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The Distortion Rate Function of

Cyclostationary Gaussian Processes

Alon Kipnis∗, Andrea J. Goldsmith∗ and Yonina C. Eldar†

Abstract

A general expression for the distortion rate function (DRF)of cyclostationary Gaussian processes in terms of

their spectral properties is derived. This expression can be seen as the result of orthogonalization over the different

components in the polyphase decomposition of the process. We use this expression to derive, in a closed form, the

DRF of several cyclostationary processes arising in practice. We first consider the DRF of a combined sampling and

source coding problem. It is known that the optimal coding strategy for this problem involves source coding applied

to a signal with the same structure as one resulting from pulse amplitude modulation (PAM). Since a PAM-modulated

signal is cyclostationary, our DRF expression can be used tosolve for the minimal distortion in the combined sampling

and source coding problem. We also analyze in more detail theDRF of a source with the same structure as a PAM-

modulated signal, and show that it is obtained by reverse waterfilling over an expression that depends on the energy

of the pulse and the baseband process modulated to obtain thePAM signal. This result is then used to study the

information content of a PAM-modulated signal as a functionof its symbol time relative to the bandwidth of the

underlying baseband process. In addition, we also study theDRF of sources with an amplitude-modulation structure,

and show that the DRF of a narrow-band Gaussian stationary process modulated by either a deterministic or a random

phase sine-wave equals the DRF of the baseband process.

I. INTRODUCTION

The distortion rate function (DRF) describes the average minimal distortion achievable in sending an information

source over a rate-limited noiseless link. Sources with memory posses an inherent statistical dependency that can

be exploited in the context of data compression. However, not many closed-form expressions for the DRF of such

sources are known, and those are usually limited to the classof stationary processes. Two notable exceptions are

the DRFs of the Wiener process, derived by Berger [1], and of auto-regressive Gaussian processes, derived by

Gray [2]. Indeed, information sources are rarely stationary in practice, and source coding techniques that are based

on stationary assumptions about the source will likely achieve poor performance if the source has time-varying

statistics.

Cyclostationary processes(CS) (also known asperiodically correlatedprocesses orblock-stationaryprocesses)

are a class of non-stationary processes whose statistics are invariant to time shifts by integer multiples of a given
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time constant, denoted as theperiod of the process. As described in the survey by Gardner [3], CS processes

have been used in many fields to model periodic time-variant phenomena. In particular, they arise naturally in

synchronous communication where block coding and modulation by periodic signals are used. Spectral properties

of CS processes, which will be used in our derivations, are also reviewed in [3] and in the references therein.

In this paper we analyze the DRF of CS Gaussian processes. Ourstudy of the DRF of CS processes can be

motivated by a very simple example: we are interested to find the DRF of the process obtained by modulating a

continuous-time Gaussian stationary processU(·) by a cosine wave with random phaseΦ, namely

XΦ(t) =
√

2U(t)cos(2π f0t +Φ) , t ∈ R, (1)

where Φ is uniformly distributed over[0,2π). This process is commonly given as an example of a wide-sense

stationary process in signal processing textbooks (e.g. [4, Ex. 8.18]). Note that due to the random phase,XΦ(·) is

not Gaussian and in fact is non-ergodic. It seems that in the context of rate-distortion theory, the spectrum ofXΦ(·)
can only be used to derive an upper bound on its DRF given by theDRF of a Gaussian stationary process with the

same second order statistics [5, Thm. 4.6.5]. The theory of asymptotic mean stationary (AMS) processes [6] implies

that the DRF ofXΦ(t) is given by the DRF of each one of its ergodic components [7, Thm. 11.3.1], corresponding

to different values of the phaseϕ ∈ [0,2π). Each ergodic component satisfies a source coding theorem which allows

us to evaluate its DRF using an optimization over probability distributions subject to a mutual information rate

constraint. One might think this decomposition might provide us with a recipe to evaluate the DRF ofXΦ(·) by

averaging over the DRF of the processXϕ(·), obtained by fixing the phase inXΦ(·). However, while the process

Xϕ(·) is Gaussian, it is no longer stationary – but rather CS. Whilean expression for the DRF of CS processes

is known [8], [7], it seems that the only existing mechanism for evaluating this DRF is by the Karhunen-Loève

(KL) expansion [9]. In this method it is required to solve forthe eigenvalues of a Fredholm integral equation for

each finite blocklength, and use a waterfilling expression over these eigenvalues. The DRF is finally obtained in

the limit as the size of the blocklength goes to infinity. Thisevaluation, however, does not exploit the special block

periodicity of the CS source. Moreover, it does not provide any intuition on the optimal source coding technique

in terms of spectral properties of the source. In contrast, the DRF for a stationary Gaussian process is obtained by

waterfilling over its power spectral density, which provides clear intuition about how the source code represents

each frequency component of the signal [10].

In this work we derive an expression for the DRF of Gaussian CSprocesses which uses their spectral properties,

and therefore generalizes the waterfilling expression for the DRF of Gaussian stationary processes derived by Pinsker

[11]. This expression is obtained by considering the polyphase components of the process, which can be seen as a

set of stationary processes that comprise the CS process [12]. We show that the DRF of a discrete-time CS can be

obtained in a closed form by orthogonalizing over these components at each frequency band. For continuous-time

CS processes, we obtain an expression which is based on increasingly fine discrete-time approximations of the

continuous-time signal. The DRF evaluated for these approximations converges to the DRF of the continuous-time
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process under mild conditions on its covariance function.

The main results of this paper are divided into two parts. In the first part we derive a general expression for

evaluating the DRF of a second order Gaussian CS process in terms of its spectral properties. This expression

is given in the form of a reverse waterfilling solution over the eigenvalues of a spectral density matrix defined

in terms of thetime-varying spectral densityof the source. For discrete-time Gaussian processes, the size of this

matrix equals the discrete period of the source. We extend our result to Gaussian CS processes in continuous-time

by taking increasingly finer discrete time approximations.The resulting expression is a function of the eigenvalues

of an infinite matrix. In addition, we derive a lower bound on the DRF which can be obtained without evaluation

of the matrix eigenvalues. We show that this bound is tight when the polyphase components of the process are

highly correlated.

In the second part of the paper we use our general DRF expression to study the distortion-rate performance in

more specific cases. Specifically:

• We derive a closed form expression for the DRF of a process with a pulse-amplitude modulation (PAM) signal

structure. We show how this expression can be used to derive the minimal distortion in estimating a stationary

Gaussian process from a rate-limited version of its sub-Nyquist samples.

• We study the effect of the symbol time in PAM on the information content of the modulated signal at the

output of the modulator.

• We evaluate in a closed form the DRF of a Gaussian stationary narrowband process modulated by a deterministic

cosine wave. We show that the DRF of the modulated process equals that of the baseband stationary Gaussian

process provided the latter is narrowband. We further conclude that the stationary, non-Gaussian and non-egodic

process given by (1) above has DRF identical to the DRF of the modulated process without the random phase.

These two results imply that the DRF of the stationary non-Gaussian amplitude modulated process is strictly

smaller than the DRF of a Gaussian stationary process with the same second order statistics.

The rest of this paper is organized as follows: in Section II we review concepts and notation from the theory of

CS processes and rate distortion theory. Our main results are given in Section III, where we derive an expression

for the DRF of a Gaussian CS process. In Section IV we derive a lower bound on this DRF. In Section V we

explore applications of out main result in various special cases. Concluding remarks are provided in Section VI.

II. D EFINITIONS AND NOTATIONS

A. Cyclostationary Processes

Throughout the paper, we consider zero mean Gaussian processes in both discrete and continuous time. We use

round brackets to denote a continuous time index and square brackets for a discrete time index, i.e.

X(·) = {X(t), t ∈ R} ,

and

X[·] = {X[n], n∈ Z} .
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Matrices and vectors are denoted by bold letters.

The statistics of a zero mean Gaussian processX(·) is specified in terms of its autocorrelation function1

RX(t,τ), E [X(t + τ)X(t)] .

