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Alfréd Rényi Institute of Mathematics,
Hungarian Academy of Sciences,

1364 Budapest, POB 127, Hungary

simonyi.gabor@renyi.mta.hu toth.agnes@renyi.mta.hu

1This paper is to be presented in part at the 2014 IEEE International Symposium on Infor-
mation Theory.

2Research is partially supported by the Hungarian Foundation for Scientific Research, Grants
K104343 and K105840.

3Research is partially supported by the Hungarian Foundation for Scientific Research, Grants
K104343 and K108947.

ar
X

iv
:1

40
6.

07
67

v1
  [

cs
.I

T
] 

 3
 J

un
 2

01
4



Abstract

We investigate a communication setup where a source output is sent through a free noisy
channel first and an additional codeword is sent through a noiseless but expensive channel
later. With the help of the second message the decoder should be able to decide with
zero-error whether its decoding of the first message was error-free. This scenario leads to
the definition of a digraph parameter that generalizes Witsenhausen’s zero-error rate for
directed graphs. We investigate this new parameter for some specific directed graphs and
explore its relations to other digraph parameters like Sperner capacity and dichromatic
number.

When the original problem is modified to require zero-error decoding of the whole mes-
sage then we arrive back to the Witsenhausen rate of an appropriately defined undirected
graph.

Keywords: zero-error, graph products, Sperner capacity, dichromatic number, Witsen-
hausen rate



1 Introduction

Consider the following situation. Alice writes a message to Bob consisting of the numbers
of several bank accounts to which Bob has to send some money. She writes in a hurry
(she just got to know that the transfers are urgent if they do not want to pay delay
punishment, but currently she has little time). Therefore her characters are not very well
legible, so Bob may misread some numbers. However, there are some rules for the possible
mistakes, e.g., a 7 may be thought to be a 1 but never a 6. This relation between the
possible digits need not be symmetric: it is possible that a 0 is sometimes read as a 6 but
a 6 may not be decoded as a 0. These rules of possible confusions are known both by
Alice and by Bob.

As Alice is aware of the possibility that Bob misread her message, later in the day she
sends another message to Bob, the goal of which is to make Bob certain whether he read
(decoded) the first message correctly or not. If he did he can transfer the money with
complete confidence that he sends it to the right accounts. If he did not he will know
that he does not know the account numbers correctly and so he better wait and pay the
punishment than transfer the money to the wrong place.

The second message will be received by Bob correctly for certain, but it uses an
expensive device, e.g., Alice sends it as an sms from another country after she has arrived
there. (Now we understand why she was in a hurry: she had to arrive to the airport in
time.) For some reason, every character sent from this foreign country costs a significant
amount of money for her. So she wants to send the shortest possible message that makes it
sure (here we insist on zero-error) that Bob will know whether his decoding of the original
handwritten message was error-free or not. The problem is to determine the best rate
of communication over the second channel as the length of the original message received
tends to infinity.

In Section 2 we describe the abstract communication model for this scenario and show
that the best achievable rate is a parameter of an appropriate directed graph. We will
see that this parameter of a directed graph is a generalization of the parameter (of an
undirected graph) called Witsenhausen rate. (This means that we also obtain a new
interpretation of Witsenhausen rate.)

In Section 3 we investigate the relationship with other graph parameters. These in-
clude Sperner capacity and the dichromatic number. The former is a generalization of
Shannon’s graph capacity [33] to directed graphs. Though originally defined to give a
general framework for some problems in extremal set theory (see [16, 17]), Sperner ca-
pacity also has its own information theoretic relevance, see [12, 30, 7]. The dichromatic
number is a generalization of the chromatic number to directed graphs introduced in [29].
Using the above mentioned relations we determine our new parameter for some specific
directed graphs.

In Section 4 we consider a compound channel type version of the problem parallel to
[30, 36].

In Section 5 some connections to extremal set theory are pointed out.
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In Section 6 we will consider the setup where the requirement is more ambitious and
we want that Alice’s second (the error-free but expensive) message make Bob able to
decode the original message with zero-error. (That is, he will know the message itself not
only the correctness or incorrectness of his original decoding of Alice’s handwriting.) We
will see that this setting leads to the Witsenhausen rate of an undirected graph related
to the problem. This gives a further new interpretation of Witsenhausen rate.

All logarithms are meant to be of base 2.

2 The Dilworth rate of a directed graph

2.1 The communication model

The abstract setting for our communication scenario is the following. We have a source
whose output is sent through a noisy channel. (This belongs to Alice’s handwriting.)
The input and output alphabets of this channel are identical and they coincide with the
output alphabet of the source. It is known how the noisy channel can deform the input, in
particular we know what (input) letters can become a certain, possibly different (output)
letter on the other side. (We always assume though that every letter can result in itself,
that is get through the noisy channel without alteration.) Later another message is sent
(by the same sender) to the same receiver. This second message is sent via a noiseless
channel and its goal is to make zero-undetected-error decoding possible, i.e., after having
received this second message the receiver should be able to decide whether it decoded
the first message correctly. The use of the noiseless channel is expensive, so the second
message should be kept as short as possible.

Let the shortest possible message that satisfies the criteria have length h(t) when t
characters of the source output are encoded together. Let H denote the noisy channel.
The efficiency of the communication is measured by the quantity

RD(H) := lim inf
t→∞

h(t)

t

that we call the Dilworth rate of the noisy channel H. (For an explanation of the name
see Remark 5 in Subsection 2.2.)

Remark 1 Note the special feature of the problem that we characterize a channel by a
rate, that is with a parameter that, unlike channel capacity, we want to be as small as
possible. The reason is that we measure the reliability of a channel not by the amount of
information it can safely transfer but with the amount of information needed to be added
for making the communication reliable. ♦

2.2 Dilworth rate and Witsenhausen rate

The relevant properties of H are described by a directed graph ~GH having the (common
input and output) alphabet as its vertex set and the following edge set. An ordered pair
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(a, b) of two letters forms a directed edge of ~GH if and only if b 6= a and the output of H
can be b when it is fed by a at the input.

Remark 2 As usual we will use V (~F ) to denote the vertex set and E(~F ) to denote the

edge set of a directed graph ~F . We will use similar notation for undirected graphs that
we always consider to be the same as a symmetrically directed graph. In such a graph
an ordered pair (u, v) of two vertices forms a directed edge if and only if the reversely
ordered pair (v, u) is also present in the digraph as a directed edge. We will use the term
oriented graph for directed graphs that do not contain any edge together with its reversed
version. That is ~F is an oriented graph if (u, v) ∈ E(~F ) implies (v, u) /∈ E(~F ). As it is
also customary, the term digraph will be used as a synonym for “directed graph”. ♦

To express RD as a graph parameter we need the following notion.

