,i|Xj,k−1) = 0,Ei−1(Z3,i|Xj,k−1) = 0,Ei−1(Z4,i|Xj,k−1) = 0. (48)

0 � Z1,i1 �
(1− b2(α−i))

1− b2 r(1− b)2γ2
∗I �

(1− b2α)(1− b)
1 + b

rγ2
∗I,

‖Z2,i‖ ≤
i−1∑
i2=0

(1− b2(α−i))

1− b2 bi−i2r(1− b)2γ2
∗

≤ b(1− b2(α−i))(1− bi)
1 + b

rγ2
∗

≤ b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗

‖Z3,i‖ ≤
α−1∑

i2=α−i

(1− b2(α−i2))

1− b2 bi+i2+1−αr(1− b)2γ2
∗

≤ (1− bi+1)2

1 + b
rγ2
∗

≤ (1− bα)2

1 + b
rγ2
∗

‖Z4,i1‖ ≤
bi+1(1− b2(α−i))

1− b2 c(1− b)γ2
∗

≤ b(1− b2α)

1 + b
rγ2
∗

0 � b2(1− b2α)

1− b2 m−1m
′
−1 �

b2(1− b2α)

1− b2 rγ2
∗I (49)

Given Xj,k−1, {Z1,i}i∈Ij,k is an adapted sequence of Hermitian matrices, thus by Corollary 2.15, for all Xj,k−1 ∈ Γj,k−1,

we have

P

(
λmax

(
1

α

α−1∑
i=0

Z1,i

)
≤ λ+ − ε

∣∣∣Xj,k−1

)
≥ 1− rjz(α, ε,

(1− b2α)(1− b)
1 + b

rγ2
∗) (50)
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Similarly, given Xj,k−1, {Z2,i1}i1∈Ij,k , {Z3,i1}i1∈Ij,k , {Z4,i}i∈Ij,k are adapted sequences of matrices, by Corollary 2.14,

for all Xj,k−1 ∈ Γj,k−1 we have

P

(∥∥∥∥∥ 1

α

α−1∑
i=0

Z2,i

∥∥∥∥∥ ≤ ε∣∣∣Xj,k−1

)
≥ 1− 2rjz(α, ε, 2

b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗) (51)

P

(∥∥∥∥∥ 1

α

α−1∑
i=0

Z3,i

∥∥∥∥∥ ≤ ε
∣∣∣∣Xj,k−1

)
≥ 1− 2rjz(α, ε, 2

(1− bα)2

1 + b
rγ2
∗) (52)

P

(∥∥∥∥∥ 1

α

α−1∑
i=0

(Z4,i + Z ′4,i)

∥∥∥∥∥ ≤ ε
∣∣∣∣Xj,k−1

)
≥ 1− 2rjz(α, ε, 4

b(1− b2α)

1 + b
rγ2
∗) (53)

Thus, given Xj,k−1, we have

P

∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

at,∗a
′
t,∗

∥∥∥∥∥∥ ≤ λ+ +
b2(1− b2α)

1− b2 rγ2
∗ + ε

∣∣∣Xj,k−1


≥ 1−P

∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

at,∗a
′
t,∗

∥∥∥∥∥∥ > λ+ +
b2(1− b2α)

1− b2 cγ2
∗,k−1 + ε

∣∣∣Xj,k−1


≥ 1−P

(∥∥∥∥∥ 1

α

α−1∑
i=0

Z1,i

∥∥∥∥∥ > λ+ +
ε

4

∣∣∣Xj,k−1

)
−P

(∥∥∥∥∥ 1

α

α−1∑
i1=0

Z2,i1

∥∥∥∥∥ > ε

4

∣∣∣∣Xj,k−1

)
−P

(∥∥∥∥∥ 1

α

α−1∑
i1=0

Z3,i

∥∥∥∥∥ > ε

4

∣∣∣∣Xj,k−1

)

−P
(∥∥∥∥∥ 1

α

α−1∑
i1=0

(Z4,i + Z ′4,i)

∥∥∥∥∥ > ε

4

∣∣∣∣Xj,k−1

)
−P

(∥∥∥∥b2(1− b2α)

1− b2 m−1m
′
−1

∥∥∥∥ > b2(1− b2α)

1− b2 rγ2
∗

)
≥ 1− rjz

(
α,
ε

4
,

(1− b2α)(1− b)
1 + b

rγ2
∗

)
− 2rjz

(
α,
ε

4
, 2
b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗

)
−2rjz

(
α,
ε

4
, 2

(1− bα)2

1 + b
rγ2
∗

)
− 2rjz

(
α,
ε

4
, 4
b(1− b2α)

1 + b
rγ2
∗

)
(54)

P

λmin

 1

α

∑
t∈Ij,k

at,∗a
′
t,∗

 ≥ α(1− b2)− b2 + b2α+2

α(1− b2)
λ−new,k − ε

∣∣∣Xj,k−1


≥ 1−P

λmin

 1

α

∑
t∈Ij,k

at,∗a
′
t,∗

 <
α(1− b2)− b2 + b2α+2

α(1− b2)
λ−new,k − ε

∣∣∣Xj,k−1


≥ 1−P

(
λmin

(
1

α

α−1∑
i=0

Z1,i

)
<
α(1− b2)− b2 + b2α+2

α(1− b2)
λ−new,k −

ε

4

∣∣∣Xj,k−1

)
−P

(
λmin

(
1

α

α−1∑
i1=0

Z2,i1

)
< − ε

4

∣∣∣∣Xj,k−1

)

−P
(
λmin

(
1

α

α−1∑
i1=0

Z3,i

)
< − ε

4

∣∣∣∣Xj,k−1

)
−P

(
λmin

(
1

α

α−1∑
i1=0

(Z4,i + Z ′4,i)

)
< − ε

4

∣∣∣∣Xj,k−1

)

−P
(
λmin

(
b2(1− b2α)

1− b2 m−1m
′
−1

)
< 0

)
≥ 1− rjz

(
α,
ε

4
,

(1− b2α)(1− b)
1 + b

rγ2
∗

)
− 2rjz

(
α,
ε

4
, 2
b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗

)
− 2rjz

(
α,
ε

4
, 2

(1− bα)2

1 + b
rγ2
∗

)
−2rjz

(
α,
ε

4
, 4
b(1− b2α)

1 + b
rγ2
∗

)
(55)

