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Abstract

We consider the problem of slotted asynchronous coded communication, where in each time frame
(slot), the transmitter is either silent or transmits a codeword from a given (randomly selected)
codebook. The task of the decoder is to decide whether transmission has taken place, and if so,
to decode the message. We derive the optimum detection/decoding rule in the sense of the best
trade-off among the probabilities of decoding error, false alarm, and misdetection. For this detec-
tion/decoding rule, we then derive single–letter characterizations of the exact exponential rates of
these three probabilities for the average code in the ensemble.
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1 Introduction

The problem of synchronization has been a long–standing, important issue in communication

throughout several decades (see, e.g., [1], [2], [4], [5], [7], [11], [12], [13], [14] and references therein,

for a non–exhaustive sample of earlier works).

The general problem setting under consideration allows the transmitter to send messages only

part of the time, and to be ‘silent’ (non–transmitting) when it has no messages ready to be con-

veyed. The receiver then has to be able to reliably detect the existence of the message, locate its

starting time instant, and decode it. The traditional approach has been to separate the problems

of synchronization and coding/decoding, where in the former, a special pattern of symbols (syn-

chronization word) is used to mark the beginning of a message transmission. This transmission of

a synchronization word is, however, is an undesired overhead.

Following [13] and [14], in this work, we treat the synchronization and coding jointly and we

adopt the simplified model of slotted communication. According to this model, a transmission can

start only at time instants that are integer multiples of the slot length, which is also the block

length. Thus, in each slot (or block), the transmitter is either entirely silent, or it transmits a

codeword corresponding to one of M possible messages. In the silent mode, it is assumed that the

transmitter repetitively feeds the channel by a special channel input symbol denoted by ‘0’ (indeed,

in the case of a continuous input alphabet, it is natural to assign a zero input signal), and then

the channel output vector is thought of as “pure noise.” The decoder in turn has to decide whether

a message has been sent or the received channel output vector is pure noise. In case it decides in

favor of the former, it then has to decode the message.

In [13] and [14], three figures of merit were defined in order to judge performance: (i) the

probability of false alarm (FA) – i.e., deciding that a message has been sent when actually, the

transmitter was silent and the channel output was pure noise, (ii) the probability of misdetection

(MD) – that is, deciding that the transmitter was silent when it actually transmitted some message,

and (iii) the probability of decoding error (DE) – namely, not deciding on the correct message sent.

Wang [13] and Wang et al. [14] have posed the problem of characterizing the best achievable region

of the error exponents associated with these three probabilities for a given discrete memoryless

channel (DMC). It was stated in [14] that this general problem is open, and so, the focus both in
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[13] and [14] was directed to the narrower problem of trading off the FA exponent and the MD

exponent when the DE exponent constraint is completely relaxed, that is, there is no demand on

exponential decay rate of the DE probability. Upper and lower bounds on the maximum achievable

FA exponent for a given MD exponent were derived in these works. In the extreme case where the

MD exponent constraint is omitted (set to zero), these bounds coincide, and so, the characterization

of the best achievable MD exponent is exact.

In this paper, we adopt the same problem setting of slotted asynchronous communication as

in [13] and [14]. We first derive, for a given code, the optimum detection–decoding rule that

minimizes the DE probability subject to given constraints on the FA and the MD probabilities.

This detection–decoding rule turns out to be completely different from the one in the achievability

parts of [13] and [14]. In particular, denoting the codewords by {xm}, the channel output vector

by y (all of length n), and the channel conditional probability by W (y|xm), then according to this

rule, a transmission is detected iff

enα
M
∑

m=1

W (y|xm) + max
1≤m≤M

W (y|xm) ≥ enβW (y|0n) (1)

where α and β are chosen to meet the MD and FA constraints. Of course, whenever the received y

passes this test, the maximum likelihood (ML) decoder is applied, assuming that all messages are

equiprobable a-priori. The performance of this optimum detector/decoder is analyzed under the

random coding regime of fixed composition codes, and the achievable trade-off between the three

error exponents is given in full generality, that is, not merely in the margin where at least one

of the exponents vanishes. It should be pointed out that our analysis technique, which is based

on type class enumeration (see, e.g., [6], [10] and references therein), provides the exact random

coding exponents, not just bounds. These relationships between the random coding exponents and

the parameters α and β can, in principle, be inverted (in a certain domain) in order to find the

assignments of α and β needed to satisfy given constraints on the exponents of the FA and the MD

probabilities. For the sake of fairness, on the other hand, it should also be made clear that since we

consider only the random coding regime, these are merely achievability results, with no converse

bounds pertaining to optimal codes.

The outline of the paper is as follows. In Section 2, we establish some notation conventions,

provide some preliminaries, and finally, formulate the problem. In Section 3, we derive the optimum
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detector/decoder and discuss some of its properties. In Section 4, we present our main theorem,

which is about single–letter formulas for the various error exponents. Finally, in Section 5, we prove

this theorem.

2 Notation Conventions, Preliminaries and Problem Formulation

2.1 Notation Conventions and Preliminaries

Throughout the paper, random variables will be denoted by capital letters, specific values they

may take will be denoted by the corresponding lower case letters, and their alphabets, similarly as

other sets, will be denoted by calligraphic letters. Random vectors and their realizations will be

denoted, respectively, by capital letters and the corresponding lower case letters, both in the bold

face font. Their alphabets will be superscripted by their dimensions. For example, the random

vector X = (X1, . . . , Xn), (n – positive integer) may take a specific vector value x = (x1, . . . , xn) in

X n, the n–th order Cartesian power of X , which is the alphabet of each component of this vector.