If in addition the autocorrelation function is periodic int with a fundamental periodT0,

RX(t +T0,τ) = RX(t,τ),

then we say thatX(·) is a cyclostationary processor simply cyclostationry2 [3], [14]. We also assume thatRX(t,τ)

is bounded and Riemann integrable on[0,T0]×R, and therefore

σ2
X = lim

T→∞

1
2T

∫ T

−T
EX(t)2dt =

1
T0

∫ T0

0
RX(t,0)dt

is finite.

Suppose thatRX(t,τ) has a convergent Fourier series representation int for almost anyτ ∈R. Then the statistics

of X(·) is uniquely determined by thecyclic autocorrelation(CA) function:

R̂n
X(τ) ,

1
T0

∫ T0/2

−T0/2
RX(t,τ)e−2π int/T0dt, n∈ Z. (2)

The Fourier transform of̂Rn
X(τ) with respect toτ is denoted as thecyclic power spectral density(CPSD) function:

Ŝn
X( f ) =

∫ ∞

−∞
R̂n

X(τ)e
−2π iτ f dτ, −∞ ≤ f ≤ ∞. (3)

If Ŝn
X( f ) is identically zero for alln 6= 0, thenRX(t,τ) = RX(0,τ) for all 0 ≤ t ≤ T and the processX(·) is

stationary. In such a caseSX( f ) , Ŝ0
X( f ) is the power spectral density(PSD) function ofX(·). The time-varying

power spectral density(TPSD) function [14, Sec. 3.3] ofX(·) is defined by the Fourier transform ofRX(t,τ) with

respect toτ, i.e.

S t
X ( f ),

∫ ∞

−∞
RX(t,τ)e−2π i f τdτ. (4)

The Fourier series representation implies that

S t
X ( f ) = ∑

n∈Z
Ŝn

X( f )e2π int/T0. (5)

Associated with every cyclostationary processX(·) with periodT0 is a set of stationary discrete time processes

Xt [·], 0≤ t ≤ T0, defined by

Xt [n] = X (T0n+ t), n∈ Z. (6)

1 In [14] and in other references, the symmetric auto-correlation function

R̃X(t,τ), E [X(t + τ/2)X(t − τ/2)] = RX(t − τ/2,τ),

the corresponding CPSD̃̂Sn
X( f ) and TPSDS̃ t

X ( f ), are used. The conversion betweenŜn( f ) and the symmetric CPSD is given bỹ̂Sn
X( f ) =

Ŝn
X( f −n/(2T0)).

2It is customary to distinguish between wide-sense cyclostationarity which relates only to the second order statisticsof the process, and

strict-sense cyclostationarity which relates to the finiteorder statistics of the process [15, Ch. 10.4]. Both definitions coincide in the Gaussian

case.
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These processes are called thepolyphase components(PC) of the cyclostationary processX(·). The cross-correlation

function of Xt1[·] andXt2[·] is given by

RXt1Xt2 [n,k] = E [X[T0(n+ k)+ t1]X[T0n+ t2]]

= RX (T0n+ t2,T0k+ t1− t2)

= RX (t2,T0k+ t1− t2) . (7)

SinceRXt1Xt2 [n,k] depends only onk, this implies thatXt1[·] and Xt2[·] are jointly stationary. The PSD ofXt [·] is

given by

SXt
(
e2π iφ), ∑

k∈Z
RXtXt [0,k]e−2π iφk

= ∑
k∈Z

RX (t,T0k)e−2π iφk, −1
2
≤ φ ≤ 1

2
. (8)

Using the spectral properties of sampled processes, we can use (8) and (5) to connect the functionsSXt
(
e2π iφ)

and the CPSD ofX(·) as follows:

SXt
(
e2π iφ)= 1

T0
∑
k∈Z

S t
X

(
φ − k

T0

)

=
1
T0

∑
k∈Z

∑
n∈Z

Ŝn
X

(
φ − k

T0

)
e2π int/T0.

More generally, fort1, t2 ∈ [0,T0] we have

SXt1Xt2

(
e2π iφ)= ∑

k∈Z
RXt1Xt2 [0,k]e

−2π ikφ (9)

=
1
T0

∑
k∈Z

S t2
X

(
φ − k

T0

)
e

2π i(t1−t2)
φ−k
T0

=
1
T0

∑
k∈Z

∑
m∈Z

Ŝm
X

(
φ − k

T0

)
e

2π i
(

m
t2
T0

+
t1−t2

T0
(φ−k)

)

.

We now turn to briefly describe the discrete-time counterpart of the CA, CPSD, TPSD and the polyphase

components defined in (2), (3), (4) and (6), respectively.

A discrete time zero mean Gaussian processX[·] is said to be CS with periodM ∈ N if its covariance function

RX[n,k] = E [X[n+ k]X[n]]

is periodic ink with periodM. For m= 0, . . . ,M, themth cyclic autocorrelation (CA) function ofX[·] is defined as

R̂m
X [k],

M−1

∑
n=0

RX[n,k]e
−2π inm/M.

The mth CPSD function is then given by

Ŝm
X

(
e2π iφ), ∑

k∈Z
R̂m

X [k]e
−2π iφk,

and the discrete TPSD function is

Sn
X

(
e2π iφ), ∑

k∈Z
RX[n,k]e

−2π iφk.

5



Finally, we have the discrete time Fourier transform relation

Sn
X

(
e2π iφ)= 1

M

M−1

∑
m=0

Ŝm
X

(
e2π iφ)e2π iφnm/M.

The m-th stationary component̄Xm[·], 0≤ m≤ M−1 of X[·] is defined by

Xm[n], X[Mn+m], n∈ Z. (10)

For 0≤ m, r,n≤ M−1 andk∈ Z we have

RXmXr [n,k] = E [Xm[n+ k]Xr[n]]

= E [X[Mn+Mk+m]X[Mn+ r]]

= RX[Mn+ r,Mk+m− r]

= RX[r,Mk+m− r]. (11)

Using properties of multi-rate signal processing:

SXmXr
(
e2π iφ)= ∑

k∈Z
RX[r,Mk+m− r]e−2π ikφ

=
1
M

M−1

∑
n=0

Sr
X

(
e2π i φ−n

M

)
e2π i(m−r) φ−n

M . (12)

The discrete-time counterpart of (9) is then

SXmXr
(
e2π iφ)= 1

M

M−1

∑
k=0

M−1

∑
n=0

Ŝn
X

(
e2π i φ−k

M

)
e2π i nr+(m−r)(φ−k)

M . (13)

The functionsSXmXr
(
e2π iφ), 0 ≤ m, r ≤ M − 1 define anM × M matrix SX

(
e2π iφ) with (m+ 1, r + 1)th entry

SXmXr
(
e2π iφ). This matrix completely determines the statistics ofX[·], and can be seen as the PSD matrix associated

with the stationary vector valued processXM[n] defined by the stationary components ofX[·]:

XM[n],
(
X0[n], . . . ,XM−1[n]

)
, n∈ Z. (14)

We denote the autocorrelation matrix ofXM[·] as the PSD-PC matrix. Note that the(r +1,m+1)th entry of the

PSD-PC matrix is given by (11).

B. Examples

We present two important modulation models which result in CS processes.

Example 1 (amplitude modulation (AM)). Given a Gaussian stationary process U(·) with PSD SU( f ), consider

the process

XAM(t) =
√

2U(t)cos(2π f0t +ϕ) ,
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where f0 > 0 and ϕ ∈ [0,2π) are deterministic constants. This process is CS with periodT0 = f−1
0 and CPSD [16,

Eq. 41]

Ŝm
AM( f ) =

1
2





SU( f + f0)+SU( f − f0), m= 0,

SU( f ∓ f0)e±2iϕ , m±2,

0, otherwise.

This leads to the TPSD

S t
X ( f ) =

1
2

SU( f + f0)(1+e−2(2π i f0t+ϕ)) (15)

+
1
2

SU( f − f0)(1+e2(2π i f0t+ϕ)).