B. λmin (Ak)

Consider Ak := 1
α

∑
t∈Ij,k Enew

′Φ0LtLt
′Φ0Enew. Notice that Enew

′Φ0Lt = Rnewat,new + Enew
′D∗at,∗. We have

Ak �
1

α

∑
t∈Ij,k

Rnewat,newat,new
′Rnew

′ +
1

α

∑
t∈Ij,k

(
Rnewat,newat,∗

′D∗
′Enew

′ + Enew
′D∗at,∗at,new

′Rnew
′) (56)
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By λmin(RnewR
′
new) ≥ 1− (ζ+

∗ )2, ‖Rnew‖ ≤ 1 and similar procedure to get (35), we have

P

λmin

 1

α

∑
t∈Ij,k

Rnewat,newa
′
t,newR

′
new

 ≥ (1− (ζ+
∗ )2)(1− b2 − b2α+2

α(1− b2)
)λ−new,k −

cζλ−

24

∣∣∣Xj,k−1


≥ 1− cz

(
α,
cζλ−

96
,

(1− b2α)(1− b)
1 + b

cγ2
new,k

)
− 2cz

(
α,
cζλ−

96
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

)
−2cz

(
α,
cζλ−

96
, 2

(1− bα)2

1 + b
cγ2

new,k

)
− 2cz

(
α,
cζλ−

96
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1

)
(57)

By ‖Rnew‖ ≤ 1, ‖Enew‖ ≤ 1, ‖D∗‖ ≤ ζ+
∗ and similar procedure to get (44), we have

P

λmin

 1

α

∑
t∈Ij,k

(
Rnewat,newat,∗

′D∗
′Enew

′ + Enew
′D∗at,∗at,new

′Rnew
′) ≥ −2

b2
(
1− b2α

)
1− b2

√
crγ∗γnew,kζ

+
∗ −

cζλ−

24

 ≥
1− 2cz

(
α,
cζλ−

48
, 4

1 + b− 2
√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,kζ

+
∗

)
− 2cz

(
α,
cζλ−

48
, 8
b(1− b2α)

1 + b

√
crγ∗γnew,kζ

+
∗

)
(58)

Combining the previous two inequalities, we have,

P

(
λmin(Ak) ≥ bAk −

cζλ−

12

)
≥ 1− pa(α, ζ) (59)

where bAk = (1− (ζ+
∗ )2)(1− b2−b2α+2

α(1−b2) )λ−new,k − 2
b2(1−b2α)

1−b2
√
crγ∗γnew,kζ

+
∗ and

pa(α, ζ) = cz
(
α,
cζλ−

96
,

(1− b2α)(1− b)
1 + b

cγ2
new,k

)
+ 2cz

(
α,
cζλ−

96
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

)
+2cz

(
α,
cζλ−

96
, 2

(1− bα)2

1 + b
cγ2

new,k

)
+ 2cz

(
α,
cζλ−

96
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1

)
+ 2cz

(
α,
cζλ−

48
,

4
1 + b− 2

√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,kζ

+
∗

)
+ 2cz

(
α,
cζλ−

48
, 8
b(1− b2α)

1 + b

√
crγ∗γnew,kζ

+
∗

)
(60)

C. λmax (Ak,⊥)

Ak,⊥ : =
1

α

∑
t∈tj,k

Enew,⊥
′Φ0LtLt

′Φ0Enew,⊥

=
1

α

∑
t∈tj,k

Enew,⊥
′D∗at,∗a

′
t,∗D

′
∗Enew,⊥

By ‖Enew,⊥‖ ≤ 1, ‖D∗‖ ≤ ζ+
∗ and similar procedure to get (54), we have

P

∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

Enew,⊥
′D∗at,∗a

′
t,∗D

′
∗Enew,⊥

∥∥∥∥∥∥ ≤ bAk,⊥ +
cζλ−

24

∣∣∣Xj,k−1

 ≥ 1− pb(α, ζ) (61)

where bAk,⊥ = λ+(ζ+
∗ )2 + b2(1−b2α)

1−b2 rγ2
∗(ζ

+
∗ )2 and

pb(α, ζ) = (n− c)z
(
α,
cζλ−

96
,

(1− b2α)(1− b)
1 + b

rγ2
∗(ζ

+
∗ )2

)
+ 2(n− c)z

(
α,
cζλ−

96
, 2
b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗(ζ

+
∗ )2

)
+2(n− c)z

(
α,
cζλ−

96
, 2

(1− bα)2

1 + b
rγ2
∗(ζ

+
∗ )2

)
+ 2(n− c)z

(
α,
cζλ−

96
, 4
b(1− b2α)

1 + b
rγ2
∗(ζ

+
∗ )2

)
(62)

D. ‖Hk‖2
In this proof, we frequently refer to items from Sec. 10.3 and the bounds (22).

For the second claim, using the expression for Hk given in Definition 6.5, it is easy to see that

‖Hk‖2≤max{‖Hk‖2, ‖Hk,⊥‖2}+ ‖Bk‖2 ≤ ‖
1

α

∑
t

etet
′‖2 + max (‖T2‖2, ‖T4‖2) + ‖Bk‖2 (63)
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where T2 := 1
α

∑
tEnew

′Φ0

(
Ltet

′ + etLt
′)Φ0Enew and T4 := 1

α

∑
tEnew,⊥

′Φ0 (Ltet
′ + et

′Lt) Φ0Enew,⊥. The second

inequality follows by using the facts that (i) Hk = T1 − T2 where T1 := 1
α

∑
tEnew

′Φ0etet
′Φ0Enew, (ii) Hk,⊥ = T3 − T4

where T3 := 1
α

∑
tEnew,⊥

′Φ0etet
′Φ0Enew,⊥, and (iii) max (‖T1‖2, ‖T3‖2) ≤ ‖ 1

α

∑
t etet

′‖2. Next, we obtain high probability

bounds on each of the terms on the RHS of (63) using the Azuma corollaries.

