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Abstract—We consider the effect of LLR saturation on belief to the BP threshold [1]. We will see that this is not entirely

propagation decoding of low-density parity-check codes. &u- correct and that, in particular, saturation can undermiree t

ration occurs universally in practice and is known to have a stability of the perfect decoding fixed point
significant effect on error floor performance. Our focus is on '

threshold analysis and stability of density evolution. Il. BP DECODING, DENSITY EVOLUTION AND THE
We analyze the decoder for certain low-density parity-chelc WASSERSTEINDISTANCE
code ensembles and show that belief propagation decoding ) ) ) ]
generally degrades gracefully with saturation. Stabilityof density In this section we briefly review the BP decoder and the

evolution is, on the other hand, rather strongly affected by density evolution analysis [13] in the case of transmissioer
saturation and the asymptotic qualitative effect of saturdion is 5 general BMS channel. Most of the material presented here
similar to reduction of variable node degree by one. can be found in[[1]

. INTRODUCTION Let X(= +1) denote the channel input, 1& denote the

Standard belief propagation (BP) decoding of binary LDPENannel output, and lg(Y” = y | X = z) denote theransition
codes involves passing messages typically representig 1870Pability of the channel. We generally characterize the
likelihood ratios (LLRs) which can take any valueln= RU channe&) ){l'isl)so-callefil_-den5|w,c which is the distribution
{00} []. Practical implementations of decoders typically us@f In 5r<—; conditioned onX = 1. Generally, we
uniformly quantized and bound LLRs. Hence, it is of intereshay assume that” = lnp”g/y“%, i.e., the output of
to understand the effect of saturation of LLR magnitudes adte channel is the associated LLR. Channel symmetry is the
perturbation of full belief propagation. We call such a plgl  condition p(Y = y|X = z) = p(Y = —y|X = —x)
or a saturated decoder as saturating belief propagation and the L-densitiesc that result are symmetric[][1], which
decoder (SatBP). Note that the decoder is strictly speakir@anSe*%mc(a:) is an even function of. We recall that all
not a BP decoder, but we adhere to the BP nomenclaturedensities which stem from BMS channels are symmetric, see
we view SatBP as a perturbation of BP. [1, Sections 4.1.4, 4.1.8 and 4.1.9]. [ ]

The papers[]2]£[5] consider the effect of saturation on GivenZ distributed according te, we writec to denote the
error floor performance. It is observed in these works thditstribution of tanh(Z/2), and |c| to denote the distribution
saturation can limit the ability of decoding to escape tiagp of |tanh(Z/2)|. We refer to these as th® and|D| distri-
set behavior, thereby worsening error floor performance. Alutions. We usg¢| to denote the corresponding cumulative
though we take a different approach in this paper by focgssihD| distribution, see[]1, Section 4.1.4]. Under symmetry the
on asymptotic behavior, the underlying message is similafistribution of |Z| determines the distribution df.
saturation can dramatically effect the stability of the atber. For threshold analysis of LDPC ensembles we typically con-
In [6], [7] some decoder variations are given the help reduséler a parameterizddmily of channels and writ¢BMS(c) }
error floors. Here we see an explicit effort to ameliorate® denote the family as parameterized by the scaladften it
the effect of saturation. A related but distinct directioaswv will be more convenient to denote this family Ky, }, i.e., to
taken in [8]. There the authors made modifications to discratse the family ofL-densities which characterize the channel
node update rules so as to reduce error floor failure everfeanily. One natural candidate for the parameteris the
There have been other work that examine the effects @fitropy of the channel denoted hy Thus, we also consider
practical concessions. In1[9] the authors consider thecefféhe characterization of the family given by the BMH(
of quantization in LDPC coded flash memories.[In][10]./[11] Let pz| x(z|z) denote the transition probability associ-
model the effect of saturation and quantization as noiseger ated to a BMS channet’ and letpy | x(y|x) denote the
Finally, in [12] an analysis was done to evaluate the effect dransition probability of another BMS channel We then
capacity on quantization of channel outputs. say thatc’ is degradedwith respect toc, denotedc < ¢/,

