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Abstract—The wiretap channel models secure communication
in the presence of an eavesdropper who must be kept ignorant of
transmitted messages. In this paper, the arbitrarily varying wiretap
channel (AVWC), in which the channel may vary in an unknown
and arbitrary manner from channel use to channel use, is
considered. For arbitrarily varying channels (AVCs) the capacity
might differ depending on whether deterministic or common
randomness (CR) assisted codes are used. The AVWC has been
studied for both coding strategies and the relation between the
corresponding secrecy capacities has been established. However,
a characterization of the CR-assisted secrecy capacity itself or
even a general CR-assisted achievable secrecy rate remain open in
general for weak and strong secrecy. Here, the secrecy measure of
high decoding error at the eavesdropper is considered, where the
eavesdropper is further assumed to know channel states and to
adapt its decoding strategy accordingly. For this secrecy measure
a general CR-assisted achievable secrecy rate is established. The
relation between secrecy capacities for different secrecy measures
is discussed: The weak and strong secrecy capacities are smaller
than or equal to the one for high decoding error. It is conjectured
that this relation can be strict for certain channels.

I. INTRODUCTION

Nowadays, physical layer or information theoretic ap-
proaches to security are intensively discussed as a com-
plement to current cryptographic techniques [1, 2]. Physical
layer security was initiated by Wyner, who introduced the
wiretap channel [3]. It models the simplest scenario of secure
communication between a transmitter and receiver in the
presence of an eavesdropper (Eve) to be kept ignorant. The
wiretap channel has been investigated under different secrecy
measures including weak secrecy [1–3], strong secrecy [4–6],
and probability of decoding error at the eavesdropper [7].

These studies have in common that all channels are as-
sumed to be known and fixed during the entire duration of
transmission. The concept of compound channels weakens
the first assumption to imperfect channel information and the
corresponding compound wiretap channel is studied in [8, 9].
In this paper, we further weaken the second assumption and
consider channels that may vary in an arbitrary and unknown
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manner from channel use to channel use. Such conditions
appear for example in fast fading environments but also in
situations with malicious eavesdroppers that jam the legitimate
transmission. This can be perfectly modeled with the concept
of arbitrarily varying channels (AVCs) [10–12]. Accordingly,
the communication problem at hand is the arbitrarily varying
wiretap channel (AVWC) which is introduced in Section II.

In the context of AVCs, the capacity might differ depend-
ing on whether traditional (deterministic) codes or common
randomness (CR) assisted codes are used [10–13]. This is in
contrast to the case of perfect channel state information or the
compound channel for which the capacities are the same for
traditional and CR-assisted codes. The corresponding AVWC
is studied for traditional and CR-assisted strategies in [14, 15].
The latter establishes a complete characterization of the rela-
tion between the traditional and CR-assisted secrecy capacity
for the strong secrecy criterion. However, a characterization of
the CR-assisted secrecy capacity itself remains an problem.

The classical approach to determining the CR-assisted ca-
pacity of an AVC is based on Ahlswede’s robustification
technique [16] which connects the AVC with a suitable com-
pound channel. This provides an elegant way of making the
corresponding compound results and techniques applicable to
the AVC as well. Unfortunately, this approach breaks down
for AVWCs as the common measures of weak and strong
secrecy do not satisfy the required convexity and boundedness
properties. Thus, even a general (meaning without any further
assumptions on the channel) CR-assisted achievable secrecy
rate is missing. This is discussed in Section III.

Motivated by this crucial observation, in this paper we
look at other secrecy measures as well. In particular, we
consider the criterion of decoding error, where we require
the eavesdropper to have high probability of decoding error
regardless of the applied decoding strategy or available com-
putational resources. In addition, to be on the safe side from
a secrecy perspective, we assume the eavesdropper to know
the channel perfectly so that it can adapt its decoding strategy
accordingly. It turns out that we are able to extend Ahlswede’s
robustification technique to work for this meaningful secrecy
measure. As a result, a CR-assisted achievable secrecy rate
for the AVWC is derived in Section IV. To the best of our
knowledge, this is the first CR-assisted achievable secrecy
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rate that holds for the general case, i.e., without any further
restrictions on the channel as in [14, 15].