1) ‖ 1
α

∑
t etet

′‖2: Consider ‖ 1
α

∑
t etet

′‖2. Let Zt = etet
′. Then

Zt = ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′[(Φk−1P∗) at,∗ +Dnew,k−1at,new][(Φk−1P∗) at,∗ +Dnew,k−1at,new]′ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′

= ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′[(Φk−1P∗) at,∗a

′
t,∗P

′
∗Φk−1 +Dnew,k−1at,newa

′
t,newD

′
new,k−1 + (Φk−1P∗) at,∗a

′
t,newD

′
new,k−1

+Dnew,k−1at,newa
′
t,∗P

′
∗Φk−1]ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′ (64)

(a) By (22) and similar procedure to get (54), we have

‖ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′ (Φk−1P∗) ‖ ≤ φ+ζ+

∗

and

P

(∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

ITt(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′[(Φk−1P∗) at,∗a

′
t,∗P

′
∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′

∥∥∥∥∥∥
≤ λ+(φ+ζ+

∗ )2 +
b2(1− b2α)

1− b2 rγ2
∗(φ

+ζ+
∗ )2 +

cζλ−

72

∣∣∣Xj,k−1

)
≥ 1− pc1(α, ζ) (65)

where

pc1(α, ζ) = nz
(
α,
cζλ−

288
,

(1− b2α)(1− b)
1 + b

rγ2
∗(φ

+ζ+
∗ )2

)
+ 2nz

(
α,
cζλ−

288
, 2
b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗(φ

+ζ+
∗ )2

)
+2nz

(
α,
cζλ−

288
, 2

(1− bα)2

1 + b
rγ2
∗(φ

+ζ+
∗ )2

)
+ 2nz

(
α,
cζλ−

288
, 4
b(1− b2α)

1 + b
rγ2
∗(φ

+ζ+
∗ )2

)
(66)

(b) By (22) and similar procedure to get (34), we have

‖ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew,k−1‖ ≤ φ+κ+

s ζ
+
k−1

and

P

(∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew,k−1at,newa

′
t,newD

′
new,k−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′

∥∥∥∥∥∥
≤ λ+

new,k(φ+κ+
s ζ

+
k−1)2 +

b2(1− b2α)

1− b2 cγ2
new,k−1(φ+κ+

s ζ
+
k−1)2 +

cζλ−

72

∣∣∣Xj,k−1

)
≥ 1− pc2(α, ζ) (67)

where

pc2(α, ζ) = nz
(
α,
cζλ−

288
,

(1− b2α)(1− b)
1 + b

cγ2
new,k(φ+κ+

s ζ
+
k−1)2

)
+ 2nz

(
α,
cζλ−

288
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k

(
φ+κ+

s

ζ+
k−1

)2)
+ 2nz

(
α,
cζλ−

288
, 2

(1− bα)2

1 + b
cγ2

new,k(φ+κ+
s ζ

+
k−1)2

)
+ 2nz

(
α,
cζλ−

288
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1(φ+κ+

s ζ
+
k−1)2

)
(c) By (22) and similar procedure to get (43), we have

‖ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1‖ ≤ φ+, ‖ITt ′Dnew,k−1‖ ≤ κ+
s ζ

+
k−1, ‖Φk−1P∗‖ ≤ ζ+

∗

and

P

(∥∥∥∥ 1

α

∑
t∈Ij,k

ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′[(Φk−1P∗) at,∗a

′
t,newD

′
new,k−1 +Dnew,k−1at,newa

′
t,∗P

′
∗Φk−1]
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ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′
∥∥∥∥ ≤ 2

b2
(
1− b2α

)
1− b2

√
crγ∗γnew,k(φ+)2κ+

s ζ
+
k−1ζ

+
∗ +

cζλ−

72

∣∣∣Xj,k−1

)
≥ 1− pc3(α, ζ) (68)

where

pc3(α, ζ) = 2nz(α,
cζλ−

144
, 4

1 + b− 2
√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,k(φ+)2κ+

s ζ
+
k−1ζ

+
∗ ) +

2nz
(
α,
cζλ−

144
, 8
b(1− b2α)

1 + b

√
crγ∗γnew,k(φ+)2κ+

s ζ
+
k−1ζ

+
∗

)
(69)

Combining (65), (67) and (68), we have

P

(∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

etet
′

∥∥∥∥∥∥ ≤ λ+(φ+ζ+
∗ )2 +

b2(1− b2α)

1− b2 rγ2
∗(φ

+ζ+
∗ )2 + λ+

new,k(φ+κ+
s ζ

+
k−1)2 +

b2(1− b2α)

1− b2 cγ2
new,k−1(φ+κ+

s ζ
+
k−1)2 +

2
b2
(
1− b2α

)
1− b2

√
crγ∗γnew,k(φ+)2κ+

s ζ
+
k−1ζ

+
∗ +

cζλ−

24

∣∣∣Xj,k−1

)
≥ 1− pc(α, ζ) (70)

where pc(α, ζ) = pc1(α, ζ) + pc2(α, ζ) + pc3(α, ζ).

2) ‖T2‖: Consider T2. Let

Zt := Enew
′Φ0Ltet

′Φ0Enew

= Enew
′Φ0 (P∗at,∗ + Pnewat,new) [(Φk−1P∗) at,∗ +Dnew,k−1at,new]′ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew

= Enew
′Φ0

(
P∗at,∗a

′
t,∗P

′
∗Φk−1 + Pnewat,newa

′
t,∗P

′
∗Φk−1 + P∗at,∗a

′
t,newD

′
new,k−1 + Pnewat,newa

′
t,newD

′
new,k−1

)
ITt

[(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Φ0Enew (71)

which is of size c× c. Then T2 = 1
α

∑
t (Zt + Z ′t).

(a) By (22) and similar procedure to get (54), we have

‖Enew
′Φ0P∗‖ ≤ ζ+

∗ , ‖P ′∗Φk−1ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Φ0Enew‖ ≤ ζ+

∗ φ
+ κ+

s√
1−

(
ζ+
∗
)2

and

P

(∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

Enew
′Φ0P∗at,∗a

′
t,∗P

′
∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew

∥∥∥∥∥∥
≤ λ+φ+(ζ+

∗ )2 κ+
s√

1−
(
ζ+
∗
)2 +

b2(1− b2α)

1− b2 rγ2
∗φ

+(ζ+
∗ )2 κ+

s√
1−

(
ζ+
∗
)2 +

cζλ−

144

∣∣∣Xj,k−1

)
≥ 1− pd1(α, ζ) (72)

where

pd1(α, ζ) =

cz

α, cζλ−
576

,
(1− b2α)(1− b)

1 + b
rγ2
∗φ

+(ζ+
∗ )2 κ+

s√
1−

(
ζ+
∗
)2
+ 2cz

α, cζλ−
576

, 2
b(1− b)(1− b2(α−1))

(1 + b)
rγ2
∗φ

+(ζ+
∗ )2 κ+

s√
1−

(
ζ+
∗
)2


+2cz

α, cζλ−
576

, 2
(1− bα)2

1 + b
rγ2
∗φ

+(ζ+
∗ )2 κ+

s√
1−

(
ζ+
∗
)2
+ 2cz

α, cζλ−
576

, 4
b(1− b2α)