Definition 1 The AND product ~F ∧ ~G of two directed graphs ~F and ~G is defined as
follows. The vertex set of ~F ∧ ~G is the direct product V (~F )×V (~G) and vertex (f, g) sends

a directed edge to (f ′, g′) iff either (f, f ′) ∈ E(~F ) and (g, g′) ∈ E(~G) or (f, f ′) ∈ E(~F )

and g = g′ or f = f ′ and (g, g′) ∈ E(~G). The t-th AND power of a digraph ~G, denoted

by ~G∧t is the t-wise AND product of digraph ~G with itself.

Observe that this graph exponentiation extends to sequences of letters the relation
between individual letters f and f ′ expressing that feeding f to the noisy channel H may
result in observing letter f ′ at the output. A sequence of letters at the input of H can
result in another such sequence at the output of H if at each coordinate the character in
the first sequence can result in the corresponding character of the second sequence. (This
includes the possibility that the character does not change when sent through H.)

Remark 3 The terminology of graph products is not completely standardized. The AND
product we just defined is also called normal product [4], strong direct product [26], or
strong product [18]. We follow the paper of Alon and Orlitsky [3] when use the name
AND product, because we find this name informative. A similar remark applies to the
OR product that we will introduce later in Definition 3. ♦

Recall that the chromatic number χ(F ) of a graph F is the minimal number of colors

that suffice to color the vertices of F so that adjacent vertices get different colors. If ~F is
a digraph, its chromatic number χ(~F ) is understood to be the chromatic number of the
underlying undirected graph.

Proposition 1

RD(H) = lim
t→∞

1

t
logχ(~G∧tH ).
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Remark 4 It is easy to see that the above limit always exists. (The reason is the sub-
multiplicative behaviour of the chromatic number under the AND product). ♦

Proof. Alice and Bob can agree in advance in a proper coloring of ~G∧tH with χ(~G∧tH )
colors. Alice can send Bob the color of the vertex belonging to the original source output
using dlogχ(~G∧tH )e bits. Bob compares this to the color of the vertex representing the
sequence he obtained as a result of his decoding. If the latter color is identical to the one
Alice has sent him, then he can be sure that his decoding was error-free. This is because
any other sequence that could result in his decoded sequence is adjacent (in ~G∧tH ) to this
decoded sequence, so its color is different.

On the other hand, if Alice sent a shorter message through the noiseless channel,
then she could not have χ(~G∧tH ) distinct messages and thus there must exist two adjacent

vertices in ~G∧tH that are encoded to the same codeword by Alice (for the noiseless channel).
Then one of the two sequences represented by these two adjacent vertices could result in
the other one, while this other one could also result in itself. Thus Bob cannot make
the difference between these two sequences, one of which is the correct source output
sequence while the other one differs from it. So receiveing this message Bob could not be
sure whether his decoding was error-free or not. �

The right hand side expression in Proposition 1 can be considered as a digraph pa-
rameter that we will call the Dilworth rate of the digraph ~GH .

Definition 2 For a directed graph ~G we define its (logarithmic) Dilworth rate to be

RD(~G) := lim
t→∞

1

t
logχ(~G∧t).

The non-logarithmic Dilworth rate is

rD(~G) := lim
t→∞

t

√
χ(~G∧t).

Obviously, RD(~G) = log rD(~G).

Remark 5 Let ~L be the directed graph on 2 vertices with a single directed edge. If
we consider the vertices of ~L∧t as characteristic vectors of subsets of a t-element set
then RD(~L) can be interpreted as the asymptotic exponent of the minimum number of
antichains (sets of pairwise incomparable elements) in the Boolean lattice of these subsets
that can cover all the subsets. The exact value of this minimum number is given (easily)
by a special case of what is called the “dual of Dilworth’s theorem” [13] (also called
Mirsky’s theorem, see [28]). This connection to Dilworth’s celebrated result is the reason
for calling our new parameter Dilworth rate. Note that the name Sperner capacity was
picked by the authors of [16] for analoguous reasons: the Sperner capacity of the digraph
~L has a similar relationship with Sperner’s theorem [37]. ♦
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The AND product is also defined for undirected graphs. Considering undirected graphs
as symmetrically directed graphs the definition is straightforward.

Witsenhausen considered the “zero-error side-information problem” that led him to
introduce the quantity

RW(G) = lim
t→∞

1

t
logχ(G∧t)

that is called the Witsenhausen rate of (the undirected) graph G.

It is straightforward from the definitions that if ~G is a symmetrically directed graph
and G is the underlying undirected graph (that we consider equivalent), then RW(G) =

RD(~G). Thus Dilworth rate is indeed a generalization of Witsenhausen rate to directed
graphs.

Remark 6 We note that Nayak and Rose [30] defines what they call “the Witsenhausen
rate of a set of directed graphs”. Though formally this gives the Dilworth rate of a
directed graph, the focus of [30] is elsewhere. When its motivating setup results in a
family consisting of a single digraph, then this digraph is symmetrically directed. (See
also Theorem 15 in Section 4.) ♦

3 Bounds on the Dilworth rate

3.1 Relation to Sperner capacity and a lower bound

Sperner capacity was introduced by Gargano, Körner and Vaccaro [16]. Traditionally this
parameter is defined by using the OR product.

Definition 3 The OR product ~F ∨ ~G of directed graphs ~F and ~G has vertex set V (~F )×
V (~G) and (f, g) sends a directed edge to (f ′, g′) iff either (f, f ′) ∈ E(F ) or (g, g′) ∈ E(~G).

The t-th OR power ~G∨t is the t-wise OR product of digraph ~G with itself.

Let ~Kn denote the complete directed graph on n vertices, that is the one we obtain
from a(n undirected) complete graph Kn when substituting each of its edges {a, b} by

the two oriented edges (a, b) and (b, a). The (directed) complement of a digraph ~G is the

directed graph ~Gc on vertex set V (~G) having edge set E(~Gc) = E( ~Kn) \ E(~G).

Now we note the straightforward relation of the AND and OR powers that (~G∨t)c =

(~Gc)∧t.

The (logarithmic) Sperner capacity of digraph ~G is defined (see [16, 17]) as

Σ(~G) := lim
t→∞

1

t
logωs(~G

∨t),

where ωs(~F ) denotes the symmetric clique number, that is the cardinality of the largest

symmetric clique in digraph ~F : the size of the largest set U ⊆ V (~F ) where for each

f, f ′ ∈ U both (f, f ′) and (f ′, f) are edges of ~F .
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Using the above relation of the AND and OR products, Sperner capacity (of the

complementary graph ~Gc) can also be defined as

Γ(~G) := Σ(~Gc) = lim
t→∞

1

t
logα(~G∧t),

where α(~F ) stands for the independence number (size of the largest edgeless subset of the

vertex set) of graph ~F . This is the definition given in [7]. (The authors of [7] call this

value the Sperner capacity of ~G.)

When G is an undirected (or symmetrically directed) graph, then Γ(G) = C(G), the
Shannon capacity of graph G (see [33]).

We will need a sort of probabilistic refinement of our capacity-like parameters called
their “within-a-type” versions, see [10]. First we need the concept of (P, ε)-typical se-
quences, cf. [11].

