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Abstract—We consider the effect of LLR saturation on belief
propagation decoding of low-density parity-check codes. Satu-
ration occurs universally in practice and is known to have a
significant effect on error floor performance. Our focus is on
threshold analysis and stability of density evolution.

We analyze the decoder for certain low-density parity-check
code ensembles and show that belief propagation decoding
generally degrades gracefully with saturation. Stabilityof density
evolution is, on the other hand, rather strongly affected by
saturation and the asymptotic qualitative effect of saturation is
similar to reduction of variable node degree by one.

I. I NTRODUCTION

Standard belief propagation (BP) decoding of binary LDPC
codes involves passing messages typically representing log-
likelihood ratios (LLRs) which can take any value inR , R∪
{±∞} [1]. Practical implementations of decoders typically use
uniformly quantized and bound LLRs. Hence, it is of interest
to understand the effect of saturation of LLR magnitudes as a
perturbation of full belief propagation. We call such a clipped
or a saturated decoder as asaturating belief propagation
decoder (SatBP). Note that the decoder is strictly speaking
not a BP decoder, but we adhere to the BP nomenclature as
we view SatBP as a perturbation of BP.

The papers [2]–[5] consider the effect of saturation on
error floor performance. It is observed in these works that
saturation can limit the ability of decoding to escape trapping
set behavior, thereby worsening error floor performance. Al-
though we take a different approach in this paper by focussing
on asymptotic behavior, the underlying message is similar:
saturation can dramatically effect the stability of the decoder.
In [6], [7] some decoder variations are given the help reduce
error floors. Here we see an explicit effort to ameliorate
the effect of saturation. A related but distinct direction was
taken in [8]. There the authors made modifications to discrete
node update rules so as to reduce error floor failure events.
There have been other work that examine the effects of
practical concessions. In [9] the authors consider the effect
of quantization in LDPC coded flash memories. In [10], [11]
model the effect of saturation and quantization as noise terms.
Finally, in [12] an analysis was done to evaluate the effect on
capacity on quantization of channel outputs.

In the design of capacity-achieving codes it would be helpful
to understand how practical decoder concessions, like satura-
tion, affect performance. In particular, if LLRs are saturated
at magnitudeK then how much degradation from the BP
threshold should be expected. Naturally, one expects that as
K → +∞, that one can reliably transmit arbitrarily close

to the BP threshold [1]. We will see that this is not entirely
correct and that, in particular, saturation can undermine the
stability of the perfect decoding fixed point.

II. BP DECODING, DENSITY EVOLUTION AND THE

WASSERSTEINDISTANCE

In this section we briefly review the BP decoder and the
density evolution analysis [13] in the case of transmissionover
a general BMS channel. Most of the material presented here
can be found in [1].

Let X(= ±1) denote the channel input, letY denote the
channel output, and letp(Y = y |X = x) denote thetransition
probability of the channel. We generally characterize the
channel by its so-calledL-density,c which is the distribution
of ln p(Y |X=1)

p(Y |X=−1) conditioned onX = 1. Generally, we

may assume thatY = ln p(Y |X=1)
p(Y |X=−1) , i.e., the output of

the channel is the associated LLR. Channel symmetry is the
condition p(Y = y |X = x) = p(Y = −y |X = −x)
and theL-densitiesc that result are symmetric, [1], which
meanse−

1
2xc(x) is an even function ofx. We recall that all

densities which stem from BMS channels are symmetric, see
[1, Sections 4.1.4, 4.1.8 and 4.1.9]. �

GivenZ distributed according toc, we writec to denote the
distribution of tanh(Z/2), and |c| to denote the distribution
of | tanh(Z/2)|. We refer to these as theD and |D| distri-
butions. We use|C| to denote the corresponding cumulative
|D| distribution, see [1, Section 4.1.4]. Under symmetry the
distribution of |Z| determines the distribution ofZ.