1 + b
rγ2
∗φ

+(ζ+
∗ )2 κ+

s√
1−

(
ζ+
∗
)2


(73)

(b) By (22) and similar procedure to get (43), we have

‖Enew
′Φ0P∗‖ ≤ ζ+

∗ ≤ 1, ‖Enew
′Φ0Pnew‖ ≤ 1, ‖P ′∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew‖ ≤ ζ+

∗ φ
+ κ+

s√
1−

(
ζ+
∗
)2
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and

P

(∥∥∥∥ 1

α

∑
t∈Ij,k

Enew
′Φ0(Pnewat,newa

′
t,∗P

′
∗Φk−1 + P∗at,∗a

′
t,newD

′
new,k−1)ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew

∥∥∥∥
≤ 2

b2
(
1− b2α

)
1− b2

√
crγ∗γnew,kφ

+ζ+
∗

κ+
s√

1−
(
ζ+
∗
)2 +

cζλ−

144

)
≥ 1− pd3(α, ζ) (74)

where

pd3(α, ζ) = 2cz(α,
cζλ−

288
, 4

1 + b− 2
√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,kφ

+ζ+
∗

κ+
s√

1−
(
ζ+
∗
)2 )

+2cz

α, cζλ−
288

, 8
b(1− b2α)

1 + b

√
crγ∗γnew,kφ

+ζ+
∗

κ+
s√

1−
(
ζ+
∗
)2
 (75)

(c) By (22) and similar procedure to get (34), we have

‖Enew
′Φ0Pnew‖ ≤ 1, ‖D′new,k−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew‖ ≤ ζ+

k−1φ
+ (κ+

s )2√
1−

(
ζ+
∗
)2

and

P

(∥∥∥∥∥∥ 1

α

∑
t∈Ij,k

ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew,k−1at,newa

′
t,newD

′
new,k−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′

∥∥∥∥∥∥
≤ λ+

new,kζ
+
k−1φ

+ (κ+
s )2√

1−
(
ζ+
∗
)2 +

b2(1− b2α)

1− b2 cγ2
new,k−1ζ

+
k−1φ

+ (κ+
s )2√

1−
(
ζ+
∗
)2 +

cζλ−

144

∣∣∣Xj,k−1

)
≥ 1− pd3(α, ζ) (76)

where

pd3(α, ζ) = cz

α, cζλ−
576

,
(1− b2α)(1− b)

1 + b
cγ2

new,k(φ+κ+
s ζ

+
k−1)2 (κ+

s )2√
1−

(
ζ+
∗
)2


+2cz

α, cζλ−
576

, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k(φ+κ+
s ζ

+
k−1)2 (κ+

s )2√
1−

(
ζ+
∗
)2


+2cz

α, cζλ−
576

, 2
(1− bα)2

1 + b
cγ2

new,k(φ+κ+
s ζ

+
k−1)2 (κ+

s )2√
1−

(
ζ+
∗
)2


+2cz

α, cζλ−
576

, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1(φ+κ+

s ζ
+
k−1)2 (κ+

s )2√
1−

(
ζ+
∗
)2
 (77)

Thus, combining (72), (74) and (76), we have

P

(
‖T2‖ =

∥∥∥∥∥ 1

α

∑
t

(Zt + Z ′t)

∥∥∥∥∥ ≤ 2φ+κ+
s

(ζ+
∗ )

2√
1−

(
ζ+
∗
)2λ+ + 2φ+ζ+

k−1

(κ+
s )

2√
1−

(
ζ+
∗
)2λ+

new,k +

2
b2
(
1− b2α

)
1− b2 rγ2

∗φ
+κ+

s

(ζ+
∗ )

2√
1−

(
ζ+
∗
)2 + 2

b2
(
1− b2α

)
1− b2 cγ2

new,k−1φ
+ζ+

k−1

(κ+
s )

2√
1−

(
ζ+
∗
)2 +

4
b2
(
1− b2α

)
1− b2

√
crγ∗γnew,kζ

+
∗ φ

+ κ+
s√

1−
(
ζ+
∗
)2 +

cζλ−

24

∣∣∣Xj,k−1

)
≥ 1− pd(α, ζ) (78)

where pd(α, ζ) = 2pd1(α, ζ) + 2pd2(α, ζ) + 2pd3(α, ζ).
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3) ‖T4‖: Consider T4. Let

Zt := Enew,⊥
′Φ0Ltet

′Φ0Enew,⊥ (79)

which is of size (n− c)× (n− c). Then T4 = 1
α

∑
t (Zt + Z ′t). Enew,⊥

′Φ0Lt = Enew,⊥
′Φ0P∗at,∗+Enew,⊥

′EnewRnewat,new =

Enew,⊥
′D∗at,∗. Thus,

Zt = Enew,⊥
′D∗at,∗[(Φk−1P∗) at,∗ +Dnew,k−1at,new]′ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew,⊥

= Enew,⊥
′D∗at,∗

(
a′t,∗P

′
∗Φk−1 + a′t,newD

′
new,k−1

)
ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew,⊥

(a) Using (22) and similar procedure to get (54), we have

P

‖ 1

α

∑
t∈tj,k

Enew,⊥
′D∗at,∗a

′
t,∗P

′
∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew,⊥‖2 ≤ φ+

(
ζ+
∗
)2
λ++

b2
(
1− b2α

)
1− b2 rγ2

∗φ
+
(
ζ+
∗
)2

+
cζλ−

96

∣∣∣Xj,k−1

)
≥ 1− pe1 (α, ζ) (80)

where

pe1 (α, ζ) = 2(n− c)z
(
α,
cζλ−

384
,

(
1− b2α

)
(1− b)

1 + b
rγ2
∗φ

+
(
ζ+
∗
)2)

+ 2(n− c)z
(
α,
cζλ−

384
, 2
b(1− b)

(
1− b2(α−1)

)
1 + b

rγ2
∗φ

+

(
ζ+
∗
)2)

+ 2(n− c)z
(
α,
cζλ−

384
, 2

(1− bα)
2

1 + b
rγ2
∗φ

+
(
ζ+
∗
)2)

+ 2(n− c)z
(
α,
cζλ−

384
, 2
b
(
1− b2α

)
1 + b

rγ2
∗φ

+
(
ζ+
∗
)2)

(b) Using (22) and similar procedure to get (43), we have, conditioned on Xj,k−1,