Definition 4 Let V be a finite set, P a probability distribution on V , and ε > 0. A
sequence x in V t is said to be (P, ε)-typical if for every a ∈ V we have |1

t
N(a|x)−P (a)| <

ε, where N(a|x) = |{i : xi = a}|. We denote the set of (P, ε)-typical sequences in V t by
T t(P, ε). When ε = 0 we also write T tP for T t(P, 0). If x ∈ T t(P, 0) we say that the type
of x is P .

Let ~G�t stand for either ~G∧t or ~G∨t. For a directed (or undirected) graph ~F and U ⊆ V (~F )

we denote by ~F [U ] the digraph induced by ~F on the subset U of the vertex set. We also

use the shorthand notation ~F�tP,ε = ~F�t[T t(P, ε)].
Let β(~G) be either of the following graph parameters of the directed graph ~G: inde-

pendence number, clique number, chromatic number, clique cover number (which is the
chromatic number of the complementary graph), symmetric clique number, or transitive

clique number. (The latter is the size of the largest subset U of V (~G) the elements of
which can be linearly ordered so that if u precedes v then the oriented edge (u, v) is

present in E(~G).)

Let the asymptotic parameter Z(~G) be defined as

Z(~G) := lim sup
t→∞

1

t
log β(~G�t),

while Z(~G) stands for log z(~G).

Definition 5 The parameter Z(~G, P ) of a digraph ~G within a given type P is the value

Z(~G, P ) = lim
ε→0

lim sup
t→∞

1

t
log β(~G�tP,ε).
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We note that for several of the allowed choices of β(~G) and ~G�t we obtain a graph

parameter that already exists in the literature. For example, when β(~G) = ωs(~G) and the
power we look at is the OR power, we get Sperner capacity within a given type, that has
an important role in the main results of the papers [16, 17].

If we choose β(~G) = χ(~G) and the OR power, we obtain the functional called graph
entropy, which is defined in [20] and has several nice properties, see [34, 35], as well as

important applications, see e.g. [19]. When β(~G) = χ(~G) but the exponentiation is the

AND power, then we arrive to the within a type version of Dilworth rate RD(~G, P ). The
special case of this for an undirected graph G was already known under name “com-
plementary graph entropy” that could justifiably be called “Witsenhausen rate within a
given type”. This parameter was introduced by Körner and Longo [22] and further inves-
tigated by Marton [27]. Although this within-a-type version of Witsenhausen’s invariant
was introduced earlier than the non-probabilistic version (cf. [22, 38]), for the sake of
consistancy we denote it by RW (G,P ).

Note that Marton [27] proved the important identity

RW (G,P ) + C(Gc, P ) = H(P ),

where H(P ) = −Σn
i=1pi log pi is the entropy of the probability distribution P =

(p1, . . . , pn). This holds for any probability distribution P on V (G). Along the same
lines one can also prove the following theorem. We give its proof for the sake of complete-
ness.

We will use the notion of fractional chromatic number χf (G) in the proof. Let S(G)
denote the set of independent sets in G. A function g : S(G) → R+,0 is a fractional
coloring of G if for every vertex v ∈ V (G) we have

∑
v∈A∈S(G) g(A) ≥ 1, that is the sum

of the weights g puts on independent sets containing v is at least 1. (A proper colorig is
also a fractional coloring: the color classes get weight 1, the other independent sets get
weight 0.) The fractional chromatic number is χf (G) = ming

∑
A∈S(G) g(A), that is the

minimum (taken over all fractional colorings) of the total weight put on independent sets
by a fractional coloring g. (Formally we should write infimum but it is known that the
minimum is always attained. See the book [32] for a detailed account on fractional graph
parameters.)

We will need the following properties of the fractional chromatic number.

Definition 6 A directed graph ~G is vertex-transitive if for any two vertices u, v ∈ V (~G)
it admits an automorphism that maps u to v.

If F is a vertex-transitive graph, then χf (F ) = |V (F )|
α(F )

. (For a proof see [32], Proposi-

tion 3.1.1 on page 41.)

For every graph F we have

lim
t→∞

t
√
χ(F�t) = lim

t→∞
t

√
χf (F�t).
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The latter follows from Lovász’s result [24] stating that χ(F ) ≤ χf (F )(1 + lnα(F )) and
the obvious inequality χf (F ) ≤ χ(F ) that holds for all (finite simple) graphs.

Theorem 2 Let ~G be a directed graph and P an arbitrary fixed probability distribution
on V (~G). Then

RD(~G, P ) + Γ(~G, P ) = H(P ).

Proof. Note that by the well-known (and more or less trivial) inequality χ(F ) ≥ |V (F )|
α(F )

for every graph F , we have χ(F∧tP,ε) ≥
|V (F∧t

P,ε)|
α(F∧t

P,ε)
. Clearly, this relation also holds if

we have a directed graph ~F in place of the undirected graph F . This is straightfor-
ward since χ(~F ) and α(~F ) are defined to be identical to the corresponding param-
eter of the underlying undirected graph F . It is also well-known (cf. e.g. [11])
that limε→0 limt→∞

1
t

log(|T t(P, ε)|) = H(P ). The last two relations immediately give

RD(~G, P ) + Γ(~G, P ) ≥ H(P ).
For the reverse inequality let us fix a sequence of probability distributions Pt on the vertex
set of our graph so that

lim
t→∞

max
a∈V (G)

|P (a)− Pt(a)| = 0

and

lim
t→∞

1

t
logχ(~G∧t, Pt) = RD(~G, P ).

Notice that ~G∧t(Pt, 0) is a vertex-transitive graph, since every sequence forming an
element of T t(Pt, 0) can be transformed into any other such sequence by simply permuting
the coordinates.
Thus

RD(~G, P ) = limt→∞
1
t

logχ(~G∧t, Pt)

= limt→∞
1
t

logχf (~G
∧t, Pt)

= limt→∞
1
t

log |V ( ~G∧t,Pt)|
α( ~G∧t,Pt)

= limt→∞
1
t

log |V (~G∧t, Pt)|−
− limt→∞

1
t

logα(~G∧t, Pt)

= H(P )− Γ(~G, P ).

�

Using standard techniques of the method of types, cf. [9, 11] we can already state our

lower bound on RD(~G). We need the fact that fixing the length t the number of distinct
types of a sequence over some fixed alphabet is only a polynomial funcion of t (cf. the
Type Counting Lemma 2.2 in [11]), while the parameters we investigate are asymptotic
exponents of some graph parameters that grow exponentially as t tends to infinity. With
this in mind we can write

RD(~G) = sup
P
RD(~G, P ), Γ(~G) = sup

P
Γ(~G, P ).
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Theorem 3
RD(~G) ≥ log |V (~G)| − Γ(~G).

Proof. Using the above equalities, we obtain RD(~G) + Γ(~G) = supP RD(~G, P ) +

supP Γ(~G, P ) ≥ supP (RD(~G, P ) + Γ(~G, P )) = supP H(P ) = log |V (~G)|. This gives the
lower bound in the statement. �

Note that Sperner capacity is unkown for many graphs, so the lower bound above usually
does not give a known numerical value. Still, there are some examples of graphs where
Sperner capacity is known and is non-trivial. A basic example is the cyclically oriented
triangle, or more generally, any cyclically oriented cycle.