The relation between secrecy capacities for different secrecy
measures is discussed in Section V. It is shown that the weak
and strong secrecy criteria yield a secrecy capacity that is
smaller than or equal to the one for high decoding error.1

II. ARBITRARILY VARYING WIRETAP CHANNELS

Let X , Y , and Z be finite input and output sets and S be a
finite state set. For a fixed state sequence sn ∈ Sn of length
n, the discrete memoryless channel to the legitimate receiver
is described by the transition probabilities Wn

sn(yn|xn) =
Wn(yn|xn, sn) :=

∏n
i=1W (yi|xi, si) for all xn ∈ Xn and

yn ∈ Yn. Then the family of channels for all sn ∈ Sn defines
the AVC W as

W :=
{
Wn
sn : sn ∈ Sn

}
. (1)

Further, for any probability distribution q ∈ P(S) we define
the averaged channel as

Wq(y|x) =
∑
s∈S

q(s)W (y|x, s). (2)

Accordingly, for sn ∈ Sn we define the discrete memoryless
channel to the eavesdropper by the transition probabilities
V nsn(zn|xn) = V n(zn|xn, sn) :=

∏n
i=1 V (zi|xi, si) for all

xn ∈ Xn and zn ∈ Zn, and, further, V := {V nsn : sn ∈ Sn}
and Vq(z|x) =

∑
s∈S q(s)V (z|x, s) for q ∈ P(S).

Definition 1. The AVWC W is the family of pairs of channels
with common input as

W :=
{

(Wn
sn , V

n
sn) : sn ∈ Sn

}
.

A. Traditional Wiretap Codes

Definition 2. An (n, Jn)-code C consists of a stochastic en-
coder

E : Jn → P(Xn) (3)

with a set of messages Jn := {1, ..., Jn} and a decoder ϕ :
Yn → Jn given by a set of disjoint decoding sets{

Dj ⊂ Yn : j ∈ Jn
}
. (4)

Now, for given sn ∈ Sn, the average probability of decoding
error at the legitimate receiver is given by

ēn(sn|C) :=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

Wn
sn(Dcj |xn)E(xn|j).

The most common approach to ensure the confidentiality of
the message is given by an information theoretic measure as

max
sn∈Sn

I(J ;Znsn |C) ≤ δn (5)

for δn > 0 with J the random variable uniformly distributed
over the set of messages Jn and Znsn = (Zs1 , ..., Zsn) the
channel output at the eavesdropper for sn ∈ Sn. This condition

1Notation: P(·) is the set of all probability distributions; ‖P1−P2‖ is the
total variation distance of probability distributions P1 and P2; P1P2 is the
product distribution defined by the product marginal distributions P1 and P2.

is termed strong secrecy [4, 5] and the motivation is to control
the total amount of information leaked to the eavesdropper.

Definition 3. A rate RS > 0 is an achievable secrecy rate for
the AVWC W if for all τ > 0 there is an n(τ) ∈ N and
a sequence of (n, Jn)-codes C such that for all n ≥ n(τ)
we have 1

n log Jn ≥ RS − τ , maxsn∈Sn ēn(sn|C) ≤ λn, and
maxsn∈Sn I(J ;Znsn |C) ≤ δn while λn, δn → 0 as n → ∞.
The secrecy capacity CS is given by the supremum of all
achievable secrecy rates RS .

Such traditional approaches as given in Definition 2 do not
suffice to establish reliable communication over symmetrizable
AVCs; in fact, in this case the corresponding capacity is zero
[11, 15, 17]. This necessitates the use of more sophisticated
strategies based on common randomness (CR).

B. CR-Assisted Communication

CR is modeled by a random variable Γ taking values in
Gn according to the distribution PΓ ∈ P(Gn). It allows the
transmitter and legitimate receiver to coordinate their choice
of encoder (3) and decoder (4) according to γ ∈ Gn.

Definition 4. A CR-assisted (n, Jn,Gn, PΓ )-code CCR is given
by a family of (traditional) codes{

C(γ) : γ ∈ Gn
}

together with a random variable Γ taking values in Gn
according to PΓ ∈ P(Gn).