In the design of capacity-achieving codes it would be hélpfif there exists a channel; |y (z|y) so thatpy | x(z|z) =
to understand how practical decoder concessions, like@atl, py | x (v |7)pz|v (2 |y).
tion, affect performance. In particular, if LLRs are sateth A BMS channel family{BMS(¢)}¢ is said to beordered
at magnitudeK then how much degradation from the BRby degradation) itr; < oo impliesc,, < co,.
threshold should be expected. Naturally, one expects that aUseful functionals of densities include the Battacharylye,

K — 4o, that one can reliably transmit arbitrarily closeentropy, and the error probability functionals. For a dignsj
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these are denoted BB (a), H(a), and &(a), respectively and [1l. SATURATED BELIEF PROPAGATION DECODING

are defined by We first consider the analysis of the saturated BP decoder.

B(a) = E(e—Zﬂ)’ H(a) = E(log,(14+e~%)), More precisely, we consider decoding with BP rules but with
1 messages restricted to the domgink, K] for someK > 0.
Ela)=P{Z <0} +=P{Z =0}
2 A. Saturated Decoder

where Z is distributed according ta. Note that these def- Definition 4 (Saturation):We define thesaturati
initions are valid even ifa is not symmetric, although they 'oni‘l‘lllgnfor (so?”nltjarla{IZnIéJf,edelioT:dL-Je;?tl)Jyra lonopera-

loose some of their original meaning. We will apply thesg
definitions, especially, to saturated densities that are not |2| k = min(K, |z|) - sgn(z). 2)
necessarily symmetric.

1) BP Decoder and Density Evolutionfhe definition of ~ Definition 5 (SatBP Decoder)Consider the  standard
the standard BP decoder can be foundiin [1]. The asymptotit, d-)-regular ensemble. The saturated BP decoder is
performance of the BP decoder is given by the densidlefined by the following rules. Leb()(u1, ..., tg,—1) and
evolution technique]1][T13]. (1, ..., pa,1) denote the outgoing message from the

Definition 1 (Density Evolution for BP Decoder cf] [1]): check node and the variable node side respectively. Abusing
For ¢ > 1, the DE equation for &d;, d,.)-regular ensemble is the notation above and denoting the incoming messages on
given by both the check node and the variable node sideuhywe

T(c,x) L, =c® (X_di‘_l)@)dl*l. have v
Here, c is the L-density of the BMS channel over which ¢ (uy,... g 1) = Ptanh_l ( H tanh(ui/2))J ,
transmission takes place and is the density emitted by i=1 K
variable nodes in thé-th round of density evolution. Initially di—1
we havexy = Ay, the delta function af. The operators® 1&(@)(#17 sl —1) = {Mo + Z ,UiJ ;
and & correspond to the convolution of densities at variable i=1 K
and check nodes, respectively, see [1, Section 4.1.4]. m  wherey, is the message coming from the channel. Also, we
Discussion The DE analysis is simplified when we consideget (0) (i1, -5 g, —1) = 0. n
the class of symmetric message-passing decoders. The-definising Definition 4.83 in[[l] we have the following.
tion of symmetric message-passing decoders can be found ilemma 6 (SatBP Decoder is symmetridhe SatBP de-
I]I[l. Note that this definition of Symmetry pertains to theumdt coder given in Def|n|t|0rﬂ5 is a Symmetric decoder.
messages in the decoder and not to the densities which appe@jiscussion:The symmetry of the message-passing decoder
in the DE analysis. We will see later that the clipped or thgether with symmetry of the channel allows us to use the all
saturated decoder is a symmetric message-passing decodggto codeword assumption. This along with the concentratio
this sense and hence its DE analysis is simplified by restyict results (see Theorem 4.94 inl [1]) allows to write down the
to consideration of the all-zero codeword. density evolution of the SatBP decoder in the usual way.

