
ar
X

iv
:1

40
3.

41
18

v2
 [

cs
.IT

]
28

 A
pr

 2
01

4

Efficient Maximum-Likelihood Decoding of Linear
Block Codes on Binary Memoryless Channels

Michael Helmling†, Eirik Rosnes§, Stefan Ruzika†, and Stefan Scholl‡

†Mathematical Institute, University of Koblenz-Landau, 56070 Koblenz, Germany
Email: {helmling, ruzika}@uni-koblenz.de

§Department of Informatics, University of Bergen, N-5020 Bergen, Norway, and the Simula Research Lab.
Email: eirik@ii.uib.no

‡Microelectronic Systems Design Research Group, University of Kaiserslautern, 67653 Kaiserslautern, Germany
Email: scholl@eit.uni-kl.de

Abstract—In this work, we consider efficient maximum-
likelihood decoding of linear block codes for small-to-moderate
block lengths. The presented approach is a branch-and-bound
algorithm using the cutting-plane approach of Zhang and Siegel
(IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds.
We have compared our proposed algorithm to the state-of-the-
art commercial integer program solver CPLEX, and for all
considered codes our approach is faster for both low and high
signal-to-noise ratios. For instance, for the benchmark(155, 64)
Tanner code our algorithm is more than 11 times as fast as
CPLEX for an SNR of 1.0 dB on the additive white Gaussian
noise channel. By a small modification, our algorithm can be
used to calculate the minimum distance, which we have again
verified to be much faster than using the CPLEX solver.

I. I NTRODUCTION

Determining the optimal decoding behavior of error-
correcting codes is of significant importance, e. g., to bench-
mark different coding schemes. When noa priori information
on the transmitted codeword is known, maximum-likelihood
decoding (MLD) is an optimal decoding strategy. It is known
that this problem is NP-hard in general [1] such that its
complexity grows exponentially in the block length of the
code, unless P= NP. Currently, the best known approach for
general block codes is to use a state-of-the-art (commercial)
integer program (IP) solver (see [2]) like CPLEX [3].

In this work, we present a branch-and-bound approach for
efficient MLD of linear block codes. The problem of MLD
is closely related to that of calculating the minimum distance
of a code, which has attracted some attention recently. For
instance, in [4, 5], Rosneset al. proposed an efficient branch-
and-bound algorithm to determine all low-weight stopping
sets/codewords in a low-density parity-check (LDPC) code.
Although the two problems are similar, the bounding step
in the algorithm from [4, 5] cannot efficiently be adapted
to the scenario of MLD. Conversely, however, the algorithm
presented here can also calculate the minimum distance, and
our numerical experiments show that this is very efficient
compared to CPLEX.

This work was partially funded by the DFG (grant RU-1524/2-1) and by
DAAD / RCN (grant 54565400 within the German-Norwegian Collaborative
Research Support Scheme).

Linear programming (LP) decoding of binary linear codes,
as first introduced by Feldmanet al. in [6], approximates
MLD by relaxing the decoding problem into an easier to
solve LP problem. The LP problem contains a set of linear
inequalities that are derived from the parity-check constraints
of a (redundant) parity-check matrix representing the code. As
shown in [7], these constraints can iteratively and adaptively be
added to the decoding problem, which significantly reduces the
overall complexity of LP decoding. Elaborating on this idea,
Zhang and Siegel [8] proposed an efficient search algorithm for
new violated (redundant) parity-check constraints (or “cuts”)
that tighten the decoding polytope. Depending on the structure
of the underlying code, for some codes, this “cutting-plane”
LP decoding algorithm performs close to MLD for high signal-
to-noise ratios (SNRs) on the additive white Gaussian noise
(AWGN) channel, although for most codes, e. g., the(155, 64)
Tanner code [9], there is still a gap in decoding performance
to MLD [8]. For lower values of the SNR, there could be a
significant performance degradation with respect to MLD.

The algorithm proposed in this work closes that gap by
using the cutting-plane algorithm for lower bounds and the
well-known sum-product (SP) decoder [10] with order-i re-
encoding [11] for upper bounds within a sophisticated branch-
and-bound framework such that the output always and prov-
ably is the maximum-likelihood (ML) codeword. Our numer-
ical study in Section VI shows that it is much faster than
CPLEX for all codes under consideration, and moreover is
able to decode some of the codes on which CPLEX fails
completely.