Then the mean average probability of error for sn ∈ Sn is
given by ēCR,n(sn|CCR) = EΓ [ēn(sn|C(Γ ))], i.e.,

ēCR,n(sn|CCR) :=
1

|Jn|
∑
j∈Jn

∑
γ∈Gn

∑
xn∈Xn

×Wn
sn(Dcγ,j |xn)Eγ(xn|j)PΓ (γ). (6)

With I(J ;Znsn |CCR) = EΓ [I(J ;Znsn |C(Γ ))] the strong secrecy
criterion (5) becomes

max
sn∈Sn

∑
γ∈Gn

I(J ;Znsn |C(γ))PΓ (γ) ≤ δn.

The definitions of a CR-assisted achievable secrecy rate and
the CR-assisted secrecy capacity CS,CR follow accordingly.

C. Capacity Results

First studies aiming to understand the secrecy capacity of
the AVWC appeared in [14, 15, 17] with the latter using the
strong secrecy criterion. In particular, the relation between
the secrecy capacities for traditional and CR-assisted coding
strategies has been completely characterized in [15].

Theorem 1 ([15]). If the CR-assisted secrecy capacity satisfies
CS,CR > 0, then the secrecy capacity is given by

CS = CS,CR

if and only if the AVC W to the legitimate receiver is non-
symmetrizable. If the AVC W is symmetrizable, then CS = 0.
If CS = 0 and CS,CR > 0, then the AVC W is symmetrizable.
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Although the secrecy capacity CS of the AVWC W is
completely known in terms of its CR-assisted secrecy capacity
CS,CR, a characterization of CS,CR itself remains open.

Only for the special case of a best channel to the eaves-
dropper is an achievable secrecy rate known. A channel
Vq∗ ∈ {Vq : q ∈ P(S)} such that all other channels from
this set are degraded versions of Vq∗ is called best channel to
the eavesdropper, i.e., Vq∗ is a best channel if

X − Zq∗ − Zq for all q ∈ P(S)

holds with Zq the random variable associated with the output
of the averaged channel Vq , q ∈ P(S).

Theorem 2 ([15]). If there exists a best channel to the eaves-
dropper, an achievable secrecy rate RS for the AVWC W is

RS = max
X

(
min
q∈P(S)

I(X;Yq)− max
q∈P(S)

I(X;Zq)
)

with Yq and Zq the random variables associated with the
outputs of the averaged channels Wq and Vq , q ∈ P(S).

III. REVISITING AHLSWEDE’S APPROACH TO AVCS

In this section we want to revisit the classical approach
of Ahlswede to the CR-assisted capacity of an AVC [11, 16].
Understanding how the CR-assisted capacity is established for
the classical AVC yields important insights into why it is so
difficult to obtain similar results for the AVWC. In particular,
it becomes clear why an achievable secrecy rate is known only
for the special case of a best channel to the eavesdropper.

The crucial idea of Ahlswede is to exploit the connection
between the AVC W = {Wn

sn : sn ∈ Sn}, cf. (1), and a
suitable compound channel W = {Wq : q ∈ P(S)} with
Wq(y|x) =

∑
s∈S q(s)W (y|x, s), cf. (2).

For the compound channel W we know from [12] that
for every rate R < maxX minq∈P(S) I(X;Yq) there exists a
(deterministic) code C with codewords xnj ∈ Xn and decoding
sets Dj ⊂ Yn, j ∈ Jn such that the average probability of
decoding error satisfies

ēn(q|C) =
1

|Jn|
∑
j∈Jn

Wq(Dcj |xnj ) ≤ e−nε
′

(7)

for all q ∈ P(S) with ε′ > 0 a constant depending only
on the rate R. This (deterministic) code C for the compound
channel W is then used to obtain a CR-assisted code CCR for
the AVC W . The crucial idea to achieve this is the so-called
robustification technique [16].

Lemma 1 (Robustification technique [16]). Let fn : Sn →
[0, 1] be a function such that for some α ∈ (0, 1) the inequality∑

sn∈Sn
qn(sn)fn(sn) > 1− α for all q ∈ P0(n,S)

is satisfied. Here, P0(n,S) is the set of probability distribu-
tions on S with q(s) = ns

n , ns integral, for all s ∈ S, i.e., q
is a type [12]. Then the inequality

1

n!