Definition 2 (BP Threshold for regular ensembles): _ Given X ~ a let |a]x denote the distribution of X | .
Consider an ordered and complete channel famijfote that the saturation operation can be viewed as a channel
{cn}. Let x,(h) denote the distribution in thel-th taking X to | X |x. We immediately have < |a]x . In gen-
round of DE when the channel ig,. Then the BP erg||a will not be symmetric even if is symmetric since
threshold of the (d;, d,)-regular ensemble is defined asye will not typically have|a|x (—K) = e~ |a| x (K). If a
h®(d;, d,,{cn}) = sup{h : xu(h) g0 Ay} Under is symmetric then we will havéa| i (—K) < e ¥|a] g (K).
symmetry an equivalent definition is Although using lemmB]6 one can write down the DE recursion

I—00 for the SatBP decoder, we know that in general the densities
b¥(dy, dr, {en}) = sup{h : E(xe(h)) "=~ 0}. will not be symmetric. Two of the most useful properties of
The later form is more convenient for our purposes and it BE for BP is that it preserves both symmetry of densities and
the one we shall adopt. m ordering by degradation. These properties are sacrificegiy

In the sequel we will use the Wasserstein metric to measwr&tion, but can be recovered with a slight variation. Theaid
distance between distributions. We recall the definitionthef is to slightly degrade the density by moving some probahbilit
Wasserstein metric below. For details seée [14]. mass fromK to —K. This can be interpreted operationally

Definition 3 (Wasserstein Metric +[115, Chapter 6]).et as flipping the sign of a message with magnitulewith
la| and |b| denote two|D|-distributions. The Wassersteinsome probability\. The flipping rate) is chosen so that the
metric, denoted byi(|al, |b]), is defined as resulting probability that the sign of the message is irexciris

1 e K /(1 +eK). In general\ is upper bounded by this value
d(lal,|b]) = sup ‘/ f(x)(|a](x)—|b|(z))dz|, (1) and forlargek this is a small perturbation. With this pertur-
f(z)eLip(1)[0,1]" Jo bation both density symmetry and ordering by degradatien ar
m recovered. Let us introduce the notatidrp, z) to denote the



densityD(p, z) = pA_,+ (1 —p)A, . Using this notation we |1V. CONVERGENCE OFNONSYMMETRIC SATURATED DE
have for symmetria, |a|x = vD(q, 2)(z) + a(@)L{jz)<k}
wherey =P, {|z| > K} and~yq = P,{z < —K}.

Lemma 7 (Symmetric Saturationgiven a symmetric den-
sity a we define|a] i, = 7D (p, 2)(z) +a(2) 15 <k} Where
p=e¢5/(1+e ) andy =P,{|z| > K}. Then, (i) |a] k,,,
is a symmetricL-density and (ii)|a|x < |a] kym-

Proof: P_art (i).is immediate. To prove part (ii) we notey Non-symmetrized SatBP Decoder
that comparing with the unsymmetrized case we see that
p > gq. Thus, |a]k,, can be realized by taking messages We now show that the Battacharrya parameter for the non-
with distribution |a|x and flipping the sign of a messageSymmetric SatBP decoder also can be made as small as
with magnitudeK by a quantity which is determined by desired by choosing large enough. We first consider a fixed

In the previous section we show that, when transmitting
below the threshold of the full BP decoder, the Battacharrya
parameter of the densities in the symmetric SatBP decoder ca
be arbitrarily small. In this section we make the connectmn
the non-symmetric SatBP.

p=1omm =M1 —q)+ (1 - N)g. m computation tree and then average over the tree ensemble.

As an:EC)nsequence of Lemrfia 7, we will term the operationwe begin with an operational description of symmetrization

used to obtair{a| ., from a assymmetric-saturation Consider a fixed tred of depth/. Let Y denote the vector
sym