Example 2 (pulse-amplitude modulation (PAM)). Consider a Gaussian stationary process U(·) modulated by a

deterministic signal p(t) as follows:

XPAM(t) = ∑
n∈N

U(nT0)p(t −nT0). (16)

This process is CS with period T0 and CPSD [16, Eq. 49]

Ŝn
PAM( f ) =

1
T0

P( f )P∗
(

f − n
T0

)
SU ( f ) , n∈ Z, (17)

where P( f ) is the Fourier transform of p(t) and P∗( f ) is its complex conjugate. If T0 is small enough such that

the support of P( f ) is contained within the interval
(
− 1

2T0
, 1

2T0

)
, then Ŝn

PAM( f ) = 0 for all n 6= 0, which implies

that XPAM(·) is stationary.

C. The Distortion-Rate Function

For a fixedT > 0, let XT be the reduction ofX(·) to the interval[−T,T]. Define the distortion between two

waveformsx(·) andy(·) over the interval[−T,T] by

dT (x(·),y(·)) ,
1

2T

∫ T

−T
(x(t)− y(t))2dt. (18)

We expandXT by a Karhunen-Loève (KL) expansion [9, Ch 9.7] as

XT(t) =
∞

∑
k=1

Xk fk(t), −T ≤ t ≤ T, (19)

where{ fk} is a set of orthogonal functions over[−T,T] satisfying the Fredholm integral equation

λk fk(t) =
1

2T

∫ T

−T
KX(t,s) fk(s)ds, t ∈ [−T,T], (20)

with corresponding eigenvalues{λk}, and where

KX(t,s), EX(t)X(s) = RX(s, t − s).

Assuming a similar expansion as (19) to an arbitrary random waveformYT , we have

EdT(XT ,YT) =
1

2T

∫ T

−T
E(X(t)−Y(t))2dt =

∞

∑
n=−∞

E(Xn−Yn)
2 .
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The mutual information betweenX(·) andY(·) on the interval[−T,T] is defined by

IT (X(·),Y(·)), 1
2T

lim
N→∞

I
(
XN
−N;YN

−N

)
,

whereXN
−N = (X−N, . . . ,XN), YN

−N = (Y−N, . . . ,YN) and theXns andYns are the coefficients in the KL expansion of

X(·) andY(·), respectively.

Denote byPT the set of joint probability distributionsPX,X̂ over the waveforms
(
X(·), X̂(·)

)
, such that the

marginal ofX(·) agrees with the original distribution, and the average distortion EdT
(
X(·), X̂(·)

)
does not exceed

D. The rate-distortion function (RDF) ofX(·) is defined by

R(D) = lim
T→∞

RT(D),

where

RT(D) = inf IT
(
X(·); X̂(·)

)
,

and the infimum is over the setPT . It is well known thatR(D) andRT(D) are non-decreasing convex functions of

D [5], and therefore continuous inD over any open interval. We define their inverse function as the distortion-rate

functionsD(R) andDT(R), respectively. We note that by its definition,D(R) is bounded from above by the average

power ofX(·) over a single period:

σ2
X , lim

T→∞

1
2T

∫ T

−T
EX2(t)dt = lim

T→∞

1
2T

∫ T

−T
RX(t,0)dt

=
1
T0

∫ T0

0
RX(t,0)dt = R̂0

X(0).

For Gaussian processes, we have the following parametric representation forRT(D) or DT(R) [9, Eq. 9.7.41]

DT(θ ) =
∞

∑
k=1

min{θ ,λk} (21a)

RT(θ ) =
1
2

∞

∑
k=1

log+ (λk/θ ) , (21b)

where log+ x, max{logx,0}.

In the discrete-time case the DRF is defined in a similar way asin the continuous-time setting described above by

replacing the continuous-time index in (18), (19) and (20),and by changing integration to summation. Since the KL

transform preserves norm and mutual information, this definition of the DRF in the discrete-time case is consistent

with standard developments for the DRF of a discrete-time source with memory as in [5, Ch. 4.5.2]. Note that with

these definitions, the continuous-time distortion is measured in MSE per time unit while the discrete-time distortion

is measured in MSE per source symbol. Similarly, in continuous-time,R represents bitrate, i.e., the number of bits

per time unit. In the discrete-time setting we use the notation R̄ to denote bits per source symbol.

Since the distribution of a zero-mean Gaussian CS process with periodT0 is determined by its second moment

RX(t,τ), we observe that such processes areT0-ergodic and thereforeblock-ergodicas defined in [8, Def. 1].

It follows that a source coding theorem that associatesD(R) with the optimal MSE performance attainable in

encodingX(·) at rateR is obtained from the main result of [8]. Specifically for the discrete-time case, it is shown

8



in [6, Exc. 6.3.1] that CS processes belong to the class of asymptotic mean stationary process (AMS) [6], where a

source coding theorem for AMS processes can be found in [17].

D. Problem Formulation: Evaluating the DRF

In the special case in whichX(·) is stationary, it is possible to obtainD(R) without explicitly solving the Fredholm

equation (20) or evaluating the KL eigenvalues: in this case, the density of these eigenvalues converges to the PSD

SX ( f ) of X(·). This leads to the celebratedreverse waterfillingexpression for the DRF of a stationary Gaussian

process, originally derived by Pinsker [11]:

R(θ ) =
1
2

∫ ∞

−∞
log+ [SX ( f )/θ ]d f. (22a)

D(θ ) =
∫ ∞

−∞
min{SX ( f ) ,θ}dφ . (22b)

The discrete-time version of (22) is given by

R̄(θ ) =
1
2

∫ 1
2

− 1
2

log+
[
SX
(
e2π iφ)/θ

]
dφ . (23a)

D(θ ) =
∫ 1

2

− 1
2

min
{

SX
(
e2π iφ) ,θ

}
dφ . (23b)

Equations (22) and (23) define the distortion as a function ofthe rate through a joint dependency on the water level

parameterθ .

We note that stationarity is not a necessary condition for the existence of a density function for the eigenvalues

in the KL expansion. For example, such a density function is known for the Wiener process [1] which is a

non-stationary process.

The main problem we consider in this paper is the evaluation of D(R) for a general CS Gaussian process. In

principle, this evaluation can be obtained by computing theKL eigenvalues in (20) for eachT, using (21) to

obtainDT(R) and finally taking the limit asT goes to infinity. For general CS processes, however, an easy way to

describe the density of the KL eigenvalues is in general unknown. As a result, the evaluation of the DRF directly

by the KL eigenvalues usually does not lead to a closed-form solution. In the next section we derive an alternative

representation for the functionD(R) which is based on an approximation of the kernelKX(t,s) used in (20).

III. M AIN RESULTS

In this section we derive our main results with respect to an expression for the DRF of a Gaussian CS which

does not involve the solution of the Fredholm integral equation (20).
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Our first observation is that in the discrete-time case, the DRF of a Gaussian CS process can be obtained by an

expression for the DRF of a vector Gaussian stationary source. This expression is an extension of (23), which was

derived in [18, Eq. (20) and (21)] and is given as follows:

DX (θ ) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2π iφ) ,θ

}
dφ (24a)

R(θ ) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

1
2

log+
[
λm
(
e2π iφ)/θ

]
dφ , (24b)

where λ1
(
e2π iφ) , ...,λM

(
e2π iφ) are the eigenvalues of the PSD matrixSX

(
e2π iφ) at frequencyφ . We have the

following result:

Theorem 1. Let X[·] be a discrete-time Gaussian cyclostationary process with period M∈ N. The distortion rate

function of X[·] is given by

D(θ ) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2π iφ) ,θ

}
dφ (25a)

R̄(θ ) =
1

2M

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2π iφ)/θ

]
dφ , (25b)

whereλ1
(
e2π iφ)≤ . . .≤ λM

(
e2π iφ) are the eigenvalues of the PSD-PC matrix with(m+1, r +1)th entry given by

SXmXr
(
e2π iφ)= 1

M

M−1

∑
n=0

Sr
X

(
e2π i φ−n

M

)
e2π i(m−r) φ−n

M . (26)

Proof: A full proof can be found in Appendix A. The idea is to use the polyphase decomposition (12) and the

stationary vector valued processXM[·] defined in (14). The PSD matrix of the process is shown to coincide with

the PSD-PC matrix ofX[·]. The proof shows that the DRF ofX[·] coincides with the DRF ofXM[·]. The result

then follows by applying (24) toXM[·].
Equation (25) has the waterfilling interpretation illustrated in Fig. 1: the DRF is obtained by setting a single

water-level over all eigenvalues of (26). These eigenvalues can be seen as the PSD ofM independent processes

obtained by the orthogonalization of the PC ofX[·]. Compared to the limit in the discrete-time version of the KL

expansion (21), expression (25) exploits the CS structure of the process by using its spectral properties. These

spectral properties capture information on the entire time-horizon and not only over a finite blocklength as in the

KL expansion.