∑
π∈Πn

fn(π(sn)) > 1− (n+ 1)|S|α for all sn ∈ Sn

is also satisfied, where Πn : {1, ..., n} → {1, ..., n} is the set
of all n-permutations.

In fact, rewriting the average probability of error in (7) in
terms of probability of successful transmission and using the
definition of the average channel (2) results in∑

sn∈Sn
qn(sn)

1

|Jn|
∑
j∈Jn

Wn
sn(Dj |xnj )︸ ︷︷ ︸

=:fn(π(sn))

> 1− e−nε
′

(8)

for all qn =
∏n
i=1 q and q ∈ P(S). Then with π being the

identity map, Lemma 1 immediately yields

1

n!

∑
π∈Πn

1

|Jn|
∑
j∈Jn

Wn
π(sn)(Dj |x

n
j ) > 1−(n+1)|S|e−nε

′
(9)

for all sn ∈ Sn. Finally, by rewriting Wn
π(sn)(Dj |x

n
j ) =

Wn
sn(π−1(Dj)|π−1(xnj )), we obtain a CR-assisted

(n, Jn, Πn, µ)-code CCR for the AVC W with codewords
π−1(xnj ), decoding sets π−1(Dj), j ∈ Jn, π ∈ Πn, and µ
the uniform distribution on Πn.

Summarizing, a “good” code C for the compound channel
W is used to construct a CR-assisted code CCR that is also
“good” for the corresponding AVC W in the sense that it
achieves the same rate with an average probability of error that
decreases exponentially fast, cf. (9). Thus, the crucial idea of
Ahlswede’s approach is to make achievability results for the
compound channel applicable to the corresponding AVC setup
and therewith establish achievability results for AVCs.

Although the robustification technique is a very elegant way
to prove achievability results for AVCs, it is, at the same time,
the reason why this approach breaks down for AVWCs. The
key observation is the following: To make the robustification
technique work, the function fn(sn) in Lemma 1 has to be
convex and bounded which is satisfied for the applied criterion
of successful transmission in (8). If secrecy enters the picture,
the robustification technique must be applied to the secrecy
criterion (5) as well. Unfortunately, the required convexity is
no longer fulfilled which prohibits the application of Lemma 1
for this secrecy criterion. Thus, general achievability results
for the AVWC are missing. Only for the special case of a best
channel to the eavesdropper, it was possible to overcome this
problem [15]. See also Section V for further discussions.

IV. SECRECY MEASURE OF DECODING ERROR AT EVE

The previous discussion motivates us to look at other
measures of secrecy as well. A meaningful and more signal
processing inspired approach is to require the eavesdropper
to have its average probability of decoding error high (i.e.
close to 1) regardless of its computational capabilities or the
decoding strategy it applies.

Further, we make worst case assumptions to be on the safe
side from a security perspective. This means that we assume
the eavesdropper to know the actual state sequence sn ∈ Sn.
Then it can adapt its decoding sets{

D̃sn,j ⊂ Zn : j ∈ Jn
}
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accordingly. We consider the case in which the legitimate users
use a CR-assisted (n, Jn, Πn, µ)-code CCR as introduced and
discussed in the previous Section III. Then for sn ∈ Sn and
π ∈ Πn, the average probability of decoding error of the
eavesdropper is

ēEve,n(sn, {D̃sn,j}|CCR) :=
1

|Jn|
∑
j∈Jn

1

n!

∑
π∈Πn

∑
xn∈Xn

× V nsn
(
π−1(D̃csn,j)|xn

)
Eπ(xn|j)

with Eπ(xn|j) = E(π(xn)|j). Now, a rate RS > 0 is a CR-
assisted achievable secrecy rate if reliability is satisfied, i.e.,
(6) and (9), and we have high average decoding error at the
eavesdropper, i.e.,

min
sn∈Sn

min
{D̃sn,j}

ēEve,n(sn, {D̃sn,j}|CCR) ≥ 1− δn. (10)

If we stick to the secrecy measure of average decoding
error (10) instead of strong secrecy (5), we are able to get
an achievable CR-assisted secrecy rate for the general case
(instead of only for the best eavesdropper channel case).

Theorem 3. For the AVWC W, any rate RS > 0 satisfying

RS < max
X

(
min
q∈P(S)

I(X;Yq)− max
q∈P(S)

I(X;Zq)
)

is a CR-assisted achievable secrecy rate for secrecy measure
of average decoding error approaching 1 exponentially fast.