For threshold analysis of LDPC ensembles we typically con-
sider a parameterizedfamily of channels and write{BMS(σ)}
to denote the family as parameterized by the scalarσ. Often it
will be more convenient to denote this family by{cσ}, i.e., to
use the family ofL-densities which characterize the channel
family. One natural candidate for the parameterσ is the
entropy of the channel denoted byh. Thus, we also consider
the characterization of the family given by the BMS(h).

Let pZ |X(z |x) denote the transition probability associ-
ated to a BMS channelc′ and let pY |X(y |x) denote the
transition probability of another BMS channelc. We then
say thatc′ is degradedwith respect toc, denotedc ≺ c

′,
if there exists a channelpZ |Y (z | y) so thatpZ |X(z |x) =
∑

y pY |X(y |x)pZ |Y (z | y).
A BMS channel family{BMS(σ)}σσ is said to beordered

(by degradation) ifσ1 ≤ σ2 implies cσ1 ≺ cσ2 .
Useful functionals of densities include the Battacharyya,the

entropy, and the error probability functionals. For a density a,
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these are denoted byB(a), H(a), andE(a), respectively and
are defined by

B(a) = E(e−Z/2), H(a) = E(log2(1+e
−Z)),

E(a) = P{Z < 0}+ 1

2
P{Z = 0}

whereZ is distributed according toa. Note that these def-
initions are valid even ifa is not symmetric, although they
loose some of their original meaning. We will apply these
definitions, especiallyB, to saturated densities that are not
necessarily symmetric.

1) BP Decoder and Density Evolution:The definition of
the standard BP decoder can be found in [1]. The asymptotic
performance of the BP decoder is given by the density
evolution technique [1], [13].

Definition 1 (Density Evolution for BP Decoder cf. [1]):
For ℓ ≥ 1, the DE equation for a(dl, dr)-regular ensemble is
given by

T (c, x) , xℓ = c⊛ (x�dr−1
ℓ−1 )⊛dl−1.

Here, c is the L-density of the BMS channel over which
transmission takes place andxℓ is the density emitted by
variable nodes in theℓ-th round of density evolution. Initially
we havex0 = ∆0, the delta function at0. The operators⊛
and � correspond to the convolution of densities at variable
and check nodes, respectively, see [1, Section 4.1.4]. �

Discussion: The DE analysis is simplified when we consider
the class of symmetric message-passing decoders. The defini-
tion of symmetric message-passing decoders can be found in
[1]. Note that this definition of symmetry pertains to the actual
messages in the decoder and not to the densities which appear
in the DE analysis. We will see later that the clipped or the
saturated decoder is a symmetric message-passing decoder in
this sense and hence its DE analysis is simplified by restricting
to consideration of the all-zero codeword.

Definition 2 (BP Threshold for regular ensembles):
Consider an ordered and complete channel family
{ch}. Let xℓ(h) denote the distribution in theℓ-th
round of DE when the channel isch. Then the BP
threshold of the (dl, dr)-regular ensemble is defined as

h
BP(dl, dr, {ch}) = sup{h : xℓ(h)

ℓ→∞→ ∆+∞}. Under
symmetry an equivalent definition is

h
BP(dl, dr, {ch}) = sup{h : E(xℓ(h))

ℓ→∞→ 0}.
The later form is more convenient for our purposes and it is
the one we shall adopt. �

In the sequel we will use the Wasserstein metric to measure
distance between distributions. We recall the definition ofthe
Wasserstein metric below. For details see [14].

Definition 3 (Wasserstein Metric – [15, Chapter 6]):Let
|a| and |b| denote two |D|-distributions. The Wasserstein
metric, denoted byd(|a|, |b|), is defined as

d(|a|, |b|) = sup
f(x)∈Lip(1)[0,1]

∣

∣

∣

∫ 1

0

f(x)(|a|(x)−|b|(x))dx
∣

∣

∣
, (1)

�

III. SATURATED BELIEF PROPAGATION DECODING

We first consider the analysis of the saturated BP decoder.
More precisely, we consider decoding with BP rules but with
messages restricted to the domain[−K,K] for someK > 0.