The following theorem explains how to extend the above evaluation to the continuous-time case.

Theorem 2. Let X(·) be a Gaussian cyclostationary process with period T0 and correlation function RX(t,τ)

Lipschitz continuous in its second argument. For a given M∈ N, denote

DM(θM) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2π iφ) ,θM

}
dφ (27a)

R(θM) =
1

2T0

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2π iφ)/θM

]
dφ , (27b)

10



φλ3 (e
2πiφ )

λ2 (e
2πiφ )

λ1 (e
2πiφ )

Fig. 1: Waterfilling interpretation of (25) forM = 3. The blue and the yellow parts are associated with equations

(25a) and (25b), respectively.

whereλ1
(
e2π iφ)≤ . . .≤ λM

(
e2π iφ) are the eigenvalues of the matrixSX

(
e2π iφ) with its (m+1, r +1)th entry given

by

1
T0

∑
k∈Z

SrT0/M
X

(
φ − k

T0

)
e2π i(m−r) φ−k

M (28)

=
1
T0

∑
k∈Z

∑
n∈Z

Ŝn
X

(
φ − k

T0

)
e2π i nr+(m−r)(φ−k)

M .

Then the limit of DM in M exists and the distortion-rate function of X(·) is given by

D(R) = lim
M→∞

DM (θM(R)) . (29)

Proof sketch:The proof idea is to use a CS discrete-time process that approximatesX(·). This approximation

becomes tighter asM increases, so that the limit in (29) converges to the DRF of the continuous-time process

coincides. The proof details are given in Appendix B.

Discussion

The expression (27) is obtained by taking the limit in (25) over the time-period of a discrete-time CS process,

where the code rateR is appropriately adjusted to bits per time unit. Although (27) only provides the DRF in terms

of a limit, this limit is associated with the intra-cycle time resolution and not with the time horizon as in (21). This

fact allows us to express the DRF in terms of the spectral properties of the process, which captures ‘memory’ in

the process over the entire time horizon.

We note that limits of the form (29) have been obtained in closed-form using Szegő’s Toeplitz distribution

theorem [19, Section 5.2] when the underlying process is stationary and the matrix considered is Toeplitz [20],

[5], [2] or block Toeplitz [21], [22]. Unfortunately, the matrix in (28) is not Toeplitz or block Toeplitz so Szegő’s

theorem is not applicable. In the following section we provide a few examples where the limit in (29) can be

11



obtained in closed form which lead to a closed form expression for the DRF.

Expression (27) can be seen as the extension to CS of the waterfilling expression (22) derived for stationary

processes. While the latter can be understood as the limiting result of coding over orthogonal frequency bands [10],

expression (27) implies that the DRF for CS processes is the result of two orthogonalization procedures: (1) over

the PC inside a cycle, which is associated with the eigenvalues decomposition of the PSD-PC, and (2) over different

frequency bands of the stationary processes resulting fromthe first orthogonalization.

The decomposition of the process into its stationary PCs canbe further exploited to derive a lower bound on the

DRF, which become tight as these PC become highly correlated. This bound is explored in the next section.

IV. L OWER BOUND

In this section we derive a lower bound on the DRF of a GaussianCS process. This lower bound is expressed

only in terms of the PCs of the process and does not require theeigenvalue evaluation of Theorems 1 and 2. The

basis for this bound is the following proposition, which holds for any source distribution and distortion measure

(although we will consider here only the quadratic Gaussiancase).

Proposition 1. Let X[·] be a vector valued process of dimension M. The distortion-rate function ofX[·] satisfies

DX (R)≥ 1
M

M−1

∑
m=0

DXm (R) . (30)

Proof: Any rate R code for the processX[·] induces a rateR code on each of the coordinatesXm[·], m=

0, ...,M − 1. At each coordinate, this code cannot achieve lower distortion than the optimal rateR code for that

coordinate.

Proposition 1 applied to Gaussian CS processes leads to the following result:

Proposition 2. Let X[·] be a discrete-time Gaussian CS process with period M∈ N. The distortion rate function

of X[·] satisfies

D(R̄)≥ 1
M

M−1

∑
m=0

∫ 1
2

− 1
2

min
{

SXm
(
e2π iφ) ,θm

}
dφ , (31)

where for each m= 0, . . . ,M−1, θm satisfies

R̄(θm) =
1
2

∫ 1
2

− 1
2

log+
[
SXm

(
e2π iφ)/θm

]
dφ . (32)

Here

SXm
(
e2π iφ), SXmXm

(
e2π iφ)= 1

M

M−1

∑
n=0

Sm
X

(
e2π i φ−n

M

)

is the PSD of themth PC of X[·].

12



Proof: The claim is a direct application of Proposition 1 to our caseof a discrete-time CS process: the summands

on the RHS of (31) are the individual DRF of the PCsXm[·], m= 0, . . . ,M−1, of X[·] obtained by (23).

Proposition 2 can be extended to the continuous-time case byapproximating the outer integral in (33) by finite

sums. This yields the following result:

Proposition 3. Let X(·) be a continuous-time Gaussian cyclostationary process with period T0 > 0 and correlation

function RX(t,τ) Lipschitz continuous in its second argument. The distortion rate function of X(·) satisfies

D(R)≥ 1
T0

∫ T0

0

∫ 1
2

− 1
2

min

{

∑
n∈Z

S t
X

(
φ −n

T0

)
,θt

}
dφdt, (33)

where for each0≤ t ≤ T0, θt satisfies

R(θt) =
1

2T0

∫ 1
2

− 1
2

log+
[

∑
n∈Z

S t
X

(
φ −n

T0

)
/θt

]
dφ . (34)

Proof: See Appendix C.

The bound (31) is obtained by averaging the minimal distortion at rateR in describing each one of the PCs of

X(·). For each such componentXt [·] there is an associated water levelθt obtained by solving (34) forθt . For R= 0,

θt is always bigger than the essential supremum of

SXt
(
e2π iφ)= 1

T0
∑
n∈Z

S t
X

(
φ −n

T0

)
,

so the RHS of (31) equals the average over the total power of each one of the PCs ofX(·) which are summed to

σ2
X = DX(0). On the other hand, ifR→ ∞ thenθt → 0 for all t ∈ [0,T0], and again equality holds in (31). That is,

the bound is tight in the two extremes ofR= 0 andR→ ∞.

From a source coding point of view, the bound (33) can be understood as if a source code of rateR is applied

to each of the PCs ofX(·) individually. On the other hand, the DRF in (27) is obtained by applying a single rateR

code to describe all these PC simultaneously. As a result, the bound is tight only when all the PCs are maximally

correlated, i.e. when a single PC determines the rest of them. A case where the latter hold is shown in the following

example.

Example 3 (equality in (33)). Let X(·) be the PAM signal of Example 2 where the pulse p(t) is given by

p(t) =





1 0≤ t < T0,

0 otherwise.