of received values associated to the variable nodes under th
all-zero codeword assumption. In addition, for each végiab
Y _ node we assume an independent random variable uniformly
Lemma 9:Let a be a symmetric L-density. Then. gisyipted on|0, 1]. We denote the vector of these variables
d(a, [a] o) <1~ tanh(k/2). by Z. Now, the node operations correspond to BP except
Proof: For any0 < z < K we haveP.{z < z} = that outgoing messages from the variable nodes are magnitud
Plajc{z < 2}=Plj,,{z < z} and for anyz = K saturated af. Independent random variables are used for the
we havel = P, {z < 2} = P, {z < z}. Since flipping operation at each node, where the flipping probybilt
tanh(z/2) is increasing andanh(—xz/2) = — tanh(z/2) we s determined by density evolution. If the outgoing message
have || A] Kyl (2) = Lz<tann(r/2)} [A(2) + Liz>tann(k/2)} - has magnitudes then its sign is flipped itZ, < A, where
By [14], we have that the Wasserstein distance is equivalet is the appropriate flipping probability.
to the L, norm of the difference between thB|-distribtions.  the distribution of the outgoing messages S%) (c, Ao)).
Clearly, the distance is bounded by- tanh(K//2). B et us consider the conditional distributigr(= |V, Z). We
Definition 10 (DE for Sym. and Non-Sym. Saturation): Jobtain S}f) (c, Ag)) by averaging ove®’, Z and the code
The DE for non-symmetric saturation decoder ignsemble. Letd, denote the event that no flipping occurs.
Siom(C:x) = LT(€X) i, and for the non-symmetric (. |y) — p(x|Y, Ax)p(Ax) + p(=|Y, Ax)(1 — p(Ax)).
saturation decoder iSk (c,x) = [T'(c,x)] k- ®  Averaging overY and re-writing we obtain
We now estimate the distance between the densities appear-
ing in the DE of usual BP and the DE of the symmetric- p(z|Ag) = (p(z) — p(z| Ax)(1 — p(Ak)))/p(Ak).
saturation operation. . o )
Lemma 11 (Distance Between Symmetric-SatBP and BFJ}I.OWp(Z | Ak) is the distribution of the non-symmetric SatBP

Consider? iterations of the forward DE for the usual BP and!€coder. Intuitively one expects(=|Ax) to be inferior
the Symmetric-Saturation operation. Then (higher probability of error, larger Battacharyya paraengto
p(z | Ak), but this appears difficult to prove.
IR (D) Let us compute the probability ofix. Let the received
LLR magnitude of a variable node be » > K. The
) ) _ ) __ probability with which we 1;I<ip the bit is such that the final err
Proof:  Using the triangle inequality,  (viii), propability is equal to—. For received LLR magnitude
Lem. 13 in [14] angj Lemmz(aZ)EIQ we Obtalnof z, the probability that it is received correctly ﬁ}—,z As
the upper bound d(T¥(c,Ag), Sy (c,Ag)) x . el
o (1) sym X a consequence wWe gefi—x = A== + (1-— )\0)11‘;7,
ard(TY(c, Ag), Skem (¢:A0)) + 1 — tanh (?) where \here), is the [Iil|(oping 7|:Jr91t<3¢';1biIityﬁg{]c variable node Solving
a = 2(d — 1)2‘;;;1(1 — B2(a))“ 7 (1 — B2(b))T, We get), = 15 1;56_,2 < 1fz=x Thus the probability
a = TU-D(c,Ag) and b — S(Efl)(c Ao). Continuing that a variable node, with a received LLR magnitude greater
- 9 - Keym 9 .

: - ; 1 K
with the above inequality we get the upper boundN@ni is notflipped is atleast equal t9-—r > 1 —e™ ™.

_ e~ Kylv(MI —_e K
(1 — tanh %))(1 + oy +ogop—1 + ...+ opap_q - ~042). Hence’ we gep(AK) Z (1 € ) Z 1 ) € |V(T)|
o where|V(T)] is the number of variable nodes in the tree. From
In general, we are transmitting below the BP threshol . .
e above analysis we have the following lemma.
so both a and b could be close toA,,. Thus, .
v Lemma 12 (SatBP Decoder versus Symmetrized SatBP):
(Itataaet. . +apae o) < Q=D = 1) po 0y " andg e N, there exists & large enough such
Using 1 — tanh(K/2) < 2¢~% and (ix) Lemma 13 in[[14] h Qg)fg(‘) A < 1 B(s® A 9 9
we get the lemma. m atB(S (e A)) < (Skyn(€: B0))-

1—e¢

We summarize all the claims above in the following.
Corollary 8: We havea < |a|x < [a] kyp-

%(S%s)ym(c’ AO)) S %(T(é) (C, AO))+2\/§€




V. STABILITY ANALYSIS the notation\, = 1 — A\, we upper bound3(a(*)) for

An important part of the asymptotic analysis of LDPC code%(m) = Sk(c,a) by
involves the analysis of the convergence of DE to a zero error ), B(c)p' (1) B (a(k))+/-\2 B(c)(p' (1) B (a(k)))2+e;;<
state. In this section we analyze the stability of the SaiB®.
begin with some necessary conditions. Let £ > 0 satisfy