A. Saturated Decoder

Definition 4 (Saturation):We define thesaturationopera-
tion at±K for someK ∈ R

+, denoted⌊·⌋K , by

⌊x⌋K = min(K, |x|) · sgn(x). (2)

Definition 5 (SatBP Decoder):Consider the standard
(dl, dr)-regular ensemble. The saturated BP decoder is
defined by the following rules. Letφ(ℓ)(µ1, . . . , µdr−1) and
ψ(ℓ)(µ1, . . . , µdl−1) denote the outgoing message from the
check node and the variable node side respectively. Abusing
the notation above and denoting the incoming messages on
both the check node and the variable node side byµi, we
have

φ(ℓ)(µ1, . . . , µdr−1) =
⌊

2 tanh−1
(

dr−1
∏

i=1

tanh(µi/2)
)⌋

K
,

ψ(ℓ)(µ1, . . . , µdl−1) =
⌊

µ0 +

dl−1
∑

i=1

µi

⌋

K
,

whereµ0 is the message coming from the channel. Also, we
setφ(0)(µ1, . . . , µdr−1) = 0. �

Using Definition 4.83 in [1] we have the following.
Lemma 6 (SatBP Decoder is symmetric):The SatBP de-

coder given in Definition 5 is a symmetric decoder.
Discussion:The symmetry of the message-passing decoder

together with symmetry of the channel allows us to use the all-
zero codeword assumption. This along with the concentration
results (see Theorem 4.94 in [1]) allows to write down the
density evolution of the SatBP decoder in the usual way.

Given X ∼ a let ⌊a⌋K denote the distribution of⌊X⌋K .
Note that the saturation operation can be viewed as a channel
takingX to ⌊X⌋K . We immediately havea ≺ ⌊a⌋K . In gen-
eral ⌊a⌋K will not be symmetric even ifa is symmetric since
we will not typically have⌊a⌋K(−K) = e−K⌊a⌋K(K). If a

is symmetric then we will have⌊a⌋K(−K) ≤ e−K⌊a⌋K(K).
Although using lemma 6 one can write down the DE recursion
for the SatBP decoder, we know that in general the densities
will not be symmetric. Two of the most useful properties of
DE for BP is that it preserves both symmetry of densities and
ordering by degradation. These properties are sacrificed bysat-
uration, but can be recovered with a slight variation. The idea
is to slightly degrade the density by moving some probability
mass fromK to −K. This can be interpreted operationally
as flipping the sign of a message with magnitudeK with
some probabilityλ. The flipping rateλ is chosen so that the
resulting probability that the sign of the message is incorrect is
e−K/(1 + e−K). In generalλ is upper bounded by this value
and for largeK this is a small perturbation. With this pertur-
bation both density symmetry and ordering by degradation are
recovered. Let us introduce the notationD(p, z) to denote the



densityD(p, z) = p∆−z +(1−p)∆z . Using this notation we
have for symmetrica, ⌊a⌋K = γD(q, z)(x) + a(x)1{|x|<K}

whereγ = Pa{|x| ≥ K} andγq = Pa{x ≤ −K}.
Lemma 7 (Symmetric Saturation):Given a symmetric den-

sity a we define⌊a⌋Ksym = γD(p, z)(x)+a(x)1{|x|<K} where
p = e−K/(1+ e−K) andγ = Pa{|x| ≥ K}. Then, (i)⌊a⌋Ksym

is a symmetricL-density and (ii)⌊a⌋K ≺ ⌊a⌋Ksym.
Proof: Part (i) is immediate. To prove part (ii) we note

that comparing with the unsymmetrized case we see that
p ≥ q . Thus, ⌊a⌋Ksym can be realized by taking messages
with distribution ⌊a⌋K and flipping the sign of a message
with magnitudeK by a quantityλ which is determined by
p = e−K

1+e−K = λ(1 − q) + (1 − λ)q .

As a consequence of Lemma 7, we will term the operation
used to obtain⌊a⌋Ksym from a assymmetric-saturation.

We summarize all the claims above in the following.
Corollary 8: We havea ≺ ⌊a⌋K ≺ ⌊a⌋Ksym.