P

‖ 1

α

∑
t∈tj,k

Enew,⊥
′D∗at,∗a

′
t,newD

′
new,k−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Φ0Enew,⊥‖2 ≤

b2
(
1− b2α

)
1− b2

√
crγ∗γnew,kζ

+
∗ ζ

+
k−1φ

+κ+
s +

cζλ−

96

∣∣∣Xj,k−1

)
≥ 1− pe2 (α, ζ) (81)

where

pe2 (α, ζ) = 2(n− c)z
(
α,
cζλ−

192
, 2

1 + b− 2
√
bα+1 (1 + b− bα+1)

1 + b

√
crγ∗γnew,kζ

+
∗ ζ

+
k−1φ

+κ+
s

)

+2(n− c)z
(
α,
cζλ−

192
, 4
b
(
1− b2α

)
1 + b

√
crγ∗γnew,kζ

+
∗ ζ

+
k−1φ

+κ+
s

)
Thus, combining last two inequalities, we have

P

‖T4‖2 = ‖ 1

α

∑
t∈tj,k

Zt + Z ′t‖2 ≤ 2φ+
(
ζ+
∗
)2
λ+ + 2

b2
(
1− b2α

)
1− b2 rγ2

∗φ
+
(
ζ+
∗
)2

+ 2
b2
(
1− b2α

)
1− b2

√
crγ∗γnew,kζ

+
∗ ζ

+
k−1φ

+κ+
s +

cζλ−

24

∣∣∣Xj,k−1

)
≥ 1− pe (α, ζ) (82)

where

pe (α, ζ) = 2pe1 (α, ζ) + 2pe2 (α, ζ) (83)

By condition in Theorem 18, ζ+
∗ = r0ζ + (j − 1)cζ ≤ rζ, κ+

s = 0.15, ζ+
∗ rf < 1.5× 10−4, we have

rγ2
∗(ζ

+
∗ )2 ≤ (ζ+

∗ )2λ+η/c = (ζ+
∗ )2fλ−new,kη/c = ζ+

∗ frζλ
−
new,kη/c ≤ 1.5× 10−4ζλ−new,kη

< 0.15cζ
κ+
s√

1− (ζ+
∗ )2

ηλ−new,k ≤ max{0.15cζ, ζ+
k−1}

κ+
s√

1− (ζ+
∗ )2

ηλ−new,k (84)

Thus,

P

(
max{‖T2‖2, ‖T4‖2} ≤ 2φ+κ+

s

(ζ+
∗ )2√

1− (ζ+
∗ )2

(
λ+ +

b2(1− b2α)

1− b2 rγ2
∗

)
+ 2φ+ max{0.15cζ, ζ+

k−1}
(κ+
s )2√

1− (ζ+
∗ )2

(
λ+

new,k
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+
b2(1− b2α)

1− b2 ηλ+
new,k

)
+ 4

b2(1− b2α)

1− b2 rγ2
∗ζ

+
∗ φ

+ κ+
s√

1− (ζ+
∗ )2

+
cζλ−

24

∣∣∣∣Xj,k−1

)
≥ 1−max{pd(α, ζ), pe(α, ζ)} (85)

4) ‖Bk‖: Consider ‖Bk‖2. Let Zt := Enew,⊥
′Φ0(Lt−et)(Lt′−et′)Φ0Enew which is of size (n−c)×c. Then Bk = 1

α

∑
t Zt.

As Enew,⊥
′Φ0Pnewat,new = Enew,⊥

′EnewRnewat,new = 0, Enew,⊥
′Φ0(Lt − et) = Enew,⊥

′(D∗at,∗ − Φ0et), Enew
′Φ0(Lt − et) =

Rnewat,new + Enew
′D∗at,∗ − (R′new)−1D′newet. Thus,

Zt = Enew,⊥
′(D∗at,∗ − Φ0et)(a

′
t,newR

′
new + a′t,∗D

′
∗Enew − e′tDnew(Rnew)−1)

= Enew,⊥
′(D∗at,∗ − Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′Tt [(Φk−1P∗)at,∗ +Dnew,k−1at,new])(a′t,newR
′
new + a′t,∗D

′
∗Enew − [(Φk−1P∗)at,∗

+Dnew,k−1at,new]′ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew(Rnew)−1)

= Enew,⊥
′(D∗ − Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′Tt(Φk−1P∗))at,∗a
′
t,∗(D

′
∗Enew − P ′∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Dnew(Rnew)−1)

+Enew,⊥
′(D∗ − Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′Tt(Φk−1P∗))at,∗at,new(R′new −D′new,k−1ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew(Rnew)−1)

+Enew,⊥
′(−Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′TtDnew,k−1)at,newa
′
t,∗(D

′
∗Enew − P ′∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Dnew(Rnew)−1)

+Enew,⊥
′(−Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′TtDnew,k−1)at,newat,new(R′new −D′new,k−1ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew(Rnew)−1)(86)

(a) Using (22) and similar procedure to get (54), we have

P

(∥∥∥∥ 1

α

∑
t∈tj,k

Enew,⊥
′(D∗ − Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′Tt(Φk−1P∗))at,∗a
′
t,∗(D

′
∗Enew − P ′∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′

Dnew(Rnew)−1)

∥∥∥∥
2

≤ (ζ+
∗ + φ+ζ+

∗ )(ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)(λ+ +
b2(1− b2α)

1− b2 rγ2
∗) +

cζλ−

96

∣∣∣∣Xj,k−1

)
≥ 1− pf1(α, ζ)

(87)

where

pf1(α, ζ) = nz

α, cζλ−
384

,
(1− b2α)(1− b)

1 + b
rγ2
∗(ζ

+
∗ )2

(
1 + φ+)

(
1 + φ+ κ+

s√
1− (ζ+

∗ )2

)+ nz

(
α,
cζλ−

384
,

2
b(1− b)(1− b2(α−1))

1 + b
rγ2
∗(ζ

+
∗ )2(1 + φ+)

(
1 + φ+ κ+

s√
1− (ζ+

∗ )2

))
+ nz

(
α,
cζλ−

384
, 2

(1− bα)2

1 + b
rγ2
∗(ζ

+
∗ )2

(1 + φ+)(1 + φ+ κ+
s√

1− (ζ+
∗ )2

)

)
+ nz

(
α,
cζλ−

384
, 2
b(1− b2α)

1 + b
rγ2
∗(ζ

+
∗ )2(1 + φ+)

(
1 + φ+ κ+

s√
1− (ζ+

∗ )2

))
(88)

(b) Using (22) and similar procedure to get (43), we have

P

(∥∥∥∥Enew,⊥
′(D∗ − Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′Tt(Φk−1P∗))at,∗at,new(R′new −D′new,k−1ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew

(Rnew)−1)