For a given vector x, let Q̂X denote1 the empirical distribution, that is, the vector {Q̂X(x), x ∈

X }, where Q̂X(x) is the relative frequency of the letter x in the vector x. Let TP denote the

type class associated with P , that is, the set of all sequences {x} for which Q̂X = P . Similarly,

for a pair of vectors (x, y), the empirical joint distribution will be denoted by Q̂XY or simply Q̂

for short. Conditional empirical distributions will be denoted by Q̂X|Y and Q̂Y |X , the y–marginal

by Q̂Y , etc. Accordingly, the empirical mutual information induced by (x, y) will be denoted

by I(Q̂XY ) or I(Q̂), the divergence between Q̂X and P = {P (x), x ∈ X } – by D(Q̂Y ‖P ), and

the conditional divergence between the empirical conditional distribution Q̂Y |X and the channel

W = {W (y|x) x ∈ X , y ∈ Y}, will be denoted by D(Q̂Y |X‖W |Q̂X), that is,

D(Q̂Y |X‖W |Q̂X) =
∑

x∈X

Q̂X(x)
∑

y∈Y

Q̂Y |X(y|x) log
Q̂Y |X(y|x)

W (y|x)
, (2)

and so on. The joint distribution induced by Q̂X and Q̂Y |X will be denoted by Q̂X × Q̂Y |X , and a

similar notation will be used when the roles of X and Y are switched. The marginal of X, induced

by Q̂Y and Q̂X|Y will be denoted by (Q̂Y × Q̂X|Y )X , and so on. Similar notation conventions will

1In our notation, we do not index Q̂X by x because the underlying sequence x will be clear from the context.
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apply, of course, to generic distributions QXY , QX , QY , QY |X , and QX|Y , which are not necessarily

empirical distributions (without “hats”).

The expectation operator will be denoted by E{·}. Whenever there is room for ambiguity, the

underlying probability distribution will appears as a subscript, e.g., EQ{·}. Logarithms and expo-

nents will be understood to be taken to the natural base unless specified otherwise. The indicator

function will be denoted by I(·). Sets will normally be denoted by calligraphic letters. The comple-

ment of a set A will be denoted by A. The notation [t]+ will stand for max{t, 0}. For two positive

sequences, {an} and {bn}, the notation an
·
= bn will mean asymptotic equivalence in the exponential

scale, that is, limn→∞
1
n

log(an

bn
) = 0. Similarly, an

·
≤ bn will mean lim supn→∞

1
n

log(an

bn
) ≤ 0, and so

on. Throughout the sequel, we will make frequent use of the fact that
∑kn

i=1 ai(n)
·

= max1≤i≤kn
ai(n)

as long as as {ai(n)} are positive and kn
·

= 1. Accordingly, for kn sequences of positive random

variables {Ai(n)}, all defined on a common probability space, and a deterministic sequence Bn,

Pr







kn
∑

i=1

Ai(n) ≥ Bn







·
= Pr

{

max
1≤i≤kn

Ai(n) ≥ Bn

}

= Pr
kn
⋃

i=1

{Ai(n) ≥ Bn}

·
=

kn
∑

i=1

Pr {Ai(n) ≥ Bn}

·
= max

1≤i≤kn

Pr {Ai(n) ≥ Bn} , (3)

provided that B′
n

·
= Bn implies Pr{Ai(n) ≥ B′

n}
·
= Pr{Ai(n) ≥ Bn}.2 In simple words, summations

and maximizations are equivalent and can be both “pulled out outside” Pr{·} without changing

the exponential order, as long as kn
·
= 1. By the same token,

Pr







kn
∑

i=1

Ai(n) ≤ Bn







·
= Pr

{

max
1≤i≤kn

Ai(n) ≤ Bn

}

= Pr
kn
⋂

i=1

{Ai(n) ≤ Bn}. (4)

Another fact that will be used extensively is that for a given set of M pairwise independent events

2Consider the case where Bn
·
= ebn (b being a constant independent of n) and the exponent of Pr{Ai(n) ≥ ebn} is

a continuous function of b.
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{Ai}
M
i=1,

Pr

{

M
⋃

i=1

Ai

}

·
= min

{

1,
M
∑

i=1

Pr{Ai}

}

. (5)

The right–hand side (r.h.s.) is obviously the union bound, which holds true even if the events

are not pairwise independent. On the other hand, when multiplied by a factor of 1/2, the r.h.s.

becomes a lower bound to Pr{
⋃M

i=1 Ai}, provided that {Ai} are pairwise independent [8, Lemma

A.2], [9, Lemma 1].

2.2 Problem Formulation

Consider a discrete memoryless channel (DMC), characterized by a finite input alphabet X0, a finite

out alphabet Y and a given matrix of single–letter transition probabilities {W (y|x), x ∈ X0, y ∈ Y}.

It is further assumed that X0 contains a special symbol denoted by ‘0’, which designates the channel

input in the absence of transmission. We shall denote X = X0 \ {0} and Q0(y) = W (y|x = 0).

We assume an ensemble of random codes, where each codeword is selected independently at

random, uniformly within a type class TP . Let C = {x1, x2 . . . , xM }, xm ∈ X n, m = 1, . . . , M ,

M = enR (R being the coding rate in nats per channel use), denote the (randomly chosen) code,

which is revealed to both the encoder and the decoder.