Lemma 9:Let a be a symmetric L-density. Then,
d(a, ⌊a⌋Ksym) ≤ 1− tanh(K/2).

Proof: For any 0 ≤ z < K we havePa{x ≤ z} =
P⌊a⌋K{x ≤ z}=P⌊a⌋Ksym

{x ≤ z} and for any z ≥ K
we have1 = P⌊a⌋K{x ≤ z} = P⌊a⌋Ksym

{x ≤ z} . Since
tanh(x/2) is increasing andtanh(−x/2) = − tanh(x/2) we
have|⌊A⌋Ksym|(z) = 1{z<tanh(K/2)}|A|(z) + 1{z≥tanh(K/2)} .
By [14], we have that the Wasserstein distance is equivalent
to theL1 norm of the difference between the|D|-distribtions.
Clearly, the distance is bounded by1− tanh(K/2).

Definition 10 (DE for Sym. and Non-Sym. Saturation):
The DE for non-symmetric saturation decoder is
SKsym(c, x) = ⌊T (c, x)⌋Ksym

and for the non-symmetric
saturation decoder isSK(c, x) = ⌊T (c, x)⌋K . �

We now estimate the distance between the densities appear-
ing in the DE of usual BP and the DE of the symmetric-
saturation operation.

Lemma 11 (Distance Between Symmetric-SatBP and BP):
Considerℓ iterations of the forward DE for the usual BP and
the Symmetric-Saturation operation. Then

B(S
(ℓ)
Ksym

(c,∆0)) ≤ B(T (ℓ)(c,∆0))+2
√
2e

−K+ℓ·ln(2(dl−1)(dr−1))

2 .

Proof: Using the triangle inequality, (viii),
Lem. 13 in [14] and Lemma 9 we obtain
the upper bound d(T (ℓ)(c,∆0), S

(ℓ)
Ksym

(c,∆0)) ≤
αℓd(T

(ℓ−1)(c,∆0), S
(ℓ−1)
Ksym

(c,∆0)) + 1 − tanh
(

K
2

)

, where

αℓ = 2(dl − 1)
∑dr−1

j=1 (1 − B
2(a))

dr−1−j
2 (1 − B

2(b))
j−1
2 ,

a = T (ℓ−1)(c,∆0) and b = S
(ℓ−1)
Ksym

(c,∆0). Continuing
with the above inequality we get the upper bound,
(1 − tanh

(

K
2

)

)(1 + αℓ + αℓαℓ−1 + . . . + αℓαℓ−1 · · ·α2).

In general, we are transmitting below the BP threshold,
so both a and b could be close to ∆+∞. Thus,
(1+αℓ+αℓαℓ−1+. . .+αℓαℓ−1 · · ·α2) ≤ (2(dl − 1)(dr − 1))ℓ.
Using 1 − tanh(K/2) ≤ 2e−K and (ix) Lemma 13 in [14]
we get the lemma.

IV. CONVERGENCE OFNONSYMMETRIC SATURATED DE

In the previous section we show that, when transmitting
below the threshold of the full BP decoder, the Battacharrya
parameter of the densities in the symmetric SatBP decoder can
be arbitrarily small. In this section we make the connectionto
the non-symmetric SatBP.

A. Non-symmetrized SatBP Decoder

We now show that the Battacharrya parameter for the non-
symmetric SatBP decoder also can be made as small as
desired by choosingK large enough. We first consider a fixed
computation tree and then average over the tree ensemble.

We begin with an operational description of symmetrization.
Consider a fixed treeT of depthℓ. Let Y denote the vector
of received values associated to the variable nodes under the
all-zero codeword assumption. In addition, for each variable
node we assume an independent random variable uniformly
distributed on[0, 1]. We denote the vector of these variables
by Z. Now, the node operations correspond to BP except
that outgoing messages from the variable nodes are magnitude
saturated atK. Independent random variables are used for the
flipping operation at each node, where the flipping probabilty
is determined by density evolution. If the outgoing message
has magnitudeK then its sign is flipped ifZv < λv where
λv is the appropriate flipping probability.