∥∥∥∥
2

≤ b2(1− b2α)

1− b2
√
crγ∗γnew,k(ζ+

∗ + φ+ζ+
∗ )

(
1 + (κ+

s )2ζ+
k−1

φ+√
1− (ζ+

∗ )2

)
+
cζλ−

96

∣∣∣∣Xj,k−1

)
≥ 1− pf2(α, ζ)

(89)

where

pf2 (α, ζ) = nz

α, cζλ−
192

, 2
1 + b− 2

√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,k(ζ+

∗ + φ+ζ+
∗ )(1 + (κ+

s )2ζ+
k−1

φ+√
1− (ζ+

∗ )2

)

+

nz

α, cζλ−
192

, 4
b(1− b2α)

1 + b

√
crγ∗γnew,k(ζ+

∗ + φ+ζ+
∗ )

(
1 + (κ+

s )2ζ+
k−1

φ+√
1− (ζ+

∗ )2

)
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and

P

(
‖Enew,⊥

′(−Φ0ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1I ′TtDnew,k−1)at,newa
′
t,∗(D

′
∗Enew − P ′∗Φk−1ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1ITt
′Dnew

(Rnew)−1)‖2 ≤
b2(1− b2α)

1− b2
√
crγ∗γnew,kφ

+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)
+
cζλ−

96

∣∣∣∣Xj,k−1

)
≥ 1− pf3(α, ζ) (90)

where

pf3 (α, ζ) = nz

α, cζλ−
192

, 2
1 + b− 2

√
bα+1(1 + b− bα+1)

1 + b

√
crγ∗γnew,kφ

+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)+

nz

α, cζλ−
192

, 4
b(1− b2α)

1 + b

√
crγ∗γnew,kφ

+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)
(c) Using (22) and similar procedure to get (34), we have

P

(∥∥∥∥ 1

α

∑
t∈tj,k

Enew,⊥
′(−Φ0ITt [(Φk−1)Tt

′
(Φk−1)Tt ]

−1I ′TtDnew,k−1)at,newat,new(R′new −D′new,k−1ITt [(Φk−1)Tt
′
(Φk−1)Tt ]

−1ITt
′Dnew

(Rnew)−1)

∥∥∥∥
2

≤ ζ+
k−1φ

+κ+
s

(
1 + φ+ζ+

k−1

(κ+
s )2√

1− (ζ+
∗ )2

)(
λ+

new,k +
b2(1− b2α)

1− b2 cγ2
new,k−1

)
+
cζλ−

96

∣∣∣∣Xj,k−1

)
≥ 1− pf4(α, ζ)

(91)

where

pf4 (α, ζ) = nz

α, cζλ−
384

,
(1− b2α)(1− b)

1 + b
cγ2

new,kζ
+
k−1φ

+κ+
s

(
1 + φ+ζ+

k−1

(κ+
s )2√

1− (ζ+
∗ )2

)
+nz

(
α,
cζλ−

384
, 2
b(1− b)(1− b2(α−1))

1 + b
cγ2

new,k(ζ+
k−1φ

+)2 (κ+
s )3√

1− (ζ+
∗ )2

)

+nz

α, cζλ−
384

, 2
(1− bα)2

1 + b
cγ2

new,kζ
+
k−1φ

+κ+
s

(
1 + φ+ζ+

k−1

(κ+
s )2√

1− (ζ+
∗ )2

)
+nz

(
α,
cζλ−

384
, 4
b(1− b2α)

1 + b
cγnew,kγnew,k−1ζ

+
k−1φ

+κ+
s

(
1 + φ+ζ+

k−1

(κ+
s )2√

1− (ζ+
∗ )2

))
(92)

Using (87), (89), (90) and (91) and the union bound, for any Xj,k−1 ∈ Γj,k−1,

P

(
‖Bk‖2 ≤ (ζ+

∗ + φ+ζ+
∗ )

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

)(
λ+ +

b2(1− b2α)

1− b2 rγ2
∗

)
+ ζ+

k−1φ
+κ+

s

(
1 + φ+ζ+

k−1

(κ+
s )2√

1− (ζ+
∗ )2

)
(
λ+

new,k +
b2(1− b2α)

1− b2 cγ2
new,k−1

)
+
b2(1− b2α)

1− b2
√
crγ∗γnew,k

(
(ζ+
∗ + φ+ζ+

∗ )
(

1 + (κ+
s )2ζ+

k−1

φ+√
1− (ζ+

∗ )2

)

+φ+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

))
+
cζλ−

24

∣∣∣∣Xj,k−1

)
≥ 1− pf (α, ζ) (93)

where pf (α, ζ) = pf1(α, ζ) + pf2(α, ζ) + pf3(α, ζ) + pf4(α, ζ).

Using (70), (85) and (93) and the union bound, for any Xj,k−1 ∈ Γj,k−1,

P

(
‖Hk‖2 ≤ bH +

cζλ−

8
|Xj,k−1

)
≥ 1− pc(α, ζ)− pf (α, ζ)−max{pd(α, ζ), pe(α, ζ)} (94)

where
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bH := (φ+)2(ζ+
∗ )2λ+ + (φ+)2(κ+

s ζ
+
k−1)2λ+

new,k + 2
b2(1− b2α)

1− b2
√
crγ∗γnew,kζ

+
∗ ζ

+
k−1κ

+
s (φ+)2 +

b2(1− b2α)

1− b2 rγ2
∗(φ

+ζ+
∗ )2 +

b2(1− b2α)

1− b2 cγ2
new,k−1(φ+κ+

s ζ
+
k−1)2 + 2φ+κ+

s

(ζ+
∗ )2√

1− (ζ+
∗ )2

(
λ+ +

b2(1− b2α)

1− b2 rγ2
∗

)
+

2φ+ max{0.15cζ, ζ+
k−1}

(κ+
s )2√

1− (ζ+
∗ )2

(
λ+

new,k +
b2(1− b2α)

1− b2 ηλ+
new,k

)
+ 4

b2(1− b2α)

1− b2 rγ2
∗ζ

+
∗ φ

+ κ+
s√

1− (ζ+
∗ )2

+

(ζ+
∗ + φ+ζ+

∗ )

ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

(λ+ +
b2(1− b2α)

1− b2 rγ2
∗

)
+ ζ+

k−1φ
+κ+

s

1 + φ+ζ+
k−1

(κ+
s )2√

1− (ζ+
∗ )2


(
λ+

new,k +
b2(1− b2α)

1− b2 cγ2
new,k−1

)
+
b2(1− b2α)

1− b2
√
crγ∗γnew,k

(
(ζ+
∗ + φ+ζ+

∗ )

(
1 + (κ+

s )2ζ+
k−1

φ+√
1− (ζ+

∗ )2

)

+φ+κ+
s ζ

+
k−1

(
ζ+
∗ + ζ+

∗ φ
+ κ+

s√
1− (ζ+

∗ )2

))
(95)

Remark 10.5: As shown in Remark 10.4, when k = 1, there is no atj+(k−1)α−1,new, leading to changes in bounds

bAk , bAk,⊥ , bH, in which case ζ+
k decreases exponentially with same parameters given above with larger b.