A detector/decoder, for a code operating in the setting of slotted asynchronous communication,

is a partition of Yn into M +1 regions, denoted R0, R1, . . . , RM . If y ∈ Rm, m = 1, 2, . . . , M , then

the decoder decodes the message to be m. If y ∈ R0, then the decoder declares that nothing has

been transmitted, that is, x = 0n and then y is “pure noise.” The probability of decoding error

(DE) is defined as

PDE =
1

M

M
∑

m=1

W (Rm) =
1

M

M
∑

m=1

∑

k 6=m

W (Rk|xm), (6)

where the inner summation at the right–most side includes k = 0. The probability of false alarm

(FA) is defined as

PFA = Q0(R0) =
M
∑

m=1

Q0(Rm), (7)

and the probability of misdetection (MD) is defined as

PMD =
1

M

M
∑

m=1

W (R0|xm). (8)
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For a given code C, we are basically interested in achievable trade-offs between PDE, PFA, and PMD.

Consider the following problem:

minimize PDE

subject to PFA ≤ ǫFA

PMD ≤ ǫMD (9)

where ǫFA and ǫMD are given prescribed quantities, and it assumed that these two constraints are

not contradictory.3

Our goal is to find the optimum detector/decoder and then analyze the random coding exponents

associated with the resulting error probabilities.

3 The Optimum Detector/Decoder

Let us define the following detector/decoder:

R∗
0 =

{

y : a ·
M
∑

m=1

W (y|xm) + max
m

W (y|xm) ≤ b · Q⋆(y)

}

(10)

R∗
m = R∗

0

⋂

{

y : W (y|xm) > max
k 6=m

W (y|xk)

}

, m = 1, 2, . . . , M, (11)

where ties are broken arbitrarily, and where a ≥ 0 and b ≥ 0 are deterministic constants. The

following lemma establishes the optimality of the decision rule R∗ = {R∗
0, R∗

1, . . . , R∗
M } in the

sense of the trade-off among the probabilities PMD, PFA and PDE. It tells us that there is no other

decision rule that simultaneously yields strictly smaller error probabilities of all three kinds.

Lemma 1 Let R∗ = {R∗
0, R∗

1, . . . , R∗
M } be as above and let R = {R0, R1, . . . , RM } be any another

partition of Yn into M + 1 regions. If

Q0(R0) ≤ Q0(R∗
0) (12)

and
1

M

M
∑

m=1

W (R0|xm) ≤
1

M

M
∑

m=1

W (R∗
0|xm), (13)

3Note that there is some tension between PMD and PFA as they are related via the Neyman–Pearson lemma. For a
given ǫFA, the minimum achievable MD probability is positive, in general. It is assumed then that the prescribed
value of ǫMD is not smaller than this minimum. In the problem under consideration, it makes sense to relax the
tension between the two constraints to a certain extent, in order to allow some freedom to minimize PDE under
these constraints.
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then
1

M

M
∑

m=1

W (R∗
m|xm) ≤

1

M

M
∑

m=1

W (Rm|xm). (14)

Proof. We begin from the obvious observation that for a given choice of R0, the optimum choice

of the other decision regions is always:

Rm = R0

⋂

{

y : W (y|xm) > max
k 6=m

W (y|xk)

}

, m = 1, 2, . . . , M. (15)

In other words, once a transmission has been detected, the best decoding rule is the ML decoding

rule. Similarly as in classical hypothesis testing theory, this is true because the probability of

correct decoding,

PCD =
1

M

M
∑

m=1

∑

y∈Rm

W (y|xm), (16)

is upper bounded by

PCD ≤
1

M

M
∑

m=1

∑

y∈Rm

max
k

W (y|xk) =
1

M

∑

y∈R0

max
m

W (y|xm) (17)

and this bound is achieved by (15). Thus, upon adopting (15) for a given choice of R0, it remains

to prove that the choice R∗
0 satisfies the assertion of the lemma.

The proof of this fact is similar to the proof of the Neyman–Pearson lemma. Let R∗
0 be as above

and let R0 be another, competing rejection region. First, observe that for every y ∈ Yn

[I{y ∈ R∗
0} − I{y ∈ R0}] ·

[

b · Q0(y) − a ·
M
∑

m=1

W (y|xm) − max
m

W (y|xm)

]

≥ 0. (18)

This is true because, by definition of R∗
0, the two factors of the product at the left–hand side (l.h.s.)

are either both non–positive or both non–negative. Thus, taking the summation over all y ∈ Yn,

we have:

0 ≤
∑

y∈Yn

[I{y ∈ R∗
0} − I{y ∈ R0}] ·

[

b · Q0(y) − a ·
M
∑

m=1

W (y|xm) − max
m

W (y|xm)

]

= b · [Q0(R∗
0) − Q0(R0)] − a ·

[

M
∑

m=1

W (R∗
0|xm) −

M
∑

m=1

W (R0|xm)

]

−





∑

y∈R∗
0

max
m

W (y|xm) −
∑

y∈R0

max
m

W (y|xm)



 (19)
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which yields

∑

y∈R∗
0

max
m

W (y|xm) −
∑

y∈R0

max
m

W (y|xm)

≤ b · [Q0(R∗
0) − Q0(R0)] − a ·

[

M
∑

m=1

W (R∗
0|xm) −

M
∑

m=1

W (R0|xm)

]

= b · [Q0(R0) − Q0(R∗
0)] + a ·

[

M
∑

m=1

W (R0|xm) −
M
∑

m=1

W (R∗
0|xm)

]

(20)

Since a ≥ 0 and b ≥ 0, it follows that

Q0(R0) ≤ Q0(R∗
0) (21)

and
1

M

M
∑

m=1

W (R0|xm) ≤
1

M

M
∑

m=1

W (R∗
0|xm) (22)

together imply that
∑

y∈R∗
0

max
m

W (y|xm) ≤
∑

y∈R0

max
m

W (y|xm) (23)

or equivalently,
∑

y∈R∗
0

max
m

W (y|xm) ≥
∑

y∈R0

max
m

W (y|xm), (24)

which in turn yields

1

M

M
∑

m=1

W (R∗
m|xm) ≡ 1 −

1

M

∑

y∈R∗
0

max
m

W (y|xm)

≤ 1 −
1

M

∑

y∈R0

max
m

W (y|xm)

≡
1

M

M
∑

m=1

W (Rm|xm). (25)

This completes the proof of Lemma 1. �

Discussion. At this point, two comments are in order.