First we formulate a consequence of the above formula.

Corollary 4 If ~G is a vertex-transitive digraph then

RD(~G) = log |V (~G)| − Γ(~G).

Proof. Let PU denote the uniform distribution on the vertex set of ~G. If ~G is vertex-
transitive then by symmetry RD(~G) = RD(~G, PU) and Γ(~G) = Γ(~G, PU). Combining

these equalities with Theorem 3 we obtain RD(~G)+Γ(~G) = H(PU) = log |V (~G)| and thus
the statement. �

Now we will use this Corollary to determine the Dilworth rate of the cyclically oriented
k-length cycle ~Ck for every k. Note that the complement of a cyclically oriented cycle is
a cyclically oriented cycle of the same length together with all diagonals as bidirected (or
equivalently, undirected) edges. For k = 3 there are no diagonals, so the cyclic triangle is
isomorphic to its complement.

The Sperner capacity of the cyclic triangle was determined in [8], cf. also [5], and
its value is log 2. This result was generalized by Alon [1], who proved that the Sperner

capacity of a digraph ~G is bounded from above by log min{∆+(~G),∆−(~G)} + 1, where

∆+(~F ) and ∆−(~F ) stand for the maximum outdegree and maximum indegree of ~F , re-
spectively. The indegree and outdegree of a vertex v is the number of edges at v that
are oriented towards or outwards v, respectively. (Cf. [23] for a further generalization of
Alon’s result.)

On the other hand, Sperner capacity is bounded from below by (the logarithm of) the
transitive clique number, the number of vertices in a largest transitively directed complete
subgraph, denoted by ωtr(~G). (This is an easy observation which implies that substituting

ωs(~G
∨t) by ωtr(~G

∨t) in the definition of Sperner capacity gives the same value, i.e. it gives
an alternative definition of Sperner capacity, see [21, 14, 31] and also Proposition 4 and the
Remark following it in [15].) Note that a transitively directed complete subgraph meant
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here is not necessarily induced. It is allowed that some reverse edges are also present on
the same subset of vertices.

Corollary 5 The Dilworth rate of the cyclically oriented k-cycle is

RD(~Ck) = log
k

k − 1
.

Proof. Let the directed complement of ~Ck be denoted by ~Sk. Since ∆+( ~Sk) = ∆−(~Sk) =

k − 2, Alon’s above mentioned result implies that the Sperner capacity of ~Sk is at most
log(k − 1).

It is easy to see that ωtr(~Sk) = k − 1, so the lower bound mentioned above is also

log(k − 1). Since the above two bounds coincide, the Sperner capacity of ~Sk is equal to
log(k − 1).

Using that ~Ck is vertex transitive Corollary 4 implies the statement. �
Note that Corollary 5 shows that the Dilworth rate is a true generalization of Witsen-

hausen rate since log k
k−1 < log 2 ≤ RW(Ck) if k ≥ 3.

Definition 7 Call a subset of the vertex set of a directed graph ~G acyclic if it induces an
acyclic subgraph. The latter means that there is no oriented cycle on these vertices. The
acyclicity number a(~G) of a directed graph ~G is the number of vertices in a largest acyclic

subset of V (~G).

Note that unlike for a transitive clique we do not allow reverse edges in an acyclic
subgraph.

Let m ≥ 1 be an odd number. The following tournaments (oriented complete graphs)

are also generalizations of the cyclic triangle. Let V (~Tm) = {0, 1, . . . ,m− 1} and (i, j) is
an edge iff j − i ≡ r (mod m) for some 1 ≤ r ≤ m−1

2
. (Figure 1 shows the tournament

~T5.) Note that it holds for every directed graph that reversing all of its edges does not
change the value of either its Sperner capacity or of its Dilworth rate. This implies that
if ~T is a tournament then we have Σ(~T c) = Σ(~T ) and Γ(~T c) = Γ(~T ). By Γ(~T ) = Σ(~T c)
all the four values are equal.

Corollary 6 For all odd integers m > 0 we have

RD(~Tm) = log
2m

m+ 1
.

Proof. We know that Γ(~G) ≥ log a(~G) holds for all directed graphs (cf. [7] and also the
discussion before Corollary 5 for an equivalent statement concerning the complementary
digraph). This gives Γ(~Tm) ≥ log m+1

2
.
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4 3

0 2

1

Figure 1: The tournament ~T5.

By Γ(~Tm) = Σ(~Tm) (see the note before stating the Corollary) Alon’s result can be

applied implying that our lower bound is sharp. Since ~Tm is vertex-transitive we can
apply Corollary 4 to complete the proof. �

Observe that Corollary 6 shows not only that the value of the Dilworth rate of an
oriented graph may differ from the Witsenhausen rate of the underlying undirected graph,
but also that the difference can be arbitrarily large. Indeed, denoting the complete graph
on m vertices by Km we have log 2m

m+1
< logm = RW(Km) for every m ≥ 2. The left hand

side of the inequality is bounded above by log 2, while the right hand side goes to infinity
with m.

3.2 Dichromatic number and upper bounds

Now we show that the (logarithm of the) dichromatic number defined in [29] is an upper
bound on the Dilworth rate.

Definition 8 The dichromatic number χdir(~G) of a directed graph ~G is the minimum

number of acyclic subsets that cover V (~G). A partition of V (~G) into acyclic subsets will
be called a directed coloring or dicoloring.

We note that an undirected edge (meaning a bidirected edge) is considered to be a 2-
length cycle, therefore its two endpoints cannot be both contained in an acyclic set. This
shows that for undirected (equivalently, symmetrically directed) graphs the dichromatic
number is equal to the chromatic number.

Remark 7 We do not use the term “acyclic coloring”, because it is already used for a
completely different concept, see [2]. ♦

Theorem 7 For any directed graph ~G

rD(~G) ≤ χdir(~G).

11



Proof. Let us fix a directed coloring of digraph ~G consisting of k := χdir(~G) acyclic

subsets (“color classes”). For each v ∈ V (~G) let g(v) denote the color class that contains
v.

Now consider ~G∧t. It has [V (~G)]t vertices. For each sequence (a1, . . . , at) ∈ V (~G∧t)
we attach the sequence of colors (g(a1), . . . , g(at)). There are kt such color sequences, so

this gives a partition of V (~G∧t) into kt partition classes.

We also give another partition of V (~G∧t) according to types. Two vertices are in the same
partition class if their type is the same. By the Type Counting Lemma 2.2 in [11], we

know that this latter partition has at most (t+1)|V ( ~G)|, that is a polynomial number (in t)
of classes. Now let Q = (Q1, . . . , Qs) be the common refinement of these two partitions.