The distribution of the outgoing messagez is S(ℓ)
Ksym

(c,∆0)).
Let us consider the conditional distributionp(z |Y, Z). We
obtain S(ℓ)

Ksym
(c,∆0)) by averaging overY , Z and the code

ensemble. LetAK denote the event that no flipping occurs.
p(z |Y ) = p(z |Y,AK)p(AK) + p(z |Y, ĀK)(1 − p(AK)).
Averaging overY and re-writing we obtain

p(z |AK) =
(

p(z)− p(z | ĀK)(1− p(AK))
)

/p(AK).

Now p(z |AK) is the distribution of the non-symmetric SatBP
decoder. Intuitively one expectsp(z | ĀK) to be inferior
(higher probability of error, larger Battacharyya parameter) to
p(z |AK), but this appears difficult to prove.

Let us compute the probability ofAK . Let the received
LLR magnitude of a variable nodev be z ≥ K. The
probability with which we flip the bit is such that the final error
probability is equal to e−K

1+e−K . For received LLR magnitude
of z, the probability that it is received correctly is 1

1+e−z . As

a consequence we get,e
−K

1+e−K = λv
1

1+e−z + (1 − λv)
e−z

1+e−z ,
whereλv is the flipping probability of variable nodev. Solving
we getλv = e−K

1+e−K
1−e−z+K

1−e−z ≤ e−K

1+e−K . Thus the probability
that a variable node, with a received LLR magnitude greater
thanK, is not flipped is at least equal to 1

1+e−K ≥ 1− e−K .
Hence, we getp(AK) ≥ (1 − e−K)|V (T)| ≥ 1 − e−K |V (T)|
where|V (T)| is the number of variable nodes in the tree. From
the above analysis we have the following lemma.

Lemma 12 (SatBP Decoder versus Symmetrized SatBP):
For anyǫ > 0 andℓ ∈ N, there exists aK large enough such
thatB(S

(ℓ)
K (c,∆0)) ≤ 1

1−ǫ B(S
(ℓ)
Ksym

(c,∆0)).



V. STABILITY ANALYSIS

An important part of the asymptotic analysis of LDPC codes
involves the analysis of the convergence of DE to a zero error
state. In this section we analyze the stability of the SatBP.We
begin with some necessary conditions.

For stability of the zero error condition there must exist a
positive invariant set of zero error distributions, i.e, a subsetS
of distributions so thatE (s) = 0 for all s ∈ S andSK(c, s) ∈
S. Existence ofS follows easily from the compactness of the
space of densities and continuity of DE.

Lemma 13:Assume the channelc has support at−L, L >
0. In an irregular ensemble with minimum variable degreedl
the support of all densities inS must lie in [L/(dl − 2),∞).

Proof: Assumea(0) ∈ S has support atz < L/(dl − 2).
Then b

(0) has support on[−∞, z]. Hencea(1) has support
on [−∞, z1] where z1 = (dl − 1)z − L < L − 2δ where
δ = L− (dl − 2)z. By induction we havea(k) has support on
[−∞, L−2kδ] and fork large enough the probability of error
is positive.

A. Failure of Stability with Degree Two

From Lemma 13 we have immediately
Lemma 14:In an irregular ensemble withλ2 > 0 no

invariantS exists for any value ofK <∞ unless the channel
is the BEC.

Proof: If dl = 2 and the channel is not the BEC and
hence has support on(−∞, 0), then Lemma 13 shows that
there can be no positive invariant zero-error set of distributions
with support on[−K,K].

In the case of the BEC it can be seen that saturated
DE matches unsaturated DE except that the mass at+∞
in unsaturated DE is not placed at+K. Hence, stability is
unaffected by saturation.

If the channel has infinite support, then there is no possi-
bility of stability under saturation. The condition on the finite
channel support is given later in the section on stability with
degree≥ 3.