1. The results thus far hold for any given code C. As mentioned earlier, in this work, we analyze

the ensemble performance. Specifically, let P̄DE, P̄FA, and P̄MD denote the corresponding ensemble

averages of PDE, PFA, and PMD, respectively. We will assess the random coding exponents of these

three probabilities. The constants a and b can be thought of as Lagrange multipliers that are tuned
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to meet the given FA and MD constraints. For these Lagrange multipliers to have an impact on

error exponents, we let them be exponential functions of n, that is, a = enα and b = enβ , where α

and β are real numbers, independent of n. The rejection region is then of the form

R∗
0 =

{

y : enα
M
∑

m=1

W (y|xm) + max
m

W (y|xm) ≤ enβQ0(y)

}

. (26)

By the same token, we impose exponential constraints on the FA and MD probabilities, that is,

ǫFA = e−nEFA and ǫMD = e−nEMD , where EFA ≥ 0 and EMD ≥ 0 are given numbers, independent of

n.

2. The detection/rejection rule defined by (26) involves a linear combination of maxm W (y|xm)

and
∑M

m=1 W (y|xm), or equivalently, the overall output distribution induced by the code

QC(y)
∆
=

1

M

M
∑

m=1

W (y|xm). (27)

In this context, the intuition behind the optimality of this detection rule is not trivial (at least for

the author of this article), and as mentioned earlier, it is very different from that of [13] and [14].

It is instructive, nonetheless, to examine some special cases. The first observation is that for α ≥ 0,

the term enα
∑M

m=1 W (y|xm) dominates the term maxm W (y|xm), and so, the rejection region is

essentially equivalent to

R′
0 =

{

y : enα
M
∑

m=1

W (y|xm) ≤ enβQ0(y)

}

=
{

y : en(α+R)QC(y) ≤ enβQ0(y)
}

, (28)

which is exactly the Neyman–Pearson test between QC(y) and Q0(y). This means that α ≥ 0

corresponds to a regime of full tension between the FA and the MD constraints (see footnote no.

2). In this case, EFA and EMD are related via the Neyman–Pearson lemma, and there are no

degrees of freedom left for minimizing P̄DE (or equivalently, maximizing its exponent). Indeed, the

detection–rejection rule (28) depends only on one degree of freedom, which is the difference α − β,

and hence so are the FA and MD error exponents associated with it. At the other extreme, where

enα ≪ 1, and the term maxm W (y|xm) dominates, the detection rule becomes equivalent to

R′′
0 =

{

y : max
m

W (y|xm) ≤ enβQ0(y)
}

. (29)

In this case, the silent mode is essentially treated as corresponding to yet another codeword –

x0 = 0n, although it still has a special stature due to the factor enβ. But for β = 0, this “silent

10



codeword” is just an additional codeword with no special standing, and the decoding is completely

ordinary. The interesting range is therefore the range where α is negative, but not too small, where

both QC(y) and maxm W (y|xm) play a considerable role.

4 Performance

In this section, we present our main theorem, which provides exact single–letter characterizations

for all three exponents as functions of α and β. We first need some definitions. Let

d(x, y)
∆
= ln

[

Q0(y)

W (y|x)

]

, x ∈ X , y ∈ Y (30)

and denote D(Q) = EQd(X, Y ). For a given output distribution QY = {QY (y), y ∈ Y}, define4

R(∆; QY )
∆
= inf

{QY |X : D(Q)≤∆, (P ×QY |X)Y =QY }
I(Q). (31)

Next, define

µ(QY , R)
∆
= min

QX|Y ∈QP , I(Q)≤R
{I(Q) + D(Q)}, (32)

R̃(∆, R; QY )
∆
=

{

R(∆; QY ) − R ∆ ≤ µ(QY , R) − R
0 ∆ > µ(QY , R) − R

(33)

EA
∆
= inf

QY

[D(QY ‖Q0) + R̃(α − β, R; QY )], (34)

EB
∆
= inf

QY

{D(QY ‖Q0) + [R(−β; QY ) − R]+} , (35)

and

EFA

∆
= min{EA, EB}. (36)

The inverse function of R(D; QY ), will be denoted by D(R; QY ), i.e.,

D(R; QY ) = inf
{QY |X : I(Q)≤R, (P ×QY |X)Y =QY }

D(Q). (37)

Also, let R1(QY ) and D1(QY ) denote I(Q∗) and D(Q∗), where Q∗ minimizes I(Q) + D(Q). Now,

let

EMD

∆
= inf D(QY |X‖W |P ) (38)

where the infimum is subject to the constraints:

4 Conceptually, R(D, QY ) can be thought of as the rate–distortion function of the “source” P subject to a constrained
reproduction distribution QY (or vice versa), but note that the “distortion measure” d(x, y) here is not necessarily
non–negative for all (x, y).