The sample path of X(·) has a staircase shape illustrated in Figure 2. This process is equivalent to the discrete

time processŪ [·] , {U(nT0), n∈ Z} both in information rate and squared norm per period T0, which is enough

to conclude that DX(R) = DU(RT0). Indeed, the PCs in this case are maximally correlated, in the sense that a

realization of X0[·] = {X(nT0), n∈ Z} determines the value of X∆[·] = {X((n+∆)T0), n∈ Z} for all 0≤ ∆ < 1. In

13



T0 2T0 4T0 6T0 9T0 5.5 12T0

t

X(t)

Fig. 2: An example of a continuous-time PAM process that attains equality in (33).

U(·)
fs

Û(·) Dec Enc

Ū [n] =U(nT0)

R

‖u− û‖2

Fig. 3: Combined sampling and source coding system model.

addition, for all 0≤ t ≤ T0 we have

S t
X

(
e2π iφ)= S0

X

(
e2π iφ)= ∑

n∈Z
SU

(
φ −n

T0

)
,

where the latter is the PSD of the discrete time processŪ [·], so (22) implies that the RHS of(33) is the DRF of

Ū [·]. We therefore conclude that the DRF of X(·) is given by the RHS of(33).

V. A PPLICATIONS

In this section we apply the expression obtained in Theorem 2to study the distortion-rate performance of a few

CS processes that arise in practice.

A. Combined Sampling and Source Coding

We begin with the distortion-rate performance in the combined sampling and source coding problem considered

in [13]. This problem is described by the system of Figure 3: the sourceU(·) is a Gaussian stationary process with

a known PSDSU( f ). The source is uniformly sampled at ratefs = T−1
s , resulting in the discrete time process̄U [·]

defined byŪ [n] =U(n/ fs). The process̄U [·] is then encoded at rateR bits per time unit. The goal is to estimate

the sourceU(·) from its sampled and encoded version under a quadratic distortion. We denote by the function

14



DU|Ū ( fs,R) the minimal distortion attainable in this estimation, where the minimization is over all collections of

encoders and decoders operating at bitrateR. Note that ifU(·) is sampled above its Nyquist rate, then there is no

loss of information in the sampling operation, and we get

DU|Ū ( fs,R) = DU(R),

whereDU(R) is found by (22). Therefore, the case of most interest is thatof sub-Nyquist sampling ofU(·). In

what follows we use Theorem 2 to deriveDU|Ū ( fs,R) in closed form.

Our first observation is that the combined sampling and source coding problem of Fig. 3 can be seen as an

indirect source coding problem [23]: the distortion is measured with respect to the processU(·), but a different

process, namelȳU [·], is available to the encoder. Wolf and Ziv [24] have shown that the optimal source coding

scheme under quadratic distortion for this class of problems is obtained as follows: the encoder first obtains the

minimal mean square error (MMSE) estimate of the unseen source, and then an optimal source code is applied to

describe this estimated sequence to the decoder. In the setting of Figure 3, this implies thatDU|Ū ( fs,R) is attained

by first obtaining the MMSE estimate

Ũ(t) = E [U(t)|Ū [·]]

at the encoder, and then solving a standard source coding problem with the process̃U(·) as the process to which

the source code is applied. Moreover, this scheme implies that the distortion decomposes into 2 parts:

DU|Ū ( fs,R) = mmse(U |Ū)+DŨ(R), (35)

where mmse(U |Ū) is the MMSE in estimatingU(·) from Ū [·], andDŨ(R) is the DRF of the process̃U(·).
Standard linear estimation techniques [25] leads to

Ũ(t) = ∑
n∈Z

Ū [n]w(t −nT0) = ∑
n∈Z

U(nT0)w(t −nT0),

where the Fourier transform ofw(t) given by

W( f ) =
SU( f )

∑k∈Z SU( f − k/T0)
. (36)

Moreover, the error in this estimation is

mmse(U |Ū) =

∫ ∞

−∞
SU( f )d f −

∫ 1
2T0

− 1
2T0

S̃W( f )d f, (37)

where

S̃W( f ) = ∑
k∈Z

|W( f − k/T0)|2SU( f − k/T0). (38)

We conclude from the above thatDŨ(R), and thereforeDU|Ū ( fs,R), is obtained by solving a source coding

problem for an information source with a PAM signal structure, illustrated in Figure 4. Since Example 2 implies

that such a signal is CS with periodTs = f−1
s , we can apply Theorem 2 in order to evaluate this DRF. By doing

so, we obtain the following general result:
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Ū [n] PAM

w(t)

Enc Dec ̂̃U(t)
R

‖ũ(t)− ̂̃u(t)‖2

Ũ(t)

Fig. 4: Minimal distortion in Figure 3 is obtained by PAM followed by an optimal source code for the output of

this modulation.

Proposition 4 (DRF of PAM-modulated signals). Let XPAM(·) be defined by

XPAM(t) = ∑
n∈Z

U(nT0)p(t −nT0), t ∈ R, (39)

where U(·) is a Gaussian stationary process with3 PSD SU( f ) and p(t) is an analog deterministic signal with
∫ ∞
−∞ |p(t)|2dt<∞ and Fourier transform P( f ). Assume moreover, that the covariance function RXPAM(t,τ) of XPAM(·)

is Lipschitz continuous in its second argument. The distortion-rate function of XPAM(·) is given by

D(θ ) =
1
T0

∫ 1
2T0

− 1
2T0

min
{

S̃( f ),θ
}

d f (40a)

R(θ ) =
1
2

∫ 1
2T0

− 1
2T0

log+
[
S̃( f )/θ

]
d f, (40b)

where

S̃( f ) , ∑
k∈Z

|P( f − k/T0)|2SU( f − k/T0). (41)

Proof: See Appendix D.

Proposition 4 applied to the process̃U(·) implies that its DRFDŨ(R) is given by waterfilling over the function

J( f ), ∑
k∈Z

|W( f − k fs)|2SU( f − k fs).

As a result, we obtain from (35) and (40) the following expression for the minimal distortion in the combined

sampling and source coding problem:

DU|Ū ( fs,R) = mmse(U |Ū)+
1
T0

∫ 1
2T0

− 1
2T0

min{J( f ),θ}d f, (42a)

where

R(θ ) =
1
2

∫ 1
2T0

− 1
2T0

log+ [J( f )/θ ]d f. (42b)

3Although we only use the value ofU(t) at t ∈ ZT0, it is convenient to treatU(·) as continuous-time source so that the expressions emerging

have only continuous-time spectrum.
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B. Information Content of Signals with PAM Structure

Proposition 4 provides a general closed-form expression for the DRF of Gaussian processes with a PAM structure.

In this subsection we use this expression to study the effectof the PAM of (39) on the distortion-rate curve of

the signalXPAM(·) at the output of the modulator. Assuming that two processes have the same energy over time,

the process with lower DRF can be described by fewer bits per second to the same distortion level. It is therefore

intuitive to think about the DRF as a measure of theinformation contentof the process4.

If we assume that the source for the symbols in the PAM is a Gaussian stationary processU(·), the output of

the PAM of (39) can be seen as a non-ideal reconstruction ofU(·) from its uniform samples using pulses of shape

p(t), as illustrated in Figure 6. Since the randomness inXPAM(·) is only due toU(·), we expectXPAM(·) to have

a smaller information content thanU(·). In addition, we expect the information content ofXΦ(·) to increase with

the sampling rate 1/T0, and reach a saturation as this sampling rate exceeds the Nyquist rate ofU(·). Indeed, when

1/T0 is higher than the Nyquist rate ofU(·), the support ofSU( f ) is contained within
(
− 1

2T0
, 1

2T0

)
. In this case,

expression (40) implies that the DRF ofXPAM(·) is obtained by waterfilling over the function

S̃( f ) = |P( f )|2SU( f ). (43)

That is, the effect of the modulation in super-Nyquist sampling is identical to the effect of a linear filter with

frequency responseP( f ) applied toU(·). This filtering can be understood as a linear transformationof the coordinates

[28, Ch. 22] represented by the frequency components. Assuming that P( f ) does not change the support of (43)

(that is, the change in ‘coordinates’ is invertible), the processU(·) can be recovered fromXPAM(·) with zero mean-

square error. When the sampling frequency 1/T0 goes below the Nyquist rate ofU(·), perfect recovery ofU(·)
is in general not possible. Intuitively, in this case we expect XPAM(·) to contains less information thanU(·), and

hence we should be able to describe it under the same normalized distortion level asU(·) using fewer bits per time

unit. A quantitative evaluation of this effect of the sampling rate is given in Figure 6, where the DRF ofXPAM(·)
is compared to the DRF ofU(·) for three sub-Nyquist sampling rates. Examples for the realization of XPAM(·) and

U(·) using sub- and super- Nyquist sampling rates are given in Figure 5.