We have s ≤ (t + 1)|V ( ~G)|kt by the foregoing. Now we show that each partition class Qi

induces an independent set in ~G∧t. Let two sequences a = (a1, . . . , at) and b = (b1, . . . , bt)
belong to the same Qi, that is, they have the same type and ∀i : g(ai) = g(bi). Let j
be an index for which aj 6= bj. Since aj and bj are in the same color class of a valid
dicoloring, we cannot have both (aj, bj) and (bj, aj) present in the graph as a directed

edge. If neither is present then there is no edge between a and b. If (aj, bj) ∈ E(~G),

then we know that (bj, aj) /∈ E(~G), so the oriented edge (b,a) cannot be an edge of
~G∧t. We need to show that neither the opposite oriented edge (a, b) can be present in
~G∧t. This is because if (aj, bj) ∈ E(~G), then there should be another position ` for which

(b`, a`) ∈ E(~G). If this is true, then (a`, b`) /∈ E(~G) and so (a, b) /∈ E(~G∧t). The existence
of ` with the above property holds for the following reason. Consider all coordinates h,
for which g(ah) = g(aj) = g(bj) = g(bh). Denote the set of these h’s L. Since vertices

v ∈ V (~G) with the same “color” g(v) induce an acyclic subdigraph, we can put these

vertices into a linear order so, that (v, v′) ∈ E(~G) implies that v precedes v′ in this linear

order. So if (aj, bj) ∈ E(~G), then for our edge (aj, bj) aj precedes bj. However, since a
and b has the same type it cannot happen that for each h ∈ L ah precedes bh in this linear
order. So there must be a coordinate ` where b` precedes a` and this implies the claimed
properties. Thus each partition class Qi is independent indeed, so the undirected graph
underlying ~G∧t can be properly colored with s ≤ (t + 1)|V ( ~G)|kt colors. This implies that

rD(~G) = limt→∞
t

√
χ([~GH ]∧t) ≤ lim inft→∞

t

√
(t+ 1)|V ( ~G)|kt = k = χdir(~G). �

As a strengthening of the previous theorem we will show that we can also write a natural
fractional relaxation of the dichromatic number on the right hand side above. (We could
not prove this right away, as the weaker statement will be used in the proof.) To prove
this stronger statement we need some preparation, in particular we will use the following
observations.

First note, that χdir(~F ) ≤ χ(~F ) holds for any digraph ~F . This is simply because inde-

pendent sets in ~F are special acyclic sets, so any proper coloring of ~F is also a directed
coloring of ~F .

12



Proposition 8 The dichromatic number is submultiplicative with respect to the AND
product, i.e.

χdir(~F ∧ ~G) ≤ χdir(~F )χdir(~G).

In particular,
χdir(~F

∧t) ≤ [χdir(~F )]t.

A straightforward consequence of Proposition 8 is that the limit limt→∞
t
√
χdir(F∧t) exists.

Proof of Proposition 8 Let c~F : V (~F ) → {1, . . . , χdir(~F )} and c ~G : V (~G) →
{1, . . . , χdir(~G)} be optimal directed colorings of the digraphs ~F and ~G, respectively.

Using these colorings we define the function ĉ : V (~F ) × V (~G) → {1, . . . , χdir(~F )χdir(~G)}
as follows. For (u, v) ∈ V (~F ) × V (~G) let ĉ : (u, v) 7→ (c~F (u), c ~G(v)). Observe that
the AND product of two acyclic (sub)graphs results in an acyclic (sub)graph. Assume

for contradiction that A and B are acyclic subsets of V (~F ) and V (~G), respectively, and

(~F ∧ ~G)[A × B] contains a directed cycle. (Recall that ~Y [U ] denotes the digraph ~Y in-

duces on U ⊆ V (~Y ).) Let its vertices be (a1, b1), . . . , (ak, bk) in the (cyclic) order the cycle

defines, i.e. ((ai, bi), (ai+1, bi+1)) is an edge of ~F ∧ ~G for all i ∈ {1, . . . , k} where addition
is intended modulo k. We may assume without loss of generality that not all ai’s are
equal. Then in the sequence a1, a2, . . . , ak we have for all i ∈ {1, . . . , k} either ai = ai+1

or (ai, ai+1) ∈ E(~F ) (addition is again modulo k) and for some i the second case occurs.

But then there must be a directed cycle in ~F [{a1, . . . , ak}] contradicting the assumption

that A is acyclic. The above implies that ĉ is a directed coloring of ~F ∧ ~G. As it uses
χdir(~F )χdir(~G) colors the statement is proved. �

Lemma 3.1 For any digraph ~F and positive integer k we have

rD(~F∧k) = [rD(~F )]k.

Proof. Fix an arbitrary positive integer k. We can write

rD(~F ) = limm→∞
mk

√
χ(~F∧mk)

= limm→∞
k

√
m

√
χ([~F∧k]∧m)

=
k

√
limm→∞

m

√
χ([~F∧k]∧m)

=
k

√
rD(~F∧k),

that implies the statement. �
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Proposition 9 For any digraph ~F we have

lim
t→∞

t

√
χdir(~F∧t) = rD(~F ).

Proof. By χdir(~F ) ≤ χ(~F ) we have

lim
t→∞

t

√
χdir(~F∧t) ≤ lim

t→∞

t

√
χ(~F∧t) = rD(~F ).

For the reverse inequality we can write

rD(~F ) = lim
t→∞

t

√
rD(~F∧t) ≤ lim

t→∞

t

√
χdir(~F∧t),

where the equality follows by noticing that Lemma 3.1 above is valid for all positive
integers t and the inequality is a consequence of rD(~G) ≤ χdir(~G) applied for ~G = ~F∧t. �

Definition 9 Let the set of subsets of the vertex set inducing an acyclic subgraph in a
digraph ~G be A(~G). A function g : A(~G) → R+,0 is called a fractional directed coloring

(or fractional dicoloring) if for ∀v ∈ V (~G) we have Σv∈U∈A( ~G)g(U) ≥ 1. The fractional

dichromatic number of ~G is

χdir,f (~G) = min
g

ΣU∈A( ~G)g(U),

where the minimum is taken over all fractional directed colorings g of ~G.

Note the obvious inequality χdir,f (~G) ≤ χdir(~G) for any digraph ~G.

We will need the following lemma.

Lemma 3.2 For any digraphs ~F and ~G we have

χdir,f (~F ∧ ~G) ≤ χdir,f (~F )χdir,f (~G).

Proof. Let f and g be optimal fractional directed colorings of ~F and ~G, respectively.
We use the observation, already verified in the proof of Proposition 8, stating that if
A ∈ A(~F ) and B ∈ A(~G) then the direct product A × B is in A(~F ∧ ~G), i.e. A × B

induces an acyclic subdigraph in ~F ∧ ~G.
Now give the following weights w to the acyclic sets of ~F ∧ ~G. If H ∈ A(~F ∧ ~G) has a

product structure, i.e. H = A× B for some A ∈ A(~F ) and B ∈ A(~G), then let w(H) =

f(A)g(B). If H is not of this form, then let w(H) = 0. For any (a, b) ∈ V (~F ∧ ~G) we
have

∑
H3(a,b)w(H) = (

∑
A3a f(A))(

∑
B3b f(B)) ≥ 1, thus w is a fractional dicoloring of

~F ∧ ~G. Now we have χdir,f (~F ∧ ~G) ≤ (
∑

A∈A(~F ) f(A))(
∑

B∈A( ~G) g(B)) = χdir,f (~F )χdir,f (~G).
This completes the proof. �
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Corollary 10 For any digraph ~G and any positive integer t we have

χdir,f (~G
∧t) ≤ [χdir,f (~G)]t.