11



1. D(R; QY ) ≤ [α]+ − β ≤ D(P × QY |X)

2. D1(QY ) ≤ [α]+ − β implies R([α]+ − β; QY ) ≥ R − [−α]+

3. D1(QY ) > [α]+ − β implies R1(QY ) + D1(QY ) ≥ R + α − β

with QY = (P × QY |X)Y . Next define

E1 = inf
{QY |X : D(P ×QY |X)≤[α]+−β}

{

D(QY |X‖W |P ) +
[

R(D(P × QY |X); (P × QY |X)Y ) − R
]

+

}

,

(39)

E2 = inf
QY |X

{

D(QY |X‖W |P ) +
[

R(α − β; (P × QY |X)Y ) − R
]

+

}

, (40)

and finally,

EDE

∆
= min{E1, E2, EMD}. (41)

Theorem 1 Let W be a DMC and let R∗ be both defined as in Section 2.2. Let the codewords of

C = {x1, . . . , xM }, M = enR, be selected independently at random under the uniform distribution

across a given type class TP . Then, the asymptotic exponents associated with P̄FA, P̄MD, and P̄DE

are given, respectively, by EFA, EMD, and EDE, as defined in eqs. (36), (38), and (41).

Discussion. As discussed in Section 3, we observe that for α ≥ 0, all three exponents depend on

α and β only via the difference α − β. It is also seen that there is nothing to lose by replacing

a positive value of α by α = 0, as long as the difference α − β is kept. For α < 0, the various

exponents depend on α and β individually, so there are two degrees of freedom to adjust both the

FA and the MD exponents to pre–specified values in a certain range.

It is instructive to find out the maximum achievable information rate for which the average

probability of decoding error still tends to zero, that is, the smallest rate R for which EDE = 0, for

given EMD and EFA. This happens as soon as either E1 = 0 or E2 = 0. The exponent E1 vanishes

for R = R(D(P × W ); (P × W )Y ). But

R(P × W ; (P × W )Y ) = min{I(Q) : D(Q) ≤ D(P × W ), (P × QY |X)Y = (P × W )Y }

≤ I(P × W ). (42)

On the other hand, since D(QY |X‖W |P ) ≥ 0, it is easy to see that the constraint set {Q : D(Q) ≤

D(P × W ), (P × QY |X)Y = (P × W )Y } is a subset of {Q : I(Q) ≥ I(P × W )}, and so,

R(P × W ; (P × W )Y ) ≥ min{I(Q) : I(Q) ≥ I(P × W )} = I(P × W ), (43)

12



therefore, R(P × W ; (P × W )Y ) = I(P × W ), which is the ordinary achievable rate one would

expect from a constant composition code of type class TP . The exponent E2 vanishes at the rate

R(α − β; (P × W )Y ) Therefore, there is no rate loss, compared to ordinary decoding, as long as

α − β ≤ D(P × W ). (44)

5 Proof of Theorem 1

This section is divided into three subsections, each one devoted to the analysis of one of the three

error exponents.

5.1 The False Alarm Error Exponent

Let y be given and consider {Xm} as random. Then,

P̄FA(y) = Q0

{

enα ·
M
∑

m=1

W (y|Xm) + max
m

W (y|Xm) > enβQ0(y)

}

(45)

·
= Q0

{

enα ·
M
∑

m=1

W (y|Xm) > enβQ⋆(y)

}

+ Q0

{

max
m

W (y|Xm) > enβQ⋆(y)
}

(46)

= Q0

{

M
∑

m=1

W (y|Xm) > en(β−α)Q0(y)

}

+ Q0

{

max
m

W (y|Xm) > enβQ⋆(y)
}

(47)

∆
= A(y) + B(y), (48)

where we have used (3). It is sufficient now to show that A = E{A(Y )}
·

= e−nEA and B =

E{B(Y )}
·
= e−nEB . Now, for a given y, let N(Q̂|y) be the number of codewords in C whose joint

empirical distribution with y is Q̂ = {Q̂(x, y), x ∈ X , y ∈ Y}. Next, define

f(Q̂) =
∑

x,y

Q̂(x, y) ln W (y|x) (49)

and

g(Q̂Y ) =
∑

y

Q̂Y (y) ln Q⋆(y) + β − α. (50)

Then,

A(y) = Q0











∑

Q̂X|Y

N(Q̂|y)enf(Q̂) > eng(Q̂Y )
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·
= Q0

{

max
Q̂X|Y

N(Q̂|y)enf(Q̂) > eng(Q̂Y )

}

(51)

= Q0

⋃

Q̂X|Y

{

N(Q̂|y)enf(Q̂) > eng(Q̂Y )
}

(52)

·
=

∑

Q̂X|Y

Q0

{

N(Q̂|y) > en[g(Q̂Y )−f(Q̂)
}

(53)

·
= max

Q̂X|Y

Q0

{

N(Q̂|y) > enu(Q̂)
}

, (54)

where we have used again eq. (3) and where we have defined

u(Q̂)
∆
= g(Q̂Y ) − f(Q̂) =

∑

x,y∈X ×Y

Q̂(x, y) ln
Q0(y)

W (y|x)
+ β − α = D(Q̂) + β − α. (55)

Now, since N(Q̂|y) is a Bernoulli random variable pertaining to enR trials and probability of success

of the exponential order of e−nI(Q̂), we have, similarly as in [6, Subsection 6.3]

Pr{N(Q̂|y) ≥ enu(Q̂)}
·
= exp

{

−en[u(Q̂)]+(n[I(Q̂) − R + [u(Q)]+] − 1)
}

, (56)

provided that for u(Q̂) > 0, I(Q̂) − R + u(Q̂) > 0 (otherwise, Pr{N(Q̂|y) ≥ enu(Q̂)} → 1).5

Therefore, the exponential rate E(Q̂) of Pr{N(Q̂|y) ≥ enu(Q̂)} is as follows:

E(Q̂) =











[I(Q̂) − R]+ u(Q̂) ≤ 0

∞ u(Q̂) > 0, u(Q̂) > R − I(Q̂)

0 u(Q̂) > 0, u(Q̂) < R − I(Q̂)

(57)