Proof: In [9] the compound wiretap channel is studied,
where the following is shown: Let

RS < max
X

(
min
q∈P(S)

I(X;Yq)− max
q∈P(S)

I(X;Zq)
)

(11)

be arbitrary. Then there exists an ε ∈ (0, 1) and an n0 = n0(ε)
such that for all n ≥ n0 there exist as a compound code C
with a stochastic encoder E : Jn → P(Xn) and a decoder
ϕ : Yn → Jn specified by disjoint decoding sets {Dj}j∈Jn
with 1

n log |Jn| ≥ RS ,

max
q∈P(S)

1

|Jn|
∑
j∈Jn

∑
xn∈Xn

Wn
q (Dcj |xn)E(xn|j) ≤ e−nε, (12)

and ∥∥PJV nq − PJPV nq ∥∥ ≤ e−nε, (13)

i.e., the actual joint distribution PJV nq of message J and
channel V nq is close to its “independent” product distribution
PJPV nq . Further, let ψ : Zn → Jn be an arbitrary but fixed
decoder at the eavesdropper specified by disjoint decoding sets
{D̃j}j∈Jn . Since (13) is satisfied, we have for the average
decoding error ēEve,n({D̃j}|C) at the eavesdropper

ēEve,n({D̃j}|C) :=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V nq (D̃cj |xn)E(xn|j)

≥ 1− 1

|Jn|
− e−nε ≥ 1− e−n ε2 (14)

for all q ∈ P(S) and n ≥ n1 with n1 sufficiently large,
cf. [9, Section 2.2] for a proof and a detailed discussion.

Thus, for any rate satisfying (11) the result in [9] guarantees
the existence of a “good” code C for the compound wiretap
channel in the sense that the probabilities of error for the
legitimate receiver and the eavesdropper simultaneously satisfy
(12) and (14).

As argued in Section III, we want to use the robustification
technique to convert this compound code C to a “good” CR-
assisted code CCR for AVWC. Therefore, Lemma 1 must be
applied to both the reliability criterion (12) and the secrecy
criterion (14). Reliability (12) follows exactly as discussed in
Section III, cf. also [15] in the AVWC context, and is omitted
for brevity. The crucial secrecy part (14) is shown next.

In contrast to the strong secrecy criterion (5), the criterion
of average decoding error (10) has the right properties of
convexity and boundedness so that we can proceed as follows.
We have

V nq (yn|xn) =
∑
sn∈Sn

qn(sn)V nsn(yn|xn)

so that we get for the average decoding error
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V nq (D̃cj |xn)E(xn|j)

=
∑
sn∈Sn

qn(sn)
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V nsn(D̃cj |xn)E(xn|j)︸ ︷︷ ︸
=:fn(sn,{D̃j})

=
∑
sn∈Sn

qn(sn)fn
(
sn, {D̃j}

)
≥ 1− e−n ε2 .

Thus, we are able to apply Ahlswede’s robustification tech-
nique, cf. Lemma 1, to obtain for any fixed choice of decoding
sets {D̃j}j∈Jn at the eavesdropper

1

n!

∑
π∈Πn

fn
(
π(sn), {D̃j}

)
≥ 1− (n+ 1)|S|e−n

ε
2 (15)

which holds for all sn ∈ Sn simultaneously. The following
crucial observation is important: Although the function fn
depends on the particular choice of decoding sets {D̃j}j∈Jn of
the eavesdropper, the right hand side of (15) is independent of
sn ∈ Sn and {D̃j}j∈Jn . Thus, even if the eavesdropper knows
the state sequence sn ∈ Sn and if it chooses its decoding sets
D̃sn,j = D̃j(sn) dependent on that particular sn ∈ Sn, we
still end up with

1

n!

∑
π∈Πn

fn
(
π(sn), {D̃sn,j}

)
≥ 1− (n+ 1)|S|e−n

ε
2 . (16)

Now, we observe that

fn
(
π(sn), {D̃sn,j}

)
=

1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V nπ(sn)
(
D̃csn,j |xn

)
E(xn|j)

=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V nsn
(
π−1(D̃csn,j)|π−1(xn)

)
E(xn|j)

=
1

|Jn|
∑
j∈Jn

∑
xn∈Xn

V nsn
(
π−1(D̃csn,j)|xn

)
Eπ(xn|j).
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Substituting this into (16), we see that

1

|Jn|
∑
j∈Jn

1

n!