C. Amplitude Modulation with Random Phase

In this section we turn back to the two processes discussed inthe introduction as our motivating examples and

evaluate their DRFs using Theorem 2.

Consider the processXΦ(·) obtained by modulating a stationary Gaussian processU(·) by a cosine-wave of

frequency f0 and a random phaseΦ uniform over [0,2π), as defined in (1). It is an elementary exercise [4, Ex.

8.18] to show that the processXΦ(·) is stationary with PSD

SΦ( f ) =
1
2

SU( f − f0)+
1
2

SU( f + f0). (44)

4This notion is made precise by the notion ofε-entropy [26], [27]
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0 0

Fig. 5: Two realizations over time of the PAM processXPAM(·) (blue) and the baseband processU(·) (dashed) with

the PSD and pulse shape given in Figure 6, corresponding to sub-Nyquist (left) and super-Nyquist (right) sampling

rates. Figure 6 below shows that for the same target distortion, the PAM-modulated process on the left is easier to

describe than the PAM-modulated process on the right.
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Fig. 6: The DRF of the PAM signal (16) for three values of sampling rate 1/T0 compared to the Nyquist rateW of

U(·). The DRF of the baseband stationary signalU(·) (assuming an energy preserving modulation) is given by the

dashed curve. The PSD ofU(·) and the shape of the pulsep(t) are given in the small frames. This figure shows

that the information content of in the PAM process decreaseswith the sampling rate.

From [5, Thm. 4.6.5], an upper bound on the DRF ofXΦ(t), denoted byDXΦ(R), is obtained by the DRF of a

Gaussian process with the same PSDSΦ( f ) through the reverse-waterfilling (22). However, it seems that DXΦ(R)

cannot be determined solely from the second order statistics of XΦ(·).
The main obstacle in derivingDXΦ(R) is the random phase ofXΦ[·], which makes the process non-Gaussian and

non-ergodic. This random phase can be handled using an asynchronous block code [7, Ch. 11.6], i.e. by adding a

short prefix consisting of a source synchronization word to each block. Indeed, the following proposition follows

directly from the proof of Theorem 11.6.1 in [7]:
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Proposition 5. For any ϕ ∈ [0,2π) (deterministic), the DRF of the process XΦ(·) coincides with the DRF of the

process

Xϕ(t) =
√

2U(t)cos(2π f0t +ϕ) , t ∈ R. (45)

It was noted in Example 1 above thatXϕ(·) is CS with the SCD function (15). It follows thatDXΦ(R) is given by

the DRF of the Gaussian CS processXϕ(·), generated by modulating the stationary Gaussian processU(·) using a

deterministic cosine wave. Note that regardless of the carrier frequencyf0, the baseband processU(·) can always

be recovered fromXϕ(·), and that the
√

2 factor implies that the modulation preserves energy. These two facts are

not enough to guarantee equality between the DRFs of the processes, since the modulation may lead to a ‘change in

coordinates’ in the spectrum, in analogy with (43) and [28, Ch. 22]. In the following proposition we use Theorem 2

to show that this equality indeed holds as long asf0 is bigger than twice the bandwidth ofSU( f ).

Proposition 6. Let U(·) be a Gaussian stationary process bandlimited to(− fB, fB). Let f0 > 2 fB. The DRF of the

process

Xϕ(t) =
√

2U(t)cos(2π f0t +ϕ) , t ∈ R,

equals the DRF of the stationary Gaussian process U(·).

Proof: See Appendix E.

Proposition 7 asserts that the processXϕ(·) with AM signal structure suffers the same minimal distortion as the

baseband processU(·) upon the encoding of each of them at rateR, and provided the latter is narrowband. Figure 7

shows that the above equality does not necessarily hold whenU(·) is not narrowband. Propositions 5 and 6 leads

to the following conclusion:

Corollary 7. Let U(·) be a Gaussian stationary process bandlimited to(− fB, fB). Assume thatΦ is uniformly

distributed over(0,2π) and f0 > 2 fB. The distortion rate function of the stationary process

XΦ(t) =
√

2U(t)cos(2π f0t +Φ) , t ∈ R,

equals the DRF of the baseband process U(·).

It is interesting to note that the DRF of a Gaussian process with the same PSD as the stationary processXΦ(·)
is strictly bigger than the DRF of the baseband processU(·), and therefore provides an upper bound toDXΦ(R).

This upper bound is illustrated in Fig. 7.

VI. CONCLUSIONS

We derived an expression for the distortion-rate function (DRF) of a class of Gaussian processes with periodically

time-varying statistics, known as cyclostationary (CS) processes. This DRF is computed by reverse waterfilling

over eigenvalues of a spectral density matrix associated with the polyphase components in the decomposition of the

source. Unlike other general expression for the DRF of Gaussian processes that use orthogonal basis expansion over
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Fig. 7: The DRF of the processesXϕ(·) of (45) (blue), the DRF of the baseband processU(·) (dashed), and the

lower bound of Proposition 3. The PSDSU( f ) is taken to be the pulse given in the small frame. Proposition6

implies thatDU(R) andDXϕ (R) coincides forfs > 2 fB. Also shown is the DRF of the Gaussian stationary process

with PSDSΦ( f ) (dotted), which gives an upper bound toDXϕ (R).

increasing but finite time intervals, the expression we derive exploits the CS of the process by orthogonalizing the

polyphase components. Since these components are defined over the entire time horizon, the resulting expression

can be expressed in terms of the spectrum of the process. In the continuous-time counterpart the solution is given

in terms of a limit over functions of these eigenvalues.

While we leave open the possibility whether there exists a closed form solution to the above limit in general,

we have evaluated this limit in two special cases: a GaussianCS processes with a PAM signal structure, and a

Gaussian CS process with an amplitude modulation signal structure. As a result, we obtained the DRF of the

processes obtained by these two important modulation schemes in terms of the power spectral density of the

baseband stationary processes. We have also used the DRF result for a process with a PAM structure to derive the

DRF of a process under combined sampling and source coding.

In addition to an expression for the DRF of CS processes, we have derived a lower bound on this DRF obtained

by averaging the minimal distortion attained in encoding each of the polyphase components over a single period.

This bound is tight when high correlation among these components is present.
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APPENDIX A

In this Appendix we provide a proof of Theorem 1. Consider thevector valued processXM[·] defined in (14).

The rate-distortion function ofXM[·] is given by (24):

D(θ ) =
1
M

M

∑
m=1

∫ ∞

−∞
min

{
λm
(
e2π iφ) ,θ

}
dφ , (46a)

R(θ ) =
1
2

M

∑
m=1

∫ ∞

−∞
log+

[
λm
(
e2π iφ)/θ

]
dφ , (46b)

where 0≤ λ1
(
e2π iφ)≤ . . .≤ λM

(
e2π iφ) are the eigenvalues of the spectral density matrixSXM

(
e2π iφ) obtained by

taking the Fourier transform of covariance matrixRX[k] = E
[
XM[n+ k](XM[n])T

]
entry-wise. The(m, r)th entry of

SXM

(
e2π iφ) is given by (12):

(
SXM

(
e2π iφ))

m,r = Sm,r
X

(
e2π iφ)

=
1
M

M−1

∑
k=0

Sr
X

(
e2π i φ−k

M

)
e2π i(m−r) φ−k

M . (47)

It is left to show that the DRF ofXM[·] coincides with the DRF ofX[·]. By the source coding theorem for AMS

processes [7, Thm. 11.4.1] it is enough to show that the operational block coding distortion-rate function ([7, Ch.