For a given Q̂Y , let QP be the set of {Q̂X|Y } such that (Q̂Y × Q̂X|Y )X = P . Then,

min
Q̂X|Y ∈QP

E(Q̂) =























∞ ∀Q̂X|Y ∈ QP : u(Q̂) > 0, u(Q̂) > R − I(Q̂)

0 ∃Q̂X|Y ∈ QP : 0 ≤ u(Q̂) ≤ R − I(Q̂)

0 ∃Q̂X|Y ∈ QP : u(Q̂) ≤ 0, I(Q̂) ≤ R

min{Q̂X|Y ∈QP : u(Q̂)≤0}[I(Q̂) − R]+ otherwise

=











∞ ∀Q̂X|Y ∈ QP : u(Q̂) > [R − I(Q̂)]+
0 ∃Q̂X|Y ∈ QP : I(Q̂) ≤ min{R, R − u(Q̂)}

min{Q̂X|Y ∈QP : u(Q̂)≤0}[I(Q̂) − R]+ otherwise

The condition for min
Q̂X|Y ∈QP

E(Q̂) to vanish becomes

α − β + R ≥ µ(Q̂Y , R) = min
{Q̂X|Y ∈QP : I(Q̂)≤R}

[I(Q̂) + D(Q̂)]

5 Note also that Pr{N(Q̂|y) ≥ enu(Q̂)} = Pr{N(Q̂|y) ≥ en[u(Q̂)]+ } since N(Q̂|y) is an integer valued random
variable.
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=

{

R + D(R; Q̂Y ) R < R1(Q̂Y )

R1(Q̂Y ) + D1(Q̂Y ) R ≥ R1(Q̂Y )
(58)

The condition for an infinite exponent is as follows: For u(Q̂) to be non-negative for all Q̂X|Y , we

need

α − β ≤ Dmin(Q̂Y )
∆
= min

Q̂X|Y ∈QP

D(Q̂). (59)

For u(Q̂) ≥ R − I(Q̂) for all Q̂X|Y ∈ QP , we need α − β + R < µ(Q̂Y , ∞). Thus, in summary,

min
Q̂X|Y ∈QP

E(Q̂) =











0 α − β ≥ µ(Q̂Y , R) − R

∞ α − β < min{µ(Q̂Y , ∞) − R, Dmin(Q̂Y )}

min{Q̂X|Y ∈QP : u(Q̂)≤0}[I(Q̂) − R]+ elsewhere

=















0 α − β ≥ µ(Q̂Y , R) − R

∞ α − β < min{µ(Q̂Y , ∞) − R, Dmin(Q̂Y )}
[

R(α − β; Q̂Y ) − R
]

+
elsewhere

=

{

R(α − β; Q̂Y ) − R α − β < µ(Q̂Y , R) − R

0 α − β ≥ µ(Q̂Y , R) − R

= R̃(α − β, R; Q̂Y ), (60)

where we have used the convention that the minimum over an empty set is infinity and the fact

that D(R; Q̂Y ) ≥ µ(QY , R) − R. For the overall exponent associated with A, we need to average

over Y , which gives A
·

= e−nEA with

EA = min
QY

{D(QY ‖Q0) + R̃(α − β, R; QY )}. (61)

Moving on to the analysis of B(y),

B(y) = Q0

{

max
m

W (y|Xm) > enβQ0(y)
}

(62)

= Q0

M
⋃

m=1

{

W (y|Xm) > enβQ0(y)
}

(63)

·
= min

{

1, M · Q0{W (y|X1) > enβQ0(y)}
}

, (64)

where in the last line, we have used (5). Now,

Q0{W (y|X1) > enβQ0(y)}
·
= e−nI0(Q̂Y ), (65)

where

I0(Q̂Y ) = min
Q̂X|Y

{

I(Q̂) : D(Q̂) ≤ −β, Q̂X|Y ∈ QP

}
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= R(−β; Q̂Y ). (66)

Thus, B
·

= e−nEB with

EB = min
QY

{D(QY ‖Q0) + [R(−β; QY ) − R]+}. (67)

5.2 The Misdetection Error Exponent

Without loss of generality, we will assume that X1 = x1 was transmitted. We first condition on

x1 and y.

P̄MD(x1, y) = Pr

{

enα
M
∑

m=1

W (y|Xm) + max
m

W (y|Xm) ≤ enβQ⋆(y)

∣

∣

∣

∣

X1 = x1, y

}

= Pr

{

enα
M
∑

m=1

W (y|Xm)+

max{W (y|x1), max
m>1

W (y|Xm)} ≤ enβQ⋆(y)

∣

∣

∣

∣

X1 = x1, y

}

·
= Pr

{

enα

[

W (y|x1) +
∑

m>1

W (y|Xm)

]

+ W (y|x1) + max
m>1

W (y|Xm) ≤ enβQ⋆(y)

∣

∣

∣

∣

x1, y

}

·
= Pr

{

en[α]+W (y|x1) + enα
∑

m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ⋆(y)

∣

∣

∣

∣

x1, y

}

·
= Pr

{

en[α]+W (y|x1) < enβQ⋆(y), enα
∑

m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ⋆(y)

∣

∣

∣

∣

x1, y

}

= I
{

en[α]+W (y|x1) < enβQ⋆(y)
}

×

Pr

{

enα
∑

m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ⋆(y)

∣

∣

∣

∣

x1, y

}

∆
= C · D. (68)

Using the identity

max
m>1

W (y|xm) ≡ max
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) (69)

(where now N(Q̂|y) does not count x1), we now have

D = Pr

{

enα
∑

m>1

W (y|Xm) + max
m>1

W (y|Xm) ≤ enβQ0(y)

∣

∣

∣

∣

x1, y

}

(70)

= Pr











enα
∑

Q̂X|Y

N(Q̂|y)enf(Q̂) + max
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) ≤ en[g(Q̂Y )+α]