II. N OTATION AND BACKGROUND

This section establishes some basic definitions and results
needed for the rest of the paper.

Let C denote a binary linear code of lengthn represented
by anm × n parity-check matrixH. The code is used on a
binary-input memoryless output-symmetric channel with input
c = (c0, . . . , cn−1) ∈ C and channel output denoted by the
length-n vectorr = (r0, . . . , rn−1). The ML decoder can be

http://arxiv.org/abs/1403.4118v2

described by the following optimization problem [12]:

ĉML = argmin
c∈C

ψλ(c) = argmin
c∈conv(C)

ψλ(c) (1)

whereψλ(c) = λ · cT and (·)T denotes the transpose of its
argument,λ = (λ0, . . . , λn−1) is a vector of log-likelihood
ratios (LLRs) defined by

λi = log

(

Pr(ri|ci = 0)

Pr(ri|ci = 1)

)

for all i, 0 ≤ i ≤ n−1, andconv(C) is theconvex hullof C in
R

n, whereR denotes the real numbers. The MLD problem in
(1) can be formulated as an IP which in general is an NP-hard
problem. As an approximation to MLD, Feldmanet al. [6]
relaxed the codeword polytopeconv(C) in the following way.

Define
Cj = {c ∈ {0, 1}

n |hj · c
T = 0}

wherehj = (hj,0, . . . , hj,n−1) is the jth row of the parity-
check matrixH and0 ≤ j ≤ m−1. Furthermore, letconv(Cj)
denote the convex hull ofCj in R

n. Thefundamental polytope
P(H) of the parity-check matrixH is defined as [13]

P(H) =
⋂m−1

j=0
conv(Cj). (2)

The MLD problem in (1) can now be relaxed to

p̂LP = argmin
p∈P(H)

ψλ(p)

where the solution, by definition, is apseudocodewordwith
fractional entries in general. Note that the LP decoder has
the ML certificateproperty, which means that in casep̂LP is
integral, it is an optimal solution to (1).

For each rowhj , 0 ≤ j ≤ m−1, in the matrixH the linear
inequalities behind the fundamental polytope in (2) are
∑

i∈V

pi−
∑

i∈N (j)\V

pi ≤ |V|−1, for all odd-sizedV ⊆ N (j) (3)

whereN (j) = {i : hj,i = 1, 0 ≤ i ≤ n− 1}.
For a given rowhj of a parity-check matrixH and a vector

p ∈ [0, 1]n: If there exists an odd setV ⊆ N (j) such that the
corresponding inequality from (3) does not hold, then we say
that thejth parity-check constraint induces acut at p.

Central to our branch-and-bound algorithm is the concept
of constraint sets. A constraint setF is a set{(ρi, cρi

) : cρi
∈

{0, 1} ∀ρi ∈ Γ}, whereΓ ⊆ {0, . . . , n − 1}. If (ρi, cρi
) is

a constraint, then positionρi is said to becρi
-constrained,

which means that positionρi is committed to the valuecρi
in

a codeword, while positions not inF are uncommitted.
Let C(F) denote the subset of codewords fromC consistent

with the constraint setF . Then, we can define

ψ
(F)
min,λ = min

c∈C(F)
ψλ(c)

as the minimum value of the objective function for codewords
consistent withF . In the following, ψ̄(F)

min,λ will denote any

lower bound onψ(F)
min,λ. Also, a constraint setF is said to be

valid if C(F) is nonempty.

Our proposed branch-and-bound MLD algorithm relies
heavily on tight lower bounds onψ(F)

min,λ, which are provided
by an LP-based decoding algorithm by Zhang and Siegel [8].
We briefly describe this algorithm, denoted as the ZS decoding
algorithm, below in Section II-A.