Fpr stgbility of the zero error cor.1dit.ion _there_ must exist a = A B(c)p (1) + Ao B(c)(p/(1)%€ < 1
positive invariant set of zero error distributions, i.e usets
of distributions so tha€ (s) = 0 for all s € § and S (c,s) € ~and assumg > 5 (a (?)) and K is large enough so that>
8. Existence of$ follows easily from the compactness of thei—i.e /2. Then there existsV so that forn > N we have
space of densities and continuity of DE. B (a)) < e K2

Lemma 13:Assume the channelhas supportatL, L > Minimum variable node degree equal to Bet us now
0. In an irregular ensemble with minimum variable degdge assume that the minimum variable node degree is 3. Following
the support of all densities i& must lie in[L/(d; — 2),o0). the previous notation, we upper bout(a**t1)) by

Proof: Assumea(®) € 8 has support at < L/(d; — 2). < K

Then b® has support or[—oo, 2]. Eﬁencea“) héé lsupp)ort A Be)(p'(1)B (M) + A Ble)(p'(1) B (M) +e72
on [—oo, 2] wherez; = (dy — 1)z — L < L — 26 where Let ¢ be the positive solution toAsB(c)p’(1)%¢ +
§ = L — (d; — 2)z. By induction we have*) has support on A3 %B(c)p/(1)3¢2 = 1/2. Assume K large enough so that
[—o0, L —2%6] and fork large enough the probability of error2e=%/2 < ¢. A little algebra shows that if8 (a(®)) < ¢,

is positive. B then there existdV so that for alln > N we have
A. Failure of Stability with Degree Two B (al) < 2e7K/2, B (b)) < 20/(1)e 52 (3)
From Lemmd_IB we have immediately where the second inequality follows from the first and the

Lemma 14:In an irregular ensemble with, > 0 no additive bound on Bhattacharrya at check node.
invariants exists for any value of{ < oo unless the channel  This analysis can not show convergence to zero error
is the BEC. although it can be used to show convergence to relativelyisma
Proof: If d; = 2 and the channel is not the BEC ancerror rate. This is true even in the presence of degree two
hence has support ofi-00,0), then Lemmd T3 shows thatvariable nodes, where zero error stability is not possibte.
there can be no positive invariant zero-error set of distiiins  degree three and higher stability can be shown, but a refined
with support on[- K, K. B analysis is needed.
In the case of the BEC it can be seen that saturated . ) . ,
DE matches unsaturated DE except that the mass-cat C. Stability with Minimum Variable Degree Equal to Three
in unsaturated DE is not placed atK. Hence, stability is  In this section we consider irregular ensembles where the
unaffected by saturation. minimum variable node degree is at least three. We generaliz
If the channel has infinite support, then there is no pos¢he standard stability analysis by separating out the atgdr
bility of stability under saturation. The condition on theife probability mass and tracking it through the variable noo a
channel support is given later in the section on stabilitthwi check node updates. For simplicity we shall restrict to trigh
degree> 3. regular ensembles. If the check node degreé.ithen K’ is
N the magnitude of an outgoing message all of whose incoming
B. Near Stability messages have magnitu@de Although we focus on BP-like
The stability analysis of standard irregular ensembles udecoding our analysis applies to other algorithms such as mi
der BP decoding rests on on the resuligc ® A(a)) = sum, in which case we hav€’ = K. In general, ifK, ..., K4
B (c)A\(B (a)) and B (p(a)) < 1 — p(1 — B (a)). The first are the magnitudes of incoming messages then we assume
equation continues to hold without symmetry 20br c. The that the outgoing magnitude satisfié§ < min;{K;} and
check node inequality, however, does not necessarily heldX’ < >, e %i. Both conditions are satisfied by BP and
without symmetry. We have, however, a substitute with ahsligmin-sum. Messages entering a check node upaldtave the
variation on a result froni[16]: for any L-densitiesandb we forma = yD(p, K) +4m, wherem is supported ori— K, K)
have®B (a @ b) < B (a) + B (b) . This result holds for a wide and has total mass Messages entering a variable node update
range of check node update operations including BP and théave the formb = vD(p, K’) + 4m, where K’ < K is the
min-sum decoder. To incorporate saturation into the amaly®utgoing magnitude at a check when all incoming magnitudes
based on the Bhattacharyya parameter we have the inequadiyial K and m is supported o{—K', K’). From above, we
B (la|x) < B (a) + e /2. Note that because of saturationhavee %" < (d, — 1)e X so thatK’ > K — In(d, — 1).
the minimum value of the Battacharyya parameter is equal Earthermore, we choosk large enough so th&K’ > K.
e K/2, In the sequel we assume that the support of the channel
Minimum variable node degree equal to Ret a(®) be is (—K”, K"). The condition onk” is that K < 2K’ — K.
any L-density which need not be symmetric. Consider anhe proof of the two statements below can be found in the
irregular ensemble and assump&1)%B (a*)) < 1. Using upcoming paper [17].