B. Near Stability

The stability analysis of standard irregular ensembles un-
der BP decoding rests on on the resultsB(c ⊛ λ(a)) =
B (c)λ(B (a)) and B (ρ(a)) ≤ 1 − ρ(1 − B (a)). The first
equation continues to hold without symmetry ofa or c. The
check node inequality, however, does not necessarily hold
without symmetry. We have, however, a substitute with a slight
variation on a result from [16]: for any L-densitiesa andb we
haveB (a � b) ≤ B (a)+B (b) . This result holds for a wide
range of check node update operations including BP and the
min-sum decoder. To incorporate saturation into the analysis
based on the Bhattacharyya parameter we have the inequality
B (⌊a⌋K) ≤ B (a) + e−K/2. Note that because of saturation,
the minimum value of the Battacharyya parameter is equal to
e−K/2.

Minimum variable node degree equal to 2:Let a
(k) be

any L-density which need not be symmetric. Consider an
irregular ensemble and assumeρ′(1)B (a(k)) < 1. Using

the notationλ̄2 = 1 − λ2 we upper boundB(a(k+1)) for
a
(k+1) = SK(c, a(k)) by

λ2 B(c)ρ′(1)B (a(k))+λ̄2 B(c)(ρ′(1)B (a(k)))2+e
−K
2

Let ξ > 0 satisfy

η := λ2 B(c)ρ′(1) + λ̄2 B(c)(ρ′(1))2ξ < 1

and assumeξ ≥ B (a(k)) andK is large enough so thatξ ≥
2−η
1−η e

−K/2. Then there existsN so that forn ≥ N we have
B (a(n)) ≤ 1

1−η e
−K/2.

Minimum variable node degree equal to 3:Let us now
assume that the minimum variable node degree is 3. Following
the previous notation, we upper boundB (a(k+1)) by

λ3 B(c)(ρ′(1)B (a(k)))2 + λ̄3 B(c)(ρ′(1)B (a(k)))3 + e
−K
2

Let ξ be the positive solution toλ3 B(c)ρ′(1)2ξ +
λ̄3 B(c)ρ′(1)3ξ2 = 1/2 . AssumeK large enough so that
2e−K/2 < ξ. A little algebra shows that ifB (a(0)) ≤ ξ,
then there existsN so that for alln ≥ N we have

B (a(n)) ≤ 2e−K/2, B (b(n)) ≤ 2ρ′(1)e−K/2 (3)

where the second inequality follows from the first and the
additive bound on Bhattacharrya at check node.

This analysis can not show convergence to zero error
although it can be used to show convergence to relatively small
error rate. This is true even in the presence of degree two
variable nodes, where zero error stability is not possible.For
degree three and higher stability can be shown, but a refined
analysis is needed.

C. Stability with Minimum Variable Degree Equal to Three

In this section we consider irregular ensembles where the
minimum variable node degree is at least three. We generalize
the standard stability analysis by separating out the saturated
probability mass and tracking it through the variable node and
check node updates. For simplicity we shall restrict to right
regular ensembles. If the check node degree isdr thenK ′ is
the magnitude of an outgoing message all of whose incoming
messages have magnitudeK. Although we focus on BP-like
decoding our analysis applies to other algorithms such as min-
sum, in which case we haveK ′ = K. In general, ifK1, ...,Kd

are the magnitudes of incoming messages then we assume
that the outgoing magnitude satisfiesK ′ ≤ mini{Ki} and
e−K′ ≤ ∑

i e
−Ki. Both conditions are satisfied by BP and

min-sum. Messages entering a check node updatea have the
form a = γD(p,K)+ γ̄m, wherem is supported on(−K,K)
and has total mass1. Messages entering a variable node update
b have the formb = γD(p,K ′) + γ̄m, whereK ′ < K is the
outgoing magnitude at a check when all incoming magnitudes
equalK andm is supported on(−K ′,K ′). From above, we
have e−K′ ≤ (dr − 1)e−K so thatK ′ ≥ K − ln(dr − 1).
Furthermore, we chooseK large enough so that2K ′ > K.

In the sequel we assume that the support of the channelc

is (−K ′′,K ′′). The condition onK ′′ is thatK ′′ ≤ 2K ′−K.
The proof of the two statements below can be found in the
upcoming paper [17].