�

We also need the following result.

Proposition 11 For any digraph ~F we have

lim
t→∞

t

√
χdir,f (~F∧t) = rD(~F ).

For the proof we need some preparation.
A hypergraph H = (V, E) consists of a vertex set V = V (H) and an edge set E , where

the elements of E are subsets of V . A covering of hypergraph H is a set of edges the
union of which contains all elements of V (H). Let k(H) denote the minimum number of
edges in a covering of H. A fractional covering of a hypergraph H = (V, E) is a function
g : E → R+,0 satisfying for every v ∈ V that

∑
v∈E∈E g(E) ≥ 1. The fractional covering

number is kf (H) := ming
∑

E∈E g(E) where the minimization is over all fractional covers
g. Clearly, kf (H) ≤ k(H). Lovász proved in [24] (cf. also [32]) that

k(H) ≤ kf (H)(1 + log µ(H)),

where µ(H) = max{|E| : E ∈ E(H)}, that is the cardinality of a largest edge in H.

For a directed graph ~G let H ~G = (V (~G), E ~G) where E ~G = A(~G), i.e. it consists of

the acyclic subsets of vertices in ~G. It is straightforward that k(H ~G) = χdir(~G) and

kf (H ~G) = χdir,f (~G) while µ(H) = a(~G). Thus the above result implies that

χdir(~G) ≤ χdir,f (~G)(1 + log a(~G)).

Proof of Proposition 11 We have limt→∞
t

√
χdir,f (~F∧t) ≤ limt→∞

t

√
χdir(~F∧t) = rD(~F )

by Proposition 9 and the obvious inequality χdir,f (~G) ≤ χdir(~G) applied to ~F∧t.

For the reverse inequality we write

rD(~F ) = limt→∞
t

√
χdir(~F∧t)

≤ limt→∞
t

√
χdir,f (~F∧t)(1 + log a(~F∧t))

=

(
limt→∞

t

√
χdir,f (~F∧t)

)
×

×
(

limt→∞
t

√
(1 + log a(~F∧t))

)
= limt→∞

t

√
χdir,f (~F∧t).

�
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Theorem 12 For any directed graph ~G

rD(~G) ≤ χdir,f (~G).

Proof. From the above we have

rD(~G) = limt→∞
t

√
χdir,f (~G∧t)

≤ limt→∞
t

√
[χdir,f (~G)]t = χdir,f (~G).

�
There are several directed graphs ~G for which the above upper bound is sharp. In partic-
ular, Corollaries 5 and 6 can be proved using Theorem 12 instead of vertex-transitivity.
(An optimal fractional dicoloring of ~T5 is shown on Figure 2.)

4 3

0 2

1 A
f (A) = 1

3

Figure 2: An optimal fractional dicoloring of ~T5.

Note however, that Theorem 12 is not always tight: for the graph (symmetrically
directed digraph) C5, we have RW(C5) = log

√
5 by results in [38] and [25], while

χdir,f (C5) = 5
2
.

We present another such example which is not symmetrically directed. Let the 5-
length cycle be oriented in an (as much as possible) alternating manner, that is so that
only one of its vertices will have outdegree 1 (implying that two of the 4 others will have

outdegree 2, and the remaining 2 have outdegree 0). Denote this oriented graph by ~A5.
(See Figure 3.)

We know that Σ( ~A5) = log
√

5. (This is proven as Proposition 4 in [15], see [31] for
more details on the Sperner capacity of oriented self-complementary graphs. All other ori-
entations of the 5-cycle have Sperner capacity log 2, see [15] and [23]. By Theorems 3 and
12 this implies that the Dilworth rate of their complements is log 5

2
.) Thus by Theorem 3

for the complement of ~A5 we have RD( ~Ac5) ≥ log 5− log
√

5 or equivalently rD( ~Ac5) ≥
√

5.

(The digraph ~Ac5 is shown on Figure 4.)

Proposition 13
√

5 ≤ rD( ~Ac5) ≤
√

6 <
5

2
= χdir,f ( ~A

c
5).
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4 3

0 2

1

Figure 3: The directed graph ~A5.

4 3

0 2

1

Figure 4: The directed graph ~Ac5 (complement of ~A5). Bidirected edges are shown as
undirected ones.

Proof. The first inequality was already given above. To prove the second inequality we
give 6 acyclic sets of vertices in the second power [ ~Ac5]

∧2 of our graph, that cover all vertices

in V ([ ~Ac5]
∧2). The existence of this covering implies that rD([ ~Ac5]

∧2) ≤ χdir([ ~A
c
5]
∧2) ≤ 6

thus by Lemma 3.1 we get rD( ~Ac5) ≤
√

6.

Let us denote the vertices of V ( ~Ac5) = V ( ~A5) by 0, 1, 2, 3, 4 in their cyclic order, so that

in ~A5 we have d+(3) = 1 and the unique outneighbor of 3 is 2. (That is, the outdegree

1 vertex is 3, and thus the outdegree 2 vertices in ~A5 are 4 and 1, while 2 and 0 have
outdegree 0.) The following six subsets of V ( ~A5) × V ( ~A5) induce acyclic subgraphs of

V ([ ~Ac5]
∧2) that entirely cover its vertex set:

44, 31, 10, 23, 02;

14, 43, 01, 30, 22

41, 33, 32, 20

13, 21, 42, 00

11, 12, 04, 03

34, 24, 40.

One can check that within all these five sets if xy is to the left of zw in the same line
above (x, y, z, w may not all be different), then either (x, z) or (y, w) (or both) form an
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edge of ~A5, thus this is a missing edge in ~Ac5. This implies that as a vertex of [ ~Ac5]
∧2

the pair (x, y) does not send an edge to vertex (z, w), therefore the corresponding set of

vertices induces an acyclic subgraph in [ ~Ac5]
∧2. This completes the proof of the second

inequality.
To see that χdir,f ( ~A

c
5) ≥ 5

2
it is enough to realize that any 3 vertices of ~Ac5 contains

a bidirected edge, thus any acyclic induced subgraph has at most two vertices. To see
equality we can put weight 1

2
on all the five 2-element acyclic subsets. �

Remark 8 Getting the same upper bound for the values determined in Corrollar-
ies 5 and 6 in two different ways above is not pure coincidence. It follows from the
fact that if ~G is vertex-transitive then

χdir,f (~G) =
|V (~G)|
a(~G)

.