∣

∣

∣

∣

x1, y











(71)
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·
= Pr











enα
∑

Q̂X|Y

N(Q̂|y)enf(Q̂) +
∑

Q̂X|Y

I{N(Q̂|y) ≥ 1}enf(Q̂) ≤ en[g(Q̂Y )+α]

∣

∣

∣

∣

x1, y











(72)

= Pr











∑

Q̂X|Y

[enαN(Q̂|y) + I{N(Q̂|y) ≥ 1}]enf(Q̂) ≤ en[g(Q̂Y )+α]

∣

∣

∣

∣

x1, y











(73)

·
= Pr

{

max
Q̂X|Y

[enαN(Q̂|y) + I{N(Q̂|y) ≥ 1}]enf(Q̂) ≤ en[g(Q̂Y )+α]

∣

∣

∣

∣

x1, y

}

(74)

= Pr
⋂

Q̂X|Y

{

enαN(Q̂|y) + I{N(Q̂|y) ≥ 1} ≤ en[u(Q̂)+α]

∣

∣

∣

∣

x1, y

}

(75)

= Pr
⋂

Q̂X|Y

{

N(Q̂|y) ≤ env(Q̂)

∣

∣

∣

∣

x1, y

}

, (76)

where

v(Q̂) =

{

u(Q̂) u(Q̂) + α > 0

−∞ u(Q̂) + α ≤ 0
(77)

Now, if there exists at least one Q̂X|Y ∈ QP for which I(Q̂) < R and R − I(Q̂) > v(Q̂), then this

Q̂X|Y alone is responsible for a double exponential decay of D (because then the event in question

would be a large deviations event whose probability decays exponentially with M = enR, thus

double–exponentially with n), let alone the intersection over all {Q̂X|Y }. The condition for this to

happen is R > R0(Q̂Y )
∆
= minQX|Y ∈QP

max{I(Q̂), I(Q̂) + v(Q̂)}. Conversely, if for every Q̂ with

Q̂X|Y ∈ QP , we have I(Q̂) > R or R − I(Q̂) < v(Q̂), that is, R < R0(Q̂Y ), then D is close to

1 since the intersection is over a sub–exponential number of events with very high probability. It

follows that D behaves like I{R0(Q̂Y ) > R}, Thus,

PMD

·
= EI

{

R0(Q̂Y ) > R, W (Y |X1) ≤ en(β−[α]+)Q0(Y )
}

= exp

[

−n inf
QY |X∈QP

{

D(QY |X‖W |P ) : R0(QY ) > R, D(Q) > [α]+ − β
}

]

. (78)

Now, let us take a closer look at R0(QY ):

max{I(Q), I(Q) + v(Q)} =

{

max{I(Q), I(Q) + u(Q)} u(Q) > −α
I(Q) u(Q) ≤ −α

(79)

= I(Q) + u(Q) · I{u(Q) > [−α]+}. (80)

Thus,

R0(Q) = min
QX|Y ∈QP

[I(Q) + u(Q) · I{u(Q) > [−α]+}] (81)
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= min

{

min
QX|Y ∈QP : u(Q)≤[−α]+

I(Q), min
QX|Y ∈QP : u(Q)>[−α]+

[I(Q) + u(Q)]

}

. (82)

Now,

min
QX|Y ∈QP : u(Q)≤[−α]+

I(Q) = R(α + [−α]+ − β; QY ) (83)

= R([α]+ − β; QY ) (84)

and

min
QX|Y ∈QP : u(Q)>[−α]+

[I(Q) + u(Q)] (85)

= β − α + min
QX|Y ∈QP : D(Q)>[α]+−β

[I(Q) + D(Q)] (86)

= β − α +

{

R1(QY ) + D1(QY ) [α]+ − β < D1(QY )
R([α]+ − β; QY ) + [α]+ − β otherwise

(87)

=

{

R1(QY ) + D1(QY ) + β − α [α]+ − β < D1(QY )
R([α]+ − β; QY ) + [α]+ − α otherwise

(88)

=

{

R1(QY ) + D1(QY ) + β − α [α]+ − β < D1(QY )
R([α]+ − β; QY ) + [−α]+ otherwise

(89)

Thus,

EMD = inf D(QY |X‖W |P ), (90)

where the infimum is over all {QY |X} that satisfies the following conditions:

1. D(R; QY ) ≤ [α]+ − β ≤ D(P × QY |X)

2. D1(QY ) ≤ [α]+ − β implies R([α]+ − β; QY ) ≥ R − [−α]+

3. D1(QY ) > [α]+ − β implies R1(QY ) + D1(QY ) ≥ R + α − β

where QY = (P × QY |X)Y .

5.3 The Decoding Error Exponent

Let us denote

Ωm
∆
=

{

y : W (y|xm) > max
k 6=m

W (y|xk)

}

. (91)

Then, for m ≥ 1, R∗
m = R∗

0 ∩ Ωm. For a given code, the probability of decoding error is given by

PDE =
1

M

M
∑

m=1

W (R∗
m|xm) (92)
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=
1

M

M
∑

m=1

W (R∗
0 ∪ Ωm|xm) (93)

=
1

M

M
∑

m=1

W (R∗
0 ∩ Ωm|xm) +

1

M

M
∑

m=1

W (R∗
0|xm). (94)

Upon taking the ensemble average, the second term becomes P̄MD, which we have already analyzed

in the previous subsection. Its error exponent, EMD, indeed appears as one of the arguments of the

min{·} operator in eq. (41), and so, it remains to show that the exponent of the ensemble average

of the first term is min{E1, E2}. Let X1 = x1 be transmitted and let Y = y be received. As

before, we first condition on (x1, y).