APPENDIX

A. Proof of Lemma 2.10

Proof: Because P , Q and P̂ are basis matrix, P ′P = I , Q′Q = I and P̂ ′P̂ = I .

1) Using P ′P = I and ‖M‖22 = ‖MM ′‖2, ‖(I − P̂ P̂ ′)PP ′‖2 = ‖(I − P̂ P̂ ′)P‖2. Similarly, ‖(I − PP ′)P̂ P̂ ′‖2 =

‖(I − PP ′)P̂‖2. Let D1 = (I − P̂ P̂ ′)PP ′ and let D2 = (I − PP ′)P̂ P̂ ′. Notice that ‖D1‖2 =
√
λmax(D′1D1) =√

‖D′1D1‖2 and ‖D2‖2 =
√
λmax(D′2D2) =

√
‖D′2D2‖2. So, in order to show ‖D1‖2 = ‖D2‖2, it suffices to show

that ‖D′1D1‖2 = ‖D′2D2‖2. Let P ′P̂ SV D
= UΣV ′. Then, D′1D1 = P (I − P ′P̂ P̂ ′P )P ′ = PU(I − Σ2)U ′P ′ and

D′2D2 = P̂ (I − P̂ ′PP ′P̂ )P̂ ′ = P̂ V (I −Σ2)V ′P̂ ′ are the compact SVD’s of D′1D1 and D′2D2 respectively. Therefore,

‖D′1D1‖ = ‖D′2D2‖2 = ‖I − Σ2‖2 and hence ‖(I − P̂ P̂ ′)PP ′‖2 = ‖(I − PP ′)P̂ P̂ ′‖2.

2) ‖PP ′ − P̂ P̂ ′‖2 = ‖PP − P̂ P̂ ′PP ′ + P̂ P̂ ′PP ′ − P̂ P̂ ′‖2 ≤ ‖(I − P̂ P̂ ′)PP ′‖2 + ‖(I − PP ′)P̂ P̂ ′‖2 = 2ζ∗.

3) Since Q′P = 0, then ‖Q′P̂‖2 = ‖Q′(I − PP ′)P̂‖2 ≤ ‖(I − PP ′)P̂‖2 = ζ∗.

4) Let M = (I − P̂ P̂ ′)Q). Then M ′M = Q′(I − P̂ P̂ ′)Q and so σi((I − P̂ P̂ ′)Q) =

√
λi(Q′(I − P̂ P̂ ′)Q). Clearly,

λmax(Q′(I − P̂ P̂ ′)Q) ≤ 1. By Weyl’s Theorem, λmin(Q′(I − P̂ P̂ ′)Q) ≥ 1− λmax(Q′P̂ P̂ ′Q) = 1−‖Q′P̂‖22 ≥ 1− ζ2
∗ .

Therefore,
√

1− ζ2
∗ ≤ σi((I − P̂ P̂ ′)Q) ≤ 1.

B. Proof of Lemma 2.11

Proof: It is easy to see that P(Be, Ce) = E[IB(X,Y )IC(X)]. If E[IB(X,Y )|X] ≥ p for all X ∈ C, this means that

E[IB(X,Y )|X]IC(X) ≥ pIC(X). This, in turn, implies that

P(Be, Ce) = E[IB(X,Y )IC(X)] = E[E[IB(X,Y )|X]IC(X)] ≥ pE[IC(X)].

Recall from Definition 2.4 that P(Be|X) = E[IB(X,Y )|X] and P(Ce) = E[IC(X)]. Thus, we conclude that if P(Be|X) ≥ p
for all X ∈ C, then P(Be, Ce) ≥ pP(Ce). Using the definition of P(Be|Ce), the claim follows.
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C. Proof of Theorem 2.13

Proof of Theorem: The matrix Laplace transform method, Proposition 3.1, states that

P

(
λmax

(∑
k

Xk

)
≥ t
)
≤ inf
θ>0

{
e−θt ·Etr exp

(∑
k
θXk

)}
. (96)

The main difficulty in the proof is to bound the matrix mgf, which we accomplish by an iterative argument that alternates

between symmetrization and cumulant bounds.

Let us detail the first step of the iteration. Denote conditional expectation E(XY |g(Y )) as EX,Y |g(Y )(XY ), then

Etr exp
(∑

k
θXk

)
= EX1,··· ,Xn−1

EXn|X1,··· ,Xn−1

[
tr exp

(∑n−1

k=1
θXk + θXn

)]
≤ EX1,··· ,Xn−1Eε,Xn|X1,··· ,Xn−1

[
tr exp

(∑n−1

k=1
θXk + 2εθXn

)]
= EX1,··· ,Xn

Eε|X1,··· ,Xn

[
tr exp

(∑n−1

k=1
θXk + 2εθXn

)]
≤ EX1,··· ,Xn

tr exp

(∑n−1

k=1
θXk + logEε|X1,··· ,Xn

[
e2εθXn

])
≤ EX1,··· ,Xn tr exp

(∑n−1

k=1
θXk + 2θ2A2

n

)
.

The first identity is the tower property of conditional expectation. In the second line, we invoke the symmetrization method,

Lemma 7.6, conditional on X1, · · · ,Xn−1, and then we relax the conditioning on the inner expectation to X1, · · · ,Xn. By

construction, the Rademacher variable ε is independent from X1, · · · ,Xn, so we can apply the concavity result, Corollary 3.3,

conditional on X1, · · · ,Xn. Finally, we use the fact (2.5) that the trace exponential is monotone to introduce the Azuma cgf

bound, Lemma 7.7, in the last inequality.

By iteration, we achieve

Etr exp
(∑

k
θXk

)
≤ tr exp

(
2θ2

∑
k
A2
k

)
. (97)

Note that this procedure relies on the fact that the sequence {Ak} of upper bounds does not depend on the values of the

random sequence {Xk}. Substitute the mgf bound (97) into the Laplace transform bound (96), and observe that the infimum

is achieved when θ = t/4σ2.