Note that this is a generalization of the relation, that for every vertex-transitive (undi-
rected) graph G

χf (G) =
|V (G)|
α(G)

that we already referred to right after Definition 6 in Subsection 3.1. This latter equality
is presented in [32] (Proposition 3.1.1 on page 41) as a consequence of a more general
equality concerning vertex-transitive hypergraphs (see Proposition 1.3.4 on page 7 of
[32]).

A vertex-transitive hypergraph is a hypergraph that attains for every pair u, v of
its vertices an automorphism that maps u to v. Proposition 1.3.4 in [32] states that if
H = (V, E) is a vertex-transitive hypergraph then

kf (H) =
|V |
µ(H)

,

where (as before; cf. the discussion after stating Proposition 11) µ(H) = maxE∈E |E|. For

a directed graph ~G we attach again the hypergraph H ~G = (V (~G), E ~G) where E ~G = A(~G).

It is straightforward that if ~G is vertex-transitive then so is H ~G. The equality quoted for

kf from [32] gives the stated equality χdir,f (~G) = |V ( ~G)|
a( ~G)

for vertex-transitive digraphs ~G.

♦

4 Compound systems

Imagine that the handwritten message is left to Bob by one of his three secretaries but
it is not known in advance which one. Their handwriting is rather different and this has
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two consequences that are important for us. One is that the possible mistakes Bob can
make when decoding the message are different depending on which secretary wrote him
the message. (For example, in the first secretary’s handwriting a 7 can be thought to be a
1, while the second secretary “crosses” the leg of 7, so it can never look like a 1, however
it can be confused with a 4, etc.) This means that in place of the noisy channel H we
had so far, now there are three distinct channels H1, H2, and H3 and we do not know
in advance which one will be used. The other important consequence of the secretaries’
handwriting being different is that Bob recognizes who wrote the message, i.e., he will
know which one of the three noisy channels model the actual situation. The relevant
characteristics (the graphs GHi

) of each of these channels are known by Bob and also by
his bank. Now it is the bank that will send the second, error-free but expensive message
to Bob. Although the bank knows the characteristics it does not know which secretary
left the first message. So the second message should make Bob able to decide whether his
decoding (of the first message) was correct irrespective of which secretary wrote it. As
before, we are interested (asymptotically) in the shortest possible message the bank can
send to satisfy the requirements.

Notice that this scenario is basically that of having a compound channel for the first
communication. See [17, 30] for more on compound channels from a zero-error point of
view.

Here is the abstract setting for the above situation. We have k distinct noisy chan-
nels described by the family H = {H1, . . . , Hk}. The relevant properties of this set are

characterised by the family of directed graphs ~GH = {~GH1 , . . . , ~GHk
}.

Definition 10 (cf. [30] and [36]) The Dilworth rate of a family of directed graphs ~G =

{~G1, . . . , ~Gk} all having the same vertex set V , is

RD(~G) = lim
t→∞

1

t
logχ(∪i ~G∧ti ),

where ∪i ~G∧ti denotes the graph on the common vertex set V t of the graphs ~G∧ti with edges

set ∪iE(~G∧ti ).

Proposition 14 If mH(t) is the shortest possible message the bank should send to inform
Bob about the correctness of his decoding of the handwritten message for t consecutive
rounds, then

lim
t→∞

mH(t)

t
= RD(~GH).

Proof. It is enough to prove mH(t) = dχ(∪iG∧tHi
)e.

Let a proper coloring of the graph ∪i ~G∧tHi
be fixed and agreed on by Bob and the bank

in advance. Bob knows that he received the first message via, say, Hj. Since the fixed

coloring is a proper coloring of ~G∧tHi
, Proposition 1 implies that the right hand side is an
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upper bound. If mH(t) would be smaller, then there is some j for which ~G∧tHj
has two

adjacent vertices for which the bank sends the same message. If the channel in use is just
Hj then Proposition 1 implies that the right hand side above is also a lower bound. �

The interesting fact about the above quantity is that it is not more then its obvious
lower bound.

Theorem 15 ([30], cf. also [36]) For every finite family of directed graphs ~G =

{~G1, . . . , ~Gk} we have

RD(~G) = min
~Gi∈~G

RD(~Gi).

The analogous result for Witsenhausen rate (that is the special case of the above when
all graphs are undirected) is proven in [36]. The above general form is already stated by
Nayak and Rose in [30] (cf. Remark 6 of the present paper). They write that the proof
uses essentially the same argument as in [36] and they omit it for the sake of brevity. We
do the same.

5 Connections to extremal set theory

As is the case with Sperner capacity, Dilworth rate also has relevance in extremal set
theory. (Recall that both notions got their name from this relationship, cf. Remark 5.)
These connections are uncovered when we consider the t-length sequences of vertices
of a (di)graph ~G as characteristic vectors of partitions of a t-element set. We already

mentioned that if ~G is the digraph consisting of two vertices and a single oriented edge
between them, then the Dilworth rate is just the asymptotic exponent of the minimum
number of Sperner systems (antichains in the Boolean lattice) that cover all subsets of a
t-element set (the elements of the Boolean lattice). This is known (and easy to prove) to
be t + 1, that is the asymptotic exponent is 0. (The situation with Sperner capacity is
similar: its value for the above mentioned single edge graph is the asymptotic exponent
of the size of a largest Sperner system on a t-element set which is easy to see to be 1.)

Here we present another example that we believe to be interesting. Let us call a family
of pairs of disjoint subsets (Ai, Bi) of a t-element set cross-intersecting if for every two
pairs (Ai, Bi) and (Aj, Bj) both of the intersections Ai ∩ Bj and Aj ∩ Bi are nonempty.
(In other words, Ak ∩ B` = ∅ iff k = `.) Bollobás [6] proved that for such a family∑

i
1

(|Ai|+|Bi|
|Ai|

)
≤ 1. Now we ask, what is the minimum number of cross-intersecting families

that can cover all possible pairs of disjoint subsets of a t-element set. If we are satisfied
with determining the asymptotic exponent (i.e. not the exact value) of this number, then
this question is equivalent to asking the Dilworth rate of an appropriate graph.
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Proposition 16 Let B(t) denote the minimum number of cross-intersecting families that
cover all pairs of disjoint subsets of a t-element set. Then

lim
t→∞

1

t
logB(t) = 1.

Proof. Let ~F be the following directed graph. The vertex set of ~F is {0, 1, 2} and

the edge set is E(~F ) = {(0, 1), (1, 0), (0, 2), (2, 0), (1, 2)}. That is ~F has two undirected
(bidirected) edges connecting 0 to the other two vertices and one oriented edge from 1 to
2. If we encode pairs of disjoint sets of a t-element set by ternary sequences (the positions
of 1’s are the elements of Ai and the positions of 2’s are the elements of Bi in the ternary
sequence encoding the pair (Ai, Bi)), then it is immediate to see that B(t) is just the

chromatic number of ~F∧t. Thus RD(~F ) can indeed be interpreted as the limit in the
statement.