1) Variable Node AnalysisLet us assume a variable nodevariable degree is at least three. Note that when we consider

of degreed + 1 and incoming density = vD(p, K') + ym.

a channel from BMS), we first (symmetric) saturate the

The outgoing density from the variable node has the forohannel to an appropriate finite support. One can show that

a=+'D(p/,K)+#%'m’. Then we have
B(m') <B (c)de™ 7V (5 B (m))
+ (,Yp)e—(d/Q—l)(K—lnc)ed/2ln(3e)(1 + 2dr)7
”Y/p/ < efK/Q B (C)def(dfl)(K/Qflnc) ('_Y %(m))
+ 2d(’}/p)L(d+2)/2J )

=/

gl

as the support goes to-oo, 00), the saturated channel BP
threshold goes ta® (cf. [17]). The above analysis shows that,
for K large enough, the SatBP is successful for any channel
with entropy arbitrarily close to channel correspondingto

An interesting open question is to understand the scaling of
K with the gap to capacity. From Lemmd_Ill we see that
one would require the scaling of number of iterations wrt

2) Check Node Ana|y5is[_et us assume a r|ght regu|arf0r unsaturated BP which is Conjectured to scale m(d/é)

ensemble with check degrde- 1. Let us represent the density
entering the check node asD(p, K) + ym wherem is a
density supported ori— K, K). Then the density emerging
out of the check node is given by’ D(p’, Kg4) + v'm’ £
(vD(p, K) + 3m)B4, where K, is the magnitude, which
satisfies K — Ind < K; < K and support ofm is also
(—Ka, K4). Then we havey’ B(m’) <598 (m)(yCd® + d).
Also, we note thap’ = py < dp.

3) Proof of Stability for Degree Three+.et us assume that 3
the minimum variable node degree is at least three and a right
regular degred,.. In view of (3) we may assums (a() < 4
2¢~ /2 which implies B (b)) < 2(d, — 1)e /2 for all 4l
n > 0. We write a®) = yD(p, K) + ¥m and now have the
bound (for alln) ype® < 2. Setec = 2(d, — 1) and from the
check node analysis above and the boupd”™ < 2 we get
~C < 2(d,—1)+1++/d, — 1. Abusing the notation, set' =
2(d, —1)+1++/d, — 1. Thenb™ =+'D(p', K4, _1)+7'm’
denote the density emerging from the check node update whe
the support oim’ is (—K,4,—1, K4,—1). Then from the check
node analysis above we get

Y < (dr = 1)yp
B (m') <57B (m)(C(d, —1)° +d, - 1).
We chooseu, b, ¢, d > 0 arbitratily small. Then for allK" large

enough and for alf > 2 andd less then the maximum variablep; )
node degree, we have

(1]
(2]

(5]

(6]

(8]

El

(dy — 1)2%(2eK/2)L4/2) < ¢

B (c)de_(d—l)(K/z—lnc)(dr —1)C<b 1]
e~ (3=DIE-Ine) 5 InG3e) (1 4 94,)2(d, — 1)e K72 < ¢
% (c)def(dfl)(K/Qflnc)(dT —1ne<d [12]
We now obtain forn > 0,
] R A A
5% (m) ¢ d| [3% (m) "

which is a stable system for suitabieb, ¢, d. It is now easy
to see that the bit error rate goes to zero since the protgabi['m
mass on—K, K) goes to zero as becomes large. [16]

VI. DISCUSSION

17
Consider a channel family, BMB), ordered by entropy and o

let h® denote the BP threshold when transmitting over this
channel family using g\, p) LDPC ensemble such that the
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