11.2]) of both processes is identical. Indeed, anyN block codebook forXM[·] is an MN block codebook forX[·]
which achieves the same quadratic distortion averaged overthe block. However, sinceXM[·] is stationary, by [7,

Lemma. 11.2.3] we know that any distortion above the DRF ofXM[·] is attained for large enoughN. This implies

that the same is true forX[·].

APPENDIX B

In this Appendix we prove Theorem 2. Given a Gaussian cyclostationary processX(·) with period T0 > 0, we

define the discrete-time process̄X[·] obtained by uniformly samplingX(·) at intervalsT0/M, i.e.

X̄[n] = X(nT0/M), n∈ Z. (48)

The autocorrelation function of̄X[·] satisfies

RX̄[n+M,k] = E [X̄[n+M+ k]X̄[n+M]]

= E [X(nT0/M+T0+ kT0/M)X(nT0/M+T0)]

= RX(nT0/M+T0,kT0/M+T0)

= RX(nT0/M,kT0/M)

= RX̄[n,k],

which means that̄X[·] is a discrete-time Gaussian cyclostationary process with periodM. The TPSD ofX̄[·] is given

by

Sm
X̄(e

2π iφ ) =
M
T0

∑
k∈Z

SmT0/M
X

(
M
T0

(φ − k)

)
.

21



This means that the PSD of themth PC of X̄[·] is

Sm
X̄

(
e2π iφ)= 1

M

M−1

∑
n=0

Sm
X̄

(
e2π i φ−n

M

)

=
1
T0

M−1

∑
n=0

∑
k∈Z

SmT0/M
X

(
φ −Mk−n

T0

)

=
1
T0

∑
l∈Z

SmT0/M
X

(
φ − l

T0

)
.

By applying Theorem 1 tōX[·], we obtain an expression for the DRF ofX̄[·] as a function ofM:

DM(θM) =
1
M

M

∑
m=1

∫ 1
2

− 1
2

min
{

λm
(
e2π iφ) ,θM

}
dφ (49a)

R̄(θM) =
1

2M

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2π iφ)/θM

]
dφ , (49b)

whereλ1
(
e2π iφ)≤ . . .≤ λM

(
e2π iφ) are the eigenvalues of the matrix with(m+1, r +1)th entry

SX̄mX̄r

(
e2π iφ)= 1

M

M−1

∑
n=0

Sr
X̄

(
e2π i φ−n

M

)
e2π i(m−r) φ−n

M (50)

=
1
T0

M−1

∑
n=0

∑
k∈Z

SrT0/M
X

(
φ −n− kM

T0

)
e2π i(m−r) φ−n

M ,

=
1
T0

∑
l∈Z

SrT0/M
X

(
φ − l
T0

)
e2π i(m−r) φ−l

M .

In order to express the code-rate in bits per time unit, we multiply the number of bits per samplēR by the sampling

rateM/T0. This shows that the DRF of̄X[·], as measured in bits pertime unitR, is given by (27).

In order to complete the proof we rely on the following lemma:

Lemma 8. Let X(·) be as in Theorem 2 and let̄X[·] be its uniformly sampled version at rate M/T0 as in (48).

Denote the DRF at rate R bits per time unit of the two processesby D(R) and D̄(R), respectively. Then

lim
M→∞

D̄(R) = D(R).

The rest of the appendix is devoted to the proof of Lemma 8.

Throughout the next steps it is convenient to use the covariance kernelsK(t,s) = RX(s, t − s) and K̄[n,k] =

RX̄[n,k−n]. For M ∈ N, define

K̃(t,s) = K (⌊tM/T0⌋T0/M,⌊sM/T0⌋T0/M) .

For any fixedT > 0, the kernelK̃(t,s) defines an Hermitian positive compact operator [29] on the space of square

integrable functions over[−T,T]. The eigenvalues of this operator are given by the Fredholm integral equation

λ̃l f̃l (t) =
1

2T

∫ T

−T
K̃(t,s) f̃l (s)ds, −T ≤ t ≤ T, (51)
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where it can be shown that there are at mostMT/T0 non-zero eigenvalues{λ̃l} that satisfy (51). We define the

function D̃T(R) by the following parametric expression:

D̃T(θ ) =
∞

∑
l=1

min
{

λ̃l ,θ
}

R(θ ) =
1
2

∞

∑
l=1

log+
(

λ̃l

θ

) (52)

(the eigenvalues in (52) are implicitly depend onT). Note that

∞

∑
l=1

λ̃l =
1

2T

∫ T

−T
K̃(t, t)dt =

1
2T

N

∑
n=−N

K(nT0/M,nT0/M), (53)

whereN = MT/T0. Expression (53) converges to

1
2T

∫ T

−T
K(t, t)dt ≤ σ2

X

as M goes to infinity due to our assumption thatR(t,τ) is Riemann integrable and therefore so isK(t,s). Since

we are interested in the asymptotic of largeM, we can assume that (53) is bounded. This implies thatD̃T(R) is

bounded.

We would like to claim that the eigenvalues{λ̃l} approximate the eigenvalues{λl}. We have the following

lemma:

Lemma 9. Let{λl} and{λ̃l} be the eigenvalues in the Fredholm integral equation of K(t,s) andK̃(t,s), respectively.

Assume that these eigenvalues are numbered in a descending order. Then

∣∣∣λl − λ̃l

∣∣∣≤ 4CT0/M, l = 1,2, . . . . (54)

Proof of Lemma 9:Approximations of the kind (54) can be obtained by Weyl’s inequalities for singular values

of operators defined by self-adjoint kernels [30]. In our case it suffices to use the following result [31, Cor. 1”]:

∣∣∣λl − λ̃l

∣∣∣≤ 2 sup
t,s∈[−T,T]

∣∣∣K(t,s)− K̃(t,s)
∣∣∣ , l = 1,2, . . . . (55)

The assumption thatRX(t,τ) is Lipschitz continuous inτ implies that there exists a constantC > 0 such that for

any t1, t2,s∈R,

|K(t1,s)−K(t2,s)|= |RX(s, t1− s)−RX(s, t2− s)| ≤C|t1− t2| .

We therefore conclude thatKX(t,s) is Lipschitz continuous in both of its arguments from symmetry. Lipschitz

continuity of K(t,s) implies

|K(t1,s1)−K(t2,s2)|

≤ |K(t1,s1)−K(t1,s2)|+
∣∣∣K(t1,s2)− K̃(t2,s2)

∣∣∣

≤C|s1− s2|+C|t1− t2| .
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As a result, (55) leads to
∣∣∣λl − λ̃l

∣∣∣≤ 2sup
t,s

∣∣∣K(t,s)− K̃(t,s)
∣∣∣

= 2 sup
t,s∈[−T,T]

|K(t,s)−K (⌊tM/T0⌋T0/M,⌊sM/T0⌋T0/M)|

≤ 2C(|t −⌊tM/T0⌋T0/M|+ |t −⌊sM/T0⌋T0/M|)

≤ 4CT0/M,

which proves Lemma 9.

The significance of Lemma 9 is that the eigenvalues of the kernel K(t,s) used in the expression for the DRF of

X(·) can be approximated by the eigenvalues ofK̃(t,s), where the error in each of these approximations converge,

uniformly in T, to zero asM increases. Since only a finite number of eigenvalues participate in (21) and since both

DT(R) and D̃T(R) are bounded continuous functions of their eigenvalues, we conclude thatD̃T(R) converges to

DT(R) uniformly in T.