1) Variable Node Analysis:Let us assume a variable node
of degreed+ 1 and incoming densityb = γD(p,K ′) + γ̄m.
The outgoing density from the variable node has the form
a = γ′D(p′,K) + γ̄′m′. Then we have

γ̄′ B(m′) ≤B (c)de−(d−1)(K/2−ln c)(γ̄B(m))

+ (γp)e−(d/2−1)(K−ln c)ed/2 ln(3e)(1 + 2dr),

γ′p′ ≤ e−K/2
B (c)de−(d−1)(K/2−ln c)(γ̄B(m))

+ 2d(γp)⌊(d+2)/2⌋ .

2) Check Node Analysis:Let us assume a right regular
ensemble with check degreed+1. Let us represent the density
entering the check node asγD(p,K) + γ̄m wherem is a
density supported on(−K,K). Then the density emerging
out of the check node is given byγ′D(p′,Kd) + γ̄′m′ ,

(γD(p,K) + γ̄m)�d, where Kd is the magnitude, which
satisfiesK − ln d ≤ Kd ≤ K and support ofm is also
(−Kd,Kd). Then we have,̄γ′ B(m′) ≤ γ̄B (m)(γCd3 + d).
Also, we note thatp′ = pd ≤ dp.

3) Proof of Stability for Degree Three+:Let us assume that
the minimum variable node degree is at least three and a right
regular degreedr. In view of (3) we may assumeB (a(n)) ≤
2e−K/2 which implies B (b(n)) ≤ 2(dr − 1)e−K/2 for all
n ≥ 0. We write a

(n) = γD(p,K) + γ̄m and now have the
bound (for alln) γpeK ≤ 2. Set c = 2(dr − 1) and from the
check node analysis above and the boundγpeK ≤ 2 we get
γC ≤ 2(dr−1)+1+

√
dr − 1. Abusing the notation, setC =

2(dr−1)+1+
√
dr − 1. Thenb(n) = γ′D(p′,Kdr−1)+ γ̄

′
m

′

denote the density emerging from the check node update where
the support ofm′ is (−Kdr−1,Kdr−1). Then from the check
node analysis above we get

γ′p′ ≤ (dr − 1)γp

γ̄B (m′) ≤ γ̄B (m)(γC(dr − 1)3 + dr − 1).

We choosea, b, c, d > 0 arbitratily small. Then for allK large
enough and for alld ≥ 2 andd less then the maximum variable
node degree, we have

(dr − 1)2d(2e−K/2)⌊d/2⌋ ≤ a

B (c)de−(d−1)(K/2−ln c)(dr − 1)C ≤ b

e−( d
2−1)(K−ln c)e

d
2 ln(3e)(1 + 2dr)2(dr − 1)e−K/2 ≤ c

B (c)de−(d−1)(K/2−ln c)(dr − 1)C ≤ d

We now obtain forn ≥ 0,

[

eK/2γp
γ̄B (m)

](n+1)

≤
[

a b
c d

] [

eK/2γp
γ̄B (m)

](n)

which is a stable system for suitablea, b, c, d. It is now easy
to see that the bit error rate goes to zero since the probability
mass on[−K,K) goes to zero asn becomes large.

VI. D ISCUSSION

Consider a channel family, BMS(h), ordered by entropy and
let hBP denote the BP threshold when transmitting over this
channel family using a(λ, ρ) LDPC ensemble such that the

variable degree is at least three. Note that when we consider
a channel from BMS(h), we first (symmetric) saturate the
channel to an appropriate finite support. One can show that
as the support goes to(−∞,∞), the saturated channel BP
threshold goes tohBP (cf. [17]). The above analysis shows that,
for K large enough, the SatBP is successful for any channel
with entropy arbitrarily close to channel corresponding toh

BP.
An interesting open question is to understand the scaling of

K with the gap to capacityδ. From Lemma 11 we see that
one would require the scaling of number of iterations wrtδ
for unsaturated BP which is conjectured to scale likeO(1/δ).
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