Pr{R∗
0 ∩ Ω1|x1, y} = Pr

{

enα
∑

m

W (y|Xm) + max
m

W (y|Xm) > enβQ⋆(y),

max
m>1

W (y|Xm) ≥ W (y|x1)

∣

∣

∣

∣

x1, y

}

·
= Pr

{

en[α]+W (y|x1) + enα
∑

m>1

W (y|Xm) + max
m>1

W (y|Xm) > enβQ⋆(y),

max
m>1

W (y|Xm) ≥ W (y|x1)

∣

∣

∣

∣

x1, y

}

·
= A(x1, y) + B(x1, y) + C(x1, y) (95)

where

A(x1, y) = I
{

W (y|x1) ≥ en(β−[α]+)Q⋆(y)
}

· Pr

{

max
m>1

W (y|Xm) ≥ W (y|x1)

∣

∣

∣

∣

x1, y

}

, (96)

B(x1, y) = Pr

{

∑

m>1

W (y|Xm) ≥ en(β−α)Q⋆(y), max
m>1

W (y|Xm) ≥ W (y|x1)

∣

∣

∣

∣

x1, y

}

, (97)

and

C(x1, y) = Pr

{

max
m>1

W (y|Xm) ≥ max{enβQ⋆(y), W (y|x1)}

∣

∣

∣

∣

x1, y

}

. (98)

We next analyze each one of these terms. First, observe that for a given constant S (which may

depend on the given x1 and y), we have

Pr

{

max
m>1

W (y|Xm)

Q⋆(y)
≥ e−nS

∣

∣

∣

∣

x1, y

}

·
= min

{

1, enR · Pr

{

W (y|X2)

Q⋆(y)
> e−nS |x1, y

}}

(99)

·
= min

{

1, enR · Pr

{

W (y|X2)

Q⋆(y)
> e−nS |x1, y

}}

(100)

·
= exp{−n[R(S, Q̂Y ) − R]+}. (101)
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In our case, S = D(Q̃), where Q̃ is the empirical joint distribution of x1 and y. Thus,

A
∆
= E{A(X1, Y )}

·
= exp

[

−n min
{Q: QX|Y ∈QP : D(Q)≤[α]+−β}

{D(QY |X‖W |P ) + [R(D(Q), QY ) − R]+}

]

= e−nE1. (102)

Concerning C(x1, y), we similarly have:

C(x1, y) = Pr

{

max
m>1

W (y|Xm)

Q⋆(y)
≥ max

{

enβ ,
W (y|x1)

Q⋆(y)

} ∣

∣

∣

∣

x1, y

}

·
= min

{

1, enR · Pr

{

W (y|X2)

Q⋆(y)
≥ max

{

enβ ,
W (y|x1)

Q⋆(y)

} ∣

∣

∣

∣

x1, y

}}

·
= exp

{

−n[R(min{−β, D(Q̃)}; Q̂y) − R]+
}

, (103)

and so,

C
∆
= E{C(X1, Y )}

·
= exp

{

−n min
Q: QX|Y ∈QP

{D(QY |X‖W |P ) + [R(min{−β, D(Q)}; QY ) − R]+}

}

·
≤ e−nE1 , (104)

therefore, C is always dominated by A. It remains then to show that B = E{B(X1, Y )}
·

= e−nE2 .

First, for given (x1, y),

B(x1, y)
·

= Pr











∑

Q̂X|Y

N(Q̂|y)enf(Q̂) ≥ eng(Q̂),
∑

Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) ≥ enf(Q̃)











·
= Pr

{

max
Q̂X|Y

N(Q̂|y)enf(Q̂) ≥ eng(Q̂), max
Q̂X|Y

I{N(Q̂|y) ≥ 1} · enf(Q̂) ≥ enf(Q̃)

}

·
= Pr







⋃

Q̂X|Y

{N(Q̂|y) ≥ enu(Q̂)}







⋂







⋃

Q̂X|Y

{I{N(Q̂|y) ≥ 1} ≥ en[f(Q̃)−f(Q̂)]}







= Pr







⋃

Q̂X|Y

{N(Q̂|y) ≥ enu(Q̂)}







⋂







⋃

Q̂X|Y : f(Q̃)≤f(Q̂)

{I{N(Q̂|y) ≥ 1} ≥ en[f(Q̃)−f(Q̂)]}







= Pr
⋃

{Q̂X|Y ,Q′
X|Y

: f(Q̃)≤f(Q′)}

{

N(Q̂|y) ≥ enu(Q̂), N(Q′|y) ≥ 1
}

·
= Pr

⋃

Q̂

{

N(Q̂|y) ≥ en[u(Q̂)]+
}

+
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∑

Q̂X|Y 6=Q′
X|Y

: f(Q̃)≤f(Q′)

Pr{N(Q̂|y) ≥ en[u(Q̂)]+ , N(Q′|y) ≥ 1}

·
= max

Q̂X|Y

Pr
{

N(Q̂|y) ≥ en[u(Q̂)]+
}

+

max
Q̂X|Y 6=Q′

X|Y
:f(Q̃)≤f(Q′)

Pr{N(Q̂|y) ≥ en[u(Q̂)]+ , N(Q′|y) ≥ 1}

·
= max

Q̂X|Y

Pr{N(Q̂|y) ≥ en[u(Q̂)]+}

= exp{−n[R(α − β; Q̂Y ) − R]+}. (105)

where the last passage follows from an analysis almost identical to that of EA in Subsection 5.1.

Thus,

B = E{B(X1, Y )} = exp{−n min
QY |X

{D(QY |X‖W |P ) + [R(α − β; QY ) − R]+} = e−nE2 . (106)
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