A. Zhang and Siegel’s LP-Based Decoding Algorithm

The ZS decoding algorithm is based on adaptive LP de-
coding as described in [7] and incorporates an efficient cut-
search algorithm, as described in [8]. First the LP problem is
initialized with the box constraints.†Solve the LP problem to
get an optimal solutionp∗. If p∗ is integral, then terminate
the algorithm and return the ML codewordp∗. Otherwise, the
cut-search algorithm (Algorithm 1 in [8]) is applied to each
row of the parity-check matrix of the code. If at least one is
found, add all found cuts into the LP problem and repeat the
procedure from†. Otherwise, search for cuts from redundant
parity-checks. To this end, reduceH by Gaussian elimination
to reduced row echelonform, where the columns ofH are
processed in the order of the “fractionality” (i. e., closeness to
1
2) of the corresponding coordinate ofp∗. Now, the cut-search
algorithm is applied to each row of the obtained modified
matrix H̃. If no cut is found, then terminate. Otherwise, add
all found cuts into the LP problem as constraints and repeat
the procedure from†. The algorithm above has been detailed
in Algorithm 2 in [8], and we refer the interested reader to [8]
for further details.

III. B ASIC BRANCH-AND-BOUND ALGORITHM

Our proposed algorithm is a branch-and-bound algorithm on
constraint sets and uses the ZS decoding algorithm, as briefly
described above, as a basic component in the bounding step.
Thus, there is a one-to-one correspondence between the nodes
in the search tree and constraint sets. In the following, when
we speak about theleft andright child constraint set, denoted
by F ↓0 andF ↓1, respectively, we mean the constraint set of
the left and right child nodes in the search tree.

Now, to each constraint setF , we associate three real
numbersψ̄(F)

min,λ, ψ̄(F)↓0
min,λ, andψ̄(F)↓1

min,λ which arecurrent lower

bounds onψ(F)
min,λ, ψ(F↓0)

min,λ, andψ(F↓1)
min,λ, respectively. When a

constraint set is created, these values are initiated to−∞.
The algorithm maintains a listL of active constraint sets

which is initiated with the unconstrained set∅. In each
iteration, a constraint setF is selected from the list according
to the node selection rule (see below). A valid codeword, i. e.,
a feasible solution of the IP, is generated by decoding the
LLR vector (where the constraints imposed byF are enforced
by altering the according LLR values to±∞) using the SP
algorithm [10] with order-i re-encoding [11], for some integer
i, as a post-processing step. The upper bound on the objective
function decreases if the decoder output has a lower objective
function value than the previous best candidate. Afterwards
a lower bound onψ(F)

min,λ is computed by running the ZS
algorithm, where the variables contained inF are fixed to
their corresponding values. If an integral solution is returned,
i. e., a pseudocodeword with no fractional coordinates, it is

considered another candidate codeword in the same way as
above. Otherwise, and if the computed lower bound is less
than the current upper boundτ , the algorithm branches on a
fractional position, selected by the branching rule (see below),
of the pseudocodeword by adding two constraint sets, namely
F augmented by the chosen branching position fixed to0 and
1, respectively, to the list of active nodes. Then, the next set is
chosen fromL until one of the termination criteria in Step 2 of
Algorithm 1 (which gives a formal description of the overall
algorithm) is fulfilled. Note that the computations to produce
a lower bound onψ(F)

min,λ for a given constraint setF are
collected into Algorithm 2, denoted by LUBD.

A. Bounding Step

The complexity of Algorithm 1 depends heavily on the
tightness of the lower bounds computed in Step 5 (from
Algorithm 2), i. e., on how closeψλ(p̂) is to the value
ψ
(F)
min,λ. To find the best pseudocodeword̂p, we have used

the procedure detailed in Algorithm 2.
Note thatmin{ψ

(F↓0)
min,λ, ψ

(F↓1)
min,λ} = ψ

(F)
min,λ for any node

(constraint set)F . This allows us to update the current lower
boundψ̄(F)

min,λ of F (and, recursively, also the ancestors ofF),
potentially increasingits value, once both of its children have
been processed (see Steps 14–18 of Algorithm 1). Tightening
the bounds in the search tree is important for decreasing the
complexity of the algorithm because nodes whose lower bound
exceeds the objective value of the currently best candidate
solution (i. e., the current upper bound) can be skipped, thereby
reducing the search space.

B. Branching Step

We have used the following simple branching rule to select
the positionp in Step 13 of Algorithm 1: Take an uncon-
strained position where the corresponding entry in the decoded
pseudocodeword̂p is closest to 1

2 . This simple procedure
seems to work very well in practice.