D. Proof of Corollary 2.14

Proof: Define the dilation of an n1×n2 matrix M as dilation(M) :=

[
0 M ′

M 0

]
. Notice that this is an (n1+n2)×(n1+n2)

Hermitian matrix [26]. As shown in [26, equation 2.12],

λmax(dilation(M)) = ‖dilation(M)‖2 = ‖M‖2 (98)

Thus, the corollary assumptions imply that P(‖dilation(Zt)‖2 ≤ b1|X) = 1 for all X ∈ C. Using (98), the corollary assumptions

also imply that Et−1(dilation(Zt)|X) = dilation(Et−1(Zt|X)) = 0 for all X ∈ C. Thus, applying Corollary 2.13 for the

sequence {dilation(Zt)}, we get that,

P

(
λmax

(
1

α

α∑
t=1

dilation(Zt)

)
≤ ε
∣∣X) ≥ 1− (n1 + n2) exp

(
− αε2

32b21

)
for all X ∈ C

Using (98), λmax( 1
α

∑α
t=1 dilation(Zt)) = λmax(dilation( 1

α

∑α
t=1 Zt)) = ‖ 1

α

∑α
t=1 Zt‖2 and this gives the final result.

E. Proof of Corollary 2.15

Proof:

1) Since, for any X ∈ C, conditioned on X , the Zt’s are adapted, the same is also true for Zt−g(X,Z1:t−1) for any function

of X and Z1:t−1. Let Yt := Zt − Et−1(Zt|X). Thus, for any X ∈ C, conditioned on X , the Yt’s are adapted. Also,
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clearly Et−1(Yt|X) = 0. Since for all X ∈ C, P(b1I � Zt � b2I|X) = 1 and since λmax(.) is a convex function, and

λmin(.) is a concave function, of a Hermitian matrix, thus b1I � Et−1(Zt|X) � b2I w.p. one for all X ∈ C. Therefore,

P(Y 2
t � (b2 − b1)2I|X) = 1 for all X ∈ C. Thus, for Theorem 2.13, σ2 = ‖∑α

t=1(b2 − b1)2I‖2 = α(b2 − b1)2. For

any X ∈ C, applying Theorem 2.13 for {Yt}’s conditioned on X , we get that, for any ε > 0,

P

(
λmax

(
1

α

α∑
t=1

Yt

)
≤ ε
∣∣∣∣X
)
> 1− n exp

(
− αε2

8(b2 − b1)2

)
for all X ∈ C

By Weyl’s theorem, λmax( 1
α

∑α
t=1 Yt) = λmax( 1

α

∑α
t=1(Zt − Et−1(Zt|X)) ≥ λmax( 1

α

∑α
t=1 Zt) +

λmin( 1
α

∑α
t=1−Et−1(Zt|X)). Since λmin( 1

α

∑α
t=1−Et−1(Zt|X)) = −λmax( 1

α

∑α
t=1 Et−1(Zt|X)) ≥ −b4, thus

λmax( 1
α

∑α
t=1 Yt) ≥ λmax( 1

α

∑α
t=1 Zt)− b4. Therefore,

P

(
λmax

(
1

α

α∑
t=1

Zt

)
≤ b4 + ε|X

)
> 1− n exp

(
− αε2

8(b2 − b1)2

)
for all X ∈ C

2) Let Yt = Et−1(Zt|X)− Zt. As before, Et−1(Yt|X) = 0 and conditioned on any X ∈ C, the Yt’s are independent and

P(Y 2
t � (b2 − b1)2I|X) = 1. As before, applying Theorem 2.13, we get that for any ε > 0,

P

(
λmax

(
1

α

α∑
t=1

Yt

)
≤ ε|X

)
> 1− n exp

(
− αε2

8(b2 − b1)2

)
for all X ∈ C

By Weyl’s theorem, λmax( 1
α

∑α
t=1 Yt) = λmax( 1

α

∑α
t=1(Et−1(Zt|X) − Zt)) ≥ λmin( 1

α

∑α
t=1 Et−1(Zt|X)) +

λmax( 1
α

∑α
t=1−Zt) = λmin( 1

α

∑α
t=1 Et−1(Zt|X)) − λmin( 1

α

∑α
t=1 Zt) ≥ b3 − λmin( 1

α

∑α
t=1 Zt) Therefore, for any

ε > 0,

P

(
λmin

(
1

α

α∑
t=1

Zt

)
≥ b3 − ε|X

)
≥ 1− n exp

(
− αε2

8(b2 − b1)2

)
for all X ∈ C

F. Proof of Lemma 2.17

Proof: Denote conditional expectation E(Xh(Y )|g(Y )) as EX,Y |g(Y )(Xh(Y )), then

E(Xh(Y )|g(Y )) = EY |g(Y )

(
EX|Y,g(Y ) (Xh(Y ))

)
= EY |g(Y )

(
EX|Y (Xh(Y ))

)
= EY |g(Y )

(
EX|Y (X)h(Y )

)
= EY |g(Y ) (E(X)h(Y ))

= E(X)E(h(Y )|g(Y )). (99)

G. Proof of Lemma 3.7

Proof: Let A = I − PP ′. By definition, δs(A) := max{max|T |≤s(λmax(A′TAT ) − 1),max|T |≤s(1 − λmin(A′TAT )))}.
Notice that A′TAT = I−I ′TPP ′IT . Since I ′TPP

′IT is p.s.d., by Weyl’s theorem, λmax(A′TAT ) ≤ 1. Since λmax(A′TAT )−1 ≤
0 while 1− λmin(A′TAT ) ≥ 0, thus,

δs(I − PP ′) = max
|T |≤s

(
1− λmin(I − I ′TPP ′IT )

)
(100)

By Definition, κs(P ) = max|T |≤s
‖I′TP‖2
‖P‖2 = max|T |≤s ‖I ′TP‖2. Notice that ‖I ′TP‖22 = λmax(I ′TPP

′IT ) = 1 − λmin(I −
I ′TPP

′IT ) 2, and so

κ2
s(P ) = max

|T |≤s

(
1− λmin(I − I ′TPP ′IT )

)
(101)

2This follows because B = I′TPP
′IT is a Hermitian matrix. Let B = UΣU ′ be its EVD. Since UU ′ = I , λmin(I − B) = λmin(U(I − Σ)U ′) =

λmin(I − Σ) = 1− λmax(Σ) = 1− λmax(B).
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From (100) and (101), we get δs(I − PP ′) = κ2
s(P ).
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