∑
π∈Πn

∑
xn∈Xn

V nsn
(
π−1(D̃csn,j)|xn

)
Eπ(xn|j)

≥ 1− (n+ 1)|S|e−n
ε
2 (17)

so that the average decoding error at the eavesdropper satisfies
(10) as the right hand side of (17) is independent of the actual
state sequence sn ∈ Sn, the actual permutation π ∈ Πn, and
the particular decoding strategy {D̃sn,j} of the eavesdropper.

Thus, we have constructed a CR-assisted (n, Jn, Πn, µ)-
code CCR which is “good” for the AVWC in the sense that it
achieves the desired rate (11) with the desired behavior of the
decoding performance at the eavesdropper (16).

If we apply the achievability result in Theorem 3 to the n-
fold products of the wiretap channel, we immediately obtain
the following multi-letter version (similarly as in [9]).

Corollary 1. For the AVWC W, any rate RS > 0 satisfying

RS ≤ lim
n→∞

1

n
max

U−Xn−(Y nq ,Znq )

×
(

min
q∈P(S)

I(U ;Y nq )− max
q∈P(S)

I(U ;Znq )
) (18)

is an achievable CR-assisted secrecy rate for the secrecy mea-
sure of average decoding error at the eavesdropper for random
variables satisfying the Markov chain U −Xn − (Y nq , Z

n
q ).

Sketch of Proof: Consider n-fold products of the channels
Wn
q : Xn → P(Yn) and V nq : Xn → P(Zn) and further

the auxiliary channel PXn|U : U → P(Xn). Then applying
the achievability result in Theorem 3 to the “blocked” chan-
nels Ŵq(y

n|u) :=
∑
xn∈XnW

n
q (yn|xn)PXn|U (xn|u) and

V̂q(z
n|u) :=

∑
xn∈Xn V

n
q (zn|xn)PXn|U (xn|u) yields (18).

V. DISCUSSION

Previous works have studied the AVWC solely for the
weak and strong secrecy criteria with the consequence that
no general CR-assisted achievable secrecy rate was known.
In this paper, we have considered the secrecy measure of
high average decoding error at the eavesdropper instead of the
(strong) secrecy criterion. This criterion is weaker since the
strong secrecy criterion implies high average decoding error
(but not vice versa), cf. for example [7, 9].

However, this secrecy measure has allowed us to establish
a general CR-assisted achievable secrecy rate for the AVWC.
Interestingly, the corresponding rate (18) equals the multi-
letter description of the secrecy capacity for the corresponding
compound wiretap channel {(Wq, Vq) : q ∈ P(S)} with Wq

and Vq the averaged channels, cf. (2), for the strong secrecy
criterion, cf. [9]. Thus, the CR-assisted secrecy capacity of
the AVWC for the decoding error measure is greater than or
equal to the corresponding compound secrecy capacity for the
strong secrecy criterion.

On the other hand, for the AVWC with a strong secrecy
criterion we observe the following: Assume that there is a

“good” CR-assisted code for the AVWC for strong secrecy, i.e.
I(J ;Znsn) ≤ δn is satisfied. Then we have for all q ∈ P(S)

I(J ;Zq) ≤
∑
sn∈Sn

qn(sn)I(J ;Znsn) ≤
∑
sn∈Sn

qn(sn)δn = δn

which follows from the fact that the mutual information is con-
vex in the channel. This means that this code is also “good” for
the corresponding compound channel. The consequence is that
the CR-assisted secrecy capacity of the AVWC for the strong
secrecy criterion is smaller than or equal to the corresponding
compound secrecy capacity for the strong secrecy criterion.

Thus, the CR-assisted secrecy capacity of the AVWC might
differ depending on which secrecy measure is applied. Cer-
tainly, strong secrecy yields a secrecy capacity smaller than
or equal to the corresponding one for the average decoding
error criterion. We expect that there might be examples where
the strong secrecy capacity is in fact strictly smaller.
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