C. The Processing Order of the ListL

The node selection rule, i. e., the method by which a con-
straint setF is selected fromL in Step 3 of Algorithm 1, has
great influence on the overall complexity. The most common
schemes aredepth-first search, according to LIFO (last in –
first out) processing ofL, andbreadth-first search, whereL is
processed in FIFO (first in – first out) fashion. Another popular
method, calledbest-bound search, selects the next constraint
set byF ′ = argminF∈L ψ̄

(F)
min,λ, with the goal of tightening

the overall lower bound as fast as possible.
In our experiments, the following mixed strategy has proven

to be most efficient. Apply depth-first processing in general,
but everyM iterations, for a fixed integerM , and only if
ψ̄
(F)
min,λ < τ − δ for a fixed δ > 0, whereF is the constraint

set from the previous iteration, select the next node by the
best-bound rule above.

IV. I MPROVEMENTS

In this section, we present some improvements to the basic
algorithm from Section III.

Algorithm 1 Maximum-Likelihood Decoding (MLD)
Input: The received LLR vectorλ and the orderi of
re-encoding.
Output: An ML decoded codeword̂cML.

1: Initialize τ ←∞ andL← {∅}
2: while L 6= ∅ and ψ̄(∅)

min,λ < τ do
3: Choose and remove a constraint setF from L.
4: if F is valid andψ̄(F)

min,λ < τ then
5: let (ĉ, p̂)← LUBD(λ, F)
6: if ψλ(ĉ) < τ then
7: let ĉML ← ĉ andτ ← ψλ(ĉ)

8: ψ̄
(F)
min,λ ← ψλ(p̂)

9: if p̂ is integralthen
10: if ψλ(p̂) < τ then
11: let ĉML ← p̂ andτ ← ψλ(p̂)
12: else ifψλ(p̂) < τ then
13: choose an unconstrained positionp based onp̂,

construct two new constraint setsF ′ = F∪{(p, 0)}
andF ′′ = F ∪ {(p, 1)}, and append them toL.

14: if F 6= ∅ then
15: determine (the unique)̃F such thatF = F̃ ↓i, where

i = 0 or 1, and update parent bounds as follows:
16: ψ̄

(F̃)↓i
min,λ ← max{ψ̄

(F̃)↓i
min,λ, ψ̄

(F)
min,λ}

17: ψ̄
(F̃)
min,λ ← max{ψ̄

(F̃)
min,λ,min{ψ̄

(F̃)↓0
min,λ, ψ̄

(F̃)↓1
min,λ}}

18: If ψ̄(F̃)
min,λ increased in the previous step, recurse to

Step 14 withF replaced byF̃ .
19: ReturnĉML.

Algorithm 2 Lower and Upper Bound Algorithm (LUBD)
Input: The received LLR vectorλ and a constraint setF .
Output: The pair(ĉ, p̂).

1: Perform SP decoding with order-i re-encoding on an LLR
vector constrained according toF as follows:

• +∞ for positions corresponding to0-constraints.
• −∞ for positions corresponding to1-constraints.
• The original channel LLRs for positions not inF .

The resulting decoded codeword is denoted byĉ.
2: Perform ZS decoding on the received LLR vectorλ with

equality constraints according toF . Denote the decoded
pseudocodeword bŷp.

3: Return the pair(ĉ, p̂).

A. Tuning the ZS Algorithm for Adaptive LP Decoding

A linear inequality constraint of the general forma·xT ≤ b,
wherea andb are constants, is calledactiveat the pointx∗ if it
holds with equality forx = x∗. Otherwise, it is calledinactive.
For an LP problem with a set of linear inequality constraints,
the optimal solutionxLP is avertexof the polytope formed by
the hyperplanes of all constraints that are active atxLP. Thus,
constraints inactive atxLP can be removed without changing
the optimal solution.

The ZS decoding algorithm uses adaptive LP decoding,

which implies that a lot of linear programs (of increasing
size in the number of constraints) are solved successively.
Consequently, a simple way to reduce the overall complexity
is to remove inactive constraints from time to time.