Now we have to show that RD(~F ) = 1. We have χdir(~F ) = 2, so we have RD(~F ) ≤ 1

by Theorem 7. Since ~F contains an undirected edge, ~F∧t contains a symmetric clique
of size 2t. This implies χ(~F∧t) ≥ 2t and thus RD(~F ) ≥ 1. The two inequalities prove

RD(~F ) = 1. �

6 Complete zero-error decoding

Here we consider the more ambitious setup, where Bob, otherwise in the same situation
as described in the Introduction, should decode the actual message with zero-error. (Not
only getting to know whether his earlier decoding was correct or not.)

6.1 The closure graph

It remains true that all the relevant information to solve this problem is contained by the
directed graph ~GH defined at the beginning of Subsection 2.2. We will need the following
operation on directed graphs.

Definition 11 Let ~F be a directed graph on vertex set V . Let the closure graph cl(~F ) of
~F be the following undirected graph.

V (cl(~F )) := V (~F ) = V

and
E(cl(~F )) := {{a, b} : (a, b) ∈ E(~F )}∪

∪{{a, b} : ∃v ∈ V s.t. (a, v), (b, v) ∈ E(~F )}.
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Note that if ~F = ~GH then cl(~F ) = cl(~GH) is the graph where two vertices a and b
are connected if and only if the input letters they represent can result in the same output
letter. This output letter can be one of a and b but also a third element v of the alphabet.
(Recall that the input and output alphabets of the noisy channel H are identical.) The

last possibility means that cl(~GH) may have edges the two endpoints of which are not

adjacent in ~GH in either direction.

For example, if ~GH has three vertices, a, b, c and only two (directed) edges (a, c) and

(b, c), then ~GH is a bipartite graph, while cl(~GH) is the complete (undirected) graph on
3 vertices.

6.2 Relevance of the Witsenhausen rate in this case

Now we are ready to state the graph theoretic solution of the problem considered here.

Theorem 17 Let hc(t) denote the minimum number of bits Alice should send to Bob
via the noiseless channel for making Bob able to decode a t-length sequence of the source
output with zero-error. (The subscript c stands for “complete”.) Then

lim
t→∞

hc(t)

t
= RW(cl(~GH)),

the Witsenhausen rate of the closure graph cl(~GH).

Proof. Assume that a t-length source output is sent through channel H, and the second
message sent by Alice is shorter than logχ([cl(~GH)]∧t). Then there are two t-length source

outputs, that is two sequences x,y in V ([cl(~GH)]∧t) that are adjacent in [cl(~GH)]∧t and
for which Alice sends the same message when encoding either of them for the noiseless
channel. The adjacency of x and y in [cl(~GH)]∧t means that for every i there is a vi ∈
V (cl(~GH)) such that both xi and yi can result in vi when sent through the noisy channel

H. (The reason of this can be that xi = yi = vi or that (xi, yi) is an edge of ~GH , in which

case vi = yi or (yi, xi) is an edge of ~GH and vi = xi or we have (xi, vi), (yi, vi) ∈ E(~GH),
where vi differs from both xi and yi.) Thus if Bob’s original decoding of Alice’s (first)
message was v = (v1, . . . , vt) then he knows that the message sent could be either of x or
y. Since Alice’s second message for x is identical to that for y, Bob will not know even
after receiving the second message whether the original message was x or y.

On the other hand, if the length of Alice’s second message is at least logχ([cl(~GH)]∧t)
then Alice can make Bob able to decide for sure what the original message was. Indeed,
fix a proper coloring of [cl(~GH)]∧t with χ([cl(~GH)]∧t) colors in advance that is known by

both parties. Encode each color by a (distinct) sequence of dlogχ([cl(~GH)]∧t)e bits. If
the original message was z = (z1, . . . , zt) then send Bob the (codeword for the) color of

z. Since as a vertex of [cl(~GH)]∧t z is connected to all those sequences that could result
in the same sequence when sent through H what z can result in, all these sequences have
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a different color than z in our coloring of [cl(~GH)]∧t. Thus when Bob gets to know the
color of z from Alice’s second message he will know that whatever he saw at the output
of H could only arise from z as the input. So he will decode z with zero-error.

Thus we proved that
hc(t) = dlogχ([cl(~GH)]∧t)e.

So limt→∞
hc(t)
t

= limt→∞
1
t

logχ([cl(~GH)]∧t) = RW(cl(~GH)) as stated. �

6.3 What graphs can be closure graphs?

Not every graph can appear as the closure graph cl(~G) of some directed graph ~G.

Proposition 18 Let G be a(n undirected) bipartite graph with |E(G)| ≥ |V (G)|+1. Then
G cannot be the closure graph of any directed graph.

Proof. Let cl(~F ) be the closure graph of a directed graph ~F . Observe that if cl(~F ) has

an edge e connecting two vertices that were not adjacent (in either direction) in ~F , then

e is contained in a triangle in cl(~F ). Let G be a bipartite graph with more edges than
vertices. By bipartiteness G contains no triangle, so if it is a closure graph of some graph
~G, then ~G is just a directed version of G. If any vertex have indegree at least 2 in ~G
that would generate a triangle in cl(~G), so the closure graph could not be G itself. Since
the sum of indegrees equals the number of edges, we cannot avoid having a vertex with
indeegree two if |E(G)| > |V (G)|. This proves the statement. �

To give a complete characterization of those graphs that can arise as a closure graph
seems tedious and complicated. It is certainly not a family of graphs possessing the nice
property that it would be closed under taking induced subgraphs. In fact, the following
statement is true.

Proposition 19 For any finite simple undirected graph G, there exists a directed graph
~F such that cl(~F ) contains G as an induced subgraph.

Proof. Let G be an arbitrary finite simple undirected graph. For every edge e =
{a, b} ∈ E(G) consider a new vertex ve. We add the oriented edges (a, ve) and (b, ve)

to our graph G. Now delete the edges of G thus obtaining a graph ~F on vertex set
V (G)∪{ve : e ∈ E(G)} containing only the 2|E(G)| oriented edges leading to some vertex

ve. It is straightforward to see, that cl(~F ) contains graph G as an induced subgraph. �

7 Open problems

The general problem concerning the Dilworth rate is to determine it for specific directed
graphs. Since this is a difficult and mostly open problem to the related notions of Shannon
and Sperner capacities as well as for the Witsenhausen rate, we cannot expect that this
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problem is easy. Nevertheless, we have seen some digraphs for which it was solvable (at
least when using some non-trivial results already established for Sperner capacity). Still,
there are some directed graphs for which determining the Dilworth rate seems particularly
interesting.

Problem 1 What is the Dilworth rate of the graph ~Ac5 we presented in Subsection 3.2?

Recall that we know
√

5 ≤ rD( ~Ac5) ≤
√

6.

Tournaments play a special role in our setting, because they are exactly those oriented
graphs the complement of which is also an oriented graph (that is one without bidirected
edges). So it may have some particular interest how their Dilworth rate behave.

Problem 2 Is there a tournament ~T for which rD(~T ) is strictly smaller than χdir,f (~T )?
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