Now let ε > 0 and fixM0 large enough such that for allM > M0 and for allT

∣∣DT(R)− D̃T(R)
∣∣≤ ε. (56)

Recall that in addition to (23), the DRF of̄X[·], denoted here as̄D(R̄), can also be obtained as the limit inN of

the expression

D̄N(θ ) =
∞

∑
l=1

min
{

λ̄l ,θ
}

R̄(θ ) =
1
2

∞

∑
l=1

log+
(
λ̄l/θ

)
,

whereλ̄1, λ̄2, . . . are the eigenvalues in the KL expansion ofX̄ over n=−N, . . . ,N:

λ̄l fl [n] =
1

2N+1

N

∑
k=−N

KX̄ [n,k] fl [k], l = 1, . . . ,N, (57)

(there are actually at most 2N+ 1 distinct non-zero eigenvalues that satisfies (57)). Letting TN = T0M/N and

f̃l (t) = fl (⌊t/T0⌋M) (57) can also be written as

λ̄l fl [n] =
∫ TN

−TN

K̃X(nT0/M,s) fl [⌊s/T0⌋M]ds, l = 1,2, . . . ,

λ̄l f̃l (t) =
∫ TN

−Tn

K̃(t,s) f̃l (s)ds, −TN < t < TN.

From the uniqueness of the KL expansion, we obtain that for any N, the eigenvalues of̃K(t,s) overTN = T0M/N

are given by the eigenvalues of̄K[n,k] over−N, . . . ,N. We conclude that

D̄N(R̄) = D̃TN(R), (58)

whereR= R̄T0/M. Now takeN large enough such that

|D̄N(R)− D̄(R)|< ε,
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and

|DTN(R)−D(R)|< ε.

For all M ≥ M0 we have

|D(R)− D̄(R)|=
∣∣D(R)−DTN(R)+DTN(R)+ D̃TN(R)

− D̃TN(R) +D̄N(R)− D̄N(R)− D̄(R)|

≤ |D(R)−DTN(R)| (59)

+
∣∣DTN(R)− D̃TN(R)

∣∣ (60)

+
∣∣D̃TN(R)− D̄N(R)

∣∣ (61)

+ |D̄N(R)− D̄(R)| ≤ 3ε, (62)

where the last transition is because: (59) and (62) are smaller thanε by the choice ofN, (60) is smaller thanε

from (56). and (61) equals zero from (58).

APPENDIX C

In this Appendix we provide a proof of Proposition 3. We use the process̄X[·] defined in the proof of Theorem 2

as the uniform sampled version ofX(·) at rateT0/M. From Proposition 1 we conclude that the DRF ofX̄[·] satisfies

DX̄(R̄)≥
1
M

M−1

∑
m=0

∫ 1
2

− 1
2

min

{
1
T0

∑
l∈Z

SmT0/M
X

(
φ − l
T0

)
,θm

}
dφ , (63)

where for allm= 0, . . . ,M−1, θm is determined by

R̄=
1
2

∫ 1
2

− 1
2

log+
[

1
T0

∑
l∈Z

SmT0/M
X

(
φ − l

T0

)
/θm

]
dφ .

Denotet = mT0/M. As M approaches infinity, the RHS of (63) converges to an integralwith respect tot over the

interval (0,T0), which implies

D̄(R̄)≥ 1
T0

∫ T0

0

∫ 1
2

− 1
2

min

{

∑
l∈Z

S t
X

(
φ − l
T0

)
,θt

}
dφ , (64)

and

R̄=
1
2

∫ 1
2

− 1
2

log+
[

∑
l∈Z

SmT0/M
X

(
φ − l
T0

)
/θm

]
dφ , (65)

where we denotedθt = T0θm. In order to go fromR̄ to R we multiply (65) byM/T0, so that (64) and (65) lead to

(33). The fact that the function̄D(R) converges toD(R) asM goes to infinity follows from the proof of Theorem. 2.
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APPENDIX D

In this Appendix we provide a proof of Proposition 4. The entries of the matrixS
(
e2π iφ) in Theorem 2 are

obtained by using the CPSD of the PAM process (17) in (28). Forall M ∈N, this leads to

Sm+1,r+1
(
e2π iφ)=

1

T2
0

∑
k∈Z

[
P

(
φ − k

T0

)
SU

(
φ − k

T0

)
e2π i(φ−k)m−r

M

× ∑
n∈Z

P∗
(

φ −n− k
T0

)
e2π i nr

M

]
(66)

=
1

T2
0

∑
k∈Z

P

(
φ − k

T0

)
SU

(
φ − k

T0

)
e2π i(φ−k) m

M (67)

× ∑
l∈Z

P∗
(

φ − l
T0

)
e−2π i(φ−l) r

M .

The expression (67) consist of the product of a term depending only on m and a term depending only onr. We

conclude that the matrixS
(
e2π iφ) can be written as the outer product of twoM dimensional vector, and thus it is

of rank one. The single non-zero eigenvalueλM
(
e2π iφ) of S

(
e2π iφ) is given by the trace of the matrix, which, by

the orthogonality of the functionse2π i nr
M in (66), is evaluated as

λM
(
e2π iφ)= M

T2
0

∑
k∈Z

∣∣∣∣P
(

φ − k
T0

)∣∣∣∣
2

SU

(
φ − k

T0

)
. (68)

We now use (68) in (27). In order to obtain (40), we change the integration variable fromφ to f = φ/T0 and the

water-level parameterθ to T0θ/M. Note that the final expression is independent ofM, so the limit in (29) is already

given by this expression.

APPENDIX E

In this Appendix we provide a proof of Proposition 6. SinceSU( f ) is compactly supported, the covariance

function RU(τ) = EU(t + τ)U(t) is an analytic function and therefore Lipshitz continuous.Lipschitz continuity of

RU(τ) implies Lipschitz continuity ofRX(t,τ) in its second argument and therefore Theorem 2 applies: The DRF

of the Gaussian CS processXϕ(·) with period T0 = f−1
0 is obtained by using Theorem 2 with the SCD (15). For

all M ∈ N andm, r = 0, . . . ,M−1 we have,

Sm+1,r+1
(
e2π iφ)=

f0
2 ∑

k∈Z
SU ( f0(φ − k−1))

(
1+e4π ir/M

)
e2π i(φ−k)m−r

M

+
f0
2 ∑

k∈Z
SU ( f0(φ − k+1))

(
1+e−4π ir/M

)
e2π i(φ−k)m−r

M .
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Under the assumption thatf0 > 2 fB we have that for allφ ∈
(
− 1

2,
1
2

)
, SU ( f0(φ − k±1)) = 0 for all k 6= ±1. This

leads to

Sm+1,r+1
(
e2π iφ) (69)

= SU( f0φ)
f0
(
1+e4π ir/M

)

2
e2π i(φ+1)m−r

M

+SU( f0φ)
f0
(
1+e−4π ir/M

)

2
e2π i(φ−1)m−r

M

= 2 f0SU( f0φ)e2π i m−r
M φ cos

(
2π

m
M

)
cos
(

2π
r
M

)
. (70)

From (70) we conclude that the matrixS
(
e2π iφ) can be written as

S
(
e2π iφ)= 2 f0SU( f0φ)SM

(
e2π iφ)S∗

M

(
e2π iφ) ,

whereSM
(
e2π iφ) ∈ RM×1 is given by

(
1,e2π iφ/M cos

(
2π
M

)
, . . . ,e2π iφ M−1

M cos

(
2π(M−1)

M

))
.

This means thatS
(
e2π iφ) is a matrix of rank one, and its single non-zero eigenvalue isgiven by its trace:

λM
(
e2π iφ)= 2 f0SU( f0φ)

M−1

∑
m=0

cos2 (2πm/M) = M f0SU( f0φ).

We use this in (28):

RM(θ ) =
f0
2

M

∑
m=1

∫ 1
2

− 1
2

log+
[
λm
(
e2πφ)]dφ

=
f0
2

∫ 1
2

− 1
2

log+ [M f0SU( f0φ)/θ ]dφ

=
1
2

∫ ∞

−∞
log+ [SU( f )/(θ/M)]d f, (71)

and

DM(θ ) =
f0
M

∫ 1
2

− 1
2

min{M f0SU( f0φ),θ}dφ

= f0

∫ ∞

−∞
min{SU( f0φ),θ/M}dφ

=

∫ ∞

−∞
min{SU( f ),θ/M}d f. (72)

From (71) and (72) we conclude that for everyM, the parametric expression ofD as a function ofR is identical

to the DRF of the stationary processU(·) given by (22).
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