Our implementation uses thedual simplex methodfor
solving LP problems, which is very effective in the case
of iteratively added constraints by employing a warm-start
technique that reuses the basis information of the previously
optimal solution (see, e. g., [14] for details). The removal
of constraints, however, is expensive because afterwards a
new simplex basis has to be computed. Thus, we remove the
inactive constrains only when the number of constraints in the
current LP problem exceedsT , for some integerT . Note that
this differs from the algorithm called MALP-B in [8], where
the inactive constraints are removed in each iteration.

Another way to decrease the running-time of the ZS algo-
rithm in some cases is to terminate the ZS decoder prematurely
as soon as the objective value exceeds the current upper bound
τ in Algorithm 1. In that event the objective function value
cannot possibly be improved below the current node, and it
can be skipped immediately.

B. Tradeoff Between Tightness and Speed of the ZS Algorithm

The cut-search procedure used in the ZS decoding algorithm
yields tight lower bounds on the MLD solution at the cost
of a high number of cuts and thus increased processing time
spent in the LP solver and for Gaussian elimination (see
Section II-A). In two different ways, a tradeoff between speed
and tightness can be realized. First, limit the maximum number
of times R that the search for redundant parity-check cuts
is applied, and secondly, only add a cut if thecutoff, i. e.,
the distance between the current (infeasible) solution andthe
cutting hyperplane, exceeds a fixed quantityγ > 0.

Our numerical experiments have shown that both ap-
proaches help to significantly reduce the running-time com-
plexity of our algorithm. Additionally, for the first approach, it
has proven helpful to use a higher valueRbb in those iterations
where a best-bound node has been selected (cf. Section III-C).

C. Special Case: MLD Performance Simulation

For benchmarking purposes we are only interested in the
actual MLD curve, in which case the MLD algorithm can be
simplified. First, since the underlying code is always linear,
the error probability of MLD is independent of the actual
transmitted codeword, thus we can always, without loss of
generality, transmit the all-zero codeword. Furthermore,when
the all-zero codeword is transmitted and a codewordc with
objective valueψλ(c) < 0 = ψλ(0) has been identified, the
search can be terminated, since any ML decoder would also
fail on this received LLR vectorλ.

V. M INIMUM DISTANCE COMPUTATION

The MLD problem is closely related to the computation of
the minimum distancedmin of a code as follows. If the all-zero

1 1.5 2 2.5 3 3.5

10−5

10−4

10−3

10−2

10−1

100

Eb/N0(dB)

fr
am

e
er

ro
r

ra
te

(127, 85) BCH code

(204, 102) MacKay code

(155, 64) Tanner code

Fig. 1. MLD performance of the codes considered in this paper.

codeword is explicitly forbidden, then an MLD algorithm with
the inputλ = 1 will output a codeword of minimum weight:

dmin(C) = min
c∈C\{0}

ψ1(c) = min
c∈conv(C\{0})

ψ1(c). (4)

Our proposed decoding algorithm can be modified to exclude
the all-zero codeword by the following changes:

1) Extend the condition in Step 9 of Algorithm 1 to “p̂

is integral andp̂ 6= 0”, which avoids decoding to the
all-zero codeword.

2) In the order-i re-encoding performed in Algorithm 2,
exclude0 from the set of candidate codewords.

Moreover, note that all feasible solutions (i. e., codewords) of
(4) have an integral objective value. This allows us to change
the right hand side in Steps 2, 4, and 12 toτ − 1 + ε, for a
small ε > 0, since

⌈

ψ̄
(F)
min,1

⌉

= τ implies thatψ(F)
min,1 ≥ τ .

VI. N UMERICAL RESULTS

In this section, we present some numerical results for our
proposed MLD algorithm, with all the improvements outlined
above in Section IV, for several codes on the AWGN channel.
We have used order-2 re-encoding (i = 2 in Algorithm 2), and
the open-source GLPK library [16] to solve the LP problems.
The following set of parameters was heuristically found to
perform well for all codes:M = 30, δ = 2, T = 100, R = 5,
Rbb = 100, andγ = 0.2.

As a benchmark, we use the CPLEX IP solver [3], with
the IP formulation named IPD1 in [2] which was found to
be most efficient in that paper. In case of all-zero decoding,
we configured CPLEX to terminate as soon as a codeword
with objective value below zero was found, mimicking the
adaptions of our algorithm described in Section IV-C.

We compare the algorithms with respect to both (single-
core) average CPU timeTavg and average numberNavg of
branch-and-bound nodes processed per frame. For our algo-
rithm,Navg equals the number of times the main loop (Step 2
of Algorithm 1) is processed, while for CPLEX we report the
attribute “number of processed nodes”. Note that the latter
drops below one for high SNR, which is probably due to
CPLEX’ presolve strategy that establishes optimality in some
cases without ever starting the branch-and-bound procedure.

TABLE I
NUMERICAL COMPARISON OF OUR PROPOSED ALGORITHM ANDCPLEX FOR SEVERAL CODES FOR DIFFERENT VALUES OF THESNRON THE AWGN

CHANNEL. Tavg IS THE AVERAGE DECODING TIME PER FRAME IN SECONDS, AND Navg IS THE AVERAGE NUMBER OF NODES(PER FRAME) PROCESSED

BY THE BRANCH-AND-BOUND ALGORITHMS. THE NUMBERS IN THE PARENTHESES ARE FORCPLEX. IN ALL CASES BUT THE FIRST WE USED ALL-ZERO
DECODING AS DESCRIBED INSECTION IV-C.

SNR in dB 1.0 1.5 2.0 2.5 3.0 3.5

(155, 64) Tanner code [9]
Tavg 0.81 (9.49) 0.24 (2.95) 0.05 (0.63) 0.014 (0.17) 0.005 (0.095) 0.004 (0.086)
Navg 51 (4795) 15 (1816) 3.5 (370) 1.4 (61) 1.04 (5.4) 1.004 (0.3)

(155, 64) Tanner code [9] (all-zero)
Tavg 0.24 (3.23) 0.11 (1.16) 0.025 (0.28) 0.006 (0.06) 0.001 (0.02) 0.0005 (0.01)
Navg 14 (2799) 6.6 (963) 2.1 (210) 1.18 (38) 1.05 (4.5) 1.002 (0.3)

(204, 102) MacKay code [15] (all-zero)
Tavg 2.2 (14.6) 0.73 (4.7) 0.15 (0.83) 0.02 (0.12) 0.003 (0.03) 0.0005 (0.018)
Navg 90 (12364) 30.5 (3421) 6.5 (573) 1.66 (61) 1.04 (4.9) 1.003 (0.19)

(127, 85) BCH code (all-zero)
Tavg 86 (–) 67 (–) 33 (–) 9 (–) 2.2 (–) 0.29 (3.5)
Navg 7617 (–) 5855 (–) 2549 (–) 655 (–) 159 (–) 19 (4132)

TABLE II
NUMERICAL RESULTS FOR MINIMUM DISTANCE COMPUTATION.

dmin TMLD TCPLEX NMLD NCPLEX

(155, 64) Tanner code 20 137 s 3682 s 42785 21842224
(204, 102) MacKay code 8 1.6 s 11.49 s 371 44830
(408, 204) MacKay code 14 152 s 6893 s 9345 936570

All calculations were performed on a desktop PC with an
Intel Core i5-3470 CPU (3.2GHz) and8GB of RAM.

A. Maximum-Likelihood Decoding

A comparison of CPLEX and our MLD algorithm, for the
different codes outlined below, is given in Table I, both in
terms of Tavg and Navg. The numbers in the parentheses
are for CPLEX; a dash indicates that CPLEX was not able
to decode a sufficient number of frames without running
out of memory. The corresponding MLD performance curves
are plotted in Fig. 1. For the curves, we have counted 100
erroneous frames for each simulation point.

The (155, 64) Tanner code from [9] is often used as a
benchmark code, and was also considered in [8]. For all
SNRs, the ZS decoding algorithm showed a performance loss
compared to the MLD curve [8]. As can be seen from Table I,
our algorithm is more than 11 times as fast as CPLEX for an
SNR of 1.0dB. For higher values of the SNR our proposed
algorithm is even faster compared to CPLEX. In the case of
all-zero decoding, both algorithms are faster by a factor of
2 to 3, while the relative performance gain by our algorithm
remains roughly the same.

The second example is a(3, 6)-regular (204, 102) LDPC
code taken from the online database of sparse graph codes
from MacKay’s website [15] (called 204.33.484 there). As
can be seen from Table I, also for this code, our algorithm
is significantly faster than CPLEX for all simulated SNRs.

In order to evaluate the performance of our algorithm for
dense codes, Table I includes results for the(127, 85) BCH
code. CPLEX was not able to decode a significant number of
frames for this code, and to our knowledge the MLD curve,
as presented in Fig. 1, was previously unknown.

B. Minimum Distance Computation

In the case of computing the minimum distance, we used
different values for some of the parameters, namelyM =
120, R = 1, Rbb = 1, and γ = 0.3. Results are shown in
Table II, which additionally contains the(408, 204) MacKay
code (named 408.33.844 at the website [15]) that was used

also in [8]. Note that in case of the(155, 64) Tanner code,
we can exploit the symmetry and fixc0 = 1 before starting
the algorithm. We compare our algorithm to CPLEX with the
same formulation as for MLD and the additional constraint
∑n−1

i=0 ci ≥ 1 to exclude the all-zero codeword.1

REFERENCES

[1] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the
inherent intractability of certain coding problems,”IEEE Trans. Inf. The-
ory, vol. 24, no. 3, pp. 384–386, May 1978.

[2] A. Tanatmis, S. Ruzika, M. Punekar, and F. Kienle, “Numerical com-
parison of IP formulations as ML decoders,” inProc. IEEE Int. Conf.
Commun. (ICC), Cape Town, South Africa, May 2010.

[3] “IBM ILOG CPLEX Optimization Studio,” Commercial Software Pack-
age, 2013, version 12.6.

[4] E. Rosnes, Ø. Ytrehus, M. A. Ambroze, and M. Tomlinson, “Addendum
to ‘An efficient algorithm to find all small-size stopping sets of low-
density parity-check matrices’,”IEEE Trans. Inf. Theory, vol. 58, no. 1,
pp. 164–171, Jan. 2012.

[5] E. Rosnes and Ø. Ytrehus, “An efficient algorithm to find all
small-size stopping sets of low-density parity-check matrices,” IEEE
Trans. Inf. Theory, vol. 55, no. 9, pp. 4167–4178, Sep. 2009.

[6] J. Feldman, M. J. Wainwright, and D. R. Karger, “Using linear program-
ming to decode binary linear codes,”IEEE Trans. Inf. Theory, vol. 51,
no. 3, pp. 954–972, Mar. 2005.

[7] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear program-
ming decoding,”IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5396–
5410, Dec. 2008.

[8] X. Zhang and P. H. Siegel, “Adaptive cut generation algorithm for
improved linear programming decoding of binary linear codes,” IEEE
Trans. Inf. Theory, vol. 58, no. 10, pp. 6581–6594, Oct. 2012.

[9] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
LDPC codes,” inProc. Int. Symp. Commun. Theory and Appl. (ISCTA),
Ambleside, England, Jul. 2001.

[10] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb. 2001.

[11] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,”IEEE Trans. Inf. Theory, vol. 41,
no. 5, pp. 1379–1396, Sep. 1995.

[12] M. Helmling, S. Ruzika, and A. Tanatmis, “Mathematicalprogram-
ming decoding of binary linear codes: Theory and algorithms,” IEEE
Trans. Inf. Theory, vol. 58, no. 7, pp. 4753–4769, Jul. 2012.

[13] P. O. Vontobel and R. Koetter, “Graph-cover decoding and finite-
length analysis of message-passing iterative decoding of LDPC
codes,” arXiv:cs/0512078 [cs.IT], Dec. 2005. [Online]. Available:
http://arxiv.org/abs/cs.IT/0512078/

[14] U. Faigle, W. Kern, and G. Still,Algorithmic Principles of Mathematical
Programming. Kluwer Academic Publishers, 2010, vol. 24.

[15] D. J. C. MacKay, encyclopedia of sparse graph codes. [Online].
Available: http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

[16] “GNU Linear Programming Kit (GLPK),” Software Library, version
4.52. [Online]. Available: http://www.gnu.org/software/glpk

1As a remark, for the(408, 204) MacKay code we have used the previous
CPLEX 12.5 instead of 12.6; apparently there is a bug in the latter, causing
it to output admin of 20 instead of